
Robert Recknagel
robert.recknagel@outlook.de

March 18, 2015

Modern web-based IMS
application architectures

IMS Technical Symposium 2015

*

Agenda

Introduction

The sample application

IMS Catalog

IMS Open Database

The 3-tier ATM application

Java in IMS dependent regions

IMS Enterprise Suite Connect API

The 4-tier ATM application

2

Live Demo

Summary

Questions?

Introduction
Importance of IMS modernization

IMS Technical Symposium 2015

Agenda

Introduction

The sample application

IMS Catalog

IMS Open Database

The 3-tier ATM application

Java in IMS dependent regions

IMS Enterprise Suite Connect API

The 4-tier ATM application

4

Live Demo

Summary

Questions?

Future trends in application design

 Current situation:

– Access through 3270 is slowly dying out

– Decreasing number of new fat client applications

– More and more web-based applications

– Growing demand for mobile accessibility

 Most future applications will have a front-end based on web technologies (HTML 5, CSS,

JavaScript, …)

– This makes the front-end platform independent

– No deployment to workstations is needed for those applications

– Many mobile apps do also use these technologies (even if they behave like native apps)

5

Future trends in application design

 Behind the front-end an application server will execute major parts of the application’s

functionality

– The functionality will be provided by small software components (Java Servlets, EJBs, …)

– The implementation of these components is transparent to the front-end

– More and more different back-end systems have to be accessed through these

components

 Back-end systems will run on different hardware under different operating systems (z/OS,

UNIX, Linux, Windows Server, …)

– Easy access to these back-end systems is needed

– This includes not only the data stored under control of these back-end systems but also

existing applications running under these back-end systems

 So there is a demand for an easy integration of both IMS databases and IMS transactions

into new application architectures

6

Modernizing IMS applications

 In the future it will also become more and more important to modernize existing IMS

applications because

– The programmers of those applications will be retired

– Many of the older applications are not documented, so their exact functionality is hard to

understand for others

– Young computer scientists do not have Assembler, COBOL or PL/I skills, but they will

have Java skills

– It is still the same with DL/I and SQL

7

Modernizing IMS applications

 You all should be open-minded for new technologies because

– The mainframe is no stand-alone system anymore

– Using similar technologies from front-end to back-end enables the possibility to

understand the whole application functionality

– New technologies also have important pros (for instance: SQL is set-oriented, so less

coding is needed for the same functionality)

– These pros may compensate the higher resource usage of these technologies

– Using new technologies may change the view of managers on IMS and the mainframe

8

The sample application
Two examples of modern multi-tier IMS application architectures

IMS Technical Symposium 2015

Agenda

Introduction

The sample application

IMS Catalog

IMS Open Database

The 3-tier ATM application

Java in IMS dependent regions

IMS Enterprise Suite Connect API

The 4-tier ATM application

10

Live Demo

Summary

Questions?

The sample application simulates the functionality of an ATM.

Both implementations have the same web-based front-end and the same IMS

database as back-end. The layers between are different to each other.

11

The data the ATM application accesses is

stored in the bank customer database.

 HIDAM database with three secondary

indices for faster SQL access

 No undefined space in the database

segments

 Usage of meaningful segment and field

names defined by the EXTERNALNAME

attribute in the DBD

The ATM application uses only parts of the

database and accesses the database always

through a secondary index.

The root segment stores key information about

the bank customer like name, birthday,

address and phone number.

The ATM application gets in the database at

the account segment using a secondary index

on the account number field. This segment

mainly stores balance and interest information.

The entry segments contain information about

the transactions of an account. Another

secondary index is defined on this segment.

For the authentication process at the ATM the

information stored in the card segment is

needed. Besides the card number this

segment contains the encrypted PIN as well as

the validity date and the blocking state.

 The other segments

contain TAN data for internet banking.

Functional parts of the ATM application

17

 The functionality of the ATM application is split into eight parts:

1. Authentication by credit or cash cards,

2. Card blocking after failing three times the authentication,

3. Balance inquiries,

4. Deposits,

5. Withdrawals,

6. Transferals,

7. Querying transactions for printing the account statements and
8. Marking them as printed in the database

 This splitting allows a granular access right definition in the PSB for

– More security,

– Less locking,

– …

IMS Catalog
Role of the IMS Catalog in Java applications

IMS Technical Symposium 2015

Agenda

Introduction

The sample application

IMS Catalog

IMS Open Database

The 3-tier ATM application

Java in IMS dependent regions

IMS Enterprise Suite Connect API

The 4-tier ATM application

19

Live Demo

Summary

Questions?

Java metadata classes vs. IMS Catalog

20

 Java applications do need a description of the database layout and the program view to the

database

 IMS supports two solutions for providing the metadata needed by Java applications:

Java metadata classes IMS Catalog (V12+)

Local storage, may be distributed over

different systems

Central storage, IMS has full control on

the metadata

May be obsolete in comparison with

the active ACBLIB

Up-to-date in comparison with the

ACBLIB

Java metadata classes vs. IMS Catalog

21

Java metadata classes IMS Catalog (V12+)

Less initial effort, more continuous

effort caused by recurrent metadata

class generation (done by IMS

Enterprise Suite Explorer) and their

deployment

More initial effort caused by IMS

Catalog setup, less continuous effort

Faster connection setup because of

local metadata

Slower connection setup because of

metadata querying during the

connection setup

Java metadata classes vs. IMS Catalog

22

Java metadata classes IMS Catalog (V12+)

Changes for meaningful names instead

of short IMS segment or field names as

well as changes for data conversion

from IMS datatypes to SQL datatypes

can be done in the metadata class, no

change of the DBD source necessary

DBD changes needed for both

meaningful names instead of short IMS

segment or field names and data

conversion from IMS datatypes to SQL

datatypes

No database versioning possible IMS Catalog allows database

versioning, but the handling is complex

IMS Catalog metadata management

23

 IMS Catalog is the recommended metadata source

 The Catalog is built from the ACBLIB by running the Catalog Populate Utility DFS3PU00 (or

the combined ACB Generation and Catalog Populate Utility DFS3UACB)

 The metadata can be accessed by issuing a GUR call through DFSDDLT0 or through a

REXXTDLI application

 The getCatalogMetadataAsXML() function of the IMS Universal DL/I driver provides a

similar function for Java applications

 This function is also used by the Universal drivers during the connection setup (if the

Catalog is used as metadata source) and by the IMS Enterprise Suite Explorer

 Old metadata can be deleted by running the Catalog Record Purge Utility DFS3PU10

24

IMS Catalog stores DBD and PSB data enriched by

additional information like meaningful names for

segments and fields or datatype conversion information.

IMS Catalog structure

Image source:

IBM Redpaper

IMS 12: The IMS Catalog

DBD and PSB metadata enrichment

25

 DBD metadata enrichment:

– Use EXTERNALNAME on SEGM and FIELD statement to specify meaningful names

for SQL access

– Also needed on XDFLD statement for SQL access through secondary index (PTF

installation necessary)

– Use DATATYPE on FIELD statement to specify the corresponding SQL datatype (for

instance BIT, BYTE, INT, LONG, FLOAT, DOUBLE, DECIMAL, BINARY, CHAR, …)

– Use DFSMARSH statement after FIELD statement for additional datatype conversion

definitions like patterns for DATE, TIME and TIMESTAMP (for instance 'yyyy.MM.dd')

 PSB metadata enrichment:

– Use EXTERNALNAME on PCB statements to specify meaningful database names for

SQL access

IMS Open Database
Direct access to IMS data from distributed systems

IMS Technical Symposium 2015

Agenda

Introduction

The sample application

IMS Catalog

IMS Open Database

The 3-tier ATM application

Java in IMS dependent regions

IMS Enterprise Suite Connect API

The 4-tier ATM application

27

Live Demo

Summary

Questions?

IMS Open Database overview

28

 The IMS Open Database was introduced with version 11

 Allows direct access to IMS data from distributed environments

 Standardizes the ways of access for all Java applications

 Both DL/I and SQL can be used to access the data

 Distributed access is routed over IMS Connect

 Therefore a new IMS Connect port must be configured

 IMS Connect passes incoming connections to the Open Database Manager

 The ODBM is a new IMS component and part of the Common Service Layer

29

 Stand-alone applications

have to use the IMS

Universal JDBC or DL/I

driver provided by the ZFS

file imsudb.jar

 Java EE applications running

under WAS or other

application servers are able

to use the IMS Universal DB

Resource Adapters instead

(provided by several different

ZFS files)

Java applications running on

distributed systems have to

establish a type-4 connection

to ODBM.

Image source:

IBM Document

IMS 11 Application Programming

The 3-tier ATM application
A lightweight architecture for medium access rates

IMS Technical Symposium 2015

Agenda

Introduction

The sample application

IMS Catalog

IMS Open Database

The 3-tier ATM application

Java in IMS dependent regions

IMS Enterprise Suite Connect API

The 4-tier ATM application

31

Live Demo

Summary

Questions?

32

Browser Application server IMS

Web front-end
(HTML, CSS, JavaScript)

Session management
done by cookies

JavaScript
framework jQuery

Asynchronous
communication with

the application server

Java Servlets

Initialization according
to property file values

Management of
connections to IMS

Processing of POST
requests

Database access and
query result processing

IMS Universal JDBC
Driver

Provides an interface to
IMS/DB

IMS Connect
(ODBM port)

ODBM

Query execution
and result

preparation

IMS/DB

IMS

Catalog

HIDAM

database

Primary index &

secondary indices

A
rc

h
it
e

c
tu

ra
l
o
v
e
rv

ie
w

jQ
u

ery P
rin

t p
lu

g-in

jQ
u

ery M
D

5
 p

lu
g-in

jQ
u

ery U
ser In

terface

33

Web front-end

Authentication interface

Action interface

Authentication
with account

and card
number plus PIN

Card blocking
after three times

failing the
authentication

Overview with
account balance

information

Deposit

Withdrawal

Transferal

Printing of account
statements

Set printed flag

Servlet
ODBCAPV

Servlet
ODBBLCD

Servlet
ODBGBAL

Servlet
ODBDEPO

Servlet
ODBWITH

Servlet
ODBTRFL

Servlet
ODBGUPE

Servlet
ODBSEPT

 Application server

 Database

Handler

IMS JDBC

Driver

Prop. File

Handler

 Property File
 Metadata

classes

(not necessary with Catalog)

F
u
n
c
ti
o

n
a

l
o
v
e
rv

ie
w

Different approaches of Servlet connection handling

34

There are two different ways to handle connections to IMS/DB in a Java Servlet:

1. Keeping connections alive the whole Servlet lifecycle or

2. Connection setup and teardown per request

Keeping alive Setup and teardown per request

Perfect for high access rates, maybe

not ideal for occasional access

Unsuitable for high access rates,

maybe better for occasional access

Shorter response times Higher response times through

connection setup (especially if the IMS

Catalog is the metadata source)

Different approaches of Servlet connection handling

35

Keeping alive Setup and teardown per request

Timeout management must be mostly

done by the Servlet, several IMS

Connect timeouts must be deactivated

Bigger parts of the timeout handling

can be done by IMS Connect, no IMS

Connect timeouts must be deactivated

Less CPU usage, higher real memory

usage caused by permanent

connections

Higher CPU usage caused by

repetitive connection setup and

teardown, less real memory usage

During the implementation of the ATM application did appear some actually unsettled

problems with IRLM lock cycles and/or hanging ODBM threads when using permanent

connections.

Java in IMS dependent regions
Modernization of IMS core applications

IMS Technical Symposium 2015

Agenda

Introduction

The sample application

IMS Catalog

IMS Open Database

The 3-tier ATM application

Java in IMS dependent regions

IMS Enterprise Suite Connect API

The 4-tier ATM application

37

Live Demo

Summary

Questions?

Preconditions of running Java applications under IMS

38

 Java applications can run under IMS in Java Message Processing (JMP) and Java Batch
Processing (JBP) regions as well as in MPP regions for better interoperability with existing
COBOL applications

 There are several preconditions for running Java applications in IMS dependent regions:

– There must be a 31Bit JDK (V6+) installed and referenced in the DFSJVMEV member

– The IMS JDR Resource Adapter as well as the IMS Universal Drivers must be mounted

in a USS directory

– The application itself must be located in a .jar file under USS

– Resource adapter and drivers as well as the application itself must be referenced in the

DFSJVMMS member

– The IMS program name must be mapped to the application‘s Java class name in the

DFSJVMAP member

39

Image source:

IBM Document

IMS Version 11 Universal Drivers und JDR Resource Adapter Type-2

Support Programming Guide

JMP transaction programs access

the IMS message queues through

the IMS JDR Resource Adapter.

All Java applications running in

IMS Java dependent regions are

able to establish type-2

connections to IMS/DB.

They are also able to access DB2

through the DB2 JCC Driver, which

has to be referenced in the

DFSJVMMS member.

DB2 has to be attached to the

region through RRSAF in IMS

versions previous to V13.

IMS Enterprise Suite Connect
API
Accessing IMS transactions from distributed environments

IMS Technical Symposium 2015

Agenda

Introduction

The sample application

IMS Catalog

IMS Open Database

The 3-tier ATM application

Java in IMS dependent regions

IMS Enterprise Suite Connect API

The 4-tier ATM application

41

Live Demo

Summary

Questions?

IMS Enterprise Suite Connect API overview

42

 The IMS Enterprise Suite Connect API is a free downloadable API for IMS access through
IMS Connect

 There is a Java and a C version of the API available

 The IMS Enterprise Suite Connect API is an alternative to the IMS TM Resource Adapter

(previously named IMS Connector for Java)

 It provides all types of interaction with IMS transactions

 The API also provides an IMS command interface

Usage in the 4-tier ATM application

43

 ATM application uses the Java version of the API

 The API is used by Java Servlets to interact with JMP transactions

 Even if the ATM application only accesses JMP transactions, of course there is no limitation

on the API to JMP transactions

 So the API also allows an easy integration of existing IMS transactions into modern

application architectures

The 4-tier ATM application
A better scaling and more secure architecture

IMS Technical Symposium 2015

Agenda

Introduction

The sample application

IMS Catalog

IMS Open Database

The 3-tier ATM application

Java in IMS dependent regions

IMS Enterprise Suite Connect API

The 4-tier ATM application

45

Live Demo

Summary

Questions?

46

Application server IMS

Java Servlets

Initialization according
to property file values

Management of
connections to IMS

Processing of POST
requests

Transaction call
and result processing

IMS Enterprise Suite
Connect API

Provides an interface
to IMS/TM

IM
S C

o
n

n
ect

IMS/DB

 IMS

Catalog
 HIDAM

database

Primary index &

secondary indices

IM
S/TM

JM

P
 regio

n

JMP transactions

Message processing and
database access

IM
S C

o
n

n
ect M

essage p
ro

to
co

l

Browser

Web front-end
(HTML, CSS, JavaScript)

Session management
done by cookies

JavaScript
framework jQuery

Asynchronous
communication with

the application server

jQ
u

ery P
rin

t p
lu

g-in

jQ
u

ery M
D

5
 p

lu
g-in

jQ
u

ery U
ser In

terface

A
rc

h
it
e

c
tu

ra
l
o
v
e
rv

ie
w

47

Servlet
ATMCAPV

Servlet
ATMBLCD

Servlet
ATMGBAL

Servlet
ATMDEPO

Servlet
ATMWITH

Servlet
ATMTRFL

Servlet
ATMGUPE

Servlet
ATMSEPT

 TM

Handler

 Connect

API

Property

File Hand.

 Property File

Message

functions

 Message

formats

F
u
n
c
ti
o

n
a

l
o
v
e
rv

ie
w

 Web front-end

Authentication interface

Action interface

Authentication
with account

and card
number plus PIN

Card blocking
after three times

failing the
authentication

Overview with
account balance

information

Deposit

Withdrawal

Transferal

Printing of account
statements

Set printed flag

Application server

48

Transact.
ATMCAPV

Transact.
ATMBLCD

Transact.
ATMGBAL

Transact.
ATMDEPO

Transact.
ATMWITH

Transact.
ATMTRFL

Transact.
ATMGUPE

Transact.
ATMSEPT

 JMP region under IMS/TM

Database

Handler

IMS JDBC

Driver

Prop. File

Handler

Property File
 Metadata

classes

(not necessary with Catalog)

 Message

formats

IMS JDR
Res. Adpt.

F
u
n
c
ti
o

n
a

l
o
v
e
rv

ie
w

Live demo
Having a look into the ATM application

IMS Technical Symposium 2015

Agenda

Introduction

The sample application

IMS Catalog

IMS Open Database

The 3-tier ATM application

Java in IMS dependent regions

IMS Enterprise Suite Connect API

The 4-tier ATM application

50

Live Demo

Summary

Questions?

Summary
What is the best solution for your business case?

IMS Technical Symposium 2015

Agenda

Introduction

The sample application

IMS Catalog

IMS Open Database

The 3-tier ATM application

Java in IMS dependent regions

IMS Enterprise Suite Connect API

The 4-tier ATM application

52

Live Demo

Summary

Questions?

Comparison of both architectures

53

3-tier architecture 4-tier architecture

Light-weight architecture for medium

workloads with less parallel access

More complex but better scaling

solution (especially if JMP transaction

programs are optimized for re-entrant

usage)

A bit higher response times Less response times (excluding the

first access after the start of the JMP

region)

Difficult to guarantee a high security

level

More secure because database access

only by IMS controlled programs

Comparison of both architectures

54

3-tier architecture 4-tier architecture

Longer locks if DB2 should also be

accessed because the application

server must be the commit coordinator

Shorter locks because IMS is the

commit coordinator

Potentially less costs for medium

access rates

Potentially less costs for high access

rates

Less implementation effort More implementation effort, good

knowledge of IMS and z/OS JDK

needed for implementation of JMP

transaction programs

Comparison of both architectures

55

3-tier architecture 4-tier architecture

ODBM needed No ODBM needed

RRS usage necessary for parallel DB2

access

No RRS usage necessary for parallel

DB2 access since V13

Difficult to monitor Better monitoring possibilities

Potentially long search for errors

It is hard to compare the resource usage because this depends on the business case and the

access rate.

Alternative solutions

56

 Alternative application server components:

– Java Connector Archticture (JCA)-compliant database attachment using the IMS

Universal DB Resource Adapters (enables two-phase commit for access to multiple

back-end systems)

– Enterprise Java Beans providing the core mid-tier functionality like session

management and database access behind the Servlet layer (better reuseability of

software components in other business cases)

 Alternative architecture options:

– IMS Enterprise Suite SOAP Gateway

– z/OS Connect Visit session B16 for more details

Security considerations

57

 In the sample environment IMS Connect does an RACF authorization

– RACF passwords are stored encrypted in the property files

– For the encryption the light version of the jasypt framework is used

 There are additional security checks in IMS:

– Is the user allowed to access the transaction?

– Is the user allowed to allocate the PSB?

 The sample application is not that secure as a real application should be:

– The session management is only done at the client (that is insecure even if there is an

invisible session timeout handling)

– Most value checks are only done at the front-end

– Scripting and SQL injection prevention is only implemented rudimentarily

– The communication between the layers is insecure

Security considerations

58

 How to provide more security?

– Implement the session management not only on client side

– Do not use HTTP GET requests with clear-text parameterization

– Better only use POST requests (like the ATM application does)

– Use the HTTPS instead of the HTTP protocol for the communication between front-end

and application server

– Do additional value checks through the application server components

– Use SSL connections between Servlets and IMS Connect (both the IMS Universal

drivers and the IMS Enterprise Suite Connect API support SSL)

– Allow only access to IMS Connect from defined IP addresses

Questions?
Thank you for your attention!

IMS Technical Symposium 2015

