
Richard Tran

IMS Open Database Development Lead

2015-03-18

What every Java developer
needs to know about IMS –
B11

IMS Technical Symposium 2015

*

Agenda

What is unique about IMS

How the IMS Universal JDBC driver works

Performance considerations

2

The Benefits of IMS

 IMS is different from most other databases in that it is hierarchical

 Faster keyed searches compared to relational

 Ideal for:

– Finance/Banking

– Insurance/Claims

– Retail/Inventory

Solution statement

 Extend the reach of IMS data
– Offer scalable, distributed, and high-speed local access to IMS database resources

Value

 Business growth
– Allow more flexibility in accessing IMS data to meet growth challenges

 Market positioning
– Allow IMS databases to be processed as a standards-based data server

Key differentiators

 Standards-based approach (Java Connector Architecture, JDBC, SQL,
DRDA)

 Solution packaged with IMS

Enables new application design frameworks and patterns

 JCA 1.5 (Java EE)

 JDBC

IMS Open Database

DRDA over TCP/IP

z/OS

IMS

IMS

z/OS

Open Systems (e.g.; LUW)

JavaEE

JDBC

DLI

Universal
drivers DRDA over TCP/IP

Universal
drivers

JavaEE

DLI

JDBC

Direct

Universal
drivers

JDR

IMS Open Database

Universal JDBC driver

 Significant enhancements
– Standardized SQL support
– XA transaction support (type 4)
– Local transaction support (type 4)
– Concurrency control

 Control release of distributed locks

– Updatable result set support
– Batching support

 Fetch multiple rows in a single network call

– JDBC metadata discovery support

Standard SQL and metadata discovery enables significant
integration opportunities for IMS

Solution highlights - JDBC

Universal DB resource adapter

 JCA 1.5
– XA transaction support

 Manage multiple datasource connections in a single UOW
– Local transaction support

 Manage multiple datasource connections each in their own UOW
– Connection pooling

 Pool released connections for future use
– Connection sharing
– Multiple programming models available

 JDBC (Universal JDBC driver incorporated)
 CCI with SQL interactions
 CCI with DLI interactions

Solution highlights - JEE Deployment

Solution highlights - Java dependent region deployment

Java dependent region resource adapter

 Allows new IMS transactions (JMP, JBP) to be written in Java and

managed by the IMS transaction manager

 Complete Java framework for applications operating in an IMS

container
– Message queue processing

– Program switching
 Deferred and immediate

– Transaction demarcation

– GSAM support

– Additional IMS call support necessary for IMS transactions
 INQY

 INIT

 LOG

 Etc

 Shipped with type 2 Universal drivers

Agenda

What is unique about IMS

How the IMS Universal JDBC driver works

Performance considerations

9

Isn’t JDBC meant for relational?

 IMS can present a relational model of a hierarchical database

– 1 to 1 mapping of terms

 PCBs -> Schemas

 Segments -> Tables

 Fields -> Columns

 Record -> Row

– Hierarchical parentage can be shown through

primary/foreign key constraints

 IMS has had a JDBC driver since IMS V7

– IMS Universal JDBC drivers V10+

– IMS Classic JDBC drivers V7-V13

 Note: V13 is the last supported version

IMS’ “Key” concept

ADATA AKEY

BDATA BKEY

CKEY

Seg A

Seg B

Seg C

Hierarchical
representation

Relational
representation

AKEY
ADATA BKEY

BDATA

CKEY
CDATA

BDATA BKEY

CDATA CKEY

A_AKEY

A_AKEY
 B_BKEY

Table C

Table B Table A
1

1

*

*

*

Naming of foreign keys

AKEY CKEY

Physical view of Table C

CKEY
CDATA

BKEY CDATA CKEY

A_AKEY
 B_BKEY

• The main difference in IMS’ handling of foreign keys is the naming
convention

– FK name = <Parent_Segment_Name>_<Parent_Key>

• Unlike a relational database, IMS does not store foreign key values in the
table. It is instead stored in the key feedback area.

– This does not allow users to create custom foreign key names

Table C

Key Feedback Table Data

JOIN processing

 IMS can only process JOINs along the tables that fall within the same

hierarchical path.

– In the following database, you can join A and B as well as A and C. B and

C would not be joinable

 IMS will do an implicit INNER JOIN when JOIN syntax is not specified

– Other databases will typically do an implicit CROSS JOIN

 An alternative to OUTER JOINs is to have your DBA create a logical

relationship

– Logical relationship definitions is outside the scope of this presentation

A

B C

IMS data overlay consideration

 An IMS record can typically be considered as a huge blob of data.

 Aside from the key field which is in a fixed location, data can be

stored at any field and offset within the database

 This allows for multiple fields to be defined over the same area

– An update to one field may affect the value of another!

 In the following example, the ADDRESS field exist in the same

area as the STREET, CITY and ZIP

ADDRESS

AKEY

Table A

STREET CITY ZIP

IMS dynamic record mapping

 An IMS record can also be mapped in multiple ways depending on

a control field

 For example an Insurance Policy table can be interpreted as

multiple types of policies depending on the value of a control field

 The IMSJDBC driver will depict invalid mappings as null values

– If looking at a Car Policy, then the ADDRESS, VALUE, SQFT

columns would be shown as NULL

ADDRESS
CTL

Policy Table

Make MODEL YEAR
AKEY

VALUE SQFT

Make MODEL YEAR Make MODEL

ADDRESS VALUE SQFT ADDRESS VALUE If CTL = “Home”

If CTL = “Car”

IMS NULL value considerations

 IMS does not store NULL values

 However, IMS will represent values as NULL such as in

the dynamic mapping scenario for an invalid mapping

 IMS will also represent NULL values for variable length

segments

– Some fields may not exist in this scenario but it is

not based on a NULL indicator as is typical for a

relational database

IMS variable length segments

 An IMS record length can vary based on a length field

– This is similar to how relational databases store VARCHAR and

VARBINARY values except we apply it to the whole record

 The IMS JDBC driver will manage this length value for the user

 For a given record instance, if a field falls outside of the given length it is

treated as null as there is no data associated with it.

 In the following example, the comments field is treated as null

ADDRESS SSN INCOME OCCUPATION COMMENTS LL

1 3 23 33 40 50 70 Offsets

Length value of 50
bytes

Non-existent data Within the record instance

IMS data type support

 Most existing IMS field definitions are based on COBOL

copybooks or PL/I include files

 The IMS JDBC driver is built to handle the more complex data

structures

 Example of a STRUCT

01 SEGMENTA.

 05 KEYFIELD PIC X(4).

 05 ADDRESS.

 10 STREET PIC X(10).

 10 CITY PIC X(10).

 10 ZIP PIC X(9).

CHAR[10] STREET
CHAR[10] CITY
CHAR[9] ZIP

Defines the structure
ADDRESS

How to read a STRUCT in Java

 Standard SQL assumes the application knows the makeup of

the individual STRUCT attributes

Struct address = (Struct) rs.getObject(“ADDRESS”);

Object[] addressAttributes = address.getAttributes();

String street = (String) addressAttributes[0];

String city = (String) addressAttributes[1];

String zip = (String) addressAttributes[2];

Alternative way to read a STRUCT in Java

 IMS provides a more intuitive lookup of STRUCT attributes by

leveraging additional data within the IMS catalog

 StructImpl addressImpl = (StructImpl) rs.getObject(“ADDRESS”);

String city = addressImpl.getString(“CITY”);

String street = addressImpl.getString(“STREET”);

String zip = addressImpl.getString(“ZIP”);

How to instantiate a STRUCT in Java

 Standard SQL has a bottom up method for STRUCT creation

Object[] addressAttributes = new Object[]

 { “MYSTREET”, “MYCITY”, “MYZIP” };

Struct address = connection.createStruct(

 “ADDRESS”, addressAttributes);

Alternative way to instantiate a STRUCT

 IMS provides a top down STRUCT instantiation method

StructImpl address = (StructImpl) connection

 .createStruct(“ADDRESS”);

address.setString(“CITY”, “MYCITY”);

address.setString(“STREET”, “MYSTREET”);

address.setString(“ZIP”, “MYZIP”);

IMS data type support - Arrays

 Similar to STRUCTs, ARRAYS can be based off of COBOL

copybook or PL/I include file defintiions as well

01 STUDENT.

 05 COURSES OCCURS 2 TIMES.

 10 COURSENAME PIC X(15).

 10 INSTRUCTOR PIC X(25).

CHAR[15] COURSENAME
CHAR[25] INSTRUCTOR

Defines the array
COURSES

CHAR[15] COURSENAME
CHAR[25] INSTRUCTOR

How to read an ARRAY in Java

 Java treats the repeating elements of an ARRAY as a

STRUCT

– Similar issues related to the attributes of a STRUCT

Array courses = rs.getArray(“COURSES”);

Struct[] course = (Struct[]) courses.getArray();

for (int i = 0; i < courses.length; i++) {

 Object[] courseInfo = course[i].getAttributes();

 String coursename = (String) courseInfo[0];

 String instructor = (String) courseInfo[1];

}

Alternative way to read an Array in Java

 Allows easier navigation between elements and element attributes

 Introduce a DBArrayElementSet which treats the array elements similar to

a ResultSet

 ArrayImpl courses = (ArrayImpl) rs.getArray(“COURSES”);

DBArrayElementSet elements = courses.getElements();

while (elements.next()) {

 String coursename = elements.getString(“COURSENAME”);

 String instructor = elements.getString(“INSTRUCTOR”);

}

How to instantiate an ARRAY in Java

 Similar to a STRUCT, the array is defined in a bottom up

manner

Struct[] course = new Struct[2];

// Create the first array element

Object[] mathCourse = new Object[] { “MATH”,

 “DR. CALCULUS” };

course[0] = conn.createStruct(“COURSES”, mathCourse);

// Create the second array element

Object[] litCourse = new Object[] { “ENGLISH”,

 “MR. ALPHABET” };

course[1] = conn.createStruct(“COURSES”, litCourse);

// Create the array

Array courses = conn.createArrayOf(“COURSES”, course);

Alternative way to instantiate an ARRAY

 IMS provides a top down Array instantiation method

// Create the array

ArrayImpl courses = ((ArrayImpl) ((ConnectionImpl)

 conn).createArrayOf(“COURSES”));

DBArrayElementSet elements = courses.getElements();

// Populate the first element

elements.next();

elements.setString(“COURSENAME”, “MATH”);

elements.setString(“INSTRUCTOR”, “DR. CALCULUS”);

// Populate the second element

elements.next();

elements.setString(“COURSENAME”, “ENGLISH”);

elements.setString(“INSTRUCTOR”, “MR. ALPHABET”);

Complex structure considerations

 ARRAYs and STRUCTs can be nested many levels deep

– This will add code complexity to handle for both methods

 Also most JDBC compliant tools do not properly handle

ARRAYs and STRUCTs and if they do they do not handle

nesting

 Consider asking your DBA to flatten out the metadata in the

IMS catalog if the structured format is not necessary

Custom data type support

 IMS data is stored on disk as a BLOB, so interpretation of that

BLOB is typically left to the application to decide

 IMS supports the use of custom data types in order to

represent that data as an equivalent Java data type

 A few examples:

– A date value that is based the number of days since Jan 1,

1950

– A date value that is stored as a packed decimal number:

0x19500101c

How to write a custom user type converter

 In order to create a custom user type converter, the

application developer will need to extend the

com.ibm.ims.dli.types.BaseTypeConverter

 The application developer needs to override the following two

methods

– readObject()

 For SQL SELECT calls

– writeObject()

 For SQL INSERT and DELETE calls

Helper classes for writing a type converter

 The IMS JDBC driver provides a ConverterFactory class that

will allow users to instantiate basic converters

– DoubleTypeConverter

– IntegerTypeConverter

– UIntegerTypeConverter

– PackedDecimalTypeConverter

– etc.

 These converters are located in the

com.ibm.ims.dli.converters package

 It is easier to use these basic converters to build up the

read/write logic for a more complex user type converter

Custom type converter sample

 The IMS JDBC driver contains an example custom type converter

that can be used as a reference

– com.ibm.ims.dli.types.PackedDateConverter

public Object readObject(byte[] ioArea, int start, int length, Class objectType, Collection<String> warningStrings)

 throws ConversionException {

 if (objectType == java.sql.Date.class) {

 java.sql.Date result = null;

 // Retrieves the numeric Packed Decimal Value

 boolean isSigned = true;

 String pattern = “yyyyMMdd”;

 PackedDecimalTypeConverter packedConverter = ConverterFactory

 .createPackedDecimalConverter(pattern.length(), 0, isSigned);

 BigDecimal packedDecimalValue = packedConverter.getBigDecimal(ioArea, start, length, warningStrings);

 SimpleDateFormat formatter = new SimpleDateFormat(pattern);

 try {

 result = new java.sql.Date(formatter.parse(packedDecimalValue.toString()).getTime());

 } catch (ParseException e) {

 throw new ConversionException(e.getMessage(), e);

 }

 return result;

}

How to deploy a custom type converter

 The custom type converter will need to be compiled and

deployed with your application in a place where the Java class

loader will pick it up

– It is recommended to deploy the converters in the same

location as the IMS JDBC driver

 The IMS catalog will need to be updated so that the column

definition refers to the user type converter

– This will require coordination with your DBA

 The IMS JDBC driver will automatically detect that a custom

user type is being requested and will invoke the appropriate

methods behind the scenes

Performance considerations

 There are three sections which can significantly affect

performance

– Application Side

 Here the focus is on reducing the amount of

processing that the IMS JDBC driver will do to process

a SQL query

– Network

 Here the focus is on reducing the amount of data that

is transferred across the wire and the number of calls

– Server Side

 Here the focus is on tuning the IMS databases

themselves

Application performance considerations

 As mentioned in the beginning, IMS is ideal for queries that

are based on specific key values

– This is because every SQL query is broken down to an

equivalent DL/I query

 Aggregate, ORDER BY and GROUP BY queries do not break

down to equivalent DL/I calls

– Data is pulled down to the client where aggregate,

ordering or grouping processing can occur

– Can be time/resource intensive depending on the size of

the result set being processed

Network performance considerations

 IMS always retrieves the full record but the IMS Open Database

Manager will filter only the requested fields to be sent back

 It is always better to always include a specific field list instead of

doing a SELECT *

 For example,

 SELECT A, C FROM TBL

A B C D E A C

Client Side z/OS

Client
Application

ODBM IMS DB

Network performance considerations

 The number of rows that is sent per network call can be

manipulated with the fetchSize parameter

 Setting too high of a fetchSize may cause ODBM to timeout

as it is building out a result set to send over the network
– This will require tuning in conjunction your DBA

 A fetchSize of 1 is only recommended when performing

taking advantage of updateable result set
– Should only be used for positioning updates on un-keyed

tables

Server side performance considerations

 Unlike other relational database, IMS does not support the

capabilities to set object permissions dynamically with DCL

 Lock restrictions are set by the DBA through PROCOPT

settings on the PCB

 You should engage with your DBA to determine the

appropriate lock settings for each application
– e.g., Dirty reads, Update locks, etc.

References

 Accessing IMS Data through the JDBC API (IBM Systems Magazine)
– http://www.ibmsystemsmag.com/mainframe/administrator/ims/JDBC-API/

 IMS V12 Catalog RedPaper
– http://www.redbooks.ibm.com/redpapers/pdfs/redp4812.pdf

 IMS Java Development on System z Best Practices
– https://kiesslich-consulting.de/download/C12_A14_Richard_Tran.pdf

http://www.ibmsystemsmag.com/mainframe/administrator/ims/JDBC-API/
http://www.ibmsystemsmag.com/mainframe/administrator/ims/JDBC-API/
http://www.ibmsystemsmag.com/mainframe/administrator/ims/JDBC-API/
http://www.ibmsystemsmag.com/mainframe/administrator/ims/JDBC-API/
http://www.redbooks.ibm.com/redpapers/pdfs/redp4812.pdf
https://kiesslich-consulting.de/download/C12_A14_Richard_Tran.pdf
https://kiesslich-consulting.de/download/C12_A14_Richard_Tran.pdf
https://kiesslich-consulting.de/download/C12_A14_Richard_Tran.pdf

Questions?

IMS Technical Symposium 2015

Thanks

IMS Technical Symposium 2015

