
Session B12: Fiducia Driving Efficiencies with IMS

Pascal Meyer, Karlsruhe 03/2015
Pascal Meyer | Driving Efficiencies with IMS | Version 1 Seite 1

© Fiducia IT AG © Fiducia IT AG

Objectives

 Motivation to bring Java on the Mainframe

 The benefit of JZOS and IMS-BMPs in

Batch

 The benefits of Java in IMS MPRs for

Online Processing

 Impact of Java on the development and

production environments

 Next step

Seite 2 Pascal Meyer | Driving Efficiencies with IMS | Version 1

Core

Applications

Mobile

© Fiducia IT AG © Fiducia IT AG Pascal Meyer | Driving Efficiencies with IMS | Version 1 Seite 3

Fiducia: Driving Efficiencies with IMS

Fiducia overview 1

Business needs, Added Value of Java/Z 2

Java Batch Experience (JZOS and BMPs) 3

Java-IMS: Experience 4

Impact of resource consumption 5

Technology outlook (Fiducia / IBM) 6

© Fiducia IT AG © Fiducia IT AG Seite 4 Pascal Meyer | Driving Efficiencies with IMS | Version 1

Nutzenpotentiale von Java am Host

 One of the leading IT service providers in

Germany

– provide and operate

a functional rich integrated

core banking system

– over 730 client banks

 Core competencies

– developing and implementing integrated

IT solutions

– operating the compute center for

applications requiring a high level of

security and availability

Fiducia IT AG - Overview

© Fiducia IT AG © Fiducia IT AG

Fiducia IT AG: full service provider for our Client Banks

Seite 5 Pascal Meyer | Driving Efficiencies with IMS | Version 1

Nutzenpotentiale von Java am Host

 Full service provider for the Banks

 About 10,550 Points of sales

– 98,800 PC workstations in banks

– 23,000 self-service terminals, including

• 11,300 ATMs

• 9,100 bank statement printers

• 2,300 service terminals

– 6,500 other servers

© Fiducia IT AG © Fiducia IT AG Seite 6 Pascal Meyer | Driving Efficiencies with IMS | Version 1

Nutzenpotentiale von Java am Host

 High available and secure compute

centers

– thousands virtual unix/windows Servers

– 5 z/Series EC12

– 2 productive Sysplexes with 10

IMS/DB2/MQ Subsystems serves the

core banking

 Management of more than 67 million

accounts at cooperative and private banks

 Processing volume

– 20bn IMS transactions / year

– In Peaks (IMS)

– over 110ml Tx/day

– over 4200 Tx/s

Fiducia IT AG - Numbers

© Fiducia IT AG © Fiducia IT AG Pascal Meyer | Driving Efficiencies with IMS | Version 1 Seite 7

Fiducia: Driving Efficiencies with IMS

Fiducia overview 1

Business needs, Added Value of Java/Z 2

Java Batch Experience (JZOS and BMPs) 3

Java-IMS: Experience 4

Impact of resource consumption 5

Technology outlook (Fiducia / IBM) 6

© Fiducia IT AG © Fiducia IT AG

The standard ways to implement business transactions @Fiducia

Seite 8 Pascal Meyer | Driving Efficiencies with IMS | Version 1

DB2

for z/OS

IMS-TM

MQ-Series

B
u

s
in

e
s

s

S
e

rv
ic

e

IMS-DB

S1: call IMS-TX1

S2: JDBC-upd

App-Server (Tomcat)
B

u
s
in

e
s

s

S
e

rv
ic

e

Tx1: Subr_Tx1

other Subsys Middle tier (in data center) Clients (all

channels)

Guif

icati

on(

HT

ML5

…)

z/OS

© Fiducia IT AG © Fiducia IT AG

The representation of complex business transactions spread across

platforms without TX-Manager can become very complex

Seite 9 Pascal Meyer | Driving Efficiencies with IMS | Version 1

DB2

for z/OS

other Subsys

IMS-TM

MQ-Series

S1: JDBC-upd

C
o

m
p

o
s

it
e

S
e

rv
ic

e

TX1 (Subr_Tx1)

Middle tier (in data center) Client (all

channels)

IMS-DB

S2: call IMS-TX1

S3: JDBC-upd

S4: call IMS-TX2

z/OS

TX2 (Subr_Tx2)

App-Server (Tomcat)

© Fiducia IT AG © Fiducia IT AG

Complex business transactions spread across platforms without TX-

Manager requires compensation

Seite 10 Pascal Meyer | Driving Efficiencies with IMS | Version 1

DB2

for z/OS

other Subsys

IMS-TM

MQ-Series

S1: JDBC-upd

C
o

m
p

o
s

it
e

S
e

rv
ic

e

TX1: Subr_Tx1

Middle tier (in datacenter) Client (all

channels)

IMS-DB

S2: call IMS-TX1

S3: JDBC-upd

S4: call IMS-TX2

z/OS

TX2: Subr_Tx2

Compensation

Compensation

Compensation

Compensation

Compensation

Compensation

Compenstion

App-Server (Tomcat)

© Fiducia IT AG © Fiducia IT AG

The breakthrough: since 2011 the support for Cobol-Java mix is

available for MPRs and BMPs

 Application servers (Websphere …):

– coordinated commit over several Txs,

including IMS-TX is possible

– but during execution the coordinated

TXs don‘t know anything from each

other

 IMS guarantees a single UOW over

Cobol-Java-Mix in an MPR (Message

Processing Region)

– One ESAF- (External Subsystem Attach

Facility) connection for both Cobol

static SQL and JDBC based database

accesses

Mixing Java just like another langage with COBOL inside an MPR becomes reality

Seite 11 Pascal Meyer | Driving Efficiencies with IMS | Version 1

Application Server:

CC(TX1,TX2)

IMS-TX:TX1:

subroutine

Cobol :

other -TX2:

HelloWorld.update()

Java - JDBC

Insert xx=1 into

DB2-

Table

Update where xx=1

 error (1 not found)

IMS-TX:

(Main Cobol-Pgm)

subroutine

Cobol :
HelloWorld.update()

Java - JDBC

Insert xx=1 into DB2-

Table

Update where xx=1

 OK

1

2

3

4

1

2

3

4

coordinated

Commit

(2PC)

IMS-Commit

(UOR)

© Fiducia IT AG © Fiducia IT AG

Complex business transactions spread across platforms without TX-

Manager requires compensation

Seite 12 Pascal Meyer | Driving Efficiencies with IMS | Version 1

DB2

for z/OS

other Subsys

IMS-TM

MQ-Series

S1: JDBC-upd

C
o

m
p

o
s

it
e

S
e

rv
ic

e

TX1: Subr_Tx1

Middle tier (in datacenter) Client (all

channels)

IMS-DB

S2: call IMS-TX1

S3: JDBC-upd

S4: call IMS-TX2

z/OS

TX2: Subr_Tx2

Compensation

Compensation

Compensation

Compensation

Compensation

Compensation

Compenstion

App-Server (Tomcat)

© Fiducia IT AG © Fiducia IT AG

Java inside IMS MPRs can help reduce the complexity of such

business cases

Seite 13 Pascal Meyer | Driving Efficiencies with IMS | Version 1

DB2

for z/OS

IMS-TM

MQ-Series

IMS-DB

call IMS-TxC1

C
o

m
p

o
s
it

e

S
e

rv
ic

e

other Subsys Middle tier (in datacenter) Client (all

channels)

z/OS

IMS-TX: C1

App-Server (Tomcat)

C
o

m
p

o
s
it

e
T

x
:C

1

C
o
b

o
l-
M

a
in

 S2:COBOL

Subr_TX1

S3: Java S3:

JDBC-upd

S4: COBOL

(Subr_TX2)

S1: Java S1

JDBC-upd

© Fiducia IT AG © Fiducia IT AG

Investing in Java on z/OS allows us to stay fit for the future

 Permanently expand the existing

Application set

– Reuse of existing services

 implement new functions in java and use

it everywhere

 use 3rd party software inside IMS

– ZIP, Crypto,..

 Option to Use technologies and

languages where skill is widely available

and new generation is willing to use

Option to “evolve over time“ from a mainly COBOL based System to a mainly Java

based system

Seite 14 Pascal Meyer | Driving Efficiencies with IMS | Version 1

© Fiducia IT AG © Fiducia IT AG Pascal Meyer | Driving Efficiencies with IMS | Version 1 Seite 15

Fiducia: Driving Efficiencies with IMS

Fiducia overview 1

Business needs, Added Value of Java/Z 2

Java Batch Experience (JZOS and BMPs) 3

Java-IMS: Experience 4

Impact of resource consumption 5

Technology outlook (Fiducia / IBM) 6

© Fiducia IT AG © Fiducia IT AG

Batch Evolution: current situation

 Mainframe COBOL…

– Core Applications

• 776.000 Jobs/day

• 80% over night

 Open Systems : Java

– Core Application

• 1.634.930 Jobs

– BI

• 3.785.542 Jobs

– other

• 223.000 Jobs

Currently more jobs on distributed systems than on the mainframe

Seite 16 Pascal Meyer | Driving Efficiencies with IMS | Version 1

© Fiducia IT AG © Fiducia IT AG

Batch Evolution: the results of “evolution”

 What happened typically in large

companies

– 1980 – today: batches on MVS, z/OS in

HL language

– since 199x also batches on Unix,

windows… in HL lang.

– since 200x batches in Java

 Some of these jobs spread over platforms

have dependencies

 probably different Schedulers for different

platforms

 coordinated Scheduling over all platforms

required

 Data exchange over platforms required

and or data sharing expected

Seite 17 Pascal Meyer | Driving Efficiencies with IMS | Version 1

1. HOST: COBOL

 Business Logic

Data shifting &

crossplattform

scheduling

Data shifting &

crossplattform

scheduling

2. Unix: Java

business logic

3. HOST: COBOL

 Business Logic

z/OS File

z/OS File

File / Lob

File / Lob

INPUT

DB

OUTPUT

DB

INPUT

DB

T

W

S

O
.S

. S
c
h

e
d

T

W

S

© Fiducia IT AG © Fiducia IT AG

Why porting Java Batches to the Mainframe

 Reduce complexity by executing the Java

Jobs under JZOS instead of Unix & Host

– only one scheduler, no need to couple the

schedulers

 Improve performance

– no need to shift data over platforms, no

format conversion…

– Java application now is “near” to its data, no

need for remote access and network traffic

– Java batches eventually embedded in

Container (Tomcat, Websphere…)

– Higher throughput

 Improve efficiency of operating controls

– everything is under single control (only

Mainframe operating, no unix operation)

– easier to configure (only TWS people are

involved)

– more effective in case errors (one person is

responsible)

Seite 18 Pascal Meyer | Driving Efficiencies with IMS | Version 1

1. HOST: COBOL

 Business Logic

Data shifting &

crossplattform

scheduling

Data shifting &

crossplattform

scheduling

2. Unix: Java

business logic

3. HOST: COBOL

 Business Logic

z/OS File

z/OS File

File / Lob

File / Lob

INPUT

DB

OUTPUT

DB

INPUT

DB

T

W

S

O
.S

. S
c
h

e
d

T

W

S

© Fiducia IT AG © Fiducia IT AG

Why porting Java Batches to the Mainframe

 Reduce complexity by executing the Java

Jobs under JZOS instead of Unix & Host

– only one scheduler, no need to couple the

schedulers

 Improve performance

– no need to shift data over platforms, no

format conversion…

– Java application now is “near” to its data, no

need for remote access and network traffic

– Java batches eventually embedded in

Container (Tomcat, Websphere…)

– Higher throughput

 Improve efficiency of operating controls

– everything is under single control (only

Mainframe operating, no unix operation)

– easier to configure (only TWS people are

involved)

– more effective in case errors (one person is

responsible)

Seite 19 Pascal Meyer | Driving Efficiencies with IMS | Version 1

1. HOST: COBOL

 Business Logic

2. Host: JZOS

wraping Java

business logic

3. HOST: COBOL

 Business Logic

z/OS File

z/OS File

INPUT

DB

OUTPUT

DB

INPUT

DB

T

W

S

© Fiducia IT AG © Fiducia IT AG

Combining High Level Language like COBOL and

Java brings maximum efficiency

 Reduce again complexity by executing one

program combining COBOL and Java in one

Step as BMP instead 3 steps (one COBOL, one

Java one COBOL)

– take benefit of the overall UOW of IMS over

COBOL and Java

 Improve performance

– no need to persist data between steps

– Data stay in memory

– just overhead of marshalling (ebcdic / UTF16)

– Higher throughput due to minimization of IOs

(the best IO is no IO)

 Bring maximum benefit with data intensive

Workload

 Use of application patterns specifically designed

for high throughput

– use the typical pattern of COBOL batch

coding as base and adapt those for Java

– careful/restrictive use of Hybernate and

Spring

Seite 20 Pascal Meyer | Driving Efficiencies with IMS | Version 1

1. HOST: COBOL

 Business Logic

2. Host: JZOS

wraping Java

business logic

3. HOST: COBOL

 Business Logic

z/OS File

z/OS File

INPUT

DB

OUTPUT

DB

INPUT

DB

T

W

S

© Fiducia IT AG © Fiducia IT AG

Combining High Level Language like COBOL and Java brings

maximum efficiency (IMS-BMP)

 Reduce again complexity by executing one

program combining COBOL and Java in one Step

as BMP instead 3 steps (one COBOL, one Java,

one COBOL)

– take benefit of the overall UOW of IMS over

COBOL and Java including IMS-DB and DB2

 Bring maximum benefit with data intensive

Workload

 Use of application patterns specifically designed

for high throughput

– use the typical pattern of COBOL batch coding

as base and adapt those for Java

– careful/restrictive use of Hybernate and Spring

Seite 21 Pascal Meyer | Driving Efficiencies with IMS | Version 1

COBOL

 Business Logic

Java

business logic

COBOL

 Business Logic

INPUT

DB

OUTPUT

DB

INPUT

DB

T

W

S

Job (BMP) – one Step

C
o

m
p

o
s

it
e

 C
O

B
O

L
 M

a
in

Ressource consumption

zIIP

CPU

classic

(MIPS)
CPU

classic

(MIPS)

Elaps duration

cross

plattform

execution

time

one

Plattform

execution

time

Complexity

cross

plattform

jobs
concentra

tion on

one

plattform

© Fiducia IT AG © Fiducia IT AG

Use Cases / Experience

 JZOS in use for productive purposes since

2008

 JZOS is used for sensible applications

since 2011

 JZOS and BMPs in use for mission critical

applications since 2013

– huge amounts of Data is manipulated

– throughput is very important

– strict deadline for the business

 Over time other eligible applications will be

deployed on the Mainframe by using JZOS

or BMPs application

– new Applications

– existing Application moved from

distributed systems

 Optimize throughput, reduce elapse time, reduce overall

resource consumption
Seite 22 Pascal Meyer | Driving Efficiencies with IMS | Version 1

© Fiducia IT AG © Fiducia IT AG Pascal Meyer | Driving Efficiencies with IMS | Version 1 Seite 23

Fiducia: Driving Efficiencies with IMS

Fiducia overview 1

Business needs, Added Value of Java/Z 2

Java Batch Experience (JZOS and BMPs) 3

Java-IMS: Experience 4

Impact of resource consumption 5

Technology outlook (Fiducia / IBM) 6

© Fiducia IT AG © Fiducia IT AG

Technology: the potential of IMS-Java

 In MPRs: the main program is COBOL

 Delivered Java functionality

– Support of Java SE (31 bit) which covers the scope of building “Business code“

– JVM is resident in the MPR for its hole life

 Inter Language Communication (ILC) between COBOL and Java allows: COBOL calls

Java and Java calls COBOL (cascading)

– Java and COBOL runs within the same transaction (UOW) with Database support for:

• DB2 from COBOL (static SQL) and Java (JDBC Type-2)

• IMS-DB from COBOL and Java

• MQ access from COBOL and Java (available im MQ V8)

Seite 24 Pascal Meyer | Driving Efficiencies with IMS | Version 1

© Fiducia IT AG © Fiducia IT AG

IMS-Java: the JVM is persistent in the IMS-MPRs with 2 major

processing paradigms

 2 different runtime CFGs of the MPRs

– High optimized behavior (option

CANCEL_PGM=NO)

– Standard behavior (option

CANCEL_PGM=YES)

 Activating the JVM requires specific

configuration

– POSIX(ON)

– XPLINK(ON)

Seite 25 Pascal Meyer | Driving Efficiencies with IMS | Version 1

IMS MPR mit IBM SDK 7 - 31bit

IMS
Connect,

MQ,

…

LE Enclave

JVM : C-
Programme

Java Pgms

Hll -
Pgm

…

DFSPCC20; CANCEL_PGM=No/Yes

Hll -
Pgm

© Fiducia IT AG © Fiducia IT AG

Enable your production environment: How to run your existing code

in Java enabled MPRs

 All programs need to be compiled with Enterprise COBOL

 All modules must be amode31

 Deploy your high performance transactions to CANCEL_PGM=NO MPRs

– application behavior should stay unchanged in terms of response time and resource

consumption

 Deploy your standard performance transactions to CANCEL_PGM=YES MPRs

– the LE-enclave will no longer be rebuilt after each TX, so memory is not cleaned after

TX-End. The use of storage(00) might be applied

– test carefully your programs before moving in production

– application behavior should stay unchanged in terms of response time and may

change in terms of resource consumption depending on TX complexity

 Memory:

– Region Size: 0,8 - 1,5 TB

– le settings: Hihg Heap values (120MB, 32MB)

– JVM Footprint: 80MB

 Increase the region size!

Seite 26 Pascal Meyer | Driving Efficiencies with IMS | Version 1

© Fiducia IT AG © Fiducia IT AG

Enable your production environment: are you ready?

 Three major considerations

– Provide education for the IT Operational

team to have them understand how the

new technology works

– Enhance monitoring, accounting and

error Handling to take care of the

infrastructural changes

• Additional data need to be captured

and observed (JVM, inside o JVM,

JDBC…)

• new artefacts need to be monitored:

USS, zFS…

• new kinds of errors need to be

captured

– Take benefit of existing Knowledge in

your company by mixing the Mainframe

and Open-Systems people

 Introduce hybrid teams, teams with dual skill

Seite 27 Pascal Meyer | Driving Efficiencies with IMS | Version 1

© Fiducia IT AG © Fiducia IT AG

IMS-MPRs: Strategies to introduce Java: Horizontal or Vertical

 HORIZONTAL: means first enable all

regions and all application to process the

transactions in Java enabled regions

 java functions consumed by everyone

can be implemented

 VERTICAL: build functional blocks used

in dedicated applications

– introduce Java without need to enable

“all” transactions and “all” regions.

Current strategy based on acquired

experience: vertical approach.

Seite 28 Pascal Meyer | Driving Efficiencies with IMS | Version 1

M

P

R

M

P

R

M

P

R

M

P

R

M

P

R

M

P

R

M

P

R

M

P

R

M

P

R

M

P

R

M

P

R

M

P

R

M

P

R

classic

Region

M

P

R

Java

enabled

Region

M

P

s

M

P

R

M

P

R

M

P

R

M

P

R

M

P

R

J

V

M

J

V

M

J

V

M

…

…

…

…

…

…

… M

P

R

M

P

R

J

V

M

© Fiducia IT AG © Fiducia IT AG

Java/Cobol Mix: How to activate your applications: classpath issues

 JAVA and COBOL must be activated at the save time.

 No particular issues as long as the Classpath is composed of a few jarfiles,

 Never the less loading a Classpath is a cost intensive issue

 So the classic classpath mechanism is not realy adapted for short running processes

(JZOS or BMP), especialy when the classpath contains many jars

– starting a JVM with about 1000 Jars in the Classpath cost about 1 Min elaps.

 We opted for a self defined classloading mechanism

 Fiducias solution: boost up the classloading phase:

– Full content of classpath is defined at time of deployment (opening each jarfile and

building a list of all packages)

– when a job is started, our own Classloader uses this List.

– Large Classpathes can now be handled in an efficient way

Avoid large classpathes when possible, if not build your own

alternative
Seite 29 Pascal Meyer | Driving Efficiencies with IMS | Version 1

© Fiducia IT AG © Fiducia IT AG Pascal Meyer | Driving Efficiencies with IMS | Version 1 Seite 30

Fiducia: Driving Efficiencies with IMS

Fiducia overview 1

Business needs, Added Value of Java/Z 2

Java Batch Experience (JZOS and BMPs) 3

Java-IMS: Experience 4

Impact of resource consumption 5

Technology outlook (Fiducia / IBM) 6

© Fiducia IT AG © Fiducia IT AG

Resource consumption evolution when using dynamic SQL via JDBC

instead of static SQL

 Dynamic SQL is factor 2 to 4 more

resource intensive als static SQL

 This is accepted with remote

applications using DB2.

 Using java/Cobol Mix in IMS instead

remote leads to lesser resource

consumption in DB2

– no Network traffic (TCP), no DRDA

 Ressources for remote initiiated SQLs

(Type-4 / DRDA) are splitted in 45%

GPU, 55% zIIP (Fiducia mesurements)

 Resources consumed in DB2 with

JAVA/COBOL Mix may be elligible to

new pricing models (new Workload)

From a DB2 Ressource consumptions perspective, hosting a jdbc application in IMS

instead remote is more effective

Seite 31 Pascal Meyer | Driving Efficiencies with IMS | Version 1

Remote System

IMS-TM

static DB2 access

STATIC

SQL
100

%

GPU

D

y

n

S

Q

L

New

WL

New

WL

IMS Tx:

COBOL /

Java MIX

dynamic SQL TYPE-2

(in Memory)

IMS Tx:

classic

COBOL

D

y

n

S

Q

L

45%

GPU

55%

-zIIP

dynSQL

Type-4

(Netz)

Java

Transaction

T

C

P

I

P

D

R

D

A

T

C

P

I

P

© Fiducia IT AG © Fiducia IT AG

Evolution resource consumption and costs when processing a High

Performance IMS-Tx extended with Java.

 Ressource consumption of existing

COBOL stays unchanged in java enabled

MPR

 Ressource consumption of a Java

implementation is usualy splitted in 1/3

on GPU und 2/3 on zIIP (pessimistic

view)

 Assuming Java is a factor 3 more

ressource intensive than COBOL

– the resource comsumption on GPU will

be the same as a COBOL

implementation

– if not enougth zIIPs capacity available

for the rest, it goes also on GPU

Introducing Java in High Performance Tx‘s has no impact on the resource

consumption of the existing COBOL Code

Seite 32 Pascal Meyer | Driving Efficiencies with IMS | Version 1

IMS–TX (High-Perf)

in classic MPR

C

O

B

O

L

IMS–TX (High-Perf)

in java enabled MPR

J

A

V

A

2/3 -

zIIP

1/3 -

GPU

new

functionality is

implemented

in Java

100%

- GPU

C

O

B

O

L

100%

- GPU

existing Cobol

functionality stays

unchanged

© Fiducia IT AG © Fiducia IT AG

Evolution resource consumption and costs when processing a

standard Tx extended with Java.

 Ressource consumption of existing

COBOL grows in java enabled MPR

– COBOL LOAD / DELETE instead of

enclave Rebuild

– STORAGE(00) to initialize memory

 Ressource consumption of a Java

implementation is usualy splitted in 1/3

on GPU und 2/3 on zIIP (pessimistic

view)

 Assuming Java is a factor 3 more

ressource intensive than COBOL

– if not enougth zIIPs capacity available

for the rest, it goes also on GPU

Using Java in Standard Regions leads to GPU consumption increase.

Seite 33 Pascal Meyer | Driving Efficiencies with IMS | Version 1

IMS–TX (Standard)

in classic MPR

C

O

B

O

L
100%

- GPU

IMS–TX (Standard)

in java enabled MPR

C

O

B

O

L

J

A

V

A

2/3 -

zIIP

1/3 -

GPU

new

functionality is

implemented

in Java

110%

bis

150%

- GPU

vorhandener Cobol

fachlicher Teil bleibt

unverändert

© Fiducia IT AG © Fiducia IT AG

Effects of migrating a standard Tx to a High Performance Tx.

 Migrate the existing COBOL Code to be

elligible for processing in High

Performance MPRs

– Adapt the existing COBOL to be

reentrant/reusable

 Resource consumption on GPU will

shrink far below ots original consumption

as Standard Tx

 Migrate only a tansactions if it will bring

an ROI

– have an impact on the Peak time

(reduce costs $$$)

– that impact severely your environment

(eliminate „GroundLoad“).

– Txse that are massively consumed

Examine each elligible TX, migrate only those that may generate an ROI

Seite 34 Pascal Meyer | Driving Efficiencies with IMS | Version 1

IMS–TX (Standard)

in java enabled MPR

C

O

B

O

L

J

A

V

A

2/3 -

zIIP

1/3 -

GPU

110%

bis

150%

- GPU

IMS–TX (High-Perf)

in java enabled MPR

C

O

B

O

L

50%

bis

80% -

GPU

J

A

V

A

2/3 -

zIIP

1/3 -

GPU

new

functionality is

implemented

in Java

migrate COBOL

Code to High

Performance

patterns

© Fiducia IT AG © Fiducia IT AG Pascal Meyer | Driving Efficiencies with IMS | Version 1 Seite 35

Fiducia: Driving Efficiencies with IMS

Fiducia overview 1

Business needs, Added Value of Java/Z 2

Java Batch Experience (JZOS and BMPs) 3

Java-IMS: Experience 4

Impact of resource consumption 5

Technology outlook (Fiducia / IBM) 6

© Fiducia IT AG © Fiducia IT AG

Items on Fiducia’s and IBM’s roadmap:

 The Technology has reached its maturity

 IBM and Fiducia still work closely together

to enhance this technology

– current map: transactional JMS based

MQ integration

• delivery in these days

– move forward in the delivery of valuable

enhancements focusing on

• response time

• operational aspects

 Maturity is reached, enhancements are ongoing

Seite 36 Pascal Meyer | Driving Efficiencies with IMS | Version 1

© Fiducia IT AG © Fiducia IT AG

“The Show is going on”

 one subsystem is widely enabled with

prototypes

• 118 from 280 Regions are Java enabled

– 72% (1.222.000 peak hour) of the

executed TXes. used the prototypes

 First „Low-Load App“ (build with Fallback) in

Prod since Q3/2014

 Second App „middle Load“ (build without

fallback) will go in Prod in Q3/2015

 Adaptation of our development and

deployment landscape to take benefit of this

new technology is nearly finished

– patterns, lifecycle

– Industrialization of the hole lifecycle

All prerequisites for an industrial use of Java on Z are done

Seite 37 Pascal Meyer | Driving Efficiencies with IMS | Version 1

Vielen Dank

Pascal Meyer | Driving Efficiencies with IMS | Version 1 Seite 38

