

# IMS to IDAA Keeping Your Data Current

### Prepared for the: IMS Tech Symposium

#### 17 March 2015

©Copyright SQData Corporation 2015 - All Rights Reserved

### Agenda

- Introduction
- IDAA Overview
- Replicating IMS to IDAA
- Design Considerations
- ➢ Q & A
- Conclusion

### **About the Speaker**

#### Scott Quillicy

- ✓ 30+ Years Database Experience
- Commercial Database Software Development
- Deployment of Complex Data Integration Solutions

#### Founded SQData to Provide Customers with:

- ✓ An Enterprise Class Data Integration / Replication Framework
- ✓ A Solution that Handles Both Relational and Non-Relational Data
- Technology Built Around Best Practices

#### Specialization

- ✓ Database Replication
- ✓ IMS  $\rightarrow$  the More Complex, the Better
- ✓ Heterogeneous Database Integration
- Continuous Availability
- ✓ Database Performance



### **About SQData**

- -SQDATA
- "Swiss Army Knife of Data Integration Tools"

#### Core Competencies

- ✓ High-Performance Changed Data Capture (CDC)
- ✓ Non-Relational Data  $\rightarrow$  IMS, VSAM, Flat Files
- ✓ Relational Databases  $\rightarrow$  DB2, Oracle, SQL Server, etc.
- Deployment of Complex Data Integration Solutions
- Continuous Availability of Critical Applications
- Data Conversions / Migrations

#### Customer Usage

- Relational and Non-Relational Data
- ✓ Data Replication Relational and Non-Relational
- ✓ ETL (Bulk Data Extracts/Loads)
- Application Integration
- Business Event Publishing
- Data Conversions / Migrations



### **Why Replicate IMS to IDAA?**

- Provide a Method of Analyzing Data Outside of IMS
- Real-Time Business Intelligence / Advanced Analytics
- Combine with Data from other Applications
- Save Significant CPU Cycles for Intense Queries
- Compliment Established Data Warehouse(s)

### **Best Practices Summary**

#### Let the Business Drive the Effort

- Ensures Proper Alignment with Business Goals
- Queries Drive the Data Model Design
- ✓ Avoid I/T Initiated 'Build it and They will Come'

#### **Temper the Exuberance**

✓ Inevitable After Successful Implementation for a Given Application

#### Align with Enterprise Data

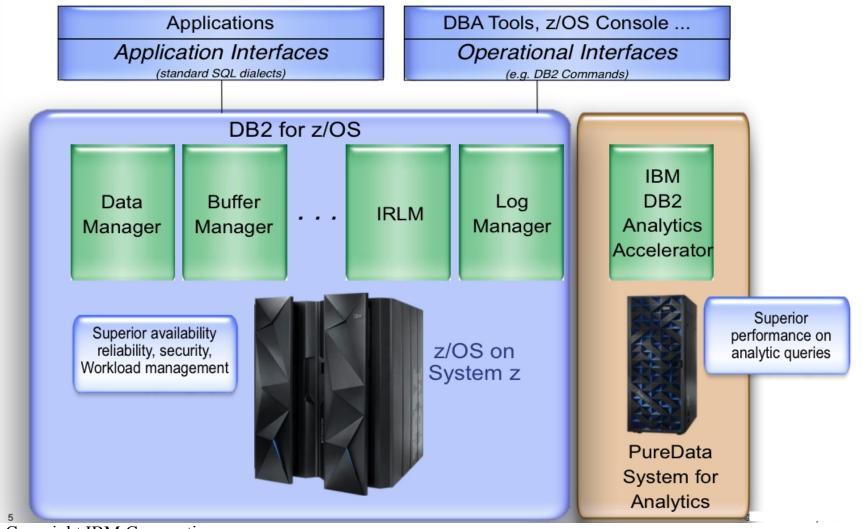
- ✓ Where I/T Comes Takes a Lead Role
- Existing Data Warehouse / Business Intelligence Setups
- Infrastructure / Data Integration
- Use an Iterative Approach for Implementation
  - ✓ Agile / Agile Like

>

- ✓ Set the Relational Mindset Aside
- ✓ Allows for 'Adjustments' without Major Schedule Impact

### What is IDAA?

- Netezza Appliance Coupled to DB2
- Minimal Application Changes Required




# The hybrid computing platform on zEnterprise

- Supports transaction processing and analytics workloads concurrently, efficiently and costeffectively
- Delivers industry leading performance for mixed workloads

#### DB2 Analytics Accelerator and DB2 for z/OS

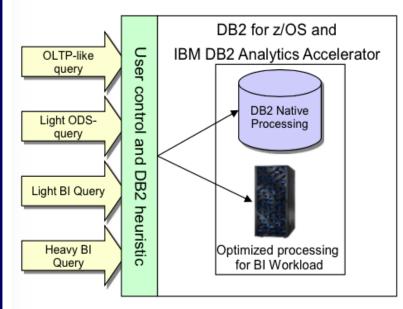
### **IDAA Architecture**



### **Running Queries on IDAA**

➢ Special Register → CURRENT QUERY ACCELERATION

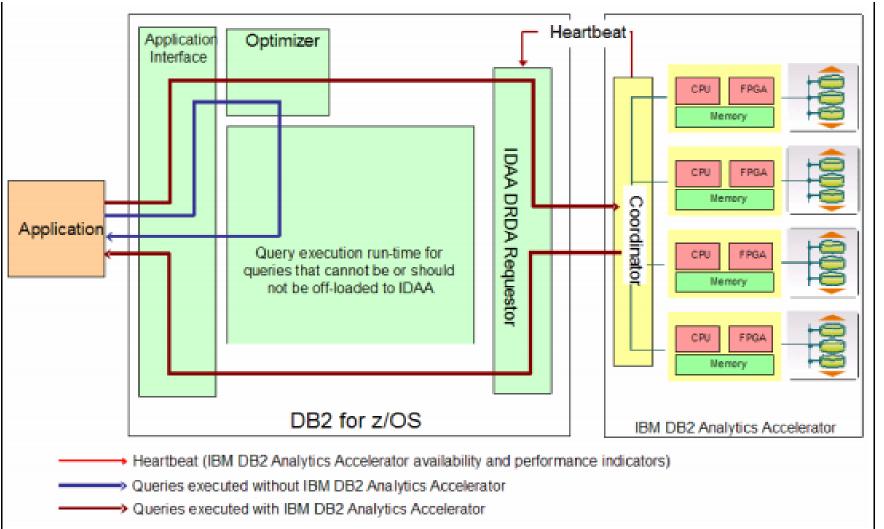
#### Mandatory Criteria


- ✓ All Tables in Query (Join) Exist in the IDAA
- ✓ Query is Defined as Read Only
- Cursor is Not Defined as Scrollable
- Row Set Cursor is Not Remote
- ✓ Query is from a Package and Not a Plan with DBRMs
- ✓ Query is a SELECT or INSERT FROM SELECT Statement

#### SQL Restrictions

- ✓ Special Registers Other Than:
  - CURRENT DATE
  - CURRENT TIME
  - CURRENT TIMESTAMP
- ✓ Sequence Expressions  $\rightarrow$  NEXTVAL or PREVVAL
- ✓ User Defined Functions (UDFs)
- ✓ MIN / MAX with Strings or More than Four (4) Arguments

## **Query Routing**


#### Values for CURRENT QUERY ACCELERATION



- Single and unique system for mixed query workloads
- Dynamic decision for most efficient execution platform
- New special register QUERY ACCELERATION
- New heuristic in DB2 optimizer
- $\ensuremath{\mathbb{C}}$  Copyright IBM Corporation

| Value                   | Description                                                                                                                                                                                                                                   |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NONE                    | No query is routed to the accelerator                                                                                                                                                                                                         |
| ENABLE                  | A query is routed to the accelerator if it satisfies the acceleration criteria including the cost and heuristics criteria. Otherwise it is executed in DB2.                                                                                   |
|                         | If there is an accelerator failure while running the query,<br>or the accelerator returns an error, DB2 will return a<br>negative SQL Code to the application                                                                                 |
| ENABLE WITH<br>FAILBACK | A query is routed to the accelerator if it satisfies the acceleration criteria including the cost and heuristics criteria. Otherwise it is executed in DB2.                                                                                   |
|                         | Under certain conditions the query will run on DB2 after it fails in the accelerator. In particular any negative SQL code will cause failback to DB2 during PREPARE or first OPEN. No failback is possible after a successful OPEN of a query |
| ALL                     | A query is routed to the accelerator, if it cannot execute<br>the query fails and a negative return code is passed back<br>to the application                                                                                                 |
| ELIGIBLE                | A query is routed to the accelerator if it satisfies the acceleration criteria irrespective of the cost and heuristics criteria. Otherwise it is executed in DB2                                                                              |

### **Query Execution Flow**



### **Key Considerations**

**Golden Rule**  $\rightarrow$  Good Distribution = Good Performance

#### Objective

- All Tables are Distributed Across All Active Database Blades
- All Queries Run Parallel Against All Active Database Blades
- All Loads Run Parallel Against All Active Database Blades

#### Distribution Key Selection

- Primary Key of Source Data
- Columns Used for Joins
- Columns with High Cardinality
- Columns Frequently Aggregated On

#### Organizing Key Selection

- ✓ Only Use on Tables with > 1M Rows
- ✓ One or More Columns of Primary Key → Incremental Update Performance
- Columns Used as Common Predicates

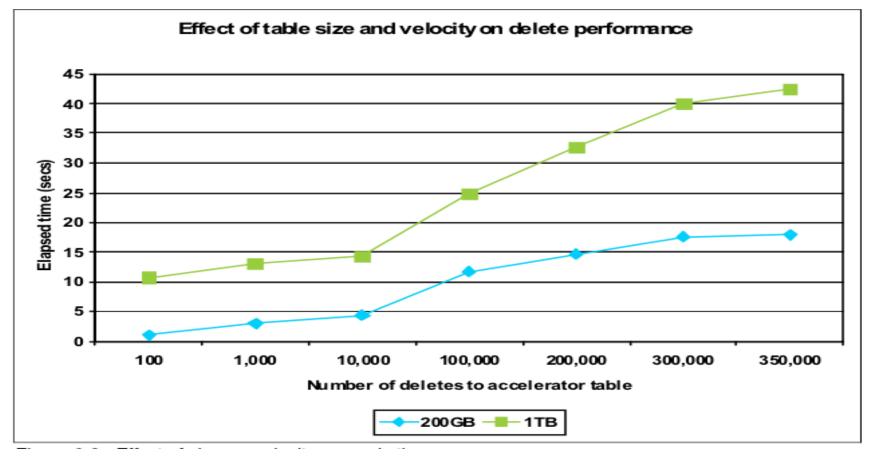
### **Inserts, Updates and Deletes in IDAA**

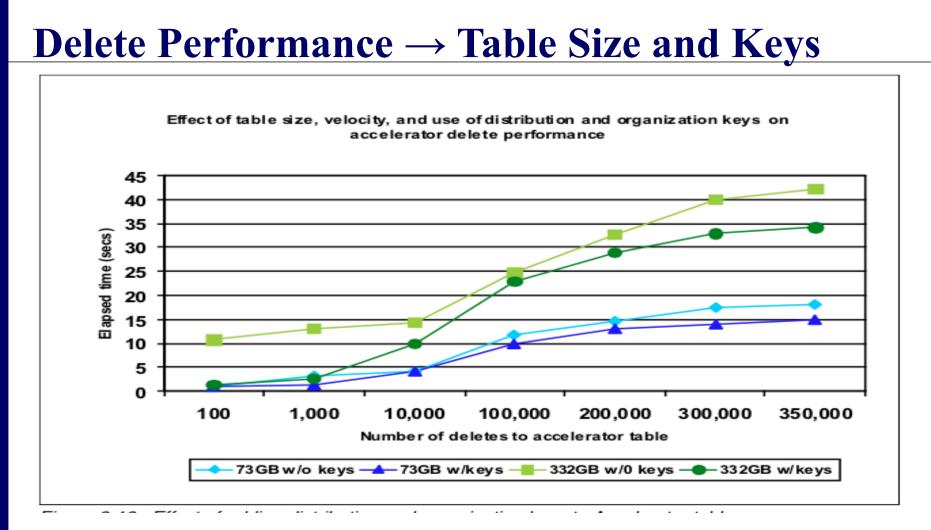
#### ➢ Updates → Delete / Insert Pairs

#### Inserts

- ✓ Appends Data to End of File  $\rightarrow$  Very Fast
- Speed is Based on Number of Rows Being Inserted

#### Deletes


- Must Scan Entire File
- ✓ Select Row Update with Delete Flag
- ✓ Replace Row in Place
- Groom Process Cleans up Files
- ✓ Speed is Based on Size of File and Number of Rows Being Deleted


### **Insert / Delete Performance**

#### With and Without Distribution and Organizing Keys

|                                                                                | Rows             |            | Elapsed time (seconds) |      |        |             |
|--------------------------------------------------------------------------------|------------------|------------|------------------------|------|--------|-------------|
| Test scenario                                                                  | Inserted Deleted |            | INSERT DELETE          |      | Total  | Improvement |
| Separate INSERT and<br>DELETE with random<br>distribution                      | 43,916,377       | 22,007,406 | 7093                   | 5997 | 13,091 |             |
| Separate INSERT and<br>DELETE with DISTRIBUTE<br>and ORGANIZE on unique<br>key | 43,916,377       | 22,007,406 | 5200                   | 5088 | 10,288 | 27%         |
| Mixed INSERT and<br>DELETE with random<br>distribution                         | 43,916,377       | 22,007,406 | 9232                   | 5733 | 14,966 |             |
| Mixed INSERT and<br>DELETE with DISTRIBUTE<br>and ORGANIZE on unique<br>key    | 43,916,377       | 22,007,406 | 6544                   | 4448 | 10,992 | 36%         |

### **Delete Performance** $\rightarrow$ **Table Size**

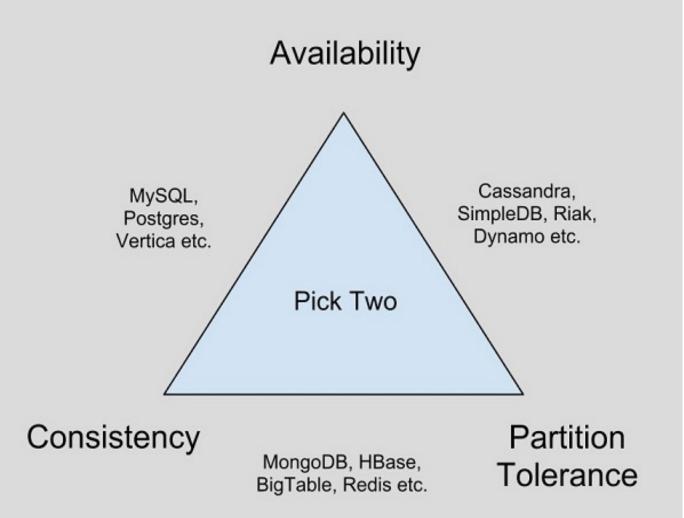




### ACID vs BASE

➢ ACID → Properties Guarantee DB Transactions are Processed Reliably

- ✓ Atomicity  $\rightarrow$  All or Nothing...either the Transaction Commits or it Doesn't
- ✓ Consistency  $\rightarrow$  Transaction brings DB from One Valid State to Another
- ✓ Isolation  $\rightarrow$  Concurrency
- ✓ **D**urability  $\rightarrow$  Once a Transaction Commits, it Remains Committed
- $\blacktriangleright BASE \rightarrow Eventual Consistency$ 
  - ✓ Basically Available  $\rightarrow$  Data is There...No Guarantees on Consistency
  - ✓ Soft State → Data Changing Over Time...May Not Reflect Commit Scope
  - ✓ Eventual Consistency → Data will *Eventually* become Consistent


More Info: Charles Rowe – Shifting pH of Database Transaction Processing http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/



©Copyright SQData Corporation 2015 - All Rights Reserved

### **CAP** Theorem

➢ Eric Brewer - 1998 → Impossible for a Distributed System to Provide All Three (3) Guarantees of Availability, Consistency and Partition Tolerance



### Agenda

- Introduction
- IDAA Overview
- Replicating IMS to IDAA
- Design Considerations
- ➢ Q & A
- Conclusion

### **Getting Started**

#### Verify Design Meets Business Requirements

#### Create Target Table(s) in DB2

- ✓ May be Empty
- ✓ Needs to be Registered in the DB2 Catalog
- ✓ Allocate a Small Tablespace if Data Will Not Reside in DB2

#### **Create Target Table(s) in IDAA**

- ✓ Add Table Wizard in Accelerator Studio
- ✓ Stored Procedure  $\rightarrow$  SYSPROC.ACCEL\_ADD\_TABLES

#### Setup Initial Load Interfaces

- Typically Run Once
- ✓ Can be Used in Place of CDC for Certain Tables

#### Setup CDC Interfaces

- ✓ Determine Latency Settings
- ✓ Group for Consistent and/or Eventually Consistent Replication

### **High-Risk Elements**

#### No Access to Subject Matter Expert(s)

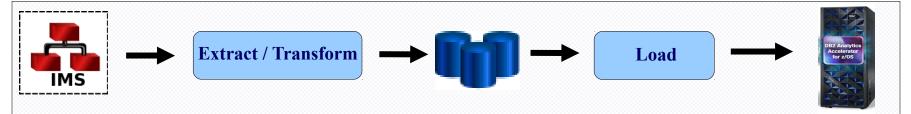
- Significantly Increases Risk
- Extends the Project Timeline
- Results in Guesswork for Design and Mapping
- Underestimating the Complexity of IMS to Relational

#### Big Bang Approach - Attempting to Attack Everything at Once

- Recommend Phased Implementations
- ✓ Subsequent Migrations become Shorter: Experience & Lessons Learned

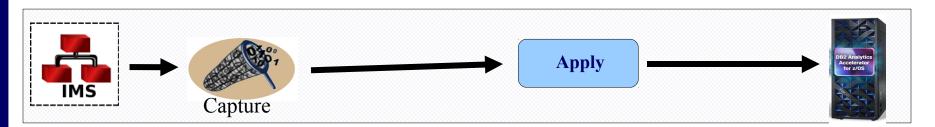
#### Fast-Tracking Planning and Analysis

- ✓ Causes Unnecessary Rework and Waste
- ✓ More Time Spent on the Front End Saves on the Back End


#### High-Transaction Workload on the IMS Side

- Applies Primarily to Application Conversion
- ✓ Performance will NOT be the Same as with IMS

## The Role of ETL and CDC


#### ETL (Extract, Transform, Load):

- ✓ Full Data Extract / Load
- $\checkmark$  Data Transformation Logic Defined in this Step
- ✓ Iterative Process Must be Fast and Efficient
- ✓ Should Minimize Data Landing



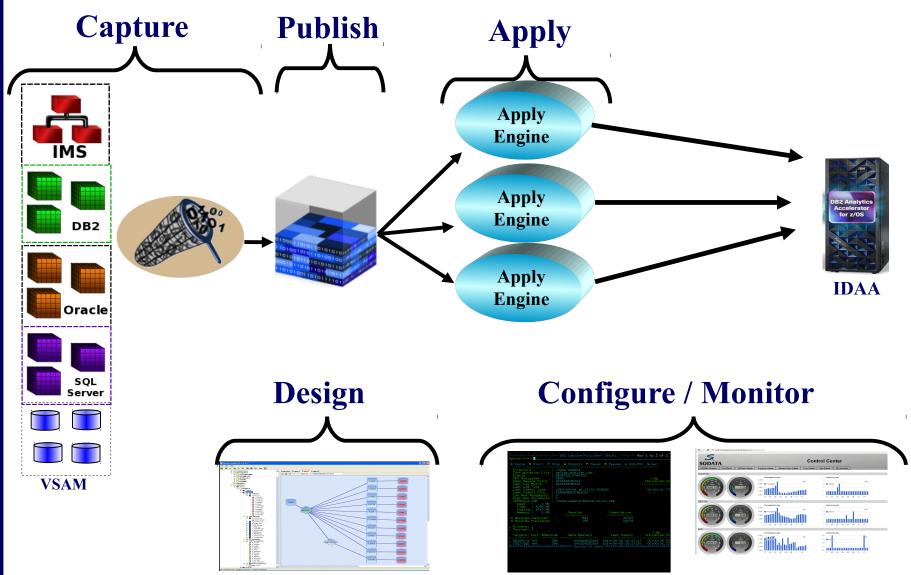
#### **CDC (Changed Data Capture):**

- ✓ Move Only Data that has Changed
- ✓ Re-Use Data Transformation Logic from ETL
- ✓ Near-Real-Time / Deferred Latency



### **Performing the Initial Load**

- $\succ$  Transformation / Mapping Logic Done Here  $\rightarrow$  Reused in CDC
- Should be Able to Run Against Live Sources
- $\blacktriangleright$  Make Sure to Truncate Before Loading  $\rightarrow$  Otherwise Duplicates
- May be Used in Leu of Incremental Updates (CDC)


### > NZLOAD

- ✓ Native Netezza Loader
- ✓ Operates the Same in IDAA and Netezza Only Environments

#### IDAA Loader

- ✓ IBM Product Offering
- ✓ Allows Simultaneous Loading into DB2 and IDAA
- Allows IDAA Only Loads

### **SQData IDAA Replication Ecosystem**

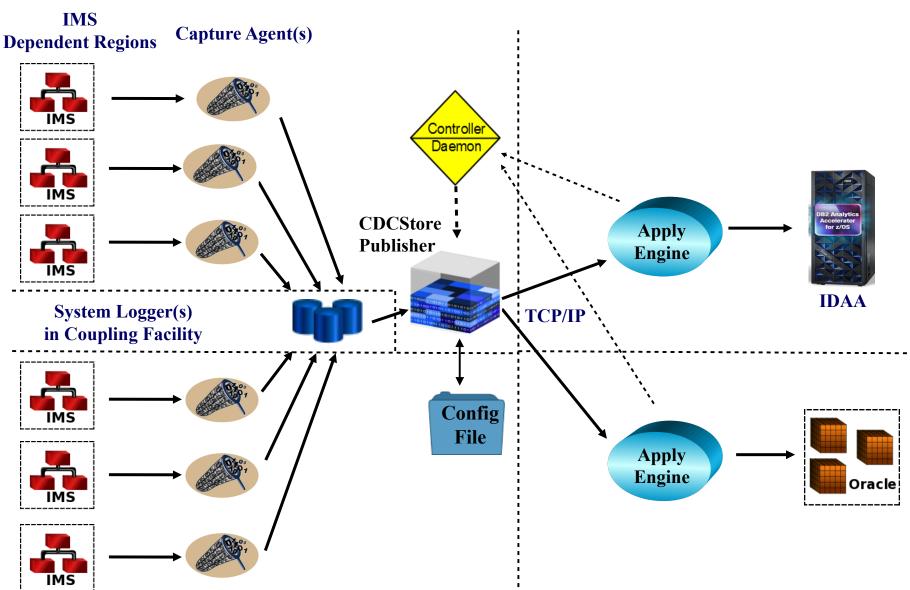


©Copyright SQData Corporation 2015 - All Rights Reserved

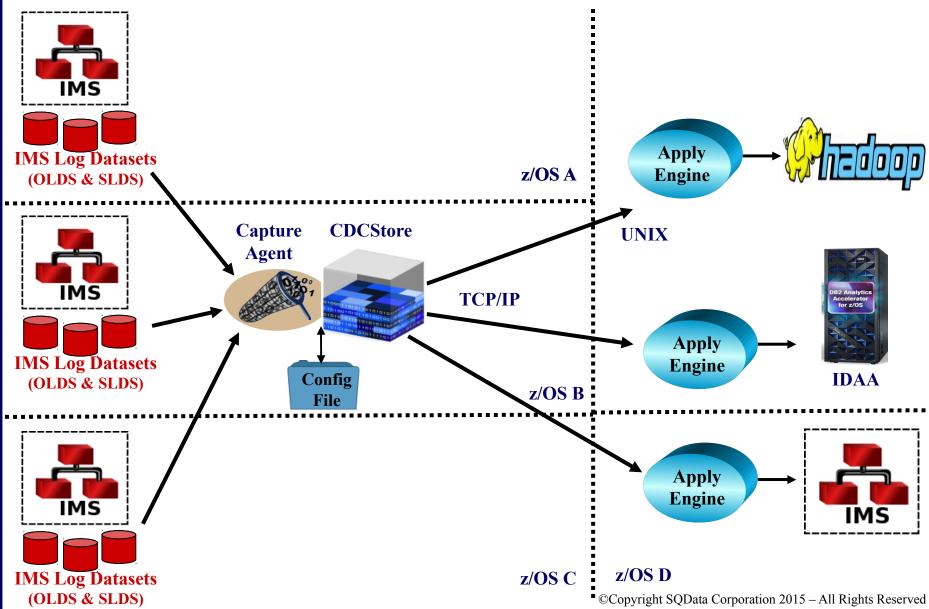
### **IMS Data Capture Methods**

#### Primary Methods of Capture

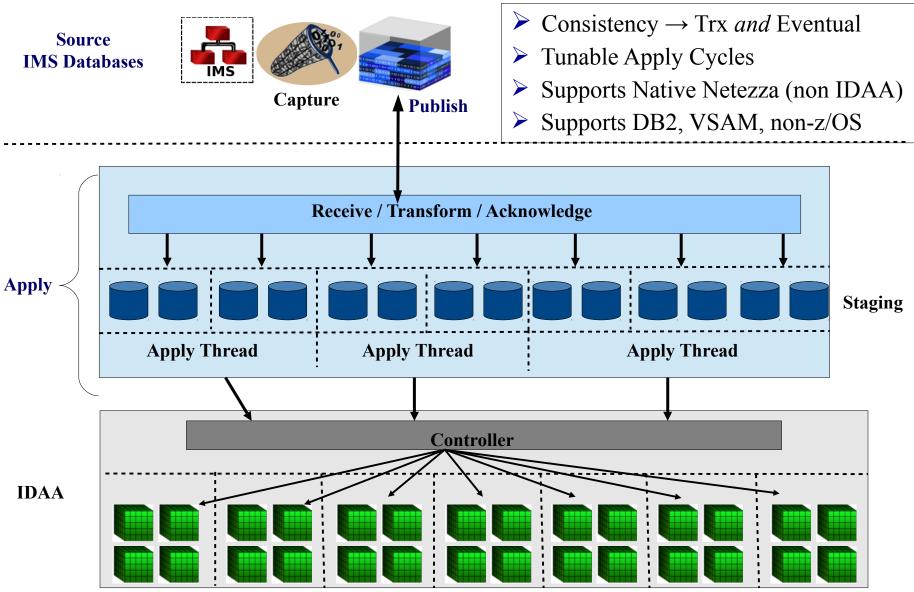
- ✓ Data Capture Exit Routines
- ✓ Log Based
- ✓ Application Based
- ✓ Hardware


#### Database Exit Routines

- ✓ Near-Real-Time for IMS TM
- ✓ Scalability → Capture / Apply by FP Area, HALDB Partition, PSB, Database
- ✓ Do Not Require x'99' Log Records


### Log Based

- ✓ Near-Real-Time or Asynchronous
- ✓ Requires x'99' Log Records
- ✓ Allows for Recapture
- ✓ Scalability  $\rightarrow$  Same as Database Exit Routines


### **SQData IMS zLog Replication**



### **SQData IMS Log Replication**



### **IMS to IDAA Replication Architecture**



©Copyright SQData Corporation 2015 - All Rights Reserved

### Agenda

- Introduction
- IDAA Overview
- Replicating IMS to IDAA
- Design Considerations
- ➢ Q & A
- Conclusion

### **Common IMS Data Challenges**

#### Code Page Translation

#### Invalid Data

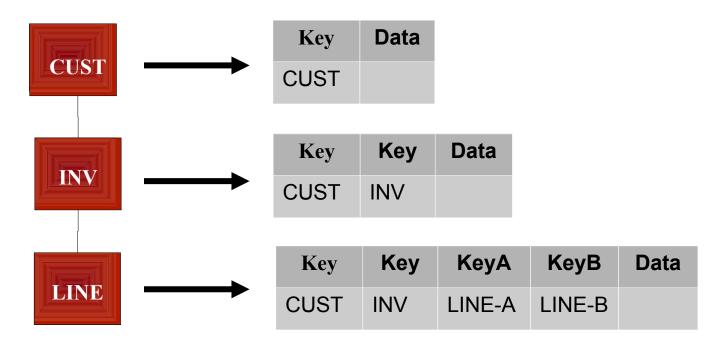
- Non-Numeric Data in Numeric Fields
- Binary Zeros in Packed Fields (or Any Field)
- Invalid Data in Character Fields

#### Dates

- ✓ Must be Decoded / Validated if Target Column is DATE or TIMESTAMP
- ✓ May Require Knowledge of Y2K Implementation
- Allow Extra Time for Date Intensive Applications

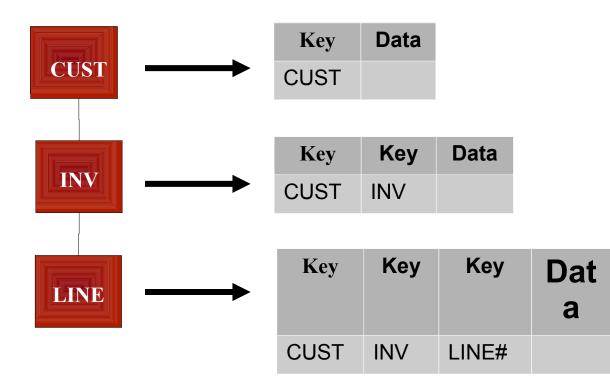
#### Repeating Groups

- ✓ Sparse Arrays
- ✓ Number of Elements
- Will Probably be De-normalized


### Redefines

#### Binary / 'Special' Fields

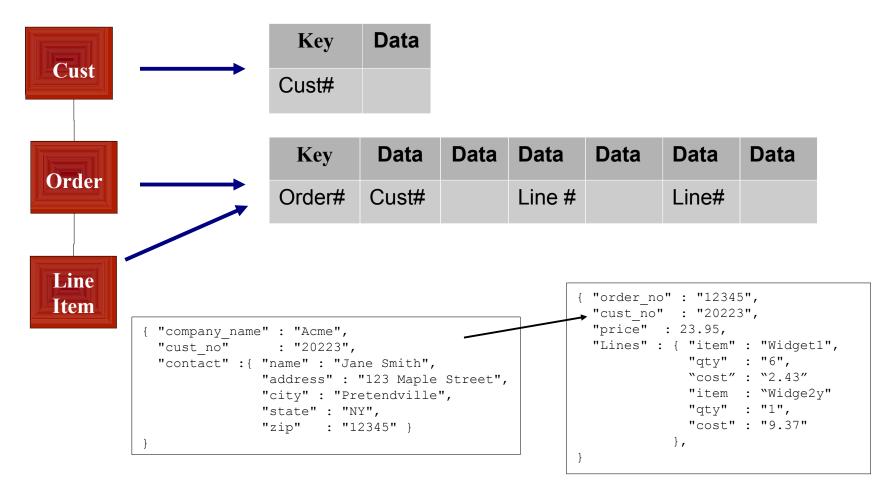
- ✓ Common in Older Applications Developed in 1970s / 80s
- Generally Requires Application Specific Translation


### **Notes on Approach**

- $\checkmark$  Each Segment Maps to One (1) or More Tables
- ✓ Helpful → Keep Source Fields and Target Column Names Similar
- ✓ Design Considerations
  - Duration  $\rightarrow$  Lower for Rehost...Higher for BI/DW
  - Strong Target Data Types will Require Additional Transformation
  - Be Careful to Avoid the 'Over Design'
- ✓ **Best Practice**: Keep Things as Simple as Possible

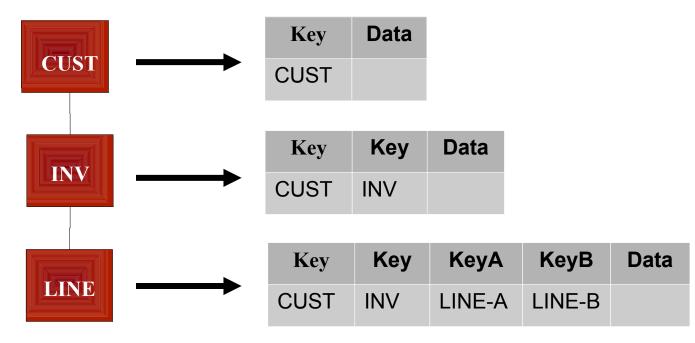


### **IMS to Traditional Relational Model**


- $\blacktriangleright$  Normalized  $\rightarrow$  at Least 2<sup>nd</sup> Normal Form
- Each Segment Typically Maps to One (1) or More Tables



### **Alternative** → **IMS to Big Data Model**


De-Normalized / Minimal Normalization

➢ Degree of Data Redundancy → Trade-Off for Query Performance



### Keys

- ✓ Fairly Straightforward → IMS Key Structure Simplifies Things
- ✓ Carry Parent Keys in Dependent Tables
- $\checkmark$  Use these Unique Keys as Distribution Keys in IDAA
- ✓ Plan on Keys being Comprised of Multiple Fields with Different Data Types
  - Character, Packed, Binary



### **Redefined Fields**

✓ Extends Analysis Timeline More Often than Not

✓ Requires Consult with SME and/or Research to Determine Which Field to Use

- ✓ Options for Simple Redefines:
  - Map Least Restrictive Field (PIC X)
  - Map Both Fields

| 05 | ACCOUNT-ID                      | PIC 9(7). |
|----|---------------------------------|-----------|
| 05 | ACCOUNT-ID REDEFINES ACCOUNT-NO | PIC X(7). |

- ✓ Options for Complex Redefines:
  - Map More Granular Field(s)  $\rightarrow$  Will Require More Data Cleansing / Transformation
  - Map All Fields

| 05 | ACCOUNT-ID           | PIC X(5).         |
|----|----------------------|-------------------|
| 05 | ACCOUNT-ID REDEFINES | ACCOUNT-NO.       |
|    | 10 ACCOUNT-PREFIX    | PIC X(1).         |
|    | 10 ACCOUNT-NUMBER    | PIC S9(7) COMP-3. |

### **Redefined Segments: Full**

✓ Redefine Generally Identified by One (1) or More Code Fields
✓ Each Redefine Mapped to a Separate Target Table

Code Field = Event Type **Event Stats** Hazards Key Fairways Greens Golf Participant # 10 12 3 Key At Bats **Hits** Runs Baseball Participant # 10 8 2 **Blocks Kills** Key Digs Volleyball Participant # 13 6 7

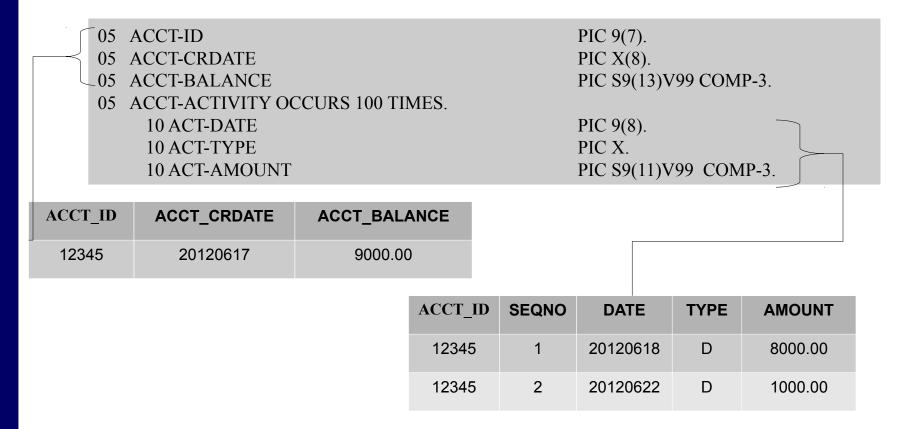
### **Redefined Segments: Partial**

- ✓ Redefine Generally Identified by One (1) or More Code Fields
- ✓ Redefines can be Mapped to the Same Target Table if Enough Fields in Common or
- ✓ Each Redefine Mapped to a Separate Target Table

Premise

Code Field = Premise Type

| Residential | Key1 | Key2    | Addr    | Pool Size | Tenants | Crop |
|-------------|------|---------|---------|-----------|---------|------|
|             | PR#  | PR_Type | 123 Elm | 25,000    | null    | null |
| Commecial   | Key1 | Key2    | Addr    | Pool Size | Tenants | Crop |
|             | PR#  | PR_Type | 456 Ash | null      | 38      | null |
|             | Key1 | Key2    | Addr    | Pool Size | Tenants | Crop |
| Farm/Ranch  | PR#  | PR_Type | 456 Ash | null      | null    | Corn |


## **Non-Keyed Segments**

- ✓ Commonly Used for Text / Comments
- ✓ Straightforward for ETL
  - Unload in Order of Occurrence
  - Optional: Use a Sequence Number to Keep Things in Order on Target Side
- ✓ Tricky for CDC
  - Only Have Access to Parent Key(s)
  - Option 1: Set Apply Key to Include All Non-Keyed Data (exclude sequence #)
  - Option 2: Fully Materialize All Non-Keyed Segments when 1 Changes
  - Make Sure Your ETL/CDC Tool Can Handle Non-Keyed Segments

|       |  | Key                | Data       |                    |
|-------|--|--------------------|------------|--------------------|
| CUST  |  | C123               |            |                    |
|       |  |                    |            |                    |
|       |  | Key                | SEQNO      | Data               |
| NOTES |  | <b>Key</b><br>C123 | SEQNO<br>1 | Data<br>abcdefghij |

### **Repeating Groups: Relational**

- ✓ Typical Candidates for Normalization Based on # Occurs
  ✓ Options:
  - Low # Occurs  $\rightarrow$  Keep in Same Table as Rest of Segment
  - Map to Separate Table Requires a Sequence Number



### **Alternative** → **Repeating Groups: Big Data**

- ✓ All Occurrences into the Same Target
- ✓ No Need for Sequence Number

| 05 ACCT-ID                                           | PIC 9(7).             |
|------------------------------------------------------|-----------------------|
| 05 ACCT-CRDATE                                       | PIC X(8).             |
| 05 ACCT-BALANCE                                      | PIC S9(13)V99 COMP-3. |
| $\longrightarrow$ 05 ACCT-ACTIVITY OCCURS 100 TIMES. |                       |
| 10 ACT-DATE                                          | PIC 9(8).             |
| 10 ACT-TYPE                                          | PIC X.                |
| 10 ACT-AMOUNT                                        | PIC S9(11)V99 COMP-3. |
|                                                      |                       |
|                                                      |                       |

| ACCT_I<br>D | ACCT_CRDATE | BALANCE | DATE     | TYPE | AMOUNT  | DATE     | TYPE | AMOUNT  |
|-------------|-------------|---------|----------|------|---------|----------|------|---------|
| 12345       | 20120617    | 9000.00 | 20120618 | D    | 8000.00 | 20120622 | D    | 1000.00 |

### **Summary**

- Let the Business Drive the Effort
- Temper the Exuberance
- Align with Enterprise Data
- Lose the Relational Model Mentality
- Use an Iterative Approach for Implementation
- Select the Correct Tool Vendor
  - Specializes in Heterogeneous Data Movement
  - Bulk Data Extract & Changed Data Capture / Replication
  - Competent to Participate with Design & Deployment

### **Where to Find Additional Information**

- Email Requests
  - North America: info@sqdata.com
  - EMEA: info@insoft-software.de
- Phone Requests
  - North America: 866-252-3575
  - EMEA: Antoine Gruson +33 (0)5 34 36 29 22
- Websites
  - SQData: www.sqdata.com
  - Insoft: www.insoft-software.de



# IMS to IDAA Keeping Your Data Current

### Prepared for the: IMS Tech Symposium

#### 17 March 2015

©Copyright SQData Corporation 2015 - All Rights Reserved