
Worlds Together:

IMS and .NET

IMS Technical Symposium 2015

*

Evgeni Liakhovich, IMS Develper

evgueni@us.ibm.com

Customers Speak

 “Our company's current IT management “wisdom” seems to

believe that Microsoft is the answer (…) Because we don’t have a .NET

way to access IMS DB, most of our agencies seem to be doing IMS DB

extracts and loading the data into Sql Server, Access, etc. This process

gives management an additional excuse to move off the mainframe (…)

There are solutions that would definitely solve the problem,

unfortunately they are very expensive (…) So.. long story short, we need

a .NET solution to IMS DB (both on/offline) yesterday”

 - IMS Customer

Customer Requirements

• IMS DBMS customers want to be able to access IMS data directly from .NET

applications using SQL

• Today, .NET-based IMS customers who need access to IMS data from .NET

applications are forced to:

× Set up a replication environment where IMS data is copied to a .NET

accessible database server

× Implement data proxy solutions that don’t offer direct connectivity

× Increase code path by implementing bridge solutions

× Use expensive 3rd party products

• All of these alternate paths mean either higher development

costs, higher management costs, and/or higher runtime costs

Introducing

IBM IMS Data Provider for Microsoft .NET

 • IBM IMS Data Provider for Microsoft .NET

- a component of IMS Enterprise Suite

• This product enables standard ADO.NET SQL access to IMS data from .NET

applications in a simple, fast, well proven way

•Develop and reuse .NET applications (written in any .NET language, e.g. C#, VB,

VC++) to access IMS data

•Perform CRUD operations via SQL directly against IMS data

•No need for intermediate steps/tools (such as DB2 stored procedures, web services,

or 3rd party products) to access IMS databases from .NET

Microsoft ADO.NET and Data Providers

 • Microsoft’s development platform for Windows is known as

the .NET Framework

• Supports over 40 different programming languages. The most

popular are C# and Visual Basic.

• The .NET Framework provides data access support

through ADO.NET

• Your applications use databases through what's known as

a data provider

• Various database products include their own .NET data

providers

Overview of IMS Data Provider

 • The IBM IMS Data Provider for Microsoft .NET is a high

performance, managed ADO.NET data provider created specifically

for IMS database systems

• Designed for direct data manipulation and fast access to data

• Leverages IMS Catalog and IMS SQL engine

• Implemented according to ADO.NET data provider API specification

• Enables standard, reusable code

IBM IMS Data Provider for Microsoft .NET

?

DataSet

DataRelationCollection

DataRowCollection

DataColumnCollection

ConstraintCollection

DataTable

IMS Data Provider for Microsoft .NET

SelectCommand

InsertCommand

UpdateCommand

DeleteCommand

IMSDataAdapter

IMSCommand

Parameters

IMSDataReader

IMSConnection

DRDA Client (AR)

ADO.NET Applications

IMS Connect

z/OS

ODBM

DRDA Target Server (AS)

Native SQL

engine

Catalog

Metadata
IMS DB

IMS Data Provider Architecture

IMS SQL Support

• SQL Engine for COBOL and distributed applications (.NET/JDBC)

• Provides standard SQL keywords to easily access IMS data

 SELECT, INSERT, UPDATE, DELETE

Uses Dynamic SQL programming model

Converts SQL statements to DLI calls

 Supports a subset of SQL keywords that are currently supported by

IMS Universal JDBC driver

• Uses database metadata in IMS Catalog

No need to generate metadata for use in applications

z/OS

IMS DB

DLI

SQL engine

Catalog

Metadata
SQL

IM
S

 C
o

n
n

e
c

t

DRDA
JMP JBP

JAVA

MPP BMP IFP
COBOL

L
a
n
g
u
a
g
e

In
te

rf
a
c
e

IMS

JDBC

RYO

.NET

O
p

e
n

 D
a

ta
b

a
s

e
 M

a
n

a
g

e
r

Language interface

SQL

ODBA / DRA Distributed

planned

Connecting to IMS

• A database connection is established through the IMSConnection class:

1. Create a string that stores the connection parameters. Typical format:

 Server=<ip address/hostname>:<port number>;

 Database=<PSB name>;

 Datastore=<Datastore value>;

 User ID=<userID>;

 Password=<password>;

 Connect Timeout=<Timeout value>;

 Pooling=<true or false>;

 Encryption=<true or false>;

2. Pass the connection string to the IMSConnection constructor. Example:

 String connectString =
 “Server=12.34.56.78:5555;Database=SAMPLE";

 IMSConnection conn = new IMSConnection(connectString);

3. Use the Open method to connect to the database identified in the connection

string:

 conn.Open();

C# Application Example (SELECT)

using IBM.Data.IMS;

static void IMSReader()
{

 // Use connection string to configure connection properties
 IMSConnection connection = new IMSConnection("Data source = MyIMS,5555;
 Database = Insurance");
 // Establish connection to IMS database
 connection.Open();

 // Specify SQL query in the IMSCommand object
 IMSCommand command = new IMSCommand("SELECT * FROM PCB01.CUSTOMERS",
 connection);

 // Execute query via the DataReader object
 IMSDataReader reader = command.ExecuteReader();

 // Iterate through results and output on the screen
 while (reader.Read())
 Console.WriteLine(reader.GetString(0));

 // Close the reader
 reader.Close();

 // Close the connection
 connection.Close();

}

C# Application Example (INSERT)

using IBM.Data.IMS;

static void IMSWriter()
{

 // Use connection string to configure connection properties
 IMSConnection connection = new IMSConnection("Data source = MyIMS,5555;
 Database=Insurance");
 // Establish connection to IMS database
 connection.Open();

 // Specify SQL command in the IMSCommand object
 IMSCommand command = new IMSCommand("INSERT INTO PCB01.CUSTOMERS (NAME,
 POLICY) VALUES (‘EVGENI’, 1210050000)", connection);

 // Execute command, return number of rows affected
 int i = command.ExecuteNonQuery();

 // Close the connection
 connection.Close();

}

• INSERT, UPDATE and DELETE commands are used identically

Parameters

• Applications can reference IMS SQL data type values as SQL statement

parameters

• ‘?’ is used as parameter marker

• The IMSParameter object is used to represent a parameter to be added to a

IMSCommand object

• When specifying the data type value for the parameter, the data type values

available in the IBM.Data.IMS.IMSType namespace must be used

 String CommandText = "INSERT INTO PCB01.CUSTOMERS (NAME, POLICY) VALUES (?, ?)";
 IMSCommand command = new IMSCommand(CommandText, conn);

 // Create and prepare an SQL statement.
 IMSParameter nameParam = new IMSParameter(“NAME", IMSType.VARCHAR, 100);
 IMSParameter policyParam = new IMSParameter(“POLICY", IMSType.BIGINT);
 nameParam.Value = "Evgeni Liakhovich";
 policyParam.Value = 1210050000;
 command.Parameters.Add(nameParam);
 command.Parameters.Add(policyParam);

 command.ExecuteNonQuery();

Transactions

• IMS Data provider supports Local Transactions

• IMSTransaction object is responsible for rolling back and committing

database transactions

 IMSCommand command = connection.CreateCommand();
 IMSTransaction transaction;

 // Start a local transaction.
 transaction = connection.BeginTransaction("SampleTransaction");
 command.Transaction = transaction;

 try
 {
 command.CommandText = "INSERT INTO REGION (ID, NAME) VALUES (100, ‘Portland')";
 command.ExecuteNonQuery();

 command.CommandText = "INSERT INTO REGION (ID, NAME) VALUES (200, ‘Vegas')";
 command.ExecuteNonQuery();

 transaction.Commit(); // Attempt to commit the transaction.
 }
 catch (Exception ex)
 {
 transaction.Rollback(); // Attempt to roll back the transaction.
 }

Generic Coding

• .NET Framework outlines the "generic coding", or "factory-based" interface

that is planned to be supported by IMS Data Provider

• Facilitates generic ADO.NET application development, constant

programming interface across different databases

• When using this technique, proprietary class names, such as

IMSConnection, are replaced with common names, such as

DbConnection

using IBM.Data.IMS;

static void GenericReader()
{

DbProviderFactory factory = DbProviderFactories.GetFactory(“IBM.Data.IMS");
DbConnection connection = factory.CreateConnection();
DbConnectionStringBuilder sb = factory.CreateConnectionStringBuilder();

connection.ConnectionString = sb.ConnectionString;
connection.Open();

DbCommand command = new DbCommand("SELECT * FROM PCB.CUSTOMERS", connection);
DbDataReader reader = command.ExecuteReader();

Connection Pooling

• When a connection is first opened against an IMS database, a

connection pool is created. As connections are closed, they enter the

pool, ready to be reused.

• The IMS Data Provider enables connection pooling by default

• Note: You can turn connection pooling off using the Pooling=false

connection string keyword/value pair

• You can control the behavior of the connection pool by setting

connection string keywords for the following:

• The minimum and maximum pool size (MinPoolSize and

MaxPoolSize)

• The length of time a connection can be idle before it is returned to the

pool (ConnectionLifetime)

Data Types

• Supported IMS data types and their .NET equivalents

• No truncation or data loss occurs when using listed methods for

corresponding data types. Other methods can often be used,

however, data integrity cannot be ensured.

IMS Type .NET Type Method

TINYINT Byte GetByte

SMALLINT / INTEGER / BIGINT Int16 / Int32 / Int64 GetInt16/GetInt32/GetInt64

DOUBLE / FLOAT Double / Single GetDouble / GetFloat

BIT Boolean GetBoolean

CHAR / VARCHAR String GetString

PACKEDDECIMAL / ZONEDDECIMAL Decimal GetDecimal

DATE / TIME / TIMESTAMP DateTime GetDateTime

BINARY Byte[] GetBytes

Reading Results

• Reading the result sets is done through a IMSDataReader object.

Read() method is used to advance to the next row in the result set.

• The methods GetString(), GetInt32(), GetDecimal(), etc. are used to

extract data from the individual columns

• Close() method is used to close the IMSDataReader object, which

should always be done when reading the output is finished

 int row = 1;
 while (reader.Read())
 {
 //Print out Column Names if we are on the first row
 if (row == 1)
 for (int i = 0; i < reader.FieldCount; i++)
 Console.Write(reader.GetName(i) + "\t");
 Console.WriteLine();
 //Print out Column values converted to String
 for (int i = 0; i < reader.FieldCount; i++)
 Console.Write(reader.GetString(i) + "\t");
 row++;
 }

Connected vs Disconnected Modes

• IMS Data Provider will support both Connected and

Disconnected data access modes

• The connected mode uses DataReader class and allows

direct data manipulation and fast, forward-only, read-only

access to data

• IMS Data Provider also serves as a bridge between a data

source and an ADO.NET DataSet interface

• The DataSet object is central to supporting disconnected, data

scenarios with ADO.NET

• The DataSet is a memory-resident representation of data that

provides a consistent relational programming model regardless of

the data source

• The disconnected architecture allows fetching data from IMS into

a DataSet, manipulating data without holding database locks, and

committing all changes at once to IMS when all work is finished

Choosing between DataReader and DataSet

• Consider the type of functionality that your application requires. Use a

DataSet to do the following:

• Cache data locally in your application so that you can

manipulate it. If you only need to read the results of a query,

the DataReader is the better choice.

• Perform extensive processing on data without requiring an

open connection to IMS, which frees the connection to be used

by other clients.

• Disconnected mode uses optimistic concurrency, good for

environments with low data contention

• If you do not require the functionality provided by the DataSet, you

can improve the performance of your application by using the

DataReader to return your data in a forward-only, read-only manner.

Processing Metadata

• Database Metadata (or Schema) will be used to describe design and

specification of the data structures in the database

• IMS Data Provider will offer two ways to read and process IMS

metadata:

• GetSchemaTable() method of the IMSDataReader class – result

set level metadata

• GetSchema() method of the IMSConnection class – collections

of metadata about the entire database

Protecting Your Data

• Encrypt your data (AT-TLS standard will be supported):

• Configure AT-TLS on the host side

• Generate server certificate

• Install server certificate on the client machine

• Connection String: Encrypt = true

• Encrypt Configuration Files

• Store and encrypt connection strings in configuration files,

instead of embedding them in your application's code

• RACF Authentication

• Connection string: User ID=<userID>;

 Password=<password>;

Performance Tips
• Select only what you need

– Applies to rows as well as columns

• IMSDataReader.Read assumes all columns will be Get’d

• Connections – open late, close early

– Maximize the use of connection pooling

• Other objects – close / dispose, set reference to null

– IMSDataReader.Close, IMSCommand.Dispose

– Allows the server to free locks and clean up cursors earlier

• Set IMSCommand.FetchSize to optimize network performance

– If the end user consumes a lot of data, you will want your application to

minimize the number of round-trip data fetches

• Qualify IMS segment names with PCB names

– For example PCB01.HOSPITAL

GUI / Web Development

• Visual Studio is a powerful environment for developing GUI and web

applications

• Interactive applications that work with IMS data are easy to develop

Available now

ibm.com/ims → Downloads tab

IMS Data Provider for Microsoft .NET installation

• Go to the IMS Enterprise Suite download site and log in.

• Select IMS Enterprise Suite Version 3.1 and click Continue.

• Select IMS Data Provider for Microsoft .NET and click Continue
– IMS Data Provider for Microsoft .NET download page

• Select the IMS Data Provider for Microsoft .NET repository file

• Click Download now to download the selected files.

• Store the compressed repository file in a accessible location

• You must have IBM Installation Manager Version 1.5.3 or later

installed

24

Getting Started

 Documentation:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/to

pic/com.ibm.ims.net31.doc/net_intro.htm

 “Verifying installation” page is a good place to start

 Look for getting_started.txt and a sample project in the

installation directory after installing the .NET Data

Provider

 Video tutorials and demos on YouTube:

 http://bit.ly/IMS_YouTube

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims.net31.doc/net_intro.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims.net31.doc/net_intro.htm
http://bit.ly/IMS_YouTube

System Requirements

 Software requirements

 IMS DB v13, APARs PM96324 and PI05437

 IMS Connect, ODBM

 Catalog

 .NET Framework 4.0

 Windows XP, Windows 7

 Hardware requirements

 For IMS DB - same as IMS v13

 For .NET Data Provider and Visual Studio

 Computer that has a 1.6GHz or faster processor

 1 GB (32 Bit) or 2 GB (64 Bit) RAM (Add 512 MB if running in a virtual machine)

 3GB of available hard disk space

 Tooling

 Microsoft Visual Studio

Thank you!
Your feedback is important to us!

IMS Technical Symposium 2015

