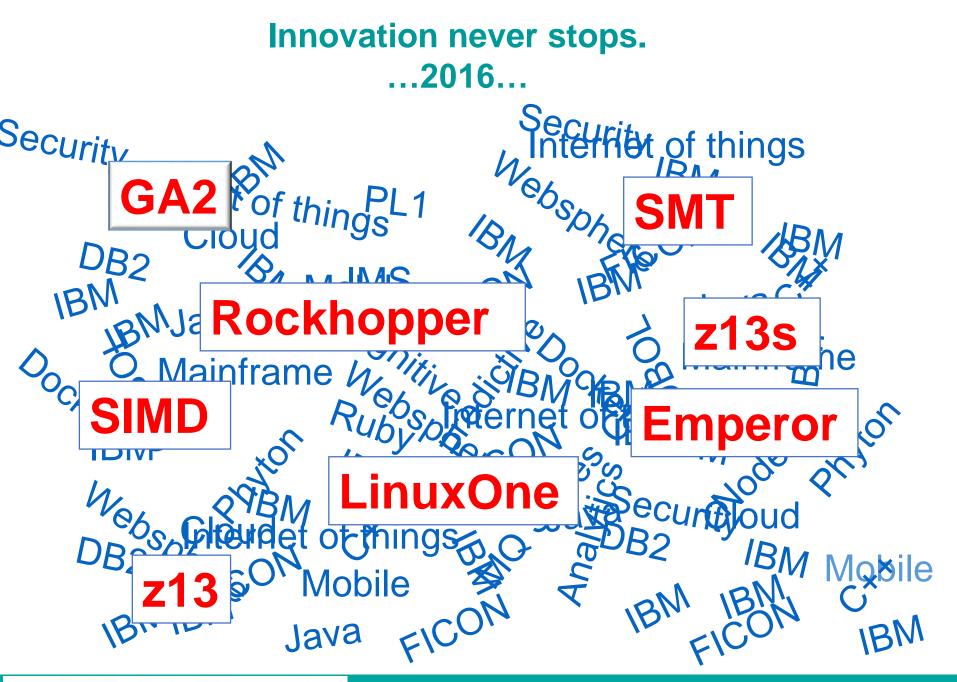
IBM z Systems Hardware -2016 Technical Overview


Session B01 / C15

Walter Kläy, IMS SWAT Team walter.klaey@ch.ibm.com

with support from Kevin Hite (SVL) and Silvia Mueller (BOB)

Sharpen your competitive edge 2016 IMS Technical Symposium March 7 – 10, 2016 Wiesbaden, Germany

www.ims-symposium.com

Digital Revolution World becoming smarter Transform interactions Personalized everything In the moment right now

What is happening?

16 billion connected devices 75 billion devices by 2020 7 billion smart phones

Infrastructure of the company Infrastructure of the city Infrastructure of the world

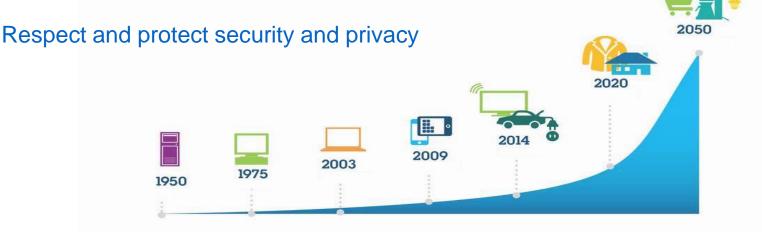


Figure 1: Each inflection point in the history of computing has triggered an explosion in the number of computing devices

The market is moving, forcing businesses to transform

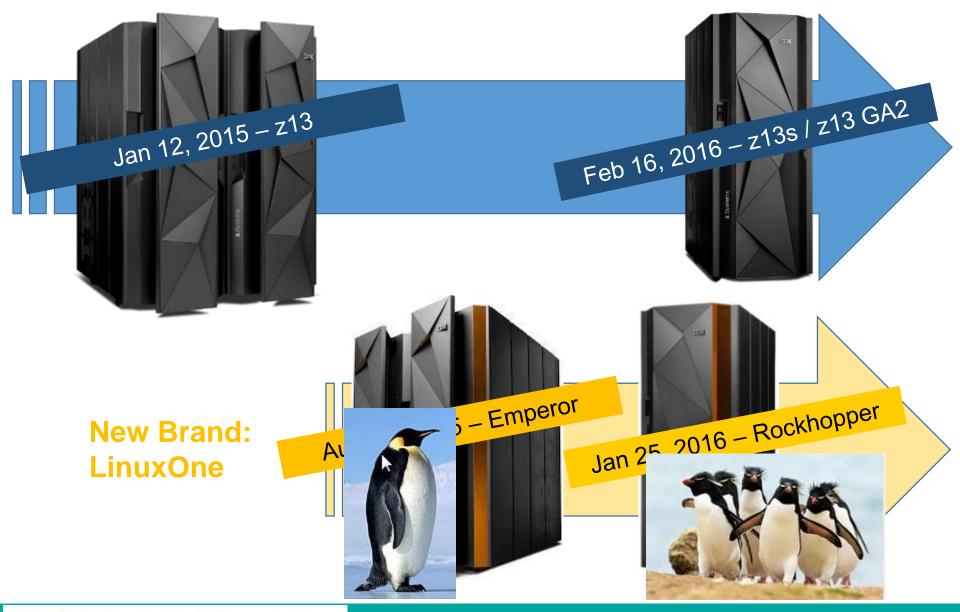
Explosion in transaction growth

driven by mobility and the Internet of Things

Analytics is moving to real time

to capture new opportunities at the point of impact

Hybrid cloud is the new standard


for delivering service, agility, trust and efficiency

z13 Overview

Sharpen your competitive edge 2016 IMS Technical Symposium March 7 – 10, 2016 Wiesbaden, Germany

www.ims-symposium.com

IBM z Systems Evolution

z13(s) Functions and Features (DGA Driver Level 22)

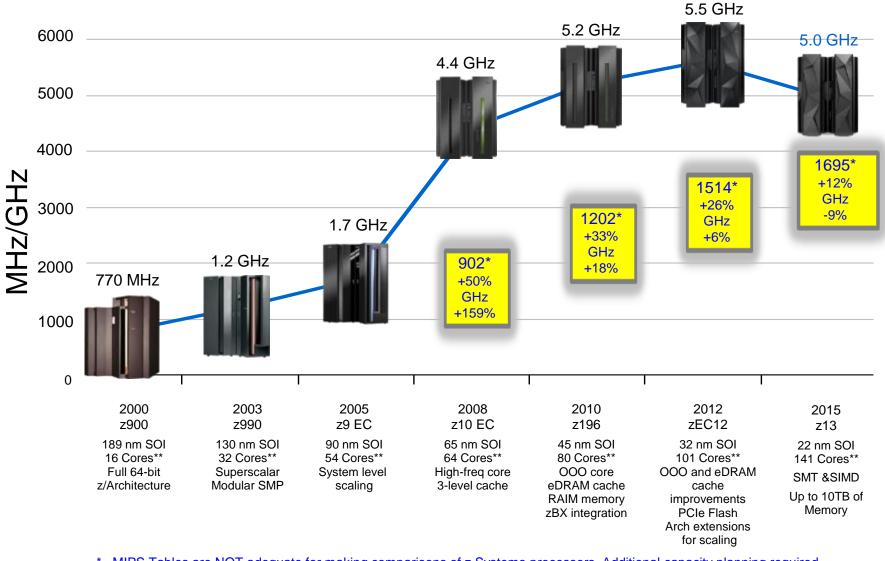
System, Processor, Memory		I/O Subsystem, Parallel Sysplex, STP, Security
Five hardware models	TEM	New PCIe Gen3 I/O fanouts with 16 GBps Buses
Eight core 22nm PU SCM		LCSS increased from 4 to 6
Up to 141 processors configurable as CPs, zIIPs, IFLs, ICFs, or optional SAPs		4 th Subchannel Set per LCSS
Increased Uni processor capacity	z13	Maximum number of I/O Devices (subchannels)
Up to 30 sub capacity CPs at capacity settings 4, 5, or 6		per channel increased from 24K to 32K for all z13 FICON features
CPC Drawers and backplane Oscillator		FICON Enhancements
SMT (for IFLs and zIIPs only) and SIMD		SR-IOV support for RoCE
Enhanced processor/cache design with bigger cache sizes	g	New Integrated Coupling Adapter (ICA SR) for coupling links
Up to 10 TB of Redundant Array of	z Shate	Support for up to 256 coupling CHPIDs per CPC
Independent Memory (RAIM)		CFCC Level 20
CPC Drawer/Memory Affinity		Crypto Express5S and Cryptographic
LPARs increased from 60 to 85		enhancements with support for 85 Domains
		STP Enhancements

RAS, Other Infrastructure Enhancements					
IBM zAware for Linux on z Systems (June 23, 2015)	System Control Hub (SCH). Replaces BPH				
New N+2 'radiator' design for Air Cooled System	Rack-Mounted Support Elements in the CPC				
Key Locks for doors	Rack-mounted HMCs for customer supplied rack				
Support for ASHRAE Class A2 datacenter	TKE 8.0 LICC				

z13(s) Functions and Features (GA2 Driver Level 27)

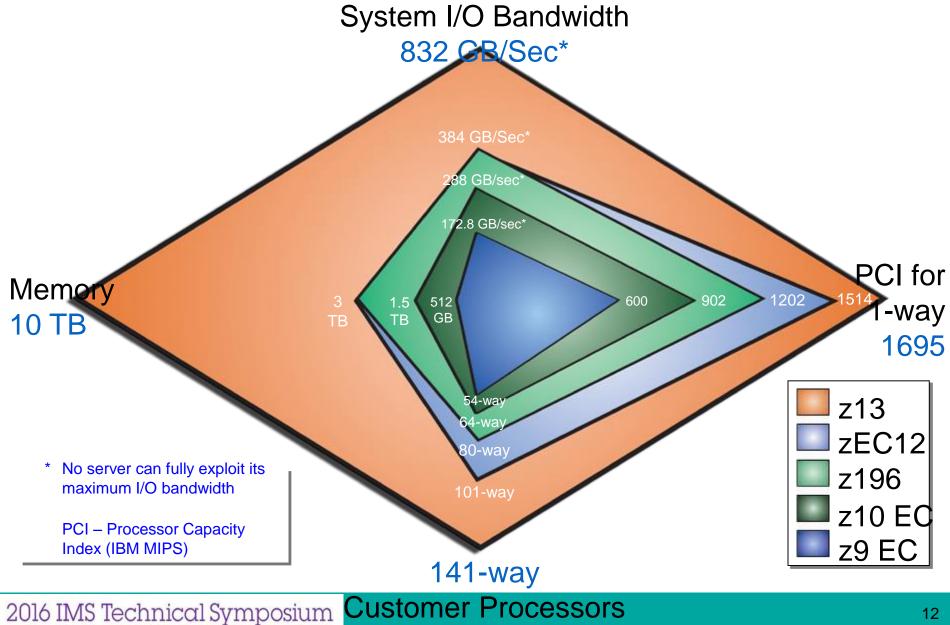
System, Processor, Memory		I/O Subsystem, Parallel Sysplex, STP, Security
Dynamic Partition Manager for Linux and KVM*		New FICON functions* Export/Import physical port WWPNs for FCP
z Appliance Container Infrastructure (zACI)*	TEM	 Fiber channel read diagnostic parameters (RDP) Extended Link Services (ELS)
z/VSE Network Appliance using the z Appliance Container Infrastructure (zACI)**		OSA Enhancements* OSA ICC Secure Socket Layer (SSL) support
IBM zAware in zACI Partition Mode*	IBM	OSA ICC Secure Socker Layer (SSL) support OSA ICC Concurrent MCL's for OSC CHPIDs
LPAR Group Absolute Capping*	z13(s)	Shared Memory Communications–Direct (SMC-D)*
	GA2	Enhanced Flash Express (R/W Cache 4 GB)*
UMF sampler w/o PEMode enablement*	2	CFCC Level 21*
MP/BCPii performance enhancements*	z Syste	Maintain Entry and Element Counts
		CFCC Dump ReasonsCFCC set SLCP Event Type 11
RAS, Other Infrastructure Enhancements		Crypto Express5S*
STP Enhanced Console Assisted Recovery*		 Format Preserving Encryption (FPE) in FPGA Stage 2 DK Phase 4
TKE 8.1 LICC and Rack-mounted TKE*		 CCA verb algorithm currency & interoperability EMF simplification support EP11 Stage 3, PKCS 11
Notes: • (*) New functional items available	on =12 CA2 and =12a	 Regional Crypto Enablement (RCE) for Greater China Group (GCG) only**

• (**) Availability date update later than GA


IBM z Systems naming for IBM z13 (z13s)

Brand Name:	IBM
Product Class:	IBM mainframe
Family Name:	IBM z Systems [™]
Family Short Name:	z Systems
Product Line Name:	IBM z Systems™
Product Line Short Name:	z Systems
Product Name:	IBM z13™
Short Name:	Z13 z13s
Models:	N30, N63, N96, NC9, NE1 N10, N20
Machine Type:	2964 2965
Workload Optimizing Attachments:	IBM z BladeCenter [®] Extension (zBX) Model 004
	IBM DB2 [®] Analytics Accelerator for z/OS [®] Version 5
Management Firmware:	IBM z Unified Resource Manager
Management Firmware Short Name:	Unified Resource Manager or zManager

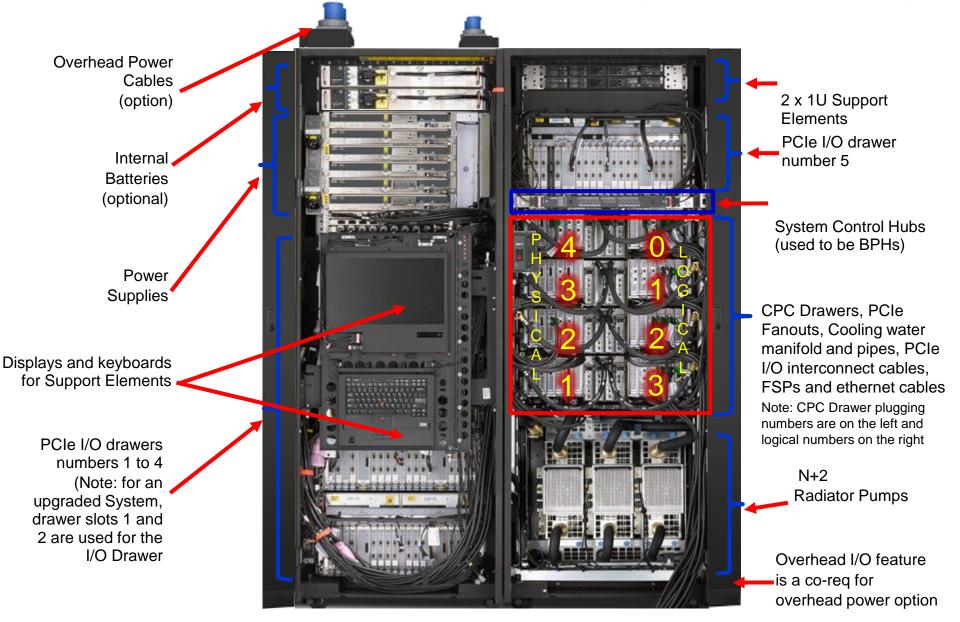
IBM z Systems Generations



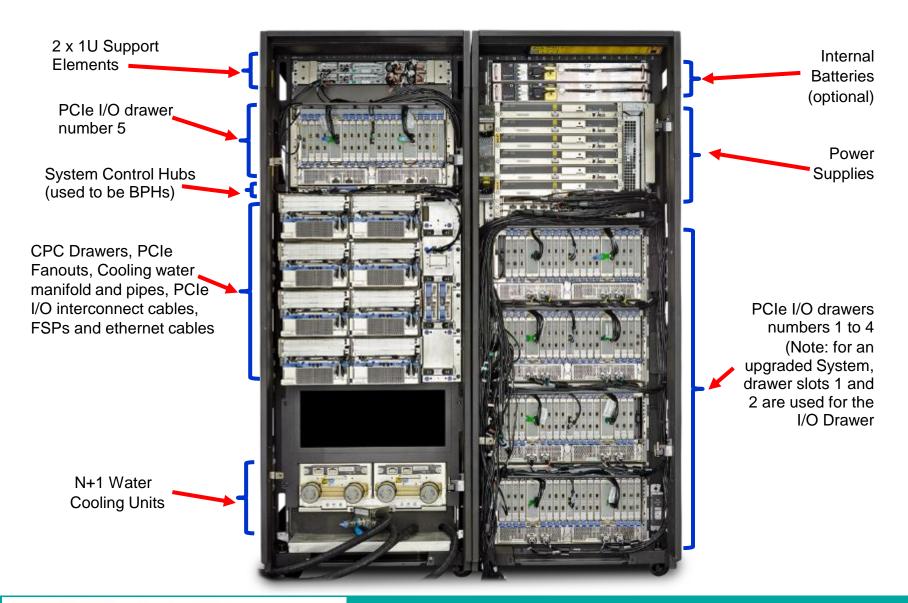
z13 Continues the CMOS Mainframe Heritage Begun in 1994

* MIPS Tables are NOT adequate for making comparisons of z Systems processors. Additional capacity planning required ** Number of PU cores for customer use

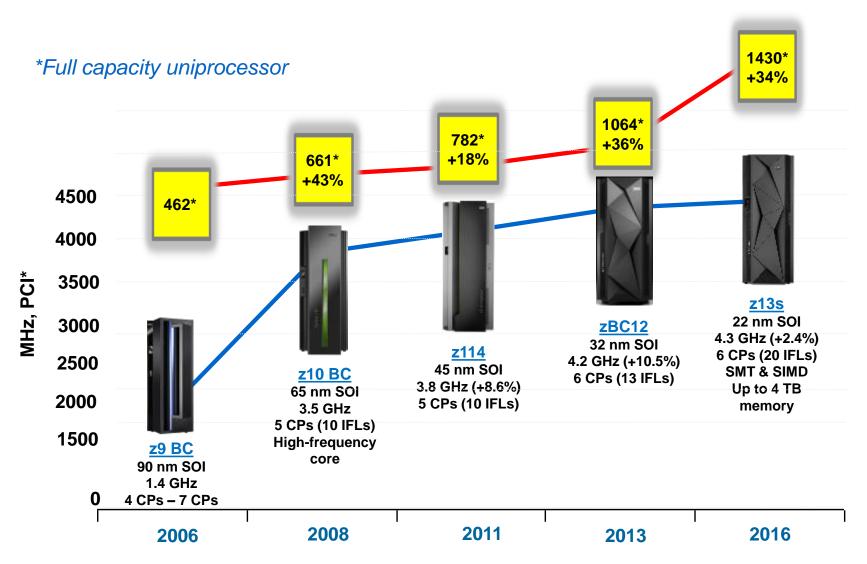
IBM z13: Advanced system design optimized for digital business


z13 Processor Unit Allocation/Usage

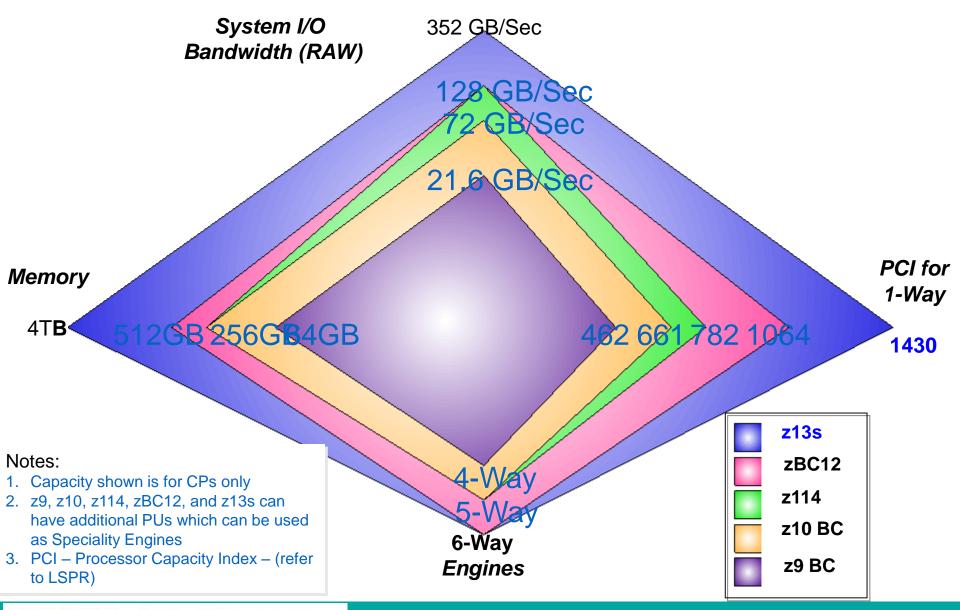
Model	Drawers /PUs	CPs	IFLs uIFLs	zIIPs	ICFs	Std SAPs	Optional SAPs	Std. Spares	IFP
N30	1/39	0-30	0-30 0-29	0-20	0-30	6	0-4	2	1
N63	2/78	0-63	0-63 0-62	0-42	0-63	12	0-8	2	1
N96	3/117	0-96	0-96 0-95	0-64	0-96	18	0-12	2	1
NC9	4/156	0-129	0-129 0-128	0-86	0-129	24	0-16	2	1
NE1	4/168	0-141	0-141 0-140	0-94	0-141	24	0-16	2	1


- 1. At least one CP, IFL, or ICF must be purchased in every machine
- Two zIIPs may be purchased for each CP purchased if PUs are available. This remains true for subcapacity CPs and for "banked" CPs.
- On an upgrade from z196 or zEC12, installed zAAPs are converted to zIIPs by default. (Option: Convert to another engine type)
- 4. "uIFL" stands for Unassigned IFL
- 5. The IFP is conceptually an additional, special purpose SAP

- z13 Models N30 to NC9 use drawers with 39 cores. The Model NE1 has 4 drawers with 42 cores.
- The maximum number of logical ICFs or logical CPs supported in a CF logical partition is 16
- The integrated firmware processor (IFP) is used for PCIe I/O support functions
- Concurrent Drawer Add is available to upgrade in steps from model N30 to model NC9


z13 Radiator-based Air cooled – Front View (Model NC9 or NE1)

z13 Water cooled – Rear View (Model NC9 or NE1)

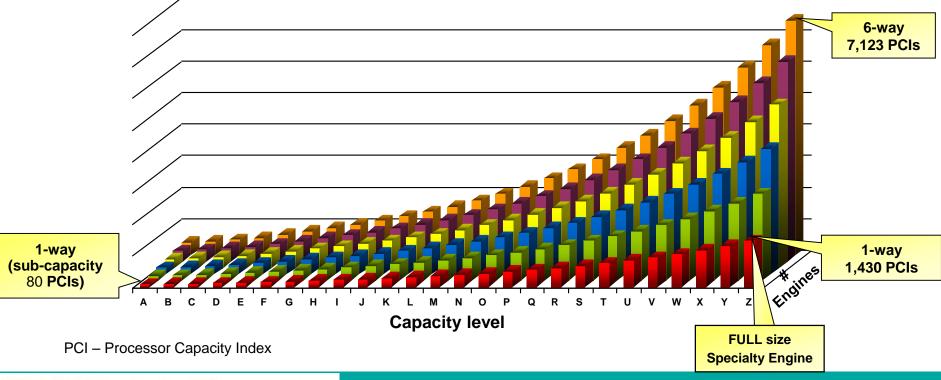


z13s continues the CMOS Mainframe Heritage

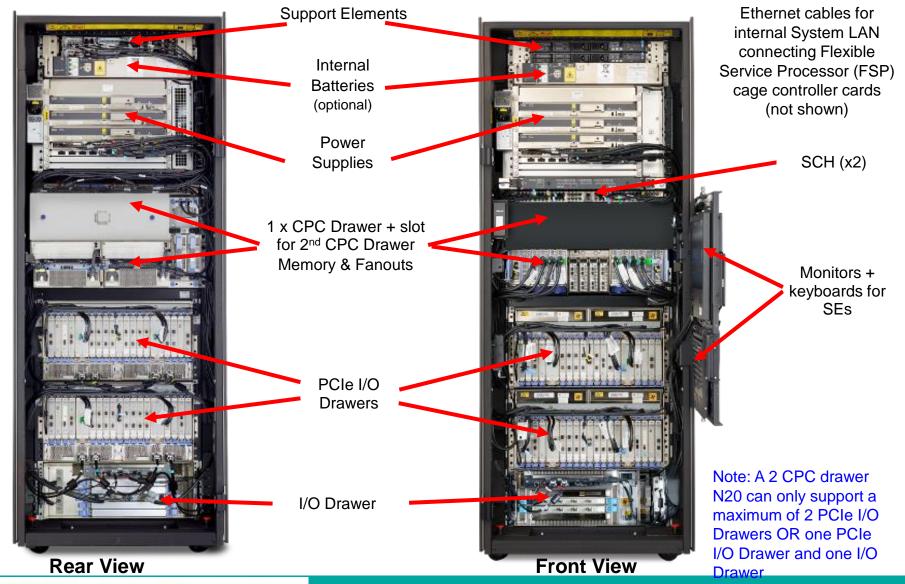
*NOTE: MIPS Tables are NOT adequate for making comparisons of z Systems processors in proposals

IBM z13s Advanced System Design Optimized for Digital Business

z13s Processor Unit Allocation and Usage


Model*	Drawers /PUs	CPs	IFLs uIFLs	zIIPs	ICFs	Std SAPs	Optional SAPs	Std. Spares	IFP
N10	1/13	0-6	0-10	0-6	0-10	2	0-2	0	1
N20	1/26	0-6	0-20	0-12	0-20	3	0-3	2	1
N20	2/26	0-6	0-20	0-12	0-20	3	0-3	2	1

- z13s N20 model is a one- or two- drawer system with same processor feature counts for both configurations.
- N20 second drawer is added when additional fanouts or more than 2TB memory are needed;
- The maximum number of logical ICFs or logical CPs supported in a CF logical partition is 16
- The integrated firmware processor (IFP) is used for native PCIe I/O support functions
- Upgrades from N10 to N20 and N20(1) to N20(2) are disruptive
- SMT is supported with processor type IFL, zIIP.


z13s Sub-capacity Processor Granularity

- The z13s has 26 CP capacity levels (26 x 6 = 156)
 - Up to 6 CPs at any capacity level
 - · All CPs must be the same capacity level
- zAAPs are not available on z13s
- The ratio of zIIPs for each CP purchased is the same for CPs of any speed.
 - 2:1 zIIP to CP ratio unchanged from zBC12
 - All specialty engines run at full speed
 - Processor Value Unit (PVU) for IFL = 100

Number of z13s CPs	Base Ratio	Ratio zBC12 to z13s	
1 CP	zBC12 Z01	1.34	
2 CPs	zBC12 Z02	1.38	
3 CPs	zBC12 Z03	1.40	
4 CPs	zBC12 Z04	1.42	
5 CPs	zBC12 Z05	1.43	
6 CPs	zBC12 Z06	1.44	

z13s Model N20 (One CPC Drawer) – Under the Covers

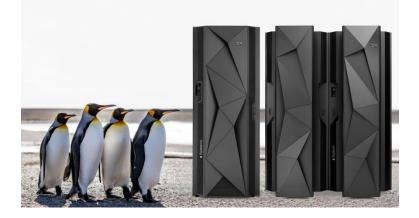
LinuxOne

Sharpen your competitive edge 2016 IMS Technical Symposium March 7 – 10, 2016 Wiesbaden, Germany

www.ims-symposium.com

IBM LinuxONE Portfolio

What is Linux on IBM z Systems


Linux is Linux

- Pure Linux[®], no emulation
- Not a unique version of Linux
- No changes in Look & Feel

Supported Linux distributions

See "Tested Platforms"

Supported Virtualization

- IBM z/VM[®] + IBM Wave for z/VM
- KVM for IBM z Systems[™]
- Logical Partitions (LPAR)

See "<u>z Systems Virtual Servers</u>'

2000

In the market since 2000, well accepted and growing

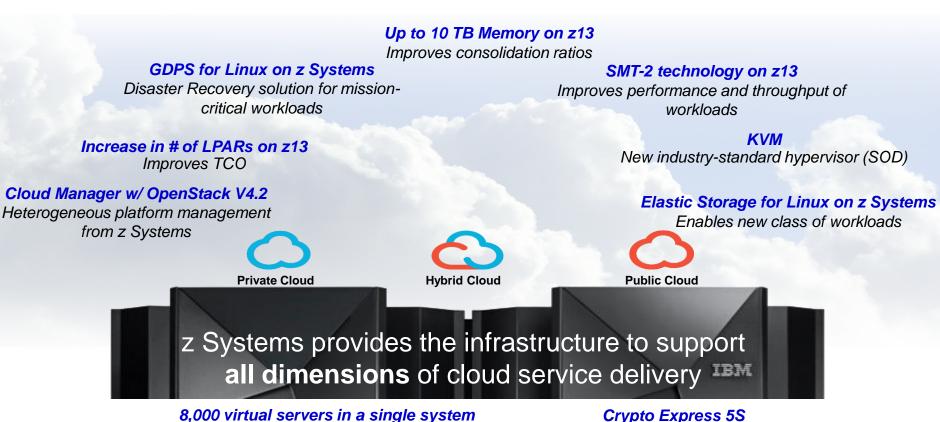
IBM z/VM and KVM for IBM z

z/VM

- World class quality, security, reliability - powerful and versatile
- Extreme scalability creates cost savings opportunities
- Exploitation of advanced technologies, such as:
 - -Shared memory (Linux kernel, executables, communications)
- Highly granular control over resource pool
- Valuable tool for resiliency and Disaster Recovery
- Provides virtualization for all z Systems operating systems

KVM

- Simplifies configuration and operation of server virtualization
- Leverage common Linux administration skills to administer virtualization
 - Flexibility and agility leveraging the Open Source community
 - Provides an Open Source virtualization choice
 - Easily integration into Cloud/OpenStack environments



Robust solutions from IBM, ISVs & Open Source Community

z13 – Redesigned for efficient and trusted cloud services

Enterprise-grade Linux cloud services at half the cost, half the energy, and half the floor space of alternatives

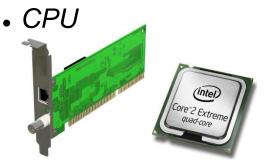
Reduce cost and administration overhead

Crypto Express 5S Security & performance

"Smaller enterprises often choose public cloud services, but encounter issues with cost and complexity when they expand. With ... the Enterprise Cloud System – which can accommodate more than 6,000 VMs – we can offer clients the cost

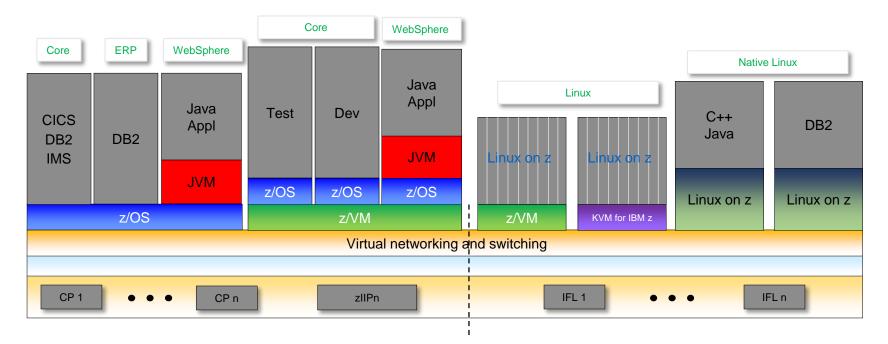
effective scalability they need to take their business to the next level." - Steve Groom, CEO of Vissensa

Mainframe vs Distributed Terminology


Mainframe

- System programmer
- POR / IML
- IPL
- 4-way
- Dispatcher
- Main storage
- DASD ← 'external' disk storage
- OSA
- CP / IFL ← Specialty Engines / processors

Distributed


- System administrator
- Coldstart / Boot
- Warmstart / (Re-)Boot
- 4-processor machine
- Scheduler
- Main memory
- Disk
- NIC

IBM z Systems – Reliable, Scalable, Secure and Virtualized

An integrated, highly scalable computer system that allows many different pieces of work to be handled at the same time, sharing the same information as needed with protection, handling very large amounts of information for many users with security, without users experiencing any failures in service

- Large scale, robust consolidation platform
- Built-in Virtualization
- 100s to 1000s of virtual servers on z/VM
- Intelligent and autonomic management of diverse workloads and system resources

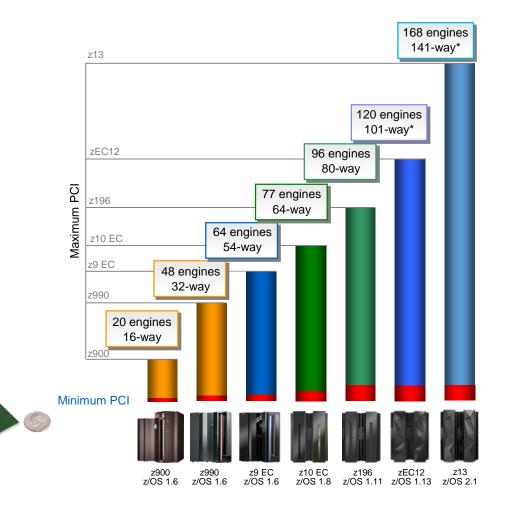
Some technical details

Sharpen your competitive edge 2016 IMS Technical Symposium March 7 – 10, 2016 Wiesbaden, Germany

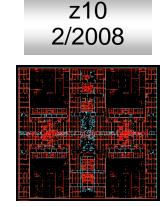
www.ims-symposium.com

Performance increase forever?

- Moore's Law is a computing term which originated around 1970; the simplified version of this law states that processor speeds, or overall processing power for computers will double every two years. A quick check among technicians in different computer companies shows that the term is not very popular but the rule is still accepted.
- Future challenges:
 - Density
 - –Heat


 Gordon Moore stated in aw cannot be sustained indefinitely: "It a The nature of exponentials is that you push the usaster happens." He also noted that transially reach the limits of miniaturization at atomic levels.

z System Servers Continue to Scale with z13


Each new range continues to deliver:

- New function
- Unprecedented capacity to meet consolidation needs
- Improved efficiency to further reduce energy consumption
- Continues to delivering flexible and simplified on demand capacity
- A mainframe that goes beyond the traditional paradigm

PCI - Processor Capacity Index *z/OS supports up to a 100-way only

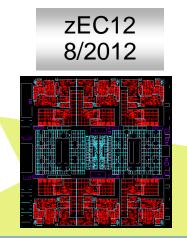
z Systems - Processor Roadmap

Workload Consolidation and Integration Engine for CPU Intensive Workloads

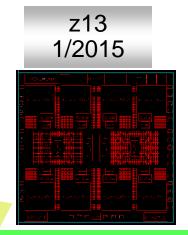
Decimal FP

Infiniband

64-CP Image


Large Pages

Shared Memory


z196 9/2010

Top Tier Single Thread Performance, System Capacity Accelerator Integration Out of Order Execution Water Cooling PCIe I/O Fabric RAIM Enhanced Energy Management

Leadership Single Thread, Enhanced Throughput Improved out-of-order Transactional Memory Dynamic Optimization 2 GB page support Step Function in System Capacity

Leadership System Capacity and Performance Modularity & Scalability Dynamic SMT Supports two instruction threads SIMD Business Analytics Optimized

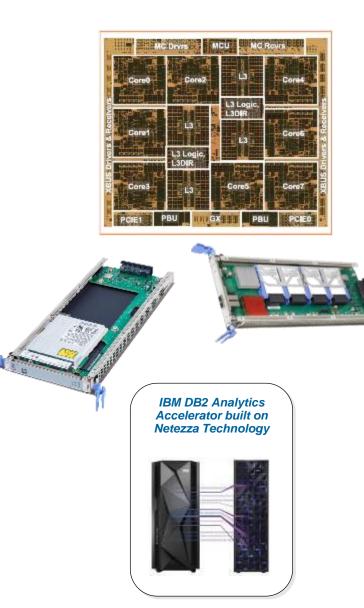
Accelerate Key Workloads with Special-Purpose Hardware

On-processor

- Crypto (CPACF), Compression, SIMD, SMT
- Tight, synchronous integration with instruction stream

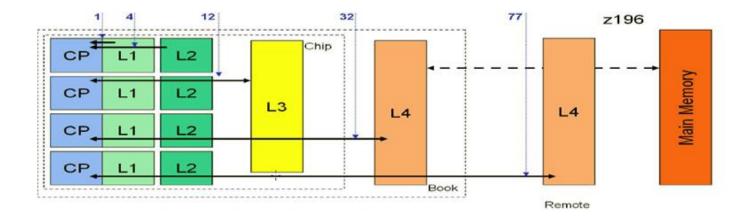
PCIe Gen3

- Accessible and sharable by all processors
- Faster time to market for new functions
- Compression (zEDC), Crypto, Flash Express

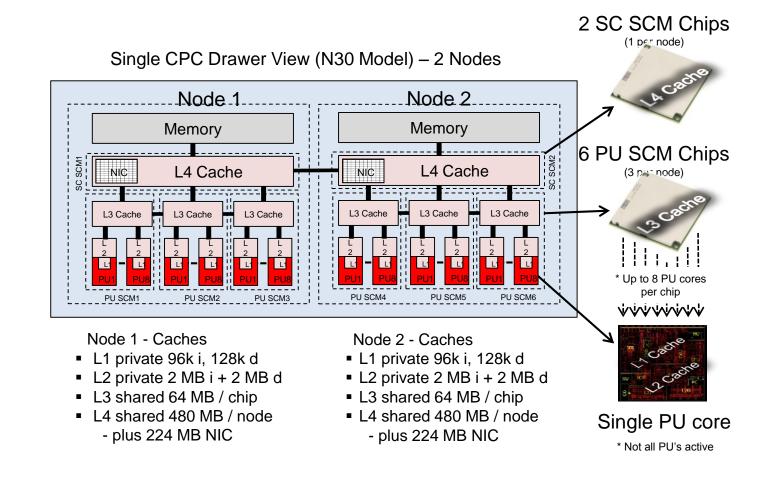

Network Acceleration

- Shared Memory Communications over RDMA -- SMC-R (RDMA over Converged Ethernet -- RoCE)
- Shared Memory Communication Direct Memory Access (SMC-D)

Integrated External Accelerators


- Integrated by software
- IBM DB2 Analytics Accelerator for DB2 Query Acceleration
- Specialty Engines and Firmware Partitions
 - Leverage flat SMP design, enable price flexibility
 - zIIP for DB2 and Java, IFL for Linux on z Systems
 - IBM zAware

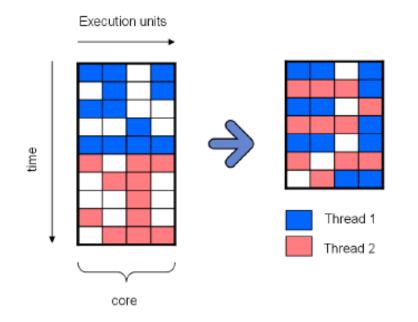
- IBM z Appliance Container Infrastructure (zACI) 2016 IMS Technical Symposium



Cache Latency

- Why needs the CPU access Memory? Instruction / Data
- Cache latency for z196 (1, 4, 12, 32 & 77 are relative access times) Ratios are still accurate

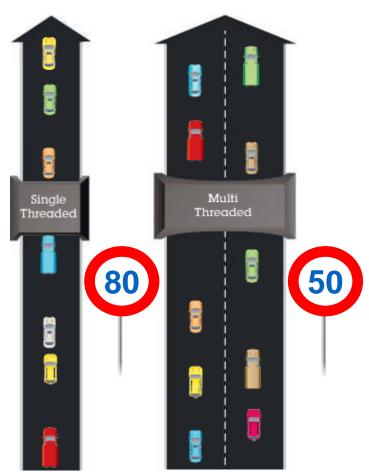
z13 CPC Drawer Cache Hierarchy Detail



z13: Simultaneous Multi-Threading

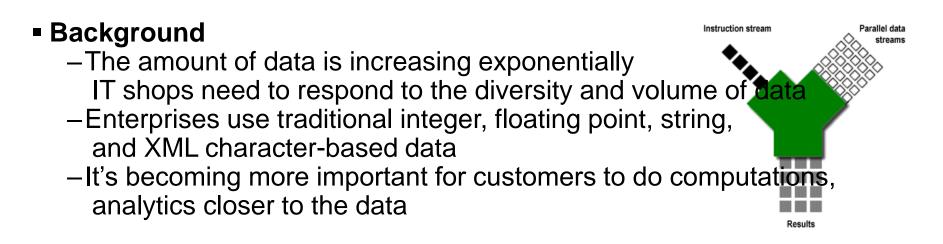
Today

-Each CPU support a single instruction stream


- System z workload tend to experience non-trivial number of cache misses
- CPU generally unproductive while resolving cache misses

Simultaneous Multithreading (SMT) on z13

- Simultaneous multithreading allows instructions from one or two threads to execute on a zIIP or IFL processor core.
- SMT helps to address memory latency, resulting in an overall capacity* (throughput) improvement per core
- Capacity improvement is variable depending on workload. We see in the field about 20-40% capacity increase
- SMT exploitation: z/VM V6.3 + PTFs for IFLs and z/OS V2.1 + PTFs in an LPAR for zIIPs
- The use of SMT mode can be enabled on an LPAR by LPAR basis via operating system parameters.
 - When enabled, z/OS can transition dynamically between MT-1 (multi thread) and MT-2 modes with operator commands.
- Notes:
 - 1. SMT is designed to deliver better overall capacity (throughput) for many workloads. Thread performance (instruction execution rate for an individual thread) may be faster running in single thread mode.
 - 2. Because SMT is not available for CPs, LSPR ratings do not include it

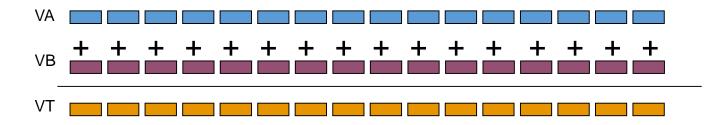

*Capacity and performance ratios are based on measurements and projections using standard IBM benchmarks in a controlled environment. Actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload .

Which approach is designed for the highest volume** of traffic? Which road is faster?

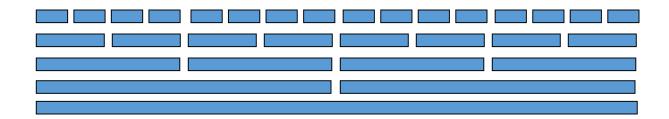
** Two lanes at 50 carry 25% more volume if traffic density per lane is equal

Why Single Instruction Multiple Data (SIMD) on z Systems

Customer perception of Analytics and z Systems

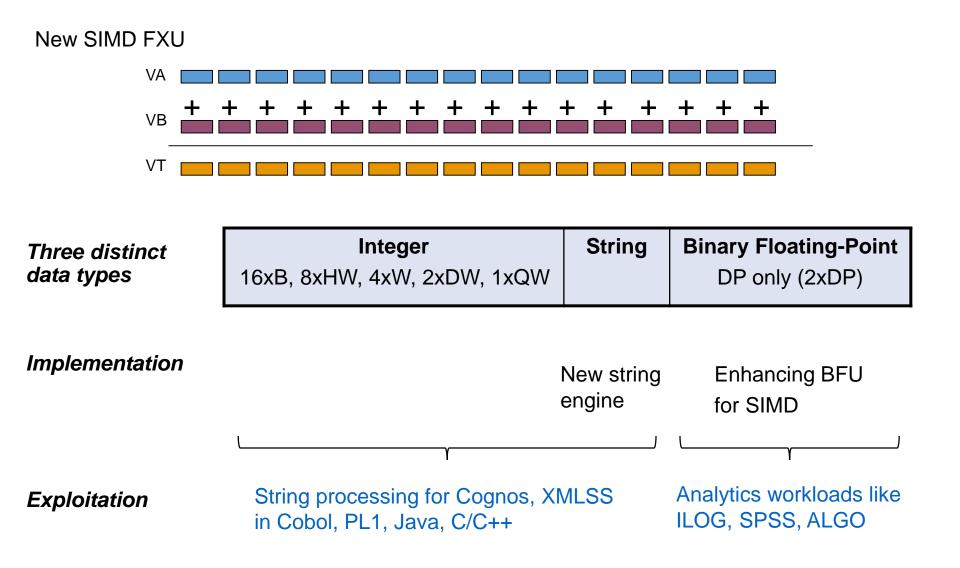

- -z Systems handle OLTP and Batch jobs types of workload
- Mathematical and data intensive operations can lead to unaffordable MIPS usage

Reality of Analytics and z Systems

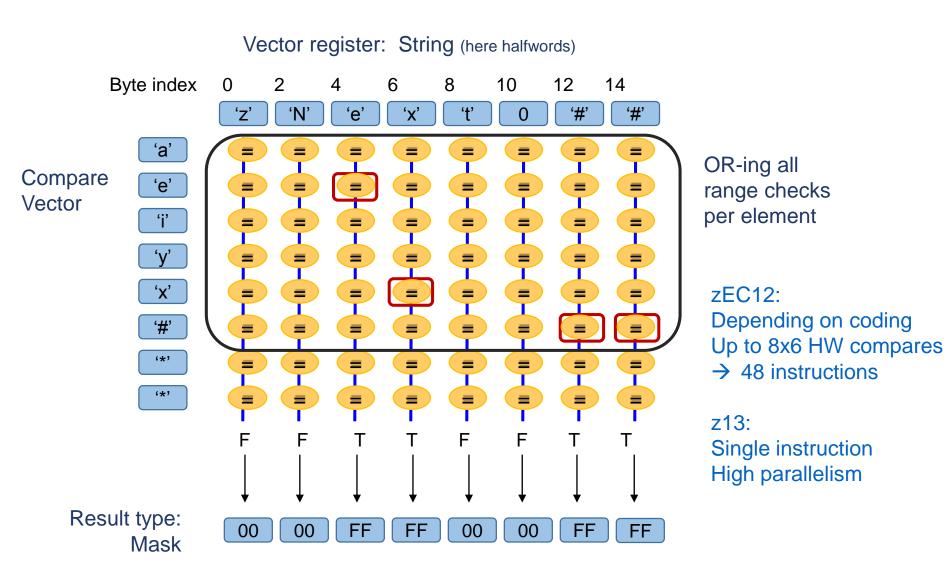

- -For the past 2-3 generations, z Systems processor has changed its capabilities in compute-intensive processing (analytics)
- SIMD provides next phase of enhancements for analytics and compute-intensive competitiveness on z Systems

SIMD – Single Instruction Multiple Data

- Old: Single Instruction Single Data (64b)
- New: Single instruction operates on multiple data in parallel

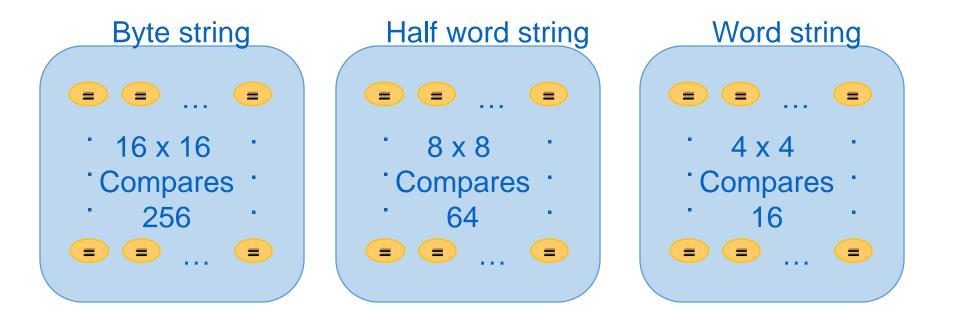


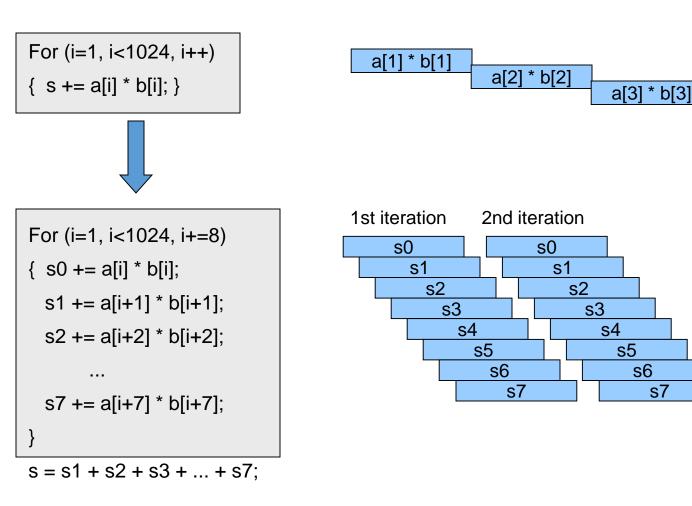
- Each register contains multiple data elements of a fixed size
 - Byte, Halfword, Word, Doubleword, Quadword
 - The collection of elements in a register is also called a **vector**
 - Field in the instruction word specifies data format type



128b wide vector: 16xB, 8xHW, 4xW, 2xDW, 1xQW

SIMD Hardware Accelerator


z13 String: Vector Find Any Element Equal


z13: SIMD String Support

Big comparator array

- Supporting strings with 16x8b, 8x16b, 4x32b
- Comparators dynamically re-arranged to match required width
- Very high parallelism for small data types

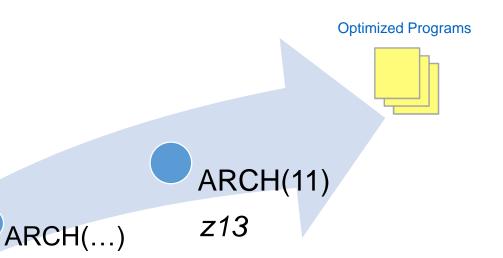
Loop Optimization to Increase Instruction Level Parallelism

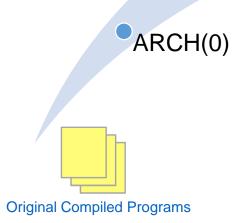
SIMD Exploitation and Enablement – Things IBM is doing for you

SIMD on z Systems Differentiation

- z Systems brings analytics processing to the operational data z System, data co-exist in the same environment
 - Enables new workload growth and development on z
 - · Port analytics workloads from the distributed/LOB analytics shops; avoid ETL
- z Systems is building a rich SIMD ecosystem spanning HW, OS, SW/Middleware, and ISV SW

Area	Product	Description*	
SIMD Optimized Workloads	z/OS XMLSS	XML Parsing	
	ILOG-CPLEX	Mathematical optimization solver	
	Java	Workloads with string character or floating point data types	
Enabling Libraries	Rational Compiler Suite	MASS Library on z/OS, Linux on z Systems	
		ATLAS Library on z/OS, Linux on z Systems	
Enabling Compilers / Built-in Functions (String, Integer, Floating Point Processing)	SIMD XLC for z/OS	SIMD XLC Intrinsic and vector data types	
	(a) () () Ombiler inux Kernel / Runtimes	Default Linux C Compiler; SIMD context save/restore support, binutils, glibc	
	Enterprise COBOL for z/OS	COBOL intrinsics (INSPECT), string processing facilities	
	Java8 Compiler	Java string character conversions, auto-vectorization	
	PL/I	Optimizer and checkout compiler	
Tools	Linux gdb	Debugger for Linux OS Programs	
	PD Tools (Fault Analyzer, Debug Tool, Application Performance Analyzer)	Source level Debugger for z/OS C, C++ Programs	


SIMD Exploitation and Enablement


- Exploitation: Workloads with targeted usage of SIMD based on known execution characteristics (XMLSS, Java string)
- Enablement: Allows workloads to be independently targeted by developers for exploitation of instructions and register
- Enablement Stack: Runtimes (Java), Tools (XL C/C++ compiler), Library (MASS, ATLAS), Firmware (String Millicode Instructions); for developers wanting to SIMDize their own workload
- IBM is building a robust ecosystem that is capable of driving the growth of workloads for analytics and those with computeand data-intensive properties

Architecture Exploitation 0 to 11 In One Step

All Pre-V5 COBOL compiler releases generated only base ESA/390 level code

ABO, like COBOL V5, generates code up to z13 ARCH(11)

Using ABO on COBOL v4,v3,v2 executables is a **25 year** jump forward in hardware technology and access to over **600 new hardware** instructions already on your machines

IBM Automatic Binary Optimizer (ABO) for z/OS Overview

http://www-03.ibm.com/software/products/en/z-compilers-optimizer Available November 6th 2015 – z/OS 2.2

- ABO improves performance of already compiled COBOL v3 & v4 programs
 - Optimize directly from the compiled program
 - No source level migration or recompilation or options tuning required
 - Leverage latest advanced COBOL optimization technology
 - Generate code to target latest z Systems (e.g. zEC12,zBC12 & z13)
 - Support in z/OS® 2.2 to automatically load optimized modules to target latest z Systems

Version 1.1 and Trial Version Available Now – Requires z/OS 2.2 z/OS 2.1 Support Planned Availability in 1Q2016

ABO and COBOL Compiler Positioning

They serve different but complementary purposes

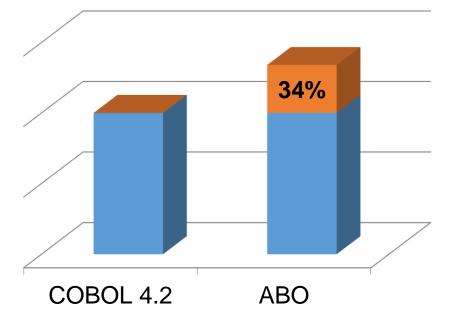
Use Case	ABO	Compiler
Significant Performance Improvement* *No Source, Migration or Options Tuning Required	\checkmark	
Interoperability/Legacy Compatibility PDS supported, pre-Enterprise COBOL etc.	\checkmark	
Built in Support for Targeting Multiple Hardware Levels At Deployment	\checkmark	
No need to downgrade ARCH setting to match DR* machine Original compiled program always available for DR	\checkmark	
New COBOL development and new features		\checkmark
Maintenance on existing COBOL programs		\checkmark
Maximum Performance Improvement* *Source, Migration and Options Tuning Required		\checkmark

*DR → Disaster Recovery Machine : Down level machine used for emergency situations. Usually 1 or 2 revisions old so puts limits on Compiler ARCH setting (and performance improvements possible) based on this older level

COBOL Compiler Releases Eligible for Optimization

The compiler releases potentially eligible in the future is currently being reviewed

• Please provide feedback on which releases should be made eligible

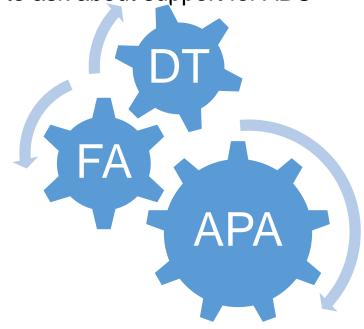

Program Produced by Compiler Release	Eligible in first release	Potentially Eligible In Future
OS/VS COBOL	×	?
VS COBOL II	×	?
COBOL/370 1.1 and COBOL for MVS & VM V1R2	×	?
COBOL for OS/390 & VM V2R1→V2R2	×	?
Enterprise COBOL V3R1 → V3R4	\checkmark	\checkmark
Enterprise COBOL V4R1 → V4R2	\checkmark	\checkmark
Enterprise COBOL V5 →	×	✓*

*eligible via possible future 'Smart Binary' technology in the Compiler and ABO

Performance

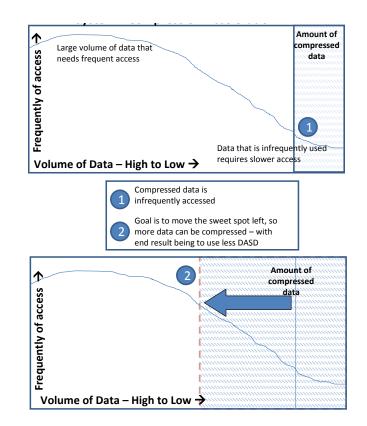
Internal Benchmark Suite and Early Customer Results Higher is better

- Early customer results show performance gains of 5% → 21% for a mix of v3 and v4 compiled input programs
- Performance gains will vary by application but expected to average 15%



Internal Benchmarks : Mix of Compute and I/O Bound Applications – z13 Higher is better : ABO gives a 34% Improvement

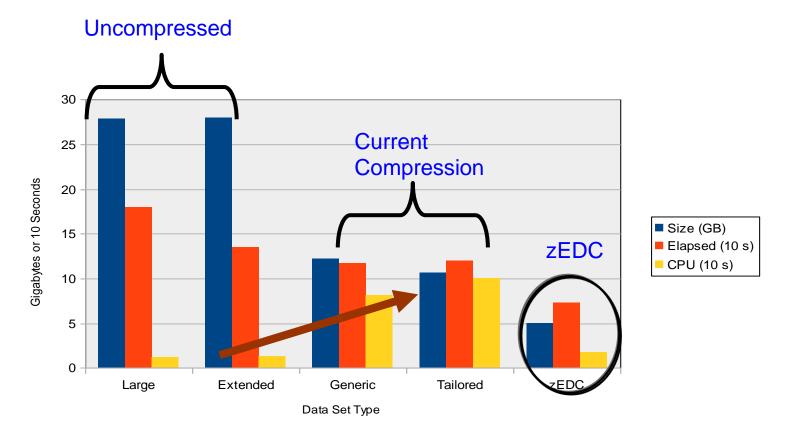
*Performance data contained herein was generally obtained in a controlled, isolated environments. Customer examples are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual performance, cost, savings or other results in other operating environments may vary.


Tooling Support For The Optimized Modules Status

- IBM Problem Determination Tools for z/OS support includes:
 - Fault Analyzer (FA) for z/OS
 - Debug Tool (DT) for z/OS
 - Application Performance Analyzer (APA) for z/OS
- Several 3rd party tooling vendors were involved in our beta program this year
 - Please contact your tools vendor directly to ask about support for ABO

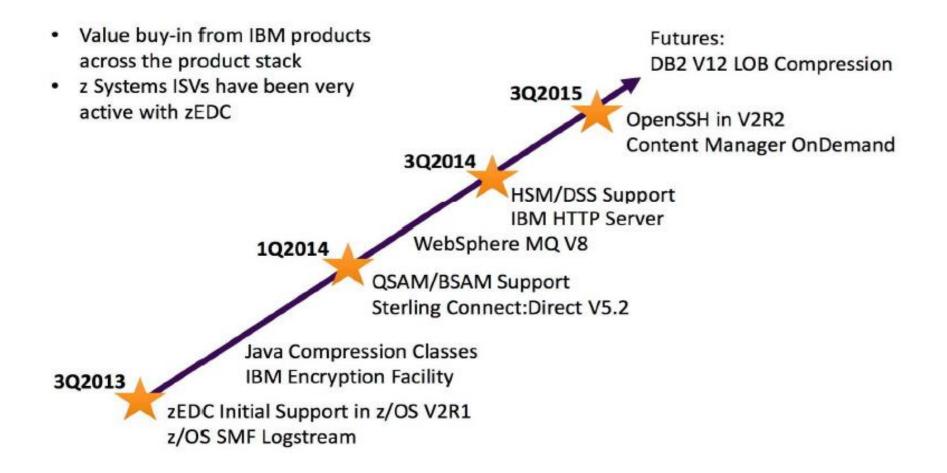
IBM zEnterprise Data Compression (zEDC) capability

- The cost of storing and handling data in CP consumption and DASD space is growing.
- Data compression using software can address this today. There is substantial benefit, but it comes with a cost: CP time.
- Simplistically, data can be classified two ways:
 - Not compressed for <u>frequent access</u> CPU time used to compress/decompress would be wasted to compress/decompress each time data is accessed. Examples: BSAM/QSAM writing data sequentially and reading it back; DB2 using sequential write to create a report; and SMF logger.
 - Compressed for <u>infrequent access</u> Historical data that is written out to tape and archived for a few years. Very little need to access this data.
- Goal of IBM zEnterprise Data Compression (zEDC) is to save storage (create storage "white space") and improve wall clock time for compression.



zEDC Express feature

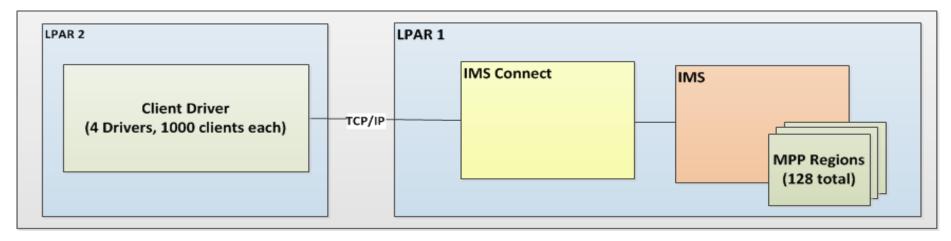
- Configuration:
 - One coprocessor per PCIe I/O feature
 - Supports concurrent requests from up to 15 LPARs
 - Up to 8 features supported by zEC12/zBC12
 - Minimum two feature configuration recommended
- Exploitation and Compatibility
 - Exclusive to zEC12 GA2 and z/OS support in V2R1
 - z/OS Support Planned:
 - z/OS V2.1 Hardware exploitation for SMF, September 2013, and BSAM/QSAM, 1Q2014*
 - z/OS V1.13 and V1.12 with PTFs Software decompression support only
 - Authorized APIs for ISV use are planned
 - Includes new PCIE activity report in RMF
- Great results for archived logs (DB2)
- IMS SLDS are also good candidates for zEDC


Note: Full performance benefits are not achieved unless all systems sharing data are enabled zEDC Express FC 0420

BSAM/QSAM zEDC Compression Results

*Measurements completed in a controlled environment. Results may vary by customer based on individual workload, configuration and software levels.

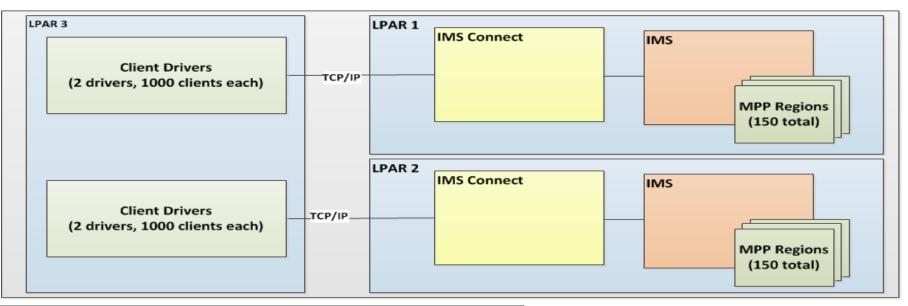
zEDC Product usage Overview

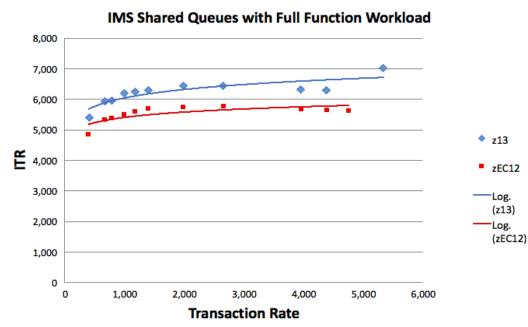


Some performance measurements

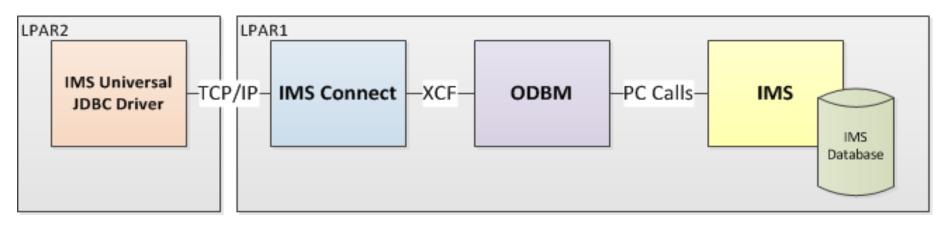
Sharpen your competitive edge 2016 IMS Technical Symposium March 7 – 10, 2016 Wiesbaden, Germany

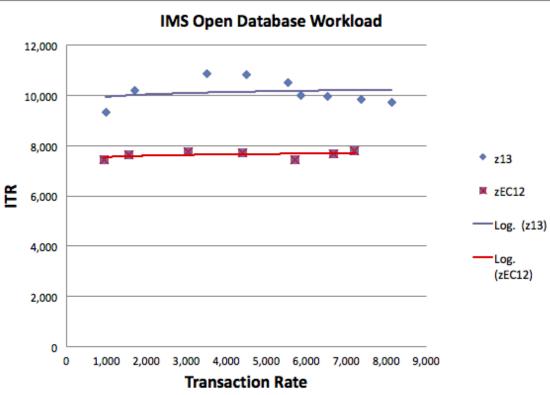
www.ims-symposium.com


IMS Full Function Workload

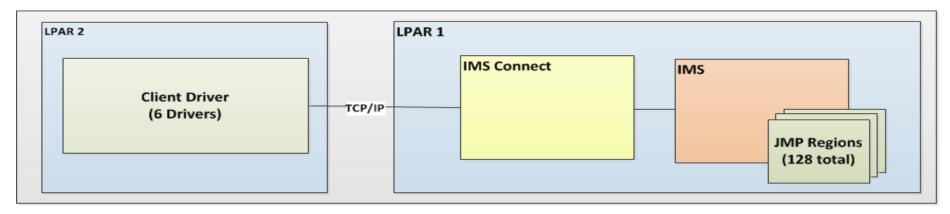


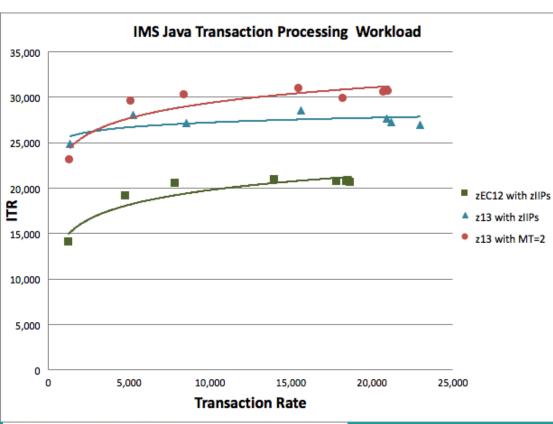
IMS 13, when running the IMS Full Function workload (1-way IMS, nondata sharing) on IBM z13, showed as much as a 20% increase in throughput at equivalent CPU as compared to zEC12


IMS Shared Queues Workload



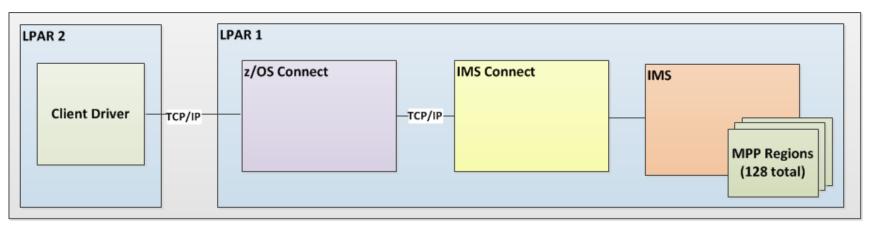
IMS 13, when running the IMS Shared Message Queues workload (2-way IMS, data sharing) on IBM z13, showed as much as 11% increase in throughput at equivalent CPU as compared to zEC12


IMS Open Database DRDA Workload



Open Database DRDA workload on IBM z13, showed as much as 29% increase in throughput at equivalent CPU as compared to zEC12

IMS Java Transaction Processing Workload



IMS 13, when running the IMS Java transaction processing workload on IBM z13, showed as much as a 38% increase in throughput at equivalent CPU as compared to zEC12

IMS 13, when running the IMS Java transaction processing workload on IBM z13 using zIIPs with multithreading (SMT) enabled, showed as much as an 8% increase in throughput at equivalent CPU as compared to z13 using zIIPs without multithreading enabled.

z/OS Connect IMS Mobile Feature Pack Workload

IMS 13, when running the z/OS Connect IMS Mobile Feature Pack workload on IBM z13, showed as much as 27% increase in throughput at equivalent CPU as compared to zEC12

IMS 13, when running the z/OS Connect IMS Mobile Feature Pack workload on IBM z13 using zIIPs with multi-threading (SMT) enabled, showed as much as 22% increase in throughput at equivalent CPU as compared to z13 using zIIPs without multi-threading enabled

Areas to look into for using large memory

- What about paging rates be serious "some" right
- Page fixing is a great idea to save CPU cycles
- DB2 Buffer-Pools
- 1 MB pages (all z/OS) 2 2 GB Pages (Java and DB2) help to reduce CPU cycles.
- MQ Series Version 8 can nicely exploit large memory (allocation above the bar)
- Sort can benefit from large memory (no sortwork on DASD)
- Linux is always memory hungry. To give Linux 20% more memory as it actually needs is good idea. 50% more memory is not any better than 20% for Linux.
- Java Heap size can benefit greatly from additional memory. But be careful – this is like candies, too much is not good
- Application redesign using much more memories as today (ask your friends in the Intel world how this works
- Have a look at: <u>IBM Redpaper</u>

Summary: The all new IBM z13 and z13s: Pushing the boundaries of system innovations

Up to **10TB** RAIM Memory delivers up to 50% better response time Accelerated Analytics for Numeric-Intensive Workloads with Single Instruction Multiple Dataset (**SIMD**)

30% Better Capacity for Linux and Java with Simultaneous Multi-Threading (**SMT**)

Specialty Engines: **zIIPs**, **IFLs**, **and ICFs** to optimize performance across diverse workloads

Crypto Express5S

providing dedicated cryptographic processing for security of transactions and data, 2x faster

Up to **141 Processor** Cores with 5GHz performance and unprecedented scales for data and transaction growth Up to **320 Separate** Channels of Dedicated I/O for massive data and transaction throughput

Up to **17x Faster Analytics** than the Competition with IBM DB2 Analytics Accelerator

Up to **8,000 Virtual** Machines in one System with new open-standards based KVM hypervisor **zEDC** accelerated data compression to reduce data transfer volumes & storage costs by up to 75%

IBM z13 Redbooks

- New IBM z13 and IBM z13s Technical Introduction, SG24-8250-01
- Updated IBM z13 Technical Guide, SG24-8251-01
- New IBM z13s Technical Guide, SG24-8294
- IBM z13 Configuration Setup, SG24-8260
- IBM z Systems Connectivity Handbook, SG24-5444
- Updated IBM z Systems Functional Matrix, REDP-5157-01
- The z13 IBM Redbooks launch page will be:

http://www.redbooks.ibm.com/redbooks.nsf/pages/z13?Open

Get Connected with IMS!

facebook.com/IMSFans

slideshare.net/ibmims

twitter.com/IBM_IMS

linkd.in/IBM_IMS

instagram.com/ibm_ims

bit.ly/IMS_YouTube