
©Copyright SQData Corporation 2016 – All Rights Reserved

Real-Time Streaming

IMS to Big Data

Prepared for the:

 IMS Tech Symposium

 8 March 2016

©Copyright SQData Corporation 2016 – All Rights Reserved

Briefing Objectives
 Address Practical Approach to Real-Time IMS Data Feeds

 Tool/Product Agnostic

 Discuss Business Drivers / Considerations

 Outline Concepts
✔ Popular Big Data Platforms → Strengths and Weaknesses
✔ Bulk Loads (ETL) vs Changed Data Capture (CDC)
✔ Data Types / Formats

 Walk through Various Streaming Scenarios

 Address Any Questions that You May Have

©Copyright SQData Corporation 2016 – All Rights Reserved

About the Speaker
 Scott Quillicy

✔ 35 Years Database Experience
✔ Database Software Development
✔ Performance & Availability

 Founded SQData to Provide Customers with:
✔ A Better Way of Replicating Mainframe Data → Particularly IMS
✔ Solutions that Combine Expertise with Technology
✔ Technology Built Around Best Practices

 Specialization
✔ Database Trends and Direction
✔ Data Replication
✔ IMS to Relational
✔ Big Data Streaming
✔ Continuous Availability
✔ Data Analytics

©Copyright SQData Corporation 2016 – All Rights Reserved

About SQData
 Enterprise Class Changed Data Capture (CDC) & Replication

 Specialization
✔ High-Performance Changed Data Capture (CDC)
✔ Non-Relational Data  IMS, VSAM, Flat Files
✔ Relational Databases  DB2, Oracle, SQL Server, etc.
✔ Deployment of Complex Data Integration Solutions
✔ Continuous Availability of Critical Applications
✔ Data Conversions / Migrations

 Customer Use Cases
✔ Real-Time Operational Data Stores / Big Data → Multiple Sources
✔ Continuous Availability → Active-Active, Active-Passive
✔ ETL (Bulk Data Extracts/Loads)
✔ Application Integration
✔ Business Event Publishing
✔ Data Warehouse Population
✔ Application Integration

©Copyright SQData Corporation 2016 – All Rights Reserved

Big Data Hype vs Reality
 What You May Have Heard...

✔ The 'New Wave' of Technology
✔ Exclusively Hadoop and/or NoSQL Based
✔ Big Data 'Knows' What You are Doing...

 Reality → A Large Collection of Data...in Existence for 50+ Years

 Characteristics
✔ Significant Amount of Data
✔ Advanced Analytics of Disparate Data
✔ Many Different Formats → Structured, Semi-Structured, Un-Structured
✔ High Rate of Change

➢ Challenges
✔ Increasing Data Volumes → Stress Traditional RDBMS
✔ Computing and Infrastructure Costs to Process / Analyze
✔ Most Companies in Early Stages of Adoption

➢ Exciting Times Ahead
✔ Large Open Source Communities
✔ Rapid Evolution of Technology

©Copyright SQData Corporation 2016 – All Rights Reserved

You Have a Few Choices → More on the Way

©Copyright SQData Corporation 2016 – All Rights Reserved

Why Real-Time DB2 to Big Data?

 Analytics...Analytics...Analytics

 Decisions based on Current Information vs 24+ Hour Old Data

 Quickly Detect Key Events / Trends

 Maintain a Competitive Advantage

 Provide Better Customer Service

 Increase Revenue / Profitability

©Copyright SQData Corporation 2016 – All Rights Reserved

Analytics → Use Cases by Industry

Source: http://hortonworks.com/blog/enterprise-hadoop-journey-data-lake/

©Copyright SQData Corporation 2016 – All Rights Reserved

Best Practices Summary
 Let the Business Drive the Effort

✔ Ensures Business Goals are Met
✔ Queries Drive the Data Model Design
✔ Avoid I/T Initiated 'Build it and They will Come' (i.e. the EDW)

 Temper the Exuberance
✔ Inevitable After Successful Implementation for a Given Application
✔ Important to Refine Processes / Set Guidelines
✔ It is More Expensive than the Hype Leads You to Believe

➢ Keep the Fiefdoms at Arm's Length
✔ Departmental Groups Who are Working on Their Own Big Data Project
✔ May Result in 'Mine is Better than Yours' Issues
✔ I/T Circumvention is to be Expected

➢ Keep an Open Mind with Regard to Technology
✔ Technology is Rapidly Evolving
✔ What is OK Today may be Obsolete Tomorrow

➢ Use an Iterative Approach for Implementation
✔ Set the Relational Mindset Aside
✔ Allows for 'Adjustments' without Major Schedule Impact

©Copyright SQData Corporation 2016 – All Rights Reserved

Key Considerations
 Big Data Repository Selection

✔ Open Source Projects → the Larger the Community, the Better
✔ Beware of Vendor Lock
✔ Will Require Multiple Components

 Data Delivery / Latency
✔ Business Driven
✔ Full Extracts → Periodic
✔ Near-Real-Time / Scheduled Updates

 Workload Characteristics
✔ Read vs Update Ratio
✔ Update Volume → Transaction Arrival Rate
✔ Will Effect Big Data Repository Selection

➢ Format
✔ Level of Normalization → Less is Usually Desirable
✔ Common Across Multiple Applications / Languages
✔ Level of Transformation Required

©Copyright SQData Corporation 2016 – All Rights Reserved

Today's Popular Big Data Components
 Hadoop HDFS

✔ Most Commonly Used Big Data Store
✔ Foundation Layer for other Technologies such as Spark
✔ Highly Scalable

 Spark
✔ High-Performance Processing Engine
✔ Extremely Fast and Versatile → 100x Faster than MapReduce
✔ Runs on HDFS or Standalone

 Kafka
✔ Ultra-Fast Message Broker
✔ Streams Data into Most Common Big Data Repositories
✔ Multiple Producers / Consumers

 Other Popular Stores
✔ DB2AA / PureData Analytics (Netezza)
✔ Cassandra
✔ MongoDB
✔ More Appearing each Day...

©Copyright SQData Corporation 2016 – All Rights Reserved

Concepts

©Copyright SQData Corporation 2016 – All Rights Reserved

ACID vs BASE
 ACID → Properties Guarantee DB Transactions are Processed Reliably

✔ Atomicity → All or Nothing...either the Transaction Commits or it Doesn't
✔ Consistency → Transaction brings DB from One Valid State to Another
✔ Isolation → Concurrency
✔ Durability → Once a Transaction Commits, it Remains Committed

 BASE → Eventual Consistency
✔ Basically Available → Data is There...No Guarantees on Consistency
✔ Soft State → Data Changing Over Time...May Not Reflect Commit Scope
✔ Eventual Consistency → Data will Eventually become Consistent

More Info: Charles Rowe – Shifting pH of Database Transaction Processing

Source: http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/

©Copyright SQData Corporation 2016 – All Rights Reserved

The Role of ETL and CDC
ETL (Extract, Transform, Load):
 Full Data Extract / Load
 Data Transformation Logic Defined in this Step → Reused by CDC
 Should be Run Against Live Data
 Should Minimize Data Landing

CDC (Changed Data Capture):
 Move Only Data that has Changed
 Re-Use Data Transformation Logic from ETL
 Near-Real-Time / Deferred Latency
 Allows for Time Series Analytics

Capture

Extract / Transform Load

Apply

Capture

©Copyright SQData Corporation 2016 – All Rights Reserved

ETL and Changed Data Capture (CDC)
 ETL

✔ High Level of Control Over Level of De-Normalization
✔ Can Combine Many Segments in Target Row / Document
✔ Requires that ETL Tool can Handle Consolidation during Extract

 Changed Data Capture
✔ May Dictate that Target not Fully Denormalized
✔ Capture Along One (1) Branch of IMS DB Record
✔ Path / Lookups may be Required

A

B

C E F

D

A B C B DC C E E F

C C CA B B

A D E E F

or

©Copyright SQData Corporation 2016 – All Rights Reserved

Target Apply Concepts
 Frequency

✔ Near-Real-Time
● Continuous Stream
● Low Latency → Typically Sub-Second, but May be a Bit Higher for Larger Transactions

✔ Batches
● Triggered by # Records and/or Time Interval
● Time Based
● Latency Varies

 Time Series
✔ Analyze Data Changes Over Time
✔ All CDC Data is Inserted into Target
✔ timeuuid type Key

 Incremental Updates (Synchronized)
✔ Source Matches Target
✔ Requires Query Adjustments for Insert-Only Targets (i.e. Hadoop HDFS)

● Get Latest Image of Record by Key(s)
● Filter Out Deletes
● Merge into 'Master' File on Periodic Basis

©Copyright SQData Corporation 2016 – All Rights Reserved

CDC / ETL Data Format(s)
 Common Formats → Delimited, JSON, Avro, XML, Relational
 JSON Recommended for CDC/ETL Data

✔ Especially for Data Lakes
✔ Records are Self-Described → Encapsulated Metadata
✔ Payload Lighter than XML

Sample Update CDC Record in JSON Format
{"DEPT": {
 "database": "IMSDB01",
 "change_op” : “U”,
 “change_time": "2015-10-15 16:45:32.72543",
 “after_image” : {
 "deptno": “A00”,
 "deptname": “SPIFFY COMPUTER SERVICE DIV.”,
 “mgrno” : “000010”,
 “admrdept” : “A00”,
 “location” : “Chicago”
 },
 “before_image” : {
 "deptno": “A00”,
 "deptname": “SPIFFY COMPUTER SERVICE DIV.”,
 “mgrno” : “000010”,
 “admrdept” : “A00”,
 “location” : “Dallas”
 }
}}

©Copyright SQData Corporation 2016 – All Rights Reserved

Data Types

In Addition to the Traditional Data Types (char, integer, decimal, etc.)

 boolean → True/False

 counter → Similar to Identity Columns

 inet → IP Address

 timeuuid → Unique Value based on Timestamp and Random

 uuid → Unique Value based on Random and Timestamp

 Complex Data Types
✔ Lists
✔ Sets
✔ Maps
✔ Tuples
✔ Structures
✔ Arrays

©Copyright SQData Corporation 2016 – All Rights Reserved

Common IMS Data Challenges
 Code Page Translation
 Invalid Data

✔ Non-Numeric Data in Numeric Fields
✔ Binary Zeros in Packed Fields (or Any Field)
✔ Invalid Data in Character Fields

 Dates
✔ Must be Decoded / Validated if Target Column is DATE or TIMESTAMP
✔ May Require Knowledge of Y2K Implementation
✔ Allow Extra Time for Date Intensive Applications

➢ Repeating Groups
✔ Sparse Arrays
✔ Number of Elements
✔ Will Probably be De-normalized

 Redefines

 Binary / 'Special' Fields
✔ Common in Older Applications Developed in 1970s / 80s
✔ Generally Requires Application Specific Translation

©Copyright SQData Corporation 2016 – All Rights Reserved

Design → Traditional IMS to Relational

CUST

 Each Segment Maps to One (1) or More Tables

 Strong Target Data Types May Require Additional Transformation

 Tendency to Over Design / Over Normalize

 Still Required for Relational Type Targets (DB2AA, Netezza, Teradata, etc.)

ORDER

LINE

Key Data

CUST #

Key Key Data

CUST # ORD #

Key Key Key Data

CUST # ORD # LINE #

©Copyright SQData Corporation 2016 – All Rights Reserved

Design → IMS to Big Data

Cust

➢ De- Normalized / Minimal Normalization
➢ Still Requires Transformation (dates, binary values, etc.)
➢Good News → IMS Structure Already Setup for Big Data

Order

Line
Item

Key Data

Cust#

Key Data Data Data Data Data Data

Order# Cust# Line # Line#

{ "company_name" : "Acme",
 "cust_no" : "20223",
 "contact" :{ "name" : "Jane Smith",
 "address" : "123 Maple Street",
 "city" : "Pretendville",
 "state" : "NY",
 "zip" : "12345" }
}

{ "order_no" : "12345",
 "cust_no" : "20223",
 "price" : 23.95,
 "Lines" : { "item" : "Widget1",
 "qty" : "6",

 “cost” : “2.43”
 "item : “Widge2y"
 "qty" : "1",
 "cost" : "9.37"
 },
}

©Copyright SQData Corporation 2016 – All Rights Reserved

Streaming IMS
 to

 Big Data Stores

©Copyright SQData Corporation 2016 – All Rights Reserved

IMS Data Capture Methods
 Primary Methods of Capture

 Data Capture Exit Routines
 Log Based

 Database Capture Exit Routines
 Near-Real-Time for IMS TM/DB

 Extremely Fast and Efficient

 Scalability → Capture / Apply by FP Area, HALDB Partition, PSB, Database

 Does Not Require x'99' Log Records

 Log Based
 Near-Real-Time or Asynchronous

 CICS / DBCTL Environments

 Requires x'99' Log Records

 Scalability → Same as Database Exit Routines

©Copyright SQData Corporation 2016 – All Rights Reserved

IMS Streaming Illustration

TCP/IP

Apply
Engine

Publisher

Apply
Engine

Apply
Engine

DB2AA

 Optimal Solution:
✔ Sub-Second Latency → Capture to Apply
✔ Must be able to Handle High-Transaction Volume
✔ Multi-Purpose is a Major Plus
✔ Publish Should Not Require any Extra Parts

● No Staging Tables
● No Queues

✔ Must be Resilient / Fault Tolerant

Capture Agent(s)IMS

OLDS / SLDS

©Copyright SQData Corporation 2016 – All Rights Reserved

Hadoop HDFS

Source: http://dailyhadoopsoup.blogspot.com/

 Basic Distributed File System
 Append-Only Writes
 Eventually Consistent
 1 Writer → Multiple Readers
 Ideal for Streams / Data Lakes
 Batch or Near-Real-Time Apply

©Copyright SQData Corporation 2016 – All Rights Reserved

HBase
 NoSQL on top of Hadoop HDFS
 Eventually Consistent
 Search Engines / Analyzing Logs
 Batch Apply Frequency

©Copyright SQData Corporation 2016 – All Rights Reserved

Streaming to Hadoop

Capture/Publish

Apply

 HDFS Format → CSV, JSON, XML, Custom
 Typical Use → Multiple Files for Same Content

✔ File Size Based on # Records / Time Interval
✔ Requires Multi-File Management

 Partitioning → Based on Source Value(s)
✔ Not Native in HDFS
✔ Based on Source Data Value(s)
✔ Requires Cross-Partition Multi-File Management

HDFS

Native
HDFS

Apply
ODBC/
JDBC

©Copyright SQData Corporation 2016 – All Rights Reserved

Kafka

Capture/Publish

Apply Apply Apply

 High-Throughput, Low-Latency Message Broker

 Open Sourced by LinkedIn 2011 / Apache 2012
 Supports a Variety of Targets → More on the Way
 Leverage JSON Message Format for CDC
 Use Cases:

✔ Basic Messaging → Similar to MQ
✔ Website Activity Tracking
✔ Metrics Collection / Monitoring
✔ Log Aggregation
✔ Streaming

User
Program(s)

Adapters

©Copyright SQData Corporation 2016 – All Rights Reserved

Cassandra
 NoSQL – Unique Keys
 Eventually Consistent
 Highly Scalable
 Great Read / Write Performance
 No Joins
 Data Typically Denormalized

http://www.ibm.com/developerworks/library/os-apache-cassandra/

Apply
Engine

Capture/Publish

ODBC

User
Apply

JSON

©Copyright SQData Corporation 2016 – All Rights Reserved

MongoDB
 NoSQL – Document Store (JSON/BSON)
 Eventually Consistent
 Keys Not Required to be Unique
 Great for Dynamic Queries
 Not Extremely Scalable

db.xxxx.insert
db.xxxx.update
db.xxxx.remove

Apply
Engine

Capture/Publish

User
Apply

JSON

©Copyright SQData Corporation 2016 – All Rights Reserved

Performance: Cassandra vs HBase vs MongoDB

http://planetcassandra.org/nosql-performance-benchmarks/

©Copyright SQData Corporation 2016 – All Rights Reserved

Receive / Transform / Acknowledge

DB2 PureData Analytics (Netezza)

Publish

Apply

PureData
Analytics

Staging

Capture

Apply Thread Apply ThreadApply Thread

Controller

 Standalone Analytics Appliance
 Consistency, Partition tolerance
 Batch Apply Frequency

©Copyright SQData Corporation 2016 – All Rights Reserved

Receive / Transform / Acknowledge

DB2 Analytics Accelerator (DB2AA)

Publish

Apply

DB2AA

Staging

Capture

Apply Thread Apply ThreadApply Thread

Controller

 Coupled with DB2 z
 Consistency, Partition tolerance
 Apply through DB2 → AOTs
 Batch Apply Frequency
 Requires DB2AA PTF 5

DB2

©Copyright SQData Corporation 2016 – All Rights Reserved

DB2AA Replication Considerations
 Accelerator Must Know About Apply Processes

 Required: PTF 5

 Supports User Written Apply

 Accelerator Only Tables (AOTs)
✔ Allows Update DML against Tables in Accelerator

✔ Apply Process can Perform Inserts/Deletes via DB2

✔ Decent Throughput Today → Will Only Get Better in the Future

 AOT Restrictions
✔ Currently only Supported in DB2 V10

✔ Single Row Inserts – Multi-Row Inserts in Development

✔ Transient in Nature

✔ Cannot be Enabled for Incremental Update

✔ Cannot Backup/Recover via Utilities

©Copyright SQData Corporation 2016 – All Rights Reserved

Spark

Standalone

 Super Fast Engine for Data Processing
 Supports Multiple BD Stores
 Started 2009 → UC Berkley
 Donated to Apache in 2013
 100x Faster than MapReduce
 10x Faster from Disk
 Highly Popular at the Moment

©Copyright SQData Corporation 2016 – All Rights Reserved

Spark Streams
 Real-Time Feeds into Spark
 Batching Apply Method → Short Bursts
 Each Batch is a Resilient Distributed Dataset (RDD)

Source: http://www.databricks.com/

©Copyright SQData Corporation 2016 – All Rights Reserved

Summary
 Let the Business Drive the Effort

 Temper the Exuberance

➢ Keep Fiefdoms at Arm's Length

➢ Use an Iterative Approach for Implementation

➢ Keep an Open Mind with Regard to Technology

➢ For More Information:

✔ Visit the Infotel / Insoft Booths in the Expo Area
✔ www.infotel.com

http://www.infotel.com/

©Copyright SQData Corporation 2016 – All Rights Reserved

Thank You!!

©Copyright SQData Corporation 2016 – All Rights Reserved

Real-Time Streaming

IMS to Big Data

Prepared for the:

 IMS Tech Symposium

 8 March 2016

	Front Cover
	Briefing Objectives
	Speaker Overview
	SQData Overview
	What is Big Data?
	Big Data Choices
	Why Real-Time DB2 to Big Data?
	Analytics Use Cases
	Best Practices Summary
	Key Considerations
	Popular Big Data Components
	Concepts
	ACID vs BASE
	Role of ETL and CDC
	ETL / CDC Considerations
	Target Apply Concepts
	CDC / ETL Formats
	Data Types
	Common IMS Data Challenges
	Design: Traditional IMS to Relational
	IMS to Big Data Model
	Streaming to Big Data
	IMS Data Capture Methods
	IMS Streaming Illustration
	Hadoop HDFS
	HBase
	Streaming to Hadoop
	Kafka
	Cassandra
	MongoDB
	Performance
	PureData Analytics
	DB2AA
	DB2AA Considerations
	Spark
	Spark Streams
	Summary
	Thank You
	Back Cover

