

Real-Time Streaming

IMS to Big Data

Prepared for the: IMS Tech Symposium

8 March 2016

Briefing Objectives

- Address Practical Approach to Real-Time IMS Data Feeds
- Tool/Product Agnostic
- Discuss Business Drivers / Considerations
- Outline Concepts
 - ✓ Popular Big Data Platforms → Strengths and Weaknesses
 - ✓ Bulk Loads (ETL) vs Changed Data Capture (CDC)
 - ✓ Data Types / Formats
- Walk through Various Streaming Scenarios
- Address Any Questions that You May Have

About the Speaker

Scott Quillicy

- ✓ 35 Years Database Experience
- Database Software Development
- ✓ Performance & Availability

Founded SQData to Provide Customers with:

- ✓ A Better Way of Replicating Mainframe Data → Particularly IMS
- Solutions that Combine Expertise with Technology
- Technology Built Around Best Practices

Specialization

- Database Trends and Direction
- ✓ Data Replication
- ✓ IMS to Relational
- ✓ Big Data Streaming
- Continuous Availability
- ✓ Data Analytics

About SQData

Enterprise Class Changed Data Capture (CDC) & Replication

Specialization

- ✓ High-Performance Changed Data Capture (CDC)
- ✓ Non-Relational Data \rightarrow IMS, VSAM, Flat Files
- ✓ Relational Databases \rightarrow DB2, Oracle, SQL Server, etc.
- Deployment of Complex Data Integration Solutions
- Continuous Availability of Critical Applications
- Data Conversions / Migrations

Customer Use Cases

- ✓ Real-Time Operational Data Stores / Big Data → Multiple Sources
- ✓ Continuous Availability → Active-Active, Active-Passive
- ✓ ETL (Bulk Data Extracts/Loads)
- Application Integration
- Business Event Publishing
- ✓ Data Warehouse Population
- Application Integration

Big Data Hype vs Reality

What You May Have Heard...

- ✓ The 'New Wave' of Technology
- Exclusively Hadoop and/or NoSQL Based
- ✓ Big Data 'Knows' What You are Doing...

Reality \rightarrow A Large Collection of Data...in Existence for 50+ Years

Characteristics

>

 \succ

>

 \succ

- Significant Amount of Data
- Advanced Analytics of Disparate Data
- ✓ Many Different Formats → Structured, Semi-Structured, Un-Structured
- High Rate of Change

Challenges

- ✓ Increasing Data Volumes → Stress Traditional RDBMS
- Computing and Infrastructure Costs to Process / Analyze
- Most Companies in Early Stages of Adoption

Exciting Times Ahead

- Large Open Source Communities
- Rapid Evolution of Technology

You Have a Few Choices → More on the Way

Why Real-Time DB2 to Big Data?

> Analytics...Analytics...Analytics

- Decisions based on Current Information vs 24+ Hour Old Data
- Quickly Detect Key Events / Trends
- Maintain a Competitive Advantage
- Provide Better Customer Service
- Increase Revenue / Profitability

Analytics → **Use Cases by Industry**

INDUSTRY	USE CASE	DATA TYPE								
		Sensor	Server Logs	Text	Social	Geographic	Machine	Clickstream	Structured	Unstructured
Financial Services	New Account Risk Screens		~	~						
	Trading Risk		~							
	Insurance Underwriting	~		~		~				
Telecom	Call Detail Records (CDR)					~	~			
	Infrastructure Investment		~				~			
	Real-time Bandwidth Allocation		~	~	~					
Retail	360° View of the Customer			~				~		
	Localized, Personalized Promotions					~				
	Website Optimization							~		
Manufacturing	Supply Chain and Logistics	~								
	Assembly Line Quality Assurance	~								
	Crowd-sourced Quality Assurance				~					
Healthcare	Use Genomic Data in Medial Trials	~							~	
	Monitor Patient Vitals in Real-Time									
Pharmaceuticals	Recruit and Retain Patients for Drug Trials				~			~		
	Improve Prescription Adherence				~	~				~
Oil & Gas	Unify Exploration & Production Data	~				~				~
	Monitor Rig Safety in Real-Time	~								~
Government	ETL Offloaded Response to Federal Budgetary Pressures								~	
	Sentiment Analysis for Government Programs				~					

Source: http://hortonworks.com/blog/enterprise-hadoop-journey-data-lake/

Best Practices Summary

Let the Business Drive the Effort

- Ensures Business Goals are Met
- ✓ Queries Drive the Data Model Design
- ✓ Avoid I/T Initiated 'Build it and They will Come' (i.e. the EDW)

Temper the Exuberance

- ✓ Inevitable After Successful Implementation for a Given Application
- Important to Refine Processes / Set Guidelines
- ✓ It is More Expensive than the Hype Leads You to Believe

Keep the Fiefdoms at Arm's Length

- ✓ Departmental Groups Who are Working on Their Own Big Data Project
- ✓ May Result in 'Mine is Better than Yours' Issues
- ✓ I/T Circumvention is to be Expected

Keep an Open Mind with Regard to Technology

- Technology is Rapidly Evolving
- ✓ What is OK Today may be Obsolete Tomorrow

Use an Iterative Approach for Implementation

- ✓ Set the Relational Mindset Aside
- ✓ Allows for 'Adjustments' without Major Schedule Impact

Key Considerations

Big Data Repository Selection

- ✓ Open Source Projects \rightarrow the Larger the Community, the Better
- Beware of Vendor Lock
- Will Require Multiple Components

Data Delivery / Latency

- Business Driven
- ✓ Full Extracts \rightarrow Periodic
- ✓ Near-Real-Time / Scheduled Updates

Workload Characteristics

- ✓ Read vs Update Ratio
- ✓ Update Volume \rightarrow Transaction Arrival Rate
- ✓ Will Effect Big Data Repository Selection

Format

- ✓ Level of Normalization → Less is Usually Desirable
- Common Across Multiple Applications / Languages
- Level of Transformation Required

Today's Popular Big Data Components

Hadoop HDFS

- Most Commonly Used Big Data Store
- Foundation Layer for other Technologies such as Spark
- ✓ Highly Scalable

Spark

- ✓ High-Performance Processing Engine
- ✓ Extremely Fast and Versatile \rightarrow 100x Faster than MapReduce
- Runs on HDFS or Standalone

Kafka

- ✓ Ultra-Fast Message Broker
- Streams Data into Most Common Big Data Repositories
- Multiple Producers / Consumers

Other Popular Stores

- DB2AA / PureData Analytics (Netezza)
- ✓ Cassandra
- ✓ MongoDB
- More Appearing each Day...

cassandra

mongoDB

Concepts

ACID vs BASE

$\blacktriangleright \quad ACID \rightarrow Properties Guarantee DB Transactions are Processed Reliably$

- ✓ Atomicity \rightarrow All or Nothing...either the Transaction Commits or it Doesn't
- ✓ Consistency \rightarrow Transaction brings DB from One Valid State to Another
- ✓ Isolation \rightarrow Concurrency
- ✓ **D**urability \rightarrow Once a Transaction Commits, it Remains Committed
- $\blacktriangleright \quad BASE \rightarrow Eventual Consistency$
 - ✓ Basically Available \rightarrow Data is There...No Guarantees on Consistency
 - ✓ Soft State \rightarrow Data Changing Over Time...May Not Reflect Commit Scope
 - ✓ Eventual Consistency → Data will *Eventually* become Consistent

More Info: Charles Rowe - Shifting pH of Database Transaction Processing

Source: http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/

The Role of ETL and CDC

ETL (Extract, Transform, Load):

- ✓ Full Data Extract / Load
- \checkmark Data Transformation Logic Defined in this Step \rightarrow Reused by CDC
- ✓ Should be Run Against Live Data
- ✓ Should Minimize Data Landing

CDC (Changed Data Capture):

- ✓ Move Only Data that has Changed
- ✓ Re-Use Data Transformation Logic from ETL
- ✓ Near-Real-Time / Deferred Latency
- ✓ Allows for Time Series Analytics

ETL and Changed Data Capture (CDC)

> ETL

- ✓ High Level of Control Over Level of De-Normalization
- Can Combine Many Segments in Target Row / Document
- ✓ Requires that ETL Tool can Handle Consolidation during Extract

Changed Data Capture

- May Dictate that Target not Fully Denormalized
- ✓ Capture Along One (1) Branch of IMS DB Record
- ✓ Path / Lookups *may* be Required

Target Apply Concepts

> Frequency

- ✓ Near-Real-Time
 - Continuous Stream
 - Low Latency \rightarrow Typically Sub-Second, but May be a Bit Higher for Larger Transactions
- ✓ Batches
 - Triggered by # Records and/or Time Interval
 - Time Based
 - Latency Varies

Time Series

- ✓ Analyze Data Changes Over Time
- ✓ All CDC Data is Inserted into Target
- ✓ timeuuid type Key

Incremental Updates (Synchronized)

- ✓ Source Matches Target
- ✓ Requires Query Adjustments for Insert-Only Targets (i.e. Hadoop HDFS)
 - Get Latest Image of Record by Key(s)
 - Filter Out Deletes
 - Merge into 'Master' File on Periodic Basis

CDC / ETL Data Format(s)

JSON Recommended for CDC/ETL Data

- Especially for Data Lakes
- ✓ Records are Self-Described \rightarrow Encapsulated Metadata
- ✓ Payload Lighter than XML

Sample Update CDC Record in JSON Format

```
{"DEPT": {
  "database": "IMSDB01",
  "change op" : "U",
  "change time": "2015-10-15 16:45:32.72543",
  "after image" : {
     "deptno": "A00",
     "deptname": "SPIFFY COMPUTER SERVICE DIV.",
     "mgrno" : "000010",
     "admrdept" : "A00",
     "location" : "Chicago"
   },
  "before image" : {
     "deptno": "A00",
     "deptname": "SPIFFY COMPUTER SERVICE DIV.",
     "mgrno" : "000010",
     "admrdept" : "A00",
     "location" : "Dallas"
   }
}}
```

Data Types

In Addition to the Traditional Data Types (char, integer, decimal, etc.)

- **boolean** \rightarrow True/False
- \blacktriangleright counter \rightarrow Similar to Identity Columns
- $\succ \quad \text{inet} \rightarrow \text{IP Address}$
- \blacktriangleright **timeuuid** \rightarrow Unique Value based on Timestamp and Random
- \blacktriangleright uuid \rightarrow Unique Value based on Random and Timestamp

Complex Data Types

- ✓ Lists
- ✓ Sets
- ✓ Maps
- ✓ Tuples
- ✓ Structures
- ✓ Arrays

Common IMS Data Challenges

Code Page Translation

Invalid Data

- Non-Numeric Data in Numeric Fields
- Binary Zeros in Packed Fields (or Any Field)
- Invalid Data in Character Fields

Dates

- ✓ Must be Decoded / Validated if Target Column is DATE or TIMESTAMP
- ✓ May Require Knowledge of Y2K Implementation
- Allow Extra Time for Date Intensive Applications

Repeating Groups

- ✓ Sparse Arrays
- ✓ Number of Elements
- ✓ Will Probably be De-normalized

Redefines

Binary / 'Special' Fields

- Common in Older Applications Developed in 1970s / 80s
- Generally Requires Application Specific Translation

$\textbf{Design} \rightarrow \textbf{Traditional IMS to Relational}$

- \checkmark Each Segment Maps to One (1) or More Tables
- ✓ Strong Target Data Types May Require Additional Transformation
- ✓ Tendency to Over Design / Over Normalize
- ✓ Still Required for Relational Type Targets (DB2AA, Netezza, Teradata, etc.)

Design \rightarrow **IMS** to **Big Data**

- De- Normalized / Minimal Normalization
- Still Requires Transformation (dates, binary values, etc.)
- \succ Good News → IMS Structure Already Setup for Big Data

Streaming IMS to Big Data Stores

IMS Data Capture Methods

Primary Methods of Capture

- ✓ Data Capture Exit Routines
- ✓ Log Based

Database Capture Exit Routines

- ✓ Near-Real-Time for IMS TM/DB
- Extremely Fast and Efficient
- ✓ Scalability → Capture / Apply by FP Area, HALDB Partition, PSB, Database
- ✓ Does Not Require x'99' Log Records

Log Based

- ✓ Near-Real-Time or Asynchronous
- ✓ CICS / DBCTL Environments
- ✓ Requires x'99' Log Records
- Scalability \rightarrow Same as Database Exit Routines

IMS Streaming Illustration

Hadoop HDFS

[©]Copyright SQData Corporation 2016 - All Rights Reserved

HBase

Kafka

Cassandra

http://www.ibm.com/developerworks/library/os-apache-cassandra/

©Copyright SQData Corporation 2016 - All Rights Reserved

Performance: Cassandra vs HBase vs MongoDB

Read/Write Mix Workload

http://planetcassandra.org/nosql-performance-benchmarks/

DB2 PureData Analytics (Netezza)

DB2 Analytics Accelerator (DB2AA)

DB2AA Replication Considerations

- Accelerator Must Know About Apply Processes
- **Required:** PTF 5
- Supports User Written Apply
- Accelerator Only Tables (AOTs)
 - ✓ Allows Update DML against Tables in Accelerator
 - ✓ Apply Process can Perform Inserts/Deletes via DB2
 - ✓ Decent Throughput Today \rightarrow Will Only Get Better in the Future

AOT Restrictions

- Currently only Supported in DB2 V10
- Single Row Inserts Multi-Row Inserts in Development
- Transient in Nature
- ✓ Cannot be Enabled for Incremental Update
- Cannot Backup/Recover via Utilities

Spark

Spark Streams

- Real-Time Feeds into Spark
- ➢ Batching Apply Method → Short Bursts
- Each Batch is a Resilient Distributed Dataset (RDD)

records processed in batches with short tasks each batch is a RDD (partitioned dataset)

Source: http://www.databricks.com/

Summary

- Let the Business Drive the Effort
- > Temper the Exuberance
- Keep Fiefdoms at Arm's Length
- Use an Iterative Approach for Implementation
- Keep an Open Mind with Regard to Technology
- For More Information:
 - Visit the Infotel / Insoft Booths in the Expo Area
 www.infotel.com

Thank You!!

Real-Time Streaming

IMS to Big Data

Prepared for the: IMS Tech Symposium

8 March 2016