C02 A Data Definition Language for Multiple Data Types

Greg Vance
IMS Development
gvance@us.ibm.com

Sharpen your competitive edge
2016 IMS Technical Symposium
March 7 – 10, 2016
Wiesbaden, Germany

www.ims-symposium.com
Agenda

- Background
- Implementation and Usage
- Using IMS Explorer for Development with DDL
- Using the Batch SQL Utility for DDL
- Samples
Dynamic Database Definition

- Increasing the availability of IMS environments
 - High Availability Large Database HALDB
 - IMS Connect
 - Dynamic Resource Definition DRD
 - IMS Catalog V12
 - SQL with COBOL V13
 - IMS Managed ACBs V14
 - Data Definition Language V14

Why this is important
- DDL is the industry standard
- DDL-authoring tools are prevalent in the market

2016 IMS Technical Symposium
Dynamic Definition Language

Data Definition Language – DDL

– Generically, Data Definition Language refers to any formalized language that describes data, information structures of a data construct or access to those structures.

– The language uses a collection of command verbs to manipulate control schemas. Schemas can be manipulated: they may be added, changed or deleted during the life of the formalized data construct.

– DDL is often considered a subset of SQL.
Dynamic Database Definition

- **Data Definition Language – DDL**

 All database systems have a uniqueness to the data structures required in their specific environment.
 - Standard DDL + DBMS specific Extensions
 - IMS is no different in this respect.
 - IMS 14 provides for using the standard DDL.
 - IMS 14 also includes extensions specific to IMS structures to allow more detailed database definitions. These extensions closely match the current non DDL definitions used in IMS.
Dynamic Database Definition

- Leverage the Industry standard Data Definition Language (DDL) to affect database and schema changes.
 - Exploit DDL authoring tools such as the IMS Enterprise Suite Explorer for Development (E4D) to model database changes and create DDL.
 - DDL – authoring tools are prevalent in the market.
 - DDL – authoring tools use IMS Universal drivers or supporting tooling.
 - Align with industry practices and expectations.

- Uses the IMS 14 Catalog as the trusted Repository
 - IMS 14 provides for the IMS Catalog to be the central focal point for IMS database and program changes.

- Dynamic implementation of IMS control blocks.
 - Reduced time and complexity of creating IMS databases and program definitions.
 - An alternative to proprietary PSBGEN, DBDGEN, and ACBGEN processes.
 - Changes may be activated when committed

- Provide an audit trail capturing changes made:
 - Log record x’2A’ for DDL Information.
 - Log record x’2B’ for IMS Catalog changes.
 - SMF type 29 sub-type 3 for Catalog activity.
IMS and DDL value additions

- **Simplifies the process of adding a new database resource**
 - **Without DDL:**
 - Define your database characteristics (DBD).
 - Compile/link database definitions (DBDGEN).
 - Define your program specifications (PSB).
 - Compile/link your program specifications (PSBGEN).
 - Perform ACBGEN.
 - Allocate database data sets.
 - Define DBRC definitions.
 - Define IMS database for dynamic allocation (MDA).
 - Initialize and Load IMS databases.
 - Define database and program online resource definitions:
 - **CREATE DB / PGM command to create the database and program (DRD).**
 - **Specify system definition macros and Online Change.**
 - Perform online change to load IMS application-related definitions (MOLC).
 - Establish database recovery point by taking an image copy (IC).
 - Start IMS resources: - Databases, Programs, Transactions, Route Codes
Simplifying the process of adding a database resource.

- With DDL:
 - Generate the DDL statements for the database and program views.
 - Submit DDL statements

 DDL changes will be held in the IMS Catalog in a pending state.
 - Allocate database data sets.
 - Define DBRC definitions.
 - Define IMS database for dynamic allocation (MDA).
 - Initialize and Load IMS databases.
 - Define database and program online resource definitions:

 CREATE DB / PGM command to create the database and program (DRD).
 Specify system definition macros and Online Change.
 - Activate the database and program definitions.

 IMPORT DEFN SOURCE(CATALOG)
 - Establish database recovery point by taking an image copy (IC).
 - Start IMS resources: - Databases, Programs, Transactions, Route Codes
IMS and DDL value additions

- **Simplifies the process of adding new application metadata to the Catalog**
 - **Without DDL:**
 - The DBD source would have to be updated with the COBOL copybook or PL/I include information for each segment overlay
 - DBDGEN / ACBGEN needs to be performed
 - Online Change needs to be completed

 - **With DDL:**
 - DDL ALTER TABLE to add the information to the catalog and make it available with the IMPORT command
Agenda

▪ Background

▪ Implementation and Usage

▪ Using IMS Explorer for Development with DDL

▪ Using the Batch SQL Utility for DDL

▪ Samples
Dynamic Database Definition

– IMS Catalog must be implemented.
– IMS Management of ACBs must be enabled.
– DDL is supported only through:
 • Java™ client using the IMS Universal drivers.
 • IMS Enterprise Suite Explorer for Development.
 • Additional tools that support the IMS Universal drivers.
– Manual steps are required for database changes.
 • User makes DDL change to the catalog.
 • Perform manual steps such as database load/reload, image copy.
 • IMPORT the changes from the catalog into IMS.

 IMPORT DEFN SOURCE(CATALOG)

– The user must have security authority to use the IMS Catalog PSB DFSCP001.
Dynamic Database Definition

- **IMS 14 Catalog**
 - An IMS Catalog is made up of several components
 - A catalog HALDB database (many partitions, 4 Data Set Groups)
 - A Secondary Index
 - Directory dataset(s)
Implementing DDL – IMS Managed ACBs Setup

- IMS Managed ACBs must be enabled before DDL processing is allowed

- New IMS Catalog user:
 - Set up the IMS catalog database
 - Generate the supplied DBDs & PSBs
 - Generate the ACBs
 - DFSDFnnn proclib member update or DFS3CDX0 exit
 - DBRC definition
 - Populate the IMS catalog from running ACBLIB(s)
 - DFS3PU00 utility with MANAGEDACBS=SETUP
 - Enable IMS to use the IMS catalog and directory by specifying IMS Managed ACBs is enabled in the DFSDFxxx PROCLIB member or the equivalent user exit (DFS3CDX0)
 - Restart IMS region

- Existing IMS Catalog user:
 - Augment the catalog with information to allow IMS to use this as its ACB information source.
 - DFS3PU00 utility with MANAGEDACBS=SETUP
 - Enable IMS to use the IMS catalog and directory by specifying IMS Managed ACBs is enabled in the DFSDFxxx PROCLIB member or the equivalent user exit (DFS3CDX0) for DBCTL users
 - Restart IMS region
Implementing DDL - – IMS Managed ACBs Setup (cont.)

DFSDFxxx syntax

| NO- | >>------+CATALOG------+=+YES+--------+ALIAS=xxxx--------------------->> |
| CATALOGXXX- |

+-ACCESS=UPDATE- |
|-ACBMGMT=ACLIB---------------+ |
| | -ACCESS=READ--- |
|
>>-----------------------------+---+---+---+---+---+---+---+---+---+---+--- |
| |
| -ACBMGMT=CATALOG--------------+ |
| | -ACCESS=UPDATE- |

CATALOG default is NO
ACBMGMT default is ACBLIB
ACCESS default is READ when ACBMGMT is ACBLIB
ACCESS default is UPDATE when ACBMGMT is CATALOG
Resource Name Comparison

- IMS will support the standard DDL syntax for CREATE, ALTER and DROP of Databases and Tables
 - Consume the standard DDL generated without IMS affinity
- The equivalent IMS to DDL statements are shown in the Table here.

<table>
<thead>
<tr>
<th>IMS</th>
<th>GEN statement</th>
<th>DDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td>DBD</td>
<td>DATABASE</td>
</tr>
<tr>
<td>Segment</td>
<td>SEGM</td>
<td>TABLE</td>
</tr>
<tr>
<td>Field</td>
<td>FIELD</td>
<td>COLUMN</td>
</tr>
<tr>
<td>Dataset</td>
<td>DATASET</td>
<td>TABLESPACE</td>
</tr>
<tr>
<td>Area</td>
<td>AREA</td>
<td>TABLESPACE</td>
</tr>
<tr>
<td>Program</td>
<td>PSBGEN</td>
<td>PROGRAMVIEW</td>
</tr>
<tr>
<td>PCB</td>
<td>PCB</td>
<td>SCHEMA</td>
</tr>
<tr>
<td>Senseg</td>
<td>SENSEG</td>
<td>SENSESEGVIEW</td>
</tr>
</tbody>
</table>
IMS specific parameters in DDL

- The DDL standard does not contain all of the options for IMS
 - It is not IMS specific
 - Other DBMSs have similar specific requirements

- Many options existing in the PSBGEN and DBDGEN macros are unique to IMS.
 - e.g., DB Access Types: PHIDAM, HIDAM, PHDAM, etc.

- IMS provides defaults based on access types
 - Modifiable to user requirements
 - The recommended defaults can be seen in the syntax train tracks in the IMS SQL programming reference
DDL defaults and Enhanced IMS syntax

- Overriding the IMS system defaults
 - Enhanced DDL syntax

- All parameters that can be specified in the DBDGEN or PSBGEN macros are optional parameters in the IMS Enhanced DDL syntax

- The IMS Enhanced DDL syntax can be used with existing defaults
 - Defaults values may be overridden when specified

- DDL syntax has also been Enhanced to fully specify their PSB definitions via PROGRAMVIEW
Multiple DDL statements are needed in order to describe an IMS database, such as: database organization type, access method, record mapping and record relationships.

- Database
- Table spaces (dataset/area)
- Tables (segments) and columns (field) mappings in a database record.
- Relationships with other databases Primary keys and foreign keys.
- Programview (PSB) describing a program's characteristics.
 - Tables and columns to which the program is sensitive
Creating resources

CREATE resource_name

– A resource can be created based on IMS defined defaults
– A resource can be created from scratch specifying all the needed attributes for the resource being defined.
– A created resource may be imported to active status in the IMS.
– A created resource is always a new resource.
 • A DRD or Sysgen is needed for IMS to be aware of the resource.
Altering resources

ALTER resource_name

– Resource must currently exist in the catalog.
– Resource defaults do not apply.
– The alter is applied only to the value(s) being altered.
– Values that are not specifically altered remain the same.
– An altered resource must be manually imported to Active status in the IMS in most cases.
– PRGRAMVIEWs cannot be altered
Dropping resources

DROP resource_name
– Resource must currently exist in the catalog.
– Dropping some resources may cause an ALTER to occur to an existing resource.
 • e.g. the Drop of a TABLESPACE within a DATABASE
– A Dropped resource is manually imported to remove its active status in the IMS.
 • System definitions are not removed
DDL Processing

- Upon receiving the DDL statements
 - Updates in catalog are locked until a COMMIT DDL
 This can impact other catalog access.
 - Once committed, changes are held pending activation
 Some changes may be activated immediately
 - Changes are activated via the IMPORT command
 IMPORT DEFN SOURCE(CATALOG)

- No need to use Online Change or recycle IMS system to activate an ACB
DDL Update Activation

During the IMPORT from the IMS catalog IMS will do the following:

– Automatically quiesce and stop all activity on resources impacted by any catalog changes.
– Remove all old copies of the resources from memory.
 • This will cast out DMBs and PSBs from their respective pools.
– Coordinate the change across the IMSplex for sharing IMS catalogs.
– Apply the pending changes from the IMS catalog into the directory.
– Make all of the previously quiesced resources available after the change to the catalog has been activated.

IMS Resources are now available
DDL Activation – Impact

- Some DBRC commands are enhanced to either specify a catalog name or display the current default IMS catalog
- New messages may need to be monitored
- IMS Utility changes to access the catalog
- Exit DFS3CXD0 may need modification
The following scenario focuses on the elements of the database creation that apply to most database types.

– User uses Explorer to model the database graphically
– User uses Explorer to create the DDL
– Create DDL for DBD(s)
 • CREATE DATABASE, TABLESPACE, TABLE, FIELD(s)
– Create DDL for PSB (user or dynamic)
 • CREATE PROGRAMVIEW, SCHEMA
– Explorer notifies user the impact of the DDL
– User submits the DDL to IMS (this could be repeated)
DDL Altering an IMS database

- The following scenario focuses on the elements of the database alter that apply to most database types.
 - User uses Explorer to model the database graphically
 - User uses Explorer to create the DDL
 - Alter DBD(s)
 - ALTER DATABASE
 - Change PROGRAMVIEW
 - DROP PROGRAMVIEW
 - CREATE PROGRAMVIEW (new)
 - Explorer notifies user the impact of the DDL
 - User submits the DDL to IMS
 - Any manually invoked changes e.g. Database unload/reload
 - IMPORT change to activate.
DDL Dropping an IMS database

- The following scenario focuses on the elements of the drop database that apply to all database types.
 - User uses Explorer to determine which database to remove
 - User uses Explorer to build the DDL
 - Drop DBD
 - DROP DATABASE
 - Explorer notifies user the impact of the DDL
 - User submits the DDL to IMS
 - IMPORT to activate to IMS
Some DDL usage scenarios

- Tools can generate DDL based on Database metadata retrieved through standard discovery mechanisms like JDBC Database Metadata.
 - e.g., IMS Explorer for Development and Optim Data Studio can generate DDL for an IMS database using JDBC discovery.

- Tools can generate DDL for storing its own metadata repository
 - e.g., Cognos generates DDL for its own content store that holds information on created reports.

- Business Analytics can take existing data and enhance that data through analytics. The enhanced data can then be written back into the database for later use.
Dynamic Database Definition - Considerations

- **Utilities**
 - UDR and ULU type regions require DBDLIB and PSBLIB datasets
 - IMS Utilities and tools running as these region types

- **Scalability**
 - Storage for DDL use is limited
 - Limit resources changes to 40 per commit points (recommended)

- **Coexistence**
 - IMS must be Version 14
 - Shared ACB systems must all be Version 14
 - ACBMGMT=CATALOG
Dynamic Database Definition - Benefits

- Dynamic implementation of IMS control blocks.
 - An alternative to PSBGEN, DBDGEN, and ACBGEN processes.

- Single truster repository for metadata
 - IMS will load from the catalog where changes are made through DDL

- Use the industry standard DDL to define and modify database and schema creation and changes.

- Exploit DDL authoring tools such as the IMS Enterprise Suite Explorer for Development (E4D) to model database changes and create DDL statements.

- Provide an audit trail capturing changes made.

- Align with industry practices and expectations.
Agenda

- Background
- Implementation and Processing
- Using IMS Explorer for Development with DDL
- Using the Batch SQL Utility for DDL
- Samples
IMS Explorer for Development

The IMS Explorer for Development is a tool to help with database visualization and querying.
The IMS Explorer for Development has Enhanced DDL editing and generation features

- A full text DDL editor
 - users can manually write their own DDL scripts
- A graphical interface for Creating, Altering & Dropping DDL resources

The generated DDL uses the enhanced IMS DDL syntax
IMS Explorer for Development – DDL creation
IMS Explorer for Development – DDL creation
IMS Explorer for Development – DDL creation

Syntax Validation
Generated DDL for Alter

ALTER TABLE PARTROOT IN DATABASE DI21PART
ALTER COLUMN PART_DESCRIPTION
CHAR(23) START 27 TYPE C
INTERNAL TYPE CONVERTER CHAR
CCSID 'Cp1047';

ALTER TABLE STANINFO IN DATABASE DI21PART
ADD COLUMN NEWDATA
CHAR(15) START 60 INTERNALNAME NEWDATA;

Change length
New field
Agenda

- Background
- Implementation and Processing
- Using Explorer for Development with DDL
- Using the Batch SQL Utility for DDL
- Samples
The Batch SQL Utility is made as a way to invoke DDL statements via a JCL on the z platform.

Requirements:
- The utility is bundled in the IMS JDBC driver (imsudb.jar)
 - APAR PI30848
- Uses IMS JDBC Type-4 connections to invoke SQL statements
 - IMS Connect, ODBM, SCI
- IBM Java for z/OS (JZOS) Batch Launcher
Batch DDL Utility architecture
//IMSSAMPL JOB (999,XXX),'JAVA BPXBATCH',CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=E,REGION=OM,NOTIFY=&SYSUID
// SET P1='com.ibm.ims.jdbc.batch.BatchUtil'
//JAVAJVM EXEC PGM=JVMLDMxx,REGION=OM,
// PARM='/ &P1'
//STEPLIB DD DISP=SHR,
// DSN=USER.CUSTOM.JZOS.LOADLIB
//SYSPRINT DD SYSOUT=*
//SYSPUT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//ABNLIGNR DD DUMMY
//MAINARGS DD *
//IMSSQL DD DISP=SHR,
// DSN=MYPDS(MYSCRIPT)
//STDENV DD *
export JAVA_HOME=myJavaHomePath
export PATH=/bin:"{$JAVA_HOME}="/bin
LIBPATH=/lib:/usr/lib:"{$JAVA_HOME}="/bin
export LIBPATH="${LIBPATH}:
APP_HOME=${JAVA_HOME}
CLASSPATH=${APP_HOME}"{$JAVA_HOME}="/lib:"{$JAVA_HOME}="/lib/ext
CLASSPATH="${CLASSPATH}":myLibPath/imsudb.jar
Batch SQL Utility syntax

- The input statements supported by the Batch DDL Utility include all supported SQL and DDL statements by the IMS JDBC driver.
- The following additional statements are supported:
 - CONNECT [JDBC URL];
 • This will create a JDBC connection to the IMS system using the specified JDBC URL.
 - COMMIT;
 • This will commit work on the open connection.
 - ROLLBACK;
 • This will rollback work on the open connection.
 - DISCONNECT;
 • This will disconnect the current connection.
- Statements must be delimited by a semi-colon.
CONNECT jdbc:ims://myConnectServer:5555/DFSCP001;

CREATE DATABASE ACCUNTDA ACCESS HDAM OSAM
 RMNAME(DFSHDC40 RMANCH 5 RMRBN 280);

CREATE TABLESPACE ACCUNTDA IN ACCUNTDA
 SIZE PRIMARY 4096;

CREATE TABLE ACCT0001 (
 ACCT0KEY CHAR(10)
 START 3 TYPE C
 PRIMARY KEY
) IN ACCUNTDA.ACCUNTDA
 MAXBYTES 34 ;

COMMIT;
DISCONNECT;
Batch DDL Utility error codes

The following error codes will be thrown by the JZOS Batch Launcher

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>There was a connection error to IMS Connect</td>
<td>Verify that the connection parameters are correct</td>
</tr>
<tr>
<td>12</td>
<td>There was an error with the SQL statement execution. All work will be rollback to the prior commit point.</td>
<td>Verify that the SQL statement is valid</td>
</tr>
<tr>
<td>13</td>
<td>There was an issue with the commit</td>
<td>Check the JDBC error messages</td>
</tr>
<tr>
<td>14</td>
<td>There was an issue with the rollback</td>
<td>Check the JDBC error messages</td>
</tr>
<tr>
<td>15</td>
<td>There was an issue cleaning up the connection</td>
<td>Check the JDBC error messages</td>
</tr>
<tr>
<td>16</td>
<td>An invalid command was specified</td>
<td>Verify that valid commands were provided in the input file</td>
</tr>
</tbody>
</table>
Thank You!
Agenda

- Background
- Implementation and Processing
- Using Explorer for Development with DDL
- Using the Batch SQL Utility for DDL
- Samples
CREATE DATABASE

- The CREATE DATABASE statement defines a database. This creates a definition of the database only. Segments and Datasets are created separately.
 - Options will vary depending on database type.
- The creation of database is always a new resource.
- A created database is manually imported to active status in the IMS.
- Other definitions usually entered on the DBDGEN are created with separate CREATE resource_name statements.
 - Dataset
 - Area
 - Segment
 - Field
IMS DDL - CREATE DATABASE (HDAM)

CREATE DATABASE COGDBD
ACCESS HDAM OSAM
RMNAME(DFSHDC40 RMANCH 3 RMRBN 3 RMBYTES 25)
VERSION ‘Latest version of COGDBD’
PASSWDNO
CCSID 'Cp1047';
The ALTER DATABASE statement changes attributes of the database.

The ALTER DATABASE keywords are the same as the keywords of CREATE DATABASE.

There are no defaults for an ALTER DATABASE.
- Any keywords entered are will override the existing values.
- Keyword values not entered will remain the same value.

An Altered database must be manually Imported in order Active status in the IMS.
IMS DDL syntax – DROP DATABASE

DROP DATABASE database_name

- Identifies the database to drop. The name must identify a database that exists to IMS. When a database is dropped, all of its tables and indexes are also dropped.

- A dropped database is Imported to remove it from IMS.

- Resources may need to be removed via DRD or Sysgen source.

```sql
>>-DROP--DATABASE----database_name----+-----------------------------><
   '-CASCADE-' 
```
DDL syntax: CREATE TABLESPACE

- **CREATE TABLESPACE**

- The CREATE TABLESPACE statement defines a group dataset within the database or an area for a DEDB. This is equivalent to the DATASET or AREA statements used in the IMS DBDGEN source.

- The ddnames used on the CREATE TABLESPACE statement must be unique within an IMS system. Non-unique ddnames in two or more DBDs may result in destruction of the database.

 Options vary depending on dataset type.

- **Note:**
 - Tablespace created with a Database may be automatically Imported with the Database to Active status in the IMS.
 - A Tablespace added to an existing Database must be manually Imported.
IMS DDL syntax – CREATE TABLESPACE Example

```
CREATE DATABASE cogdbd
   ACCESS HDAM OSAM
   RMNAME (DFSHDC40 3 3 25);  
CREATE TABLESPACE cogdata
   IN cogdbd
   SIZE PRIMARY 8192;
COMMENT ON TABLESPACE cogdata IN cogdbd IS 'Dataset Group 1';
```

```
DBD  NAME=COGDBD,  C
    ENCODING=Cp1047,  C
    ACCESS=(HDAM,OSAM),  C
    RMNAME=(DFSHDC40,3,3,25),  C
    PASSWD=NO

DATASET  DD1=COGDATA,  C
    DEVICE=3390,  C
    SIZE=(8192),  C
    REMARKS='Dataset Group 1'

SEGM  NAME=ROOT,  C
    PARENT=0,  C
    BYTES=(20),  C
    RULES=(LLL,HERE)

FIELD  NAME=(ROOTKEY,SEQ,U),  C
    BYTES=12,  C
    START=1,  C
    TYPE=C,  C
    DATATYPE=CHAR

FIELD  NAME=TABTYPE,  C
    BYTES=8,  C
    START=13,  C
    TYPE=C,  C
    DATATYPE=CHAR
```
DDL syntax – ALTER TABLESPACE

- The ALTER TABLESPACE statement changes attributes of the data set group within the database or an area for a DEDB. This is equivalent to the DATASET or AREA statements as defined in IMS DBDGEN source.

- The ALTER TABLESPACE keywords are the same as the keywords of CREATE TABLESPACE.

- There are no defaults for an ALTER TABLESPACE.
 - Any keywords entered are overrides to the existing values.
 - Keyword values not entered will remain the same value.

- An Altered Tablespace must be manually Imported.

```sql
>>>-ALTER--TABLESPACE--ddname---IN--database_name---| Options |---->
```
CREATE TABLE

- The CREATE TABLE statement defines a segment. This creates a definition of the database only.
 - Options will vary depending on database type.

- The creation of table is always a new resource.

- A created table is manually Imported to Active status in the IMS.

- Other definitions usually entered on the DBDGEN are created with separate CREATE resource_name statements.
 - Dataset
 - Area
 - Segment
 - Field
IMS DDL syntax – CREATE TABLE Example

CREATE TABLE table_decimal (
 r_number INT INTERNALNAME RNUM,
 ll SHORT INTERNALNAME LL,
 c_decimal DECIMAL(7,2) INTERNALNAME CDEC,
 FOREIGN KEY REFERENCES table_root
) IN COGDBD.COGDATA
INTERNALNAME TDEC
MAXBYTES 10
MINBYTES 6
INSERT LOGICAL
DELETE LOGICAL
REPLACE LOGICAL
AMBIGUOUS INSERT HERE;

COMMENT ON TABLE table_decimal IN COGDBD IS 'This describes table TDEC.';
The ALTER TABLE statement changes attributes of the table within the database or an area for a DEDB. This is equivalent of a SEGMENT as defined in IMS DBDGEN source.

The ALTER TABLE keywords are the same as the keywords of CREATE TABLE.
- There are no defaults for an ALTER TABLE.
- Any keywords entered are will override the existing values.
- Keyword values not entered will remain the same value.

An Altered Table is manually Imported.
Original DATABASE DBD (generated version 0):

```
DBD NAME=COGDBD,
    ENCODING=Cp1047,
    ACCESS=(HDAM,OSAM),
    RMNAME=(DFSHDC40,3,3,25),
    PASSWD=NO

DATASET DD1=COGDATA,
    DEVICE=3390,
    SIZE=(8192)

SEGM NAME=ROOT,
    PARENT=0,
    BYTES=(28),
    RULES=(LLL,HERE)

FIELD NAME=(ROOTKEY,SEQ,U),
    BYTES=12,
    START=1,
    TYPE=C,
    DATATYPE=CHAR

FIELD NAME=TABTYPE,
    BYTES=8,
    START=13,
    TYPE=C,
    DATATYPE=CHAR

ALTER DATABASE COGDBD;
ALTER TABLE root
    IN COGDBD
    MAXBYTES 28
    ADD COLUMN New_Field_01 INTERNALNAME newfld01 DOUBLE START 21 ;
```
IMS DDL syntax – DROP TABLE

- All the tables (segments) in an hierarchy can be dropped by a single DROP TABLE statement.

- The DROP TABLE statement will drop child segments.

- A Dropped Table is Imported to activate the removal of the segments from the active IMS database.

- IMS resources may be removed from DRD or SYSGEN source.

```sql
>>-DROP--TABLE--table_name-IN-database-------------------------------------------<<
```
CREATE PROGRAMVIEW Syntax

- CREATE PROGRAMVIEW is the equivalent of a PSB statement.
- SCHEMA is equivalent to a PCB.
- SENSEGVIEW is the equivalent of a SENSEG.
- DDL syntax has been Enhanced for users to write their own PSBs instead of relying on system defaulted ones.
ProgramView Generation

- Nested in the CREATE PROGRAMVIEW must be **one or more** CREATE SCHEMA statements. SCHEMA statements describe the PCBs.

- Nested in each CREATE SCHEMA for a DBs must be one or more CREATE SENSEGVIEW statements to describe the SENSEGs.

- Nested in each SENSEGVIEW may be sensitive fields. e.g. CREATE SENSEGVIEW segment (flda WITH START (1), WITH START (m)) ...

- A Program view is Imported to be active in an IMS.
CREATE PROGRAMVIEW - (PSB) Example

DFSIVP2 PSBSOR:
PCB TYPE=TP, MODIFY=YES
PCB TYPE=DB, DBDNAME=IVPDB2, PROCOPT=A, KEYLEN=10
SENSEG NAME=A1111111, PARENT=0, PROCOPT=A
 PSBGEN LANG=ASSEM, PSBNAME=DFSIVP2
END

CREATE PROGRAMVIEW DFSIVP2 (
 CREATE SCHEMA TP pcb01 MODIFY=YES,
 CREATE SCHEMA pcb02 USING IVPDB2 (
 CREATE SENSEGVIEW A1111111 WITH
 PROCOPT 'A',
) PROCOPT 'A',
) LANGASSEM;
IMS DDL syntax – ALTER PROGRAMVIEW

- The ALTER statement does not apply to a PROGRAMVIEW.

- Altering a PROGRAMVIEW is performed by:
 - DROP PROGRAMVIEW
 Must identify an existing defined program.
 - CREATE PROGRAMVIEW
 With the new information for the Application Program.
Drop PROGRAMVIEW

- The DROP statement removes a resource from IMS. Any resources that are directly or indirectly dependent on that resource are deleted. Whenever a resource is deleted, its description is deleted from the catalog of the current IMS.

- The CASCADE keyword will drop any associated transactions and routing codes for that PSB.

```
>>-DROP--PROGRAMVIEW--psb_name-----------------------------><
    '-CASCADE-'  
```

- Resources may need to be removed via DRD or Sysgen source
COMMENT ON Syntax

- This statement provides optional user comments.
- Equivalent to the REMARKs keyword on the DBD / PSB source.
 - Optional user comments. A 1- to 256-character string enclosed in single quotation marks. The value specified cannot contain the following characters:
 - Less than (<) and Greater than (>) symbols.
 - Ampersands (&).
 - Double quotation marks.
 - Single quotation marks, except when they are used to enclose the full comment string. The following examples show correct and incorrect usages of single quotation marks:
 - CORRECT
 … IS 'These remarks apply to the XYZ application'
 - INCORRECT
 …IS 'These remarks apply to the 'XYZ' application'