
© 2016 IBM Corporation

Thomas J. Hubbard (Tom)
Product Specialist
Rocket Software, Inc.
thubbard@rocketsoftware.com

Database Encryption on z/OS
Session C04



Agenda

Why encrypt your data?

What is database encryption?

z/OS Encryption

Encryption Algorithms 

Keys, keys, which key for what?

 Implementing DB2 Database Encryption

Summary



© 2016 IBM Corporation

Why encrypt your data?



Really? 
You can do this online 

now.

4

Presenter
Presentation Notes
Borrowed this slide from a colleague, Steve Talbot-Walsh.  If you happen to see it else where, remember it came from Steve. 
But think about it:  
You can withdraw money from an automated teller machine; you’ve been able to do that for 20 or 30 years.  
You can transfer money from one account to another via the internet; you’ve been able to do that for 10 years.  
You can even deposit a check by taking a photograph of it on your cell phone and wirelessly sending it to you bank; you’ve only been able to do that for the last couple years.  
Why not rob a bank on line? 
And if you were to rob a bank on line, its more likely than not that it would involve a mainframe because all 65 of the world’s largest banks use the mainframe for this account information.  




Valuable Data

Medical records worth 
10X Credit Cards

Heightened 
Competition & Brand 

Protection

Post-breach customer 
churn rates

2-6%

Board-level 
focus

2/3 of Corporate 
Directors blame 
CEO for a breach. 

From 
Compliance to 

Investment

3-14%
Security spend % of 
IT varies based on 
strategic importance

Cloud

Mobile
New 

Delivery 
Channels

IoT

Security & Privacy: Strategic Imperative

Presenter
Presentation Notes
Stolen medical records are worth 10x credit cards: Medical records contain a wealth of information needed to commit fraud, including filing false tax returns, obtaining credit, obtaining illegal prescription drugs, Medicare/Medicaid fraud, and identity fraud. Big Data is even more valuable, it contains a treasure trove of personal information. 
Heightened Competition: Customer acquisition and retention through multiple channels are now even more critical for success in most industries. The Ponemon 2015 “Cost of a Breach” study recently revealed that customer churn rates after a breach range from 2- 6.1%, with healthcare at the high end, 3x the rate of retail. The study shows that consumers are voting with their feet. Companies such as Apples highlight corporate policy that they do not sell customer data, and it builds strong customer loyalty. 
From Compliance to Security Investment: We also see industries looking at both privacy & security as more of an investment in brand protection- while a wide range of spend, from. 3-14% all industries. Again, healthcare has been at the low end, and is moving ahead aggressively. 
CEO job at stake: 2/3 of Corporate Directors would blame CEO for breach, CISO ranked 4th
New Delivery Channels- Cloud and Mobile- everyone is going omni-channel and looking aggresively at  IoT: By 2020 we will have 28x more devices than humans, 30bb connected at a given time. That’s a lot of personal information to consider!

Privacy is also a strategic imperative @ IBM Recognized as a privacy thought leader- 2000 – first major corporation to appoint a Chief Privacy Officer 

Lets look at 10 of the lessons learned from our data security delivery organization when addressing these concerns and challenges:  (these are simple yet critical)

----
References: 
1 http://www.reuters.com/article/2014/09/24/us-cybersecurity-hospitals-idUSKCN0HJ21I20140924 (10x value med records)
2 HIMSS (Healthcare Information and Management Systems Society)-( Healthcare industry spend on security ) 
3 Post-breach Churn Statistics by Industry: Ponemon 2015 Cost of a Breach study
4 http://fortune.com/2015/05/29/boardroom-data-breach-blame/





Why Should Data be Encrypted?

Keeps sensitive information confidential
–Insider threat
–Lost/stolen tape or disk 
–Disk being repaired (Solid-state disks fail in a read-only state)

Addresses Standards
– and others
–Privacy breach disclosure laws (e.g. EU Privacy Disclosure Directive)
–Protection of financial data

Simplifies end-of-life-of-media scenarios 
–Destroy the key and the data is unusable

• Cryptographic Erasure (NIST SP800-88)
–Reducing media disposal costs



Threats to Database Data

Privileged User access to DB2/IMS Data from outside of DB2/IMS
–Access to Linear VSAM datasets

Privileged User access to DB2 Data via SQL 

Abuse of privilege without business Need to Know

Theft of privileged user credentials

External Threats 
–SQL Injection (Hacking)
–Pfishing and spearing attacks directed at credentials 

Movement of data outside of DB2/IMS
–Backups, Unloads, Replication, Clones, Test data



Data Protection – A Team Effort

 Initial concerns and questions
–Why encrypt the data at all?

What is the right database encryption solution?
Would the application need to be modified?
Would application performance be impacted?
Which group will own key management?
What is the security team’s role?
What is the audit team’s role?
What is systems programmer role?

–z/OS, DB2, IMS

What is the DBA’s role?



© 2016 IBM Corporation

What is database encryption?



What Is Database Encryption?

Encryption of the data stored in a DBMS managed files
–Database datasets
–DBMS system logs
–Image copy backup datasets

The encryption is performed as part of the normal DBMS processing

“Clear text” data cannot be accessed outside of DBMS access methods 



Cryptography has Many Applications

SSL/TLS

Link 
encryptionTape encryption

Database 
encryption

Application level encryption

PIN processing

File encryption

SAN Switch 
encryption

Protecting Data at 
Rest Protecting Data in 

Motion

Digital rights 
management

Tokenization Protecting Data in Use

IPsec

Disk encryption

Email encryption

Data



Security Cost/Risk

Cost
Cost

Cost
Cost

Cost
Cost

Cost
Cost

Cost
Cost

Cost
Cost

Cost
Cost

Cost
Cost

Risk
Risk

Risk
Risk

Risk
Risk

Risk
Risk

Risk
Risk

Risk
Risk

Risk
Risk

Risk
Risk

Security Cost vs. Risk

Cost Risk



What value does database encryption add?

Protects sensitive data on various storage media
–Encrypted media is now protected by two layers of encryption
–Data is encrypted even when stored on non-encrypted media

Another layer of security

For DB2, log records, image copies, and data buffers are encrypted

For IMS, image copies, data buffers, and log records that log changes to 
database records are encrypted

Prevent access to decrypted data outside the control of the DBMS
–DFDSS 
–FDR 
–IDCAMS Repro
–Volume reassign



Encryption and “Data at Rest” Protection

Key requirement most “current” data protection initiatives
–Main requirement: protect “data at rest”- ensure access only business need-to-
know, and through native security controls mechanisms (such as RACF)

Consider the following scenario:
–Database datasets controlled via RACF from direct access outside DBMS via 
dataset access rules

–DBA or Storage Administrator has RACF authority to read database datasets in 
order to perform legitimate storage administration activities. 

–Administration privileges can be abused to read database datasets directly and 
access clear-text data outside DBMS/RACF protections.

–Now consider above scenario, but with underlying database datasets encrypted

14

Presenter
Presentation Notes
While RACF does provide a layer of protection for unauthorized access to DB2 data, significant risk still exists.



Disk Level Encryption

DS8000 Disk Encryption

DASD device encryption is “all or nothing”

There is only a single key for the entire DS8000

Disk encryption is only one layer of protection in a comprehensive security 
implementation 



Database Encryption
Very flexible key granularity

–Down to the field for DB2
–Segment level for IMS

Excellent separation of duties

Data in-flight is protected

Exposures prevented
–Non-DBMS data access
–Unauthorized access to DBMS generated 

datasets (i.e. logs)

Disk Encryption
Protects at the DASD subsystem 

level
All or nothing encryption
Only data at rest is encrypted
Single encryption key for everything
No application overhead
Exposures prevented

–Disk removal
–Box removal

Disk vs DB  Encryption



How Does Encryption Happen?

DASD device 

Application code

Built in DBMS feature
–DB2 built in encryption

Using DBMS supplied exit points
–DB2 

• EDITPROC, FIELDPROC, UDF (user defined functions)
–IMS

• Segment edit routine

z/OS Encryption facilities



© 2016 IBM Corporation

z/OS Encryption



Encryption is a process where 
clear-text is converted using a 
well known ALGORITHM
DES
TDES
AES

along with a key
Clear
Secure

to produce “CIPHER TEXT” 

What is Encryption?



Symmetric Encryption Explained

 Data that is not encrypted is referred to as “clear text” 
 Clear text is encrypted by processing with a “key” and an encryption algorithm

–Several standard algorithms exist, include DES, TDES and AES
 Keys are bit streams that vary in length

–For example AES supports 128, 192 and 256 bit key lengths

Encryption Process

Encryption algorithm
(e.g. AES)

Clear Text
Cipher Text (Encrypted 

Data)

Decryption Process

Encryption algorithm
Cipher Text (Encrypted Data)

Clear Text

Key 

Key 



Integrated Cryptographic Service Facility
(ICSF)

Provides: z/OS integrated software support for data encryption
–Operating System S/W API Interface to Cryptographic Hardware 
–CEX2/3C hardware feature for z114, z10 and z196
–CEX4S hardware feature for z12BC and z12EC
–CEX5S hardware feature for z13 (2x faster over CEX4S)

Enhanced Key Management for key creation and distribution
–Public and private keys, Secure and clear keys, Master keys
–Created keys are stored/accessed in the Cryptographic Key Data Set (CKDS) 
with unique key label

–CKDS itself is secured via Security Access Facility 



Central Processor Assist for Cryptographic Function (CPACF)

 CPACF)is available on every processor unit defined as a central processor (CP). 
 Provides a set of symmetric cryptographic functions that can be used to enhance the encryption and decryption 

performance of clear-key operations for: 
– Secure Sockets Layer (SSL) and Virtual Private Networks (VPN) 
– Applications not requiring a high level of security such as Federal Information Processing Standard (FIPS) 140-2 Security Level 4.

 CPACF Co-processor redesigned from "ground up"  and for performance improvements:
– Estimates do not include overhead for COP start/end and cache effects
– Design estimates for large blocks of data 

• AES: 2x throughput vs. zEC12 
• TDES: 2x throughput vs. zEC12 
• SHA: 3.5x throughput vs. zEC12 

 Exploiters of the CPACF benefit from exploited by the 
throughput improvements of z13's CPACF such as: 

– DB2/IMS encryption tool
– DB2® built in encryption
– z/OS Communication Server: IPsec/IKE/AT-TLS
– z/OS System SSL
– z/OS Network Authentication Service (Kerberos)
– DFDSS Volume encryption
– z/OS Java SDK
– z/OS  Encryption Facility
– Linux on z Systems; kernel, openssl, openCryptoki, GSKIT



Crypto Express5S 

Business Value
 High speed advanced cryptography; intelligent encryption of sensitive data that executes off processor saving costs
 PIN transactions, EMV transactions for integrated circuit based credit cards(chip and pin), and general-purpose cryptographic applications using symmetric 
key, hashing, and public key algorithms, VISA format preserving encryption (FPE), and simplification of cryptographic key management.
 Designed to be FIPS 140-2 Level 4 certification to meet regulations and compliance for PCI standards

 One PCIe adapter per feature
► Initial order – two features

 Designed to be FIPS 140-2 Level 4
 Installed in the PCIe I/O drawer
 Up to 16 features per server
 Prerequisite: CPACF (#3863)

Three configuration options for the PCIe adapter
• Only one configuration option can be chosen at any given 

time
• Switching between configuration modes will erase all 

card secrets 
– Exception: Switching from CCA to accelerator or 

vice versa
Accelerator CCA Coprocessor EP11 Coprocessor

TKE N/A

CPACF NO

UDX N/A

CDU N/A

TKE OPTIONAL

CPACF REQUIRED

UDX YES

CDU YES(SEG3)

TKE REQUIRED

CPACF REQUIRED

UDX NO

CDU NO

Clear Key RSA 
Operations

Secure Key crypto 
Operations

Secure Key Crypto 
Operations



CPACF CPACF CPACF CPACF

Clear and
Enciphered
User Keys

CP Assist for Cryptographic Functions
• Problem State Instructions 
• Clear Keys Only
• DES/TDES Encryption
• AES (128 Bit)
• SHA-1 (256 on z9)

Crypto Express 2 Coprocessor
• ICSF Access Only (Key 0) 
• Master Key Stored Within Crypto Express 2 Feature
• Secure Key DES/TDES Encryption
• SSL Accelerator
• Tamper Resistant

CKDS

Cryptographic 
Key

Data Set

H/W
Layer

OS
Layer

APPL
Layer

z/OS
z9|z10|z890|z990

Master Key
Verification

Pattern

CEX2C CEX2CCEX2CCEX2C
Master Key Master Key Master Key Master Key

Key
LabelMiddleware

Layer

A

CICSVTAM

ICSF API

ICSF API

ICSF Cryptographic Services

DB2

KEY DATA

B C

IBM Integrated Cryptographic 
Environment

IMS

MQ TCP/IP

IBM Encryption - Flow

Presenter
Presentation Notes
Many middleware environments will exploit ICSF cryptographic services including, so here are some examples. :

CICS - provides the capability for the CICS application programmer to code calls to the perform encryption serves using the ICSF API. When operating in a multi-tasking environment such as CICS, there are some special considerations that need to be considered when implementing an ICSF exploitation. CICS application programs that wish to use the ICSF API should also use the CICS-ICSF Attachment Facility

WEBSPHERE- WebSphere Application Server supports the use of several cryptographic functions in conjunction with Web services. It implements the Web services security (WS-Security) version 1.0 standard, including digital signature, encryption and security tokens. It supports transport layer security, HTTP basic authentication and message level security.

TCP/IP - System SSL uses the Integrated Cryptographic Service Facility (ICSF) if it is available. ICSF provides hardware cryptographic support which will be used instead of the System SSL software algorithms. System SSL will also take advantage of the CP Assist for Cryptographic Function (CPACF) when available.






CKDS – Cryptographic Key Dataset

Key element of the IBM encryption solution on z/OS

VSAM Key Sequenced Dataset

Contents are ICSF generated data encrypted keys

Accessed by ICSF API and Services
–Key Label (known by application requestor) used to find key record in the CKDS

CKDS administration performed using ICSF services and ISPF interfaces.

Use of specific individual keys can be controlled via RACF profiles and 
permissions

Presenter
Presentation Notes
By using ICSF, you can generate clear keys by using either the key generator utility program (KGUP) or the key generate callable service. KGUP stores the key that it generates in the CKDS.

ICSF stores data encryption keys that are stored inside the CKDS (a special RACF protected dataset) and may be extracted, encrypted, and decrypted through the use of the CEX2C or above hardware feature. This is an optional feature. This is the most secure key management solution available on the market today, and is the only solution that is EAL5 and FIPS 140 Level 4 compliant (these are security standards maintained by the NIST and NSA).

If “crypto cards” are not installed, with a combination of HCR7751 or greater and clear key only ICSF will store the key material in the CKDS. By using ICSF, you can generate clear keys by using either the key generator utility program (KGUP) or the key generate callable service. KGUP stores the key that it generates in the CKDS.



© 2016 IBM Corporation

Encryption Algorithms



Encryption Algorithms – DES

• DES (Data Encryption Standard)
• 56-bit, viewed as weak and generally unacceptable today

Presenter
Presentation Notes
DES was once a predominant symmetric-key algorithm for the encryption of electronic data. Developed in the early 1970s at IBM and based on an earlier design by Horst Feistel, the algorithm was submitted to the National Bureau of Standards (NBS) following the agency's invitation to propose a candidate for the protection of sensitive, unclassified electronic government data. In 1976, after consultation with the National Security Agency (NSA), the NBS eventually selected a slightly modified version, which was published as an official Federal Information Processing Standard (FIPS) for the United States in 1977. The publication of an NSA-approved encryption standard simultaneously resulted in its quick international adoption and widespread academic scrutiny. Controversies arose out of classified design elements, a relatively short key length of the symmetric-key block cipher design, and the involvement of the NSA. cryptanalysis.



Encryption Algorithms – TDES

• TDES (Triple Data Encryption Standard)
• 128-bit, universally accepted algorithm 

Presenter
Presentation Notes
The original DES cipher's key size of 56 bits was generally sufficient when that algorithm was designed, but the availability of increasing computational power made brute-force attacks feasible. Triple DES provides a relatively simple method of increasing the key size of DES to protect against such attacks, without the need to design a completely new block cipher algorithm.



Encryption Algorithms – AES

• AES (Advanced Encryption Standard)
• 128- , 192- or 256- bit, newest commercially used algorithm

Presenter
Presentation Notes
AES is based on a design principle known as a substitution-permutation network, combination of both substitution and permutation, and is fast in both software and hardware. Unlike its predecessor DES, AES does not use a Feistel network. AES is a variant of Rijndael which has a fixed block size of 128 bits, and a key size of 128, 192, or 256 bits. By contrast, the Rijndael specification per se is specified with block and key sizes that may be any multiple of 32 bits, both with a minimum of 128 and a maximum of 256 bits.



Encryption Algorithms – Review

DES (Data Encryption Standard)
–56-bit, viewed as weak and generally unacceptable today by the NIST

TDES (Triple Data Encryption Standard)
–128-bit, universally accepted algorithm  

AES (Advanced Encryption Standard)
–128- or 256- bit, newest commercially used algorithm

What is acceptable?
–DES is viewed as unacceptable
–TDES is viewed as acceptable and compliant with NIST      (National Institute of 
Standards and Technology)

–AES 128 or 256 is also viewed as acceptable and strategic



Encryption Algorithms - Review

For more information:
–TDES NIST Special Publication 800-67 V1 entitled "Recommendation for the 
Triple Data Encryption Algorithm (TDEA) Block Cipher" and can be found at:

• http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
–TDES NIST FIPS Publication 197 entitled "Announcing the Advanced Encryption 
Standard (AES)" and can be found at:

• http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf



© 2016 IBM Corporation

Keys, keys, which key for what?



What are Keys? (From an ICSF Perspective)

Master Keys
–Loaded into the “crypto cards” hardware, and stored NO WHERE else
–Pass Phrase Utility (Not recommended)
–ISPF Panels
–TKE workstation (optional hardware feature)
–Used to generate, encrypt, and store user keys into the CKDS (Cryptographic 
Key Data Set)

User Keys (Data Encrypting keys)
–Generated via ICSF services 
–Stored inside the CKDS
–Clear or Secure
–Used in conjunction with an encryption algorithm to convert user data to “cipher 
text”



Data Encrypting Keys 1

Clear key
–Key material stored in the “clear” in the CKDS

• Optionally, source for a protected key
–Encryption operations performed on General Purpose processors using CPACF
–Best overall performance
–Some increase for the DB2 SQL component

• CPACF is supported on IFL and zIIP features.

Presenter
Presentation Notes
A clear key is a data key which has not been encrypted under another key and has no additional protection within the cryptographic environment. For clear keys, the security of the keys is provided by operational procedures. The actual key material for a clear key is stored in the “clear” and encryption operations performed on General Purpose processors using CPACF (Crypto Assist for Crypto Functions) microcode.
Clear keys provides the best performance as all encryption is performed on CPACF. Operational procedures must protect access to the key material as keys are stored in the “clear” on disk and in processor storage. Some increased CPU shown in DB2 Class 2 CPU measurements (only for the SQL component). zIIP eligible workload continues to be offloaded as CPACF is supported on IFL and zIIP features.




Data Encrypting Keys 2

Secure key
–Key material does not exist outside of the crypto card

• Key encrypted inside the crypto card using the Master Key
• Optionally, source for a protected key

–Encrypted key material stored in the CKDS 
–Encryption/decryption operations performed inside the crypto card
–Most secure key type
–Highest overhead of the available key types

Presenter
Presentation Notes
When a key is defined in the System z crypto environment as a secure key, the key is protected by another key called a master key. IBM secure key hardware provides a tamper-sensing and tamper-responding environment that, when attacked, will zeroize the hardware and prevent the key values from being compromised. The secure key hardware requires that a master key be loaded. That master key is stored inside the secure hardware and used to protect operational keys. 

The clear value of a secure key is generated inside the hardware (via a random number generator function), and encrypted under the master key. When a secure key must leave the secure hardware  boundary (to be stored in a dataset) that key will be encrypted under the master key. So the encrypted value is stored, not the clear value of the key. Some time later, when data needs to be recovered (decrypted), the secure key value will be loaded back into the secure hardware, where it will be decrypted from under the master key. The original key value will then be used, inside the secure hardware, to decrypt the data. If the secure key is stored in the CKDS, and the master key changes, ICSF provides the ability to re-encipher the secure key; that is to decrypt it from under the original master key and re-encrypt it under the new master key, all within the secure hardware, before it is stored back into a new CKDS, now associated with the new master key value.

A secure key may also be encrypted under a key-encrypting-key or transport key, when it needs to be shared with a partner. In this case, it will be encrypted under the transport key, not the master key, when it leaves the secure boundary of the hardware.

Best security as all data keys are stored encrypted under the Master Key.

Performance can be problematic. This is especially true for OLTP workloads with very strict response time requirements. This is true because frequent “trips” to the CEX3C/CEX4C/CEX5C features with small blocks of data is inefficient. 

Secure keys suffer a moderate to severe performance hit from an elapsed time perspective. That is because each secure key operation requires a trip to the CEX3C/CEX4C/CEX5C feature which is bus attached device, and exhibits I/O like characteristics.  In addition, GP instruction cycles are used to set up the ICSF environment prior to the CEX3C/CEX4C/CEX5C feature, so measurable impact occurs on the GP instruction time. In a Db2 environment, this will be measured in DB2 Class 2 CPU. 





Data Encrypting Keys 3

Protected key
–Is usually created as a secure key

• Security definition allows a secure key to be used as a protected key
–Stored in the CKDS like a secure key
–When used

• Decrypted inside the crypto card and wrapped with a wrapping key
• Passed to ICSF and stored in a HAS only available to ICSF

–Performance tracks with clear key
–Clear key material can also be used as a source

Presenter
Presentation Notes
With the z10 GA3, the System z hardware adds support for protected keys. Protected keys blend the security of the Crypto Express3 (CEX3) and the performance characteristics of the CPACF. While a secure key is encrypted under a master key, a protected key is encrypted under a wrapping key that is uniquely created for each LPAR. The wrapping key is created each time an LPAR is activated or reset, and there are two variations of the wrapping key. One is for wrapping DES/TDES operational keys and a second for wrapping AES keys. The wrapping key is stored in the Hardware System Area (HSA) and is only accessible by firmware and cannot be read by the operating system or applications (even if running authorized).

If a CEX3 or above coprocessor is available, a protected key can begin life as a secure key. That is, ICSF will retrieve the secure key from the CKDS and the clear value will be recovered (decrypted from under the master key) and then that clear key is re-encrypted (or wrapped) under the appropriate wrapping key for that LPAR. The re-wrapping is managed by System z firmware in conjunction with the CEX3 or above coprocessor (CEX3C/CEX4C/CEX5C) and the use of a protected key is driven by the application when it invokes a CPACF API and specifies the label of a secure key. That wrapped key is passed back to ICSF which uses it within the CPACF to perform encryption/decryption operations. The underlying clear value of the key never exists in any address space, but only exists inside the secure
hardware or the CPACF. 

There are new capabilities within RACF and the CSFKEYS profiles to restrict which secure keys can be used as protected keys. By default, all secure keys are considered SYMCPACFWRAP(NO), which means they are not eligible to be used as protected keys. The security administrator must define a CSFKEYS profile for the secure key and specify SYMCPACFWRAP(YES) in the ICSF segment before it can be used as a protected key.

Alternatively, if no CEX3C or above is available, an application could use a clear key as the source for a protected key without using ICSF. In this case, the application is responsible for creating or loading a clear key value and then using the new PCKMO instruction (new on z10 GA3 - Nov. 2009 or later microcode) to wrap the key under the appropriate wrapping key. When this method is used to create a protected key, the clear key material is stored somewhere in the clear. This can be either the application program or the CKDS. After the material is wrapped, the clear version of the key material should be discarde so that it will no longer be available in processor storage. 



Clear Key
 Key material may be exposed in the 

storage of processor

 Key material may exist in the application 
address space

 Can be viewed in storage (via dump or 
on-line monitor)

 If correctly interpreted can expose data

 Sometimes acceptable for short-lived 
keys with other constraints

 Used in software-based cryptography

 APIs available via Integrated 
Cryptographic Support Facility (ICSF)

 Encrypt/decrypt operations performed by 
CPACF

Secure Key Protected Key

Key Types Side-by-Side

• Key material is never exposed 
beyond the bounds of a secure 
tamper resistant card

• Key is encrypted under the Master 
key and stored in the CKDS

• Crypto Express 2, 3, 4, 5
• APIs available via Integrated 

Cryptographic Support Facility 
(ICSF)

• Can be used from Java on z/OS 
platform

• Encrypt/decrypt operations 
performed on the Crypto Express 
card

• Key material may be exposed in 
the storage of processor

– Only if using clear key material as 
the source

• Can be viewed in dump of storage
• Crypto Express 2, 3, 4, 5

– Not required if using clear key 
material as a source

• APIs available via Integrated 
Cryptographic Support Facility 
(ICSF)

• Encrypt/decrypt operations 
performed by CPACF



Secure or Clear Key Performance

Clear key elapsed time performance is MUCH superior than secure key

Secure key (performed inside the “crypto card”) is generally viewed as more 
secure from a cryptographic perspective

Clear key uses special instructions that run on the general purpose 
processors, so performance is measured in milliseconds or microseconds

Secure key is probably NOT appropriate OLTP workloads

You must make this encryption decision based on your security 
requirements and performance expectations



© 2016 IBM Corporation

IBM Security Guardium Data 
Encryption for DB2 and IMS 
Databases



IBM Security Guardium Data Encryption for DB2 z/OS & IMS Databases

 InfoSphere Guardium Data Encryption protects Sensitive and Private information 
minimizing the liability risks associated with Information Governance.

–Complies with Security and Privacy regulations
–Requires no changes to your applications
–Conforms to the existing z/OS security model
–Choice of encryption algorithms: Triple DES, DES, AES
–Customize down to IMS segment level or DB2 column level
–Straightforward implementation using RACF key labels
–Leverage Storage Area Networks (SANs) safely while complying with privacy 
and security regulations



IBM Security Guardium Data Encryption for DB2 z/OS & IMS Databases

Encrypted Data at Rest

–DFSUDMP0 (Image Copy)*
• Does not access database records using IMS DLI 
• Data in image copy remains encrypted
• Encryption exit is not necessary to be matched with image copy

–Database Change Log Records (Type x'5050')
• Contains exactly what is stored in the database on DASD 

–DFSURDB0 (Recovery)*
• Does not use IMS DLI for recovery 
• Can recover using encrypted database records

 * Also applies to IBM High Performance Tools 



Encryption
1. IMS application program 

passes a segment REPL, 
ISRT, or LOAD request to the 
IMS control region. IMS uses 
the DBD to determine that a 
Segment Edit/Compression 
exit is required, so IMS loads 
the exit.

2. Exit invokes ICSF services, 
passing user-defined data 
encryption key label 
(provided by exit) and 
unencrypted segment.

3. When the segment has been 
successfully encrypted, the 
exit passes the segment back 
to IMS.

4. IMS then puts the encrypted 
segment into the database

42

IMS Encryption Flow



Decryption
1. IMS application program 

passes segment GET request 
to IMS control region. IMS 
determines, from DBD, that a 
Segment Edit/Compression 
exit is required, so IMS loads 
the exit.

2. IMS retrieves encrypted 
segment from the database.

3. IMS then calls the exit and 
passes it the encrypted 
segment. The exit invokes 
ICSF services, which passes 
the user-defined data 
encryption key label (provided 
by exit) and the encrypted 
segment.

4. When the segment has been 
successfully decrypted, the 
exit passes the segment back 
to IMS.

5. IMS passes the decrypted 
segment back to the 
application.

43

IMS Decryption Flow



© 2016 IBM Corporation

Implementing IMS Database 
Encryption



IMS Segment Edit Routines

There are three routines supplied with Guardium

• DECENA01 – IMS Clear Key Exit routine
• DECENB01 – IMS CPACF Protected Key exit routine
• DECENC01 – IMS Secure Key exit routine

These routines are found in the installed dataset hlq.SDECLMD0



Creating the Routines

To create an exit that encrypts and decrypts IMS data, the Tool can be 
implemented in one of two ways:

1. Through JCL.  The product provides sample jobs where the JCL can be 
modified to meet your needs for encrypted IMS databases. 

2. Using the ISPF interface.  An ISPF dialog is available for you to create 
customized jobs for encrypting IMS database segments. 

Both processes allow:

–A Standalone Encryption/Decryption routine  
–Encryption/Decryption in combination with database Compression.



Comparison of Supported IMS Encryption Methods

Function DECENA01 DECENAA1 DECENB01 DECENC01

Segment based 
encryption (Key and or 
Data)

   

“Clear Key”  TDES/DES  AES,
TDES/DES

“Protected Key”  AES

“Secure Key”  AES, 
TDES/DES



© 2016 IBM Corporation

Implementing DB2 Database 
Encryption



Properties Self Encrypting Devices DB2 Builtin EDITPROC UDF FIELDPROC

Satisfies PCI Maybe for data at rest requirement App Dependent Yes . For data at rest andin flight to/from  application. Yes . For data at rest  andin flight to/from  application. Yes . For data at rest  andin flight to/from  application.

Complexity No Application Changes. Complex ApplicationChanges No Application Changes Only impacts Applicationsthat need Encryption No Application Changes

Implementation Mount encryptible volume onappropriately configured  drive.
ALTER and RELOAD DROP and RELOAD SQL UPDATE DROP and reload unlessALTER ADD column

Clear Passwords No Yes No No No

Access Control No application securityprovided App Managed Table Level RACF secured UDF Column Level

Device  Hardware Yes. No No No No

Key Control IBM Security Key Lifecycle Manager Stored in the DB2 Catalog ICSF or IBM Security Key Lifecycle Manager ICSF or IBM Security Key Lifecycle Manager ICSF or IBM Security Key Lifecycle Manager

ApplicationMaintainability Transparent Transparent Transparent Requires SQL to invokeOn-Demand Processing Transparent

Performance Best App Dependent Acceptable Overhead for  encryptedcolumn Acceptable

Index Encryption Yes Yes No Yes Yes, but SQL Predicate Processing is Negated

Data Protection Only protect on media Clear Key Unload Data in clear Always Protected Unloaded Data is clear

Data TypeIndependence Yes Yes Most data types  Yes Only CHAR/VARCHAR < 255 bytes Columns

Data Encryption Comparison



How do the DB2 Built-In Functions work?

Under application control – you encrypt the fields that need to be secure
–‘Password for Encryption’ is hashed to generate a unique key
–Hint can be used as a prompt for remembering the key
–Encrypted field must be defined as VARCHAR (since it will contain binary data 
once its encrypted)

–The encrypted field will be longer (next multiple of 8 bytes + 24 bytes of 
MetaData + 32 bytes for optional hint field)

–TDES Only!

Encrypt (StringDataToEncrypt, PasswordOrPhrase, PasswordHint) 
Decrypt_Char(EncryptedData, PasswordOrPhrase



DB2 Built-In Functions Example

CREATE TABLE EMPL
(EMPNO VARCHAR(64) FOR BIT DATA, EMPNAME CHAR(20),
CITY CHAR(20), SALARY DECIMAL(9,2))
IN DSNDB04.RAMATEST ;

COMMIT;

SET ENCRYPTION PASSWORD = ‘PEEKAY’ WITH HINT ‘ROTTIE’; 

INSERT INTO EMPL(EMPNO, EMPNAME, SALARY)
VALUES (ENCRYPT(‘123456’),’PAOLO BRUNI’,20000.00) ;

INSERT INTO EMPL(EMPNO, EMPNAME, SALARY) VALUES 
(ENCRYPT(‘123457’),’ERNIE MANCILL’,20000.00) ;

From Redbook SG24-7959, Security Functions of IBM DB2 10 for z/OS



DB2 Row Encryption

EDITPROC - for every row
–Encrypted row same length as clear row
–No application changes required
–One key per table specified in the EDITPROC
–Indexes are not encrypted



1)

Application Storage

Encryption  EDITPROC

Integrated 
Cryptographic 
Service Facility

(ICSF)

Cryptographic Key
Data Set

DB2 Buffer Pool

1   SQL Insert/Update

2 5

3 Unencrypted Row

4 Encrypted Row

6

6

Encryption Put Encrypted
Row

Unencrypted Row B Encrypted Row

Encrypted
Row

Encrypted
Row

SQL Request

Application Storage

Unencrypted Row

Key
Label

User  Key

B

B

DB2 Data Encryption Flow – Insert / Update



DB2 Column Encryption

FIELDPROC – encrypts at the column level
–No application changes required
–Indexes can be encrypted
–One key, label specified in the FIELDPROC
–Columns must be < 254 bytes; Column names must be < 18 chars in length

UDF – User Defined Functions
–No application changes required; Minimally disruptive, columns encrypted in 
place

–Indexes can be encrypted
–One key, label specified in the UDF
–All data types supported by UDFs can be encrypted
–VIEW/TRIGGER – provides access control to the cleartext



Comparison of Supported DB2 Encryption Methods

Function EDITPROC FIELDPROC UDF
Row based encryption 

Column based encryption  

Application impact during 
implementation (Drop/CREATE) 1

  maybe 

SQL based implementation 

“Clear Key”  AES, 
TDES/DES

“Protected Key”  AES  AES  AES

“Secure Key”  AES, 
TDES/DES

1. New encrypted columns can be added using FIELDPROC encryption by ALTER ADD COMUNN SQL. Encrypting an existing 
column requires DROP/CREATE. 



DB2 encryption “to do’s

 Request a new key from the ICSF Administrator
 ICSF Administrator generates Data Encryption Key using ICSF 
Obtain Key Label from ICSF Administrator
 Code the DB2 EDITPROC
 Link-edit the EDITPROC into the appropriate DB2 library(SDSNEXIT orequivalent)
 Back - Up and  Unload Databases
 DROP and recreate the DB2 objects
 LOAD the DB2 objects. Objects will be encrypted during the LOAD process
 Backup the affected DB2 objects
 Validate your Output

Note: This list is general only and may note be everything needed in your installation



IBM Security Guardium Data Encryption for DB2 z/OS & IMS Databases

A Single tool for both DB2 and IMS

Performs encryption and decryption through the use of exit routines. 

Leverages the System z®, zSeries®, and S/390® Crypto Hardware to encrypt 
data

Protects sensitive data that can reside on various storage media
–DB2 and IMS databases
–Image copy datasets
–DASD volume backups



Summary

Database encryption adds another layer of protection

Limits the availability of data “in the clear”

Protects data in use

Leverages z/OS hardware and microcode enhancements



Questions?


	Database Encryption on z/OS�Session C04
	Agenda
	Why encrypt your data?
	Slide Number 4
	Slide Number 5
	Why Should Data be Encrypted?
	Threats to Database Data
	Data Protection – A Team Effort�
	What is database encryption?�
	What Is Database Encryption?
	Cryptography has Many Applications
	Security Cost/Risk
	What value does database encryption add?
	Encryption and “Data at Rest” Protection
	Disk Level Encryption
	Disk vs DB  Encryption
	How Does Encryption Happen?
	z/OS Encryption�
	What is Encryption?
	Symmetric Encryption Explained
	Integrated Cryptographic Service Facility� (ICSF)
	Central Processor Assist for Cryptographic Function (CPACF)
	Crypto Express5S 
	Slide Number 24
	CKDS – Cryptographic Key Dataset
	Encryption Algorithms�
	Encryption Algorithms – DES
	Encryption Algorithms – TDES
	Encryption Algorithms – AES
	Encryption Algorithms – Review
	Encryption Algorithms - Review
	Keys, keys, which key for what?�
	What are Keys? (From an ICSF Perspective)
	Data Encrypting Keys 1
	Data Encrypting Keys 2
	Data Encrypting Keys 3
	Key Types Side-by-Side
	Secure or Clear Key Performance
	IBM Security Guardium Data Encryption for DB2 and IMS Databases�
	IBM Security Guardium Data Encryption for DB2 z/OS & IMS Databases
	IBM Security Guardium Data Encryption for DB2 z/OS & IMS Databases
	Slide Number 42
	Slide Number 43
	Implementing IMS Database Encryption�
	IMS Segment Edit Routines
	Creating the Routines
	Comparison of Supported IMS Encryption Methods
	Implementing DB2 Database Encryption�
	Data Encryption Comparison
	How do the DB2 Built-In Functions work?
	DB2 Built-In Functions Example
	DB2 Row Encryption
	Slide Number 53
	DB2 Column Encryption
	Comparison of Supported DB2 Encryption Methods
	DB2 encryption “to do’s
	IBM Security Guardium Data Encryption for DB2 z/OS & IMS Databases
	Summary
	Questions?

