
© 2016 IBM Corporation

Carl Farkas

IBM Europe zWebSphere consultant

farkas@fr.ibm.com
(with thanks to Don Bagwell and others for much of the content)

WAS z/OS with WOLA:
a game changer

mailto:farkas@fr.ibm.com

2

Agenda

 Introduction

Enablement

Development

Example scenarios

Positioning

Recent enhancements

3

Co-Location - Cross-Memory Communications

CR SR

AppServer

JDBC Type 2

CTG Local

Bindings

LPAR

LPAR

memory DB2

CICS

MQ

Cross memory speed

 Avoids encryption overhead

 Security ID propagation

 Exploitation of z/OS transaction management (RRS)

 Avoid serialization of parameters

 Single thread of execution

Benefits: Save mips, increase robustness, augment security

CICS, IMS,

Batch, etc.
WOLA

LPAR

DB2

CICS

MQ

JDBC Type 4

CTG Remote

MQ Client

TCP/IP

For details, see: WAS z/OS – the value of Co-Location, http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101476

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101476
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101476
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101476
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101476
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101476
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101476
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101476
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101476

4

LPAR

AppServer

AppServer

Cross

Memory

Local Comm

WOLA
CICS

Assembler/Cobol/PLI/C or C++

Tradiitional WAS or Liberty

z/OS Batch
Assembler/Cobol/PLI/C or C++

Tradiitional WAS or Liberty

UNIX Systems Services
Assembler/Cobol/PLI/C or C++

Traditional WAS only

Airline Control System
Assembler/Cobol/PLI/C or C++

Traditional WAS only

WOLA

WOLA

WOLA

WAS

Daemon or

Liberty

Angel

So what is WOLA?

• Not really new…. based on Local Comm cross-memory access (z/OS exclusive)

• Introduced (made available as a customer accessible API) beginning with WAS v7.0.0.4

• Bi-directional … WAS outbound or inbound to WAS…. simple data exchanging API

• Supports security and transaction propagation (2PC only in traditional WAS…today)

• Very, very fast. 2x – 6x faster than other comparable solutions

• Efficiently leverage your other co-located z/OS assets

WOLA

IMS
Assembler/COBOL/PLI/C or C++

Traditional WAS only… for now

WebSphere Optimized Local Adapter

5

WOLA Interface -- Perspective from Eight Angles

Enterprise

Java Bean
(Or Servlet)

Enterprise

Java Bean

WOLA Execute()

ExecuteHome()

WOLA

J2C Adapter

WOLA

CICS

Program

CICS

Program

WOLA
BBO$/BBO#

WOLA

Modules/APIs

Batch

Program
WOLA

Modules/APIs

WebSphere Environment

CICS Environment Batch Environment

Programs that initiate a call to WOLA do

so through a supplied J2C adapter.

Several WOLA-specific methods used to

invoke services over WOLA

EJBs that will be the target of inbound calls

need to implement the WOLA-supplied

Execute() and ExecuteHome() classes.

Calls into CICS come across WOLA-supplied

BBO$/BBO# task and transaction. Target CICS

program unchanged if able to be invoked over

COMMAREA or Channel/Container

A CICS program that

wishes to initiate a

connection must write

to the WOLA APIs

A Batch program that wishes to

initiate an outbound connection

must write to the WOLA APIs

Batch

Program
WOLA

Modules/APIs

A Batch program can be called into

also, but this would be rare

BMP/MPP/

IFP

WOLA

IMS

ESAF

IMS Dependent regions

WOLA

OTMA
A WAS application

can call an existing

unchanged IMS

transaction using

OLA over OTMA.

This is “implicit”

WOLA invocation. WAS can exchange with

IMS symmetrically via

ESAF, but explicit WOLA

coding required on IMS

See KC Liberty
“twlp_dat_useolar”

See KC traditional
WAS “cdat_ola”

(Traditional WAS only)

6

Agenda

 Introduction

Enablement

Development

Example scenarios

Positioning

Recent enhancements

7

The Essentials of Enabling WOLA for Use with traditional WAS*

CR

Node Agent

Node

CR SR

DMGR

CR

Daemon

J2C

CF

WAS_DAEMON_ONLY_enable_adapter = 1

_________ BBOACALL

_________ BBOACHAB

_________ BBOACLNK

_________ BBOACNTL

_________ BBOACPLT

_________ BBOA1URG

PDS

1

2

3
copyZOS.sh

1. Modules copied out to PDS
So external address spaces (batch, CICS, etc.) can access modules

and APIs

olaRar.py (or do manually)

2. J2C adapter installed with ConnFactory
This is what makes the WOLA modules available to the node (this is

only necessary for “outbound” WOLA… into WAS)

3. WAS environment variable
Simple switch to enable function in Daemon

4. Configure resource adapter
The ola.rar is required for outbound calls

* Note: these are the enablement steps for WAS v8; it’s slightly different if you’re using WAS v7

CR SR

AppServer

CR SR

AppServer

See KC traditional WAS
“tdat_enableconnector”

For IMS side, see KC
traditional WAS
“tdat_enableconnectorims”

http://www.ibm.com/support/knowledgecenter/search/tdat_enableconnector?scope=SS7K4U_8.5.5&lang=en
http://www.ibm.com/support/knowledgecenter/search/tdat_enableconnector?scope=SS7K4U_8.5.5&lang=en
http://www.ibm.com/support/knowledgecenter/search/tdat_enableconnector?scope=SS7K4U_8.5.5&lang=en
http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tdat_enableconnectorims.html?cp=SS7K4U_8.5.5%2F2-3-6-0-4-0&lang=en
http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tdat_enableconnectorims.html?cp=SS7K4U_8.5.5%2F2-3-6-0-4-0&lang=en
http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tdat_enableconnectorims.html?cp=SS7K4U_8.5.5%2F2-3-6-0-4-0&lang=en

8

The Essentials of Enabling WOLA for Use with Liberty WAS

Angel

_________ BBOACALL

_________ BBOACHAB

_________ BBOACLNK

_________ BBOACNTL

_________ BBOACPLT

_________ BBOA1URG

PDS

1 2

3

1. Install WOLA support into Liberty

binary zFS
Use Liberty featureManager install zosLocalAdapters-1.0

command. This is done once per site typically.

2. Copy modules copied out to PDS
So external address spaces (batch, CICS, etc.) can access modules

and APIs. Only once per LPAR.

cp -Xv wlp/clients/zos/* "//'$DSNAME'"

3. Enable WOLA in every server.xml
This is what makes the WOLA modules available to the

AppServer.

AppServer

<featureManager>

 <feature>zosLocalAdapters-1.0</feature>

</featureManager>

 :

<zosLocalAdapters

 wolaGroup="FARKAS" wolaName2="ZT01"wolaName3="ZOSCONN"/>

<connectionFactory id="wolaCF" jndiName="eis/ola">

 <properties.ola RegisterName="OLASERVER" />

</connectionFactory>

server.xml
zFS

See KC
“twlp_dat_enableconnector”

SAF security definitions

Traditional WAS
–The basic installation of WAS includes the appropriate SAF (eg.RACF)

definitions.
–You do, however, need to give READ access to the region ids (eg.

IMS) for the CLASS(CBIND) for the target WAS, eg.
PERMIT CB.BIND.MYCELL.** CLASS(CBIND) ACCESS(READ)

–Nicely documented in WP101490 Quick Start.

Liberty WAS
–Using WOLA will require that the Liberty Angel be running, which

entails numerous SAF definitions. See the WP101490.
–The BBG.AUTHMOD.BBGZSAFM.WOLA and .LOCALCOM profiles

need to be defined in SERVER class and the Liberty server needs
ACCESS(READ)

–The IMS region’s user id also needs ACCESS(READ) to the
BBG.WOLA.group.name2.name3 profile in CBIND class.

–Nicely documented in WP101490 Liberty Quick Start
See KC Liberty
“twlp_config_security_zosr”

See KC traditional WAS
“cdat_enableconnectorims”

9

10

Agenda

 Introduction

Enablement

Development

Example scenarios

Positioning

Recent enhancements

11

Developing with WOLA – “Legacy” (non-WAS) side

Legacy as “client” -> WAS

BBOA1REG – Register

BBOA1URG – Unregister

BBOA1INV – Invoke an EJB method

BBOA1CNG – Get Connection

BBOA1CNR – Release Connection

BBOA1SRQ – Send Request (async)

BBOA1RCL – Receive response
length

BBOA1GET – Get Data (async)

WAS -> Legacy as “server”

BBOA1REG – Register

BBOA1URG – Unregister

BBOA1SRV – Host a service

BBOA1SRP – Send a response

BBOA1RCA – Receive any
request

BBOA1RCS – Receive a specific
request

BBOA1SRX – Send Response
Exception

• Colored verbs above are for more advanced asynchronous support

• WAS provides an excellent set of source samples; see the WAS InfoCenter for complete

documentation and search for “cdat_olaapis” or “twlp_dat_useoutboundconnection”.

• Also, excellent TechDoc at http://www-03.ibm.com/support/techdocs/atsmastr.nsf/Web/Techdocs and

search “WP101490”

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/Web/Techdocs
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/Web/Techdocs
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/Web/Techdocs

12

Example of API -- BBOA1REG (from OLACC01 Batch Sample)

BBOA1REG is one of thirteen APIs that come with WOLA. It’s used by external

address spaces to register into the WAS Daemon (traditional WAS) or Angel (Liberty):

 Like any new API it takes a bit of time to learn the operations and syntax. But it’s relatively

easy, and the samples provide some nice examples.

 Note that the 3 part name seen above does not refer to the Cell & Node & AppServer with

WOLA and WAS Liberty, but the syntax remains the same. Any unique 3 values can be used,

but both parties (WAS & “other”) must of course use the same values.

BBOA1REG (&daemonGroupName /* Cell name normally, eg. “CFCELL”; maybe WAS SAF domain for Liberty */

 , &nodeName /* Node name, eg. “CFNODE”; perhaps LPAR id for Liberty */

 , &serverName /* AppServer name, eg. “CFSR011”; same suggested for Liberty */

 , ®isterName /* A name for my connection, eg. “CarlApp”; used by WAS Outbound */

 , &minConn

 , &maxConn

 , ®Flags

 , &rc

 , &rsn

);

if (rc != 0)

{

 printf("Register error! rc: %d rsn: %d\n",rc,rsn);

 return(-1);

}

&variables set higher in the
OLACC01 sample program

The KnowledgeCenter has very nice write-ups

of the APIs and the parameters

Some error? Returns beautiful return and reason

codes. Same InfoCenter page spells it all out.

Wonderful granularity of error reporting.

13

Example of API -- BBOA1INV (from OLACC01 Batch Sample)

Once registered to Daemon, how does batch invoke EJB? With the BBOA1INV API and

naming the EJB’s home interface JNDI:

BBOA1INV (®isterName

 , &requestType

 , &requestServiceName

 , &requestServiceNameLen

 , &requestDataPtr

 , &requestDataLen

 , &responseDataPtr

 , &responseLen

 , &waittime

 , &rc

 , &rsn

 , &rv

);

The name of the registration connection to

use to access the EJB. This is the pool of

connections over to the WAS server address

space, eg. “CarlApp”

The JNDI name of the home interface for the

target EJB in WAS

Earlier in OLACC01 sample this was set to:

ejb/com/ibm/ola/olasample1_echoHome

Which is the default JNDI name on the
OLASample01.ear file

Point here is not to drill deep into programming specifics

Point is to illustrate key concept -- register into Daemon and make connection to target WAS AppServer, then

invoke the target EJB using the registration pool and the EJB’s JNDI home interface name

1=for local EJB (typical case); 2 for

remote EJB (for development mode)

14

Developing with WOLA – WAS side

 EJB Definition into WAS (“inbound WOLA”)
– Only stateless session beans are supported

– Remote home interface must be com.ibm.websphere.ola.ExecuteHome

– Remote interface must be com.ibm.websphere.ola.Execute

– Business logic is contained in the byte[] execute(byte[] input) method

provided on the remote interface

– Remote/Home interfaces in ola_apis.jar

– See “tdat_useola_in_step2” for EJB details

 OLA J2C Interface “outbound WOLA” from WAS
– WebSphere caller can be an EJB or Web component (Servlet/JSP)

– J2C supports CCI interfaces (ConnectionFactory, Connection, etc)

– ConnectionFactory obtained via JNDI

Testing WOLA with IMS
 Strongly recommend starting with IBM supplied samples found in

<zWAS_install_root>/util/zos/OLASamples
– For WAS side, use the IMS OTMA tester OLASample2.ear
– For IMS implicit side, see the OLAPL* sample PL/I programs for OTMA
– For IMS explicit side, CICS samples can work

 Work thru the Techdocs found in WP101490

See KC “cdat_olasamples”

This field will be (ab)used to supply the OTMA transaction name. Yech!

15

16

Agenda

 Introduction

Enablement

Development

Example scenarios

Positioning

Recent enhancements

17

Invoking WAS Program, Batch, IMS, CICS WAS

WOLA Aware

EJB

AppServer

CFSR011

WOLA

package com.ibm.ola;

public class olasample1_echoBean implements

javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;

 :

 public byte[] execute(byte[] arg0) {

 String list = new String(arg0);;

 System.out.println("Ola amigo. I received your data:

"+list);

 return arg0;

 }

}

WOLA Aware

Batch

Batch

BBOA1REG ("CFCELL","CFNODE1", "CFSR011",

“CarlBat”,

&minConn,&maxConn,®Flags,&rc,&rsn);

 :

BBOA1INV (“CarlBat”,1

 , "ejb/com/ibm/ola/olasample1_echoHome"

 , &requestServiceNameLen

 , "Knock, knock.... anyone home in WAS?"

 , &requestDataLen

 , &responseDataPtr, &responseLen

 , &waittime, &rc, &rsn, &rv);

 :

BBOA1URG (“CarlBat”,&unregFlags,&rc,&rsn);

CFCELL

WAS Daemon

Or

Angel

18

Invoking explicit CICS or IMS Program, WAS  CICS or IMS

WOLA Aware

program
CR SR

AppServer

CFSR011
WOLA

Move 'CFCELL' TO regdaemonname.

Move 'CarlApp' TO registername.

Move 'CFSR001' TO servername.

Move 'CFNODE1' TO nodename.

 :

Move 0 TO regflags.

CALL 'BBOA1REG' USING regdaemonname, nodename,

 servername, registername, minconn,

maxconn,

 regflags, rc, rsn.

Move 'MyCarlSService' TO servicename.

MOVE 0 TO servicenamel.

SET resp-area-addr TO ADDRESS OF resp-area.

 :

CALL 'BBOA1SRV' USING registername,

 servicename, servicenamel,

 resp-area-addr, resp-len, con-handle,

 wait-time, rc, rsn, rv.

Move 'My reply is....' to resp-area.

Move 40 to resp-len.

CALL 'BBOA1SRP' USING con-handle,

 resp-area-addr, resp-len, rc, rsn, rv.

WAS appli

(Servlet or EJB)

WAS

InitialContext ctx = new InitialContext();

ConnectionFactory cf =

(ConnectionFactory)ctx.lookup("java:comp/env/eis/ola

");

ConnectionSpecImpl csi = new ConnectionSpecImpl();

csi.setRegisterName(“CarlApp”);

csi.setConnectionWaitTimeout(20);

c = cf.getConnection(csi);

i = c.createInteraction();

InteractionSpecImpl isi = new InteractionSpecImpl();

isi.setServiceName(“MyCarlService”);

IndexedRecordImpl iri = new IndexedRecordImpl();

iri.add(input);

Record outRecord = i.execute(isi, iri);

Output =

(byte[])(((IndexedRecordImpl)outRecord).get(0));

CFCELL
CICS or IMS

WOLA J2C

Adapter

CR

Daemon

19

Invoking implicit CICS Program, WAS  CICS

WOLA Aware

Servlet or EJB
Development Tool

(Rational or equivalent)

ola_apis.jar

J2C Adapter: ola.rar

CR SR

AppServer

connectionSpecImpl.setRegisterName(“OLASERVER”);

connectionSpecImpl.setLinkTaskTranID(‘ABCD');

interactionSpecImpl.setServiceName("PROGRAM1");

Class Method

PROGRAM1
COMMAREA

or

Container

BBO$
LINK server task

CICS Transaction Server

BBOATRUE
Task Related User Exit

ABCD
Invocation Task

WOLA

Transaction Name set with
setLinkTaskTranID()

Program named with
setServiceName()

WOLA

This illustrates use of WOLA-supplied BBO$ and BBO# to invoke CICS

program without any modification to the CICS program code.

This name matches the

RGN=OLASERVER when BBO$

started

MPP/BMP/IFP

20

Invoking implicit IMS Program via OTMA, WAS  IMS

WOLA Aware

Servlet or EJB
Development Tool

(Rational or equivalent)

ola_apis.jar

J2C Adapter: ola.rar

CR SR

AppServer

PROGRAM1

OTMA

WOLA

WOLA

This illustrates use of WOLA-supplied to invoke IMS program without

any modification to the IMS program code.

See KC
“tdat_useoutboundconnection”
and “tdat_connect2wasapp”

 :

InitialContext ctx = new InitialContext();

ConnectionFactory cf =

 (ConnectionFactory)ctx.lookup("java:comp/env/eis/ola");

ConnectionSpecImpl csi = new ConnectionSpecImpl();

csi.setConnectionWaitTimeout(20);

csi.setOTMAServerName("IMC1");

csi.setOTMAGroupID("IMSCGRP");

csi.setOTMASyncLevel("1");

csi.setUseOTMA(boolean true);

c = cf.getConnection(csi);

i = c.createInteraction();

InteractionSpecImpl isi = new InteractionSpecImpl();

IndexedRecordImpl iri = new IndexedRecordImpl();

java.nio.ByteBuffer bb =

 java.nio.ByteBuffer.allocate(BYTEBUF_LEN);

bb.putShort(BYTEBUF_LEN); /* Set LL */

bb.putShort((short)0); /* Set ZZ */

bufx = "OLAP02 " + "My data here"; /* Set the trans and data */

byte[] bufz = bufx.getBytes("cp1047");

bb.put(bufz); /* Write translated bytes to ByteBuffer */

bb.rewind(); /* Reset ByteBuffer for reading from start */

input = new byte[bb.limit()];

bb.get(input); /* Read ByteBuffer into byte array */

iri.add(input); /* Set up full call structure */

Record outRecord = i.execute(isi, iri); /* Make the call */

Output = (byte[])(((IndexedRecordImpl)outRecord).get(0));

String outputstr = new String(output,"cp1047"); /* Translate it */

 :

21

Agenda

 Introduction

Enablement

Development

Example scenarios

Positioning

Recent enhancements

22

WAS  CICS, Using SOAP vs. WOLA on the Same LPAR

We ran a test … WAS and CICS on the same LPAR. CICS driving into WAS with 100

byte SOAP messages over HTTP.

Small Chatty Messages
(100 bytes)

Relative Throughput
Based on the specific CPU and

memory of this benchmark system

That’s a big difference

How is that possible?

Web Services is an open and effective exchange mechanism,

but it is not optimized

• CICS has to transform COMMAREA to SOAP XML

• It has to transmit over network
In this case an optimized local TCP network at that!

• WAS has to take in the XML, parse it, and turn it into the

format expected by the receiving EJB

By comparison, WOLA is optimized for cross-memory

exchanges. No transforming COMMAREA to XML, no

initiating a TCP exchange

23

WAS  CICS, Using IPIC of CICS TS3.2

IPIC
Normalized so it

represents the

baseline “100”

WOLA
Relative throughput …

relative to the normalized

IPIC baseline

Relative throughput, normalized
CTG IPIC is the constant reference; OLA is adjusted proportionally

100 bytes 4K bytes 32K bytes 128K bytes

EXCI 32K

Boundary

WOLA is a very good large message local transfer mechanism

24

WOLA and CTG positioning

Relative Advantage Favors …

WOLA CTG

Bi-directional … WASCICS and CICSWAS
WOLA is bi-directional, CTG is only WASCICS

Part of the WebSphere Application Server z/OS Product
WOLA shipped with 7.0.0.4, CTG is a separate FMID

Able to be used for local or remote access to CICS
WOLA is a local technology only, CTG supports both local EXCI as well as TCP-based remote access

Two-Phase Commit WASCICS

Two-Phase Commit CICSWAS
CTG can not be used for CICSWAS. WOLA able to propagate TX CICSWAS with full 2-phase commit support

using RRS for syncpoint coordination.

Flexible use of CICS channels and containers
WOLA restricts container usage to one named channel only: IBM-WAS-ADAPTER. CTG supports multiple

channels. WOLA uses indexedrecord while CTG uses mappedrecords. That means CTG supports the passing of

multiple named containers on a channel while WOLA can not.

WOLA is a complementary technology with CTG. Both have their

place within an enterprise architecture.

** WOLA 7.0.0.12 added support for 2-phase Commit for WAS to CICS **

** WOLA 8.0.0.5/8.5.0.2 added support for naming channels and multiple containers **

25

WOLA and IMS-JCA Connect positioning (traditional WAS only)

Relative Advantage Favors …

WOLA IMSC

 Bi-directional and able to call existing unchanged IMS transactions

Part of the WebSphere Application Server z/OS Product
WOLA II shipped with 7.0.0.12, IMS Connect is a separate FMID that ships with IMS

Able to be used for local access to IMS
WOLA is a local technology only, IMS supports TCP-based access, which can be used remotely or locally

Propagation/assertion of User Identity

Global Transactions WAS  IMS
Available since Nov 2012!

WOLA is a complementary technology with IMS-JCA Connector.

Both have their place within an enterprise architecture.

WOLA can propagate the thread-level ID over a call into the WAS EJB container and assert it.

WOLA can propagate the thread-level ID over an OTMA call into IMS MPP & IFP

Global Transactions IMS  WAS
Added to WOLA with 8.0.0.4

Able to be used for remote access to IMS
WOLA is a local technology only, IMS supports TCP-based access, which can be used remotely or locally

Speed (throughput rate)
Customer tests have suggested performance gain is over 6x

Traditional WAS WOLA vs. Liberty WAS WOLA

The two are similar at the programming interface, but different in some other respects:

Similarities

●Outbound JCA programming

interfaces are the same

● Inbound native API programming

model is the same

●CICS Link Server Task function

very similar in design and operation

●Security assertion with CICS both

directions supported

●Supplied samples nearly identical

Differences

● Global transaction not (yet) supported with

Liberty WOLA
Applications that start global transactions will need to be modified

before using with Liberty WOLA

● General programming APIs of Liberty not as

complete as full-function WAS
Depending on what application is doing, it may or may not operate

with Liberty (this is more a Liberty statement than a WOLA statement)

● Target EJB for inbound must be EJB 3.x and

has Liberty-specific design requirements

● Round-Robin and Alternate JNDI not supported
Relied on function of traditional WAS not present in Liberty

● Liberty WOLA and IMS not supported (yet)

● No WOLA MODIFY commands or SMF 120.10

for WOLA

26

27

Agenda

 Introduction

Enablement

Development

Example scenarios

Positioning

Recent enhancements

V8.0.0.1 and WOLA Round-Robin (traditional WAS only)

28

The 8.0.0.1 fixpack brought new WOLA function, including ability to round-robin

between multiple instances of the partner (address space, eg. IMS or CICS

region) registered into the server with the same name:

• For calls outbound from WAS to external address space, Registration

names must be identical

• Targeted service must be present in multiple address spaces participating

in the work distribution

• Any supported external address space, not just CICS

V8.0.0.1 Development Mode - Outbound Applications
(traditional WAS only)

29

The focus here is on developing and testing WOLA outbound applications without the

developer needing direct access to a z/OS system

Limitations:

• Can not participate in global transaction 2PC

• Can not assert distributed WAS thread ID up to z/OS.

For additional info, check the InfoCenter, and search for “cdat_devmode_overview”

V8.0.0.1 Development Mode - Inbound Applications (traditional WAS
only)

30

Let's take the reverse ... the case where you wish a native z/OS program to make

an inbound call to a target EJB running in WAS. Can EJB be on WAS distributed?

Yes ...

• WOLA API developer writes as if target EJB is in the WOLA-attached WAS z/OS server

• One parameter difference - requesttype on BBOA1INV or BBOA1SRQ - set to "2" (for

remote EJB request) rather than "1"

• EJB Developer develops stateless EJB with WOLA class libraries as if deployed on z/OS

For additional info, check the InfoCenter, and search for “cdat_ola_remotequest”

Customer examples…

31

“Planned Production Dates:

• IBAN Converter: June 2015, with 100.000 daily COBOL to EJB Requests

• KAP Client Lookup: October 2015, with 50.000+ daily Java to IMS

Requests

• Tax Software (Cortax): 2015, with 10.000 daily COBOL to EJB Requests”

31

IBM z Systems Technical University – München, Germany
June 13-17

Enterprise IT infrastructure for cognitive business.
Reinventing IT for digital business, the new IBM z13 mainframe and z Systems

are built for mobile, ready for and trusted for cloud. IBM z Systems provide the

computing infrastructure for the mobile generation and the new app economy.

Designed to exploit the mobile transaction explosion, z Systems apply in-

transaction analytics and offer the most secure, trusted service delivery — all

while transforming the efficiency and economics of IT.

IBM z Systems lectures and labs will focus on following topics:
• The new IBM z13 and its technology innovations

• IBM z Systems Enterprise Data Compression (zEDC) and Flash Express

z13 update and lessons learned, z13 and z/OS dispatching update, and

SMT and SIMD

• z/OS Version 2.1 and 2.2 latest updates, migration and advanced

functions

• z/OSMF Version 2.1 and 2.2 implementation and configuration

• What’s new in Linux on z Systems

• z/VM new features, advanced functions and implementation updates

• What’s new in z Systems software pricing on the z13

• How cloud, analytics, mobile, social (CAMS) are remaking the mainframe

• Using Hadoop to analyze z Systems data

• IBM CICS Version 5 planning and implementation …

Watch. Listen. Learn more about IBM technologies.

ibm.com/training/events

2016 IBM Systems
Technical Universities

Questions: stg_conferences@be.ibm.com Website: bit.ly/IBMTechU2016Munich

mailto:stg_conferences@be.ibm.com
http://bit.ly/IBMTechU2016Munich

33

Bibliography

 WAS z/OS Home page :
http://www.ibm.com/software/webservers/appserv/zos_os390/

 Knowledge Center for traditional WAS z/OS and WOLA: “tdat_useola”

 Knowledge Center for WAS Liberty z/OS and WOLA:
“twlp_dat_useola”

 WebSphere on z/OS - Optimized Local Adapters (WOLA) (REDP4550)

 IBM Washington Systems Center (WSC) White Papers WP101490
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490
See in particular the WOLA Executive Overview, Overview and Usage and WOLA Quick Start
Guide.

 Still confused about WOLA? See
http://www.youtube.com/user/WASOLA1

http://www.ibm.com/software/webservers/appserv/zos_os390/
http://www-01.ibm.com/support/knowledgecenter/SS7K4U_8.0.0/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tdat_useola.html?cp=SS7K4U_8.0.0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SS7K4U_8.0.0/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tdat_useola.html?cp=SS7K4U_8.0.0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SS7K4U_8.0.0/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tdat_useola.html?cp=SS7K4U_8.0.0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_dat_useola.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_dat_useola.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_dat_useola.html?lang=en
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490
http://www.youtube.com/user/WASOLA1

