
Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Redpaper

IBM Information Management Software

IMS 12: The IMS Catalog

Introduction

In this document, we provide a description of the IMS™ catalog and the way it can be used to
expand and consolidate the information about IMS databases and their metadata.

The IMS catalog is an optional system database, available with IMS 12, that stores metadata
about your databases and applications. Its comprehensive view of IMS database metadata,
fully managed by IMS, allows IMS to participate in solutions that require the exchange of
metadata, such as business impact analysis.

The IMS Universal drivers have been enhanced to take advantage of the IMS catalog.

In this paper, we discuss the following topics:

� Overview and objectives of the catalog

� Physical structure of the catalog database

� IMS catalog database installation and management

� Application use of the catalog

� The role of the IMS Enterprise Suite Explorer for Development

� Using IMS Explorer to capture IMS metadata

� Enhancements to the IMS Universal drivers

� Recommended maintenance

Geoff Nicholls
Paolo Bruni

Dougie Lawson
Egide Van Aershot
© Copyright IBM Corp. 2011. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Overview and objectives of the catalog

Prior to the introduction of the IMS catalog, information about the structure of the DL/I
databases was spread across the following different data structures:

� The data base description (DBD)

The DBD defines the characteristics of a database, such as the database's organization
and access method, the segments and fields in a database record, and the relationship
between types of segments. Most of the time, information for the segments was limited to
the few fields required to identify and search for segments across the hierarchical
structures. That is, limited to the fields used as search arguments in the segment search
argument (SSA), and the fields required to define logical relationships and secondary
indices.

� The COBOL copybooks and PL/I or C include members

The details of the fields in each segment in the database are often defined in a COBOL
copybook, and PL/I or C include members. These members detail all the fields in each
database segment (not just those used in segment search arguments (SSAs)), and are
included into the source program when the program is compiled.

� The program specification block (PSB)

PSBs are used to define two things - the view of the databases to be used by a program,
as well as any logical message destinations. These views are called program
communication blocks (PCBs) as they are the means of communicating between the
application program and IMS. There can be many PCBs in a PSB (as shown in Figure 1),
allowing a program to communicate with (access) multiple IMS databases. For database
PCBs, the segments and the hierarchical structure the program can access are described,
and they can also indicate what sensitivity a program has to the information. That is,
whether the program can see only a subset of the segment types in the database, and a
subset of the fields in these segments.

A PCB can also allow a program to use different access paths through a database. It can
allow the program to access a database through a secondary index or a logical
relationship, and the programs view of the hierarchical structure of the database can be
different to the hierarchical structure defined in the DBD.

Figure 1 A Program Specification Block (PSB) with multiple Program Communication Blocks (PCBs)

PSB

DBD DBDDBDDBD

PCB PCB PCB PCB
2 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
For online IMS systems, application control block (ACB) libraries contain the metadata used
by IMS, created by performing an ACB generation from the DBD and PSB libraries. The
current system using DBD, PSB, and ACB libraries is proprietary. Typically, a DBD only
defines a subset of the fields in a database record - the sequence (key) fields and any that are
needed by a secondary index. Other fields in a record would only be defined in a COBOL
copybook or PL/I or C include file in the application program.

The introduction of Java access to IMS data from JBP or JMP regions or from remote
systems or clients required easily accessible metadata. To provide this, the contents of
ACBLIB are now offered as a Java class.

With the move to making IMS data more widely and easily accessible outside the mainframe,
application programmers need to have an easy and consistent access to the metadata. Since
IMS V8, this data was provided using the DLIMODEL utility. This utility generates Java class
files that contain a static definition of the database design as at the point when the
DLIMODEL utility is run.

The drawback when using the DLIMODEL utility is that it can be a challenge to manage, and
change control is needed when the underlying database definition changes. This method
potentially allows the creation of multiple copies of the database metadata, each one of which
must be updated with any database structure change.

There is a requirement for a source of metadata that is easier to manage and can be trusted
to reflect the possible changes of the design of IMS databases. The metadata should also be
defined in an open format.

IMS 12 introduces the IMS catalog. The IMS catalog holds the metadata for databases and
PSBs. It is accessed using the JDBC drivers and is also available to any tool or application.
IMS metadata is available in an XML format, and also available to standard DL/I applications
in a traditional IMS segment format.

When the metadata is updated, the catalog is also updated to reflect the change. Hence the
data is always current, as the consumers get metadata dynamically from the active IMS
catalog HALDB database rather than from static class files.

The catalog in IMS 12 also includes a versioning system, allowing the current version and a
user-specified number of previous versions of the metadata to be kept and available for the
applications.

The IMS catalog is a partitioned hierarchical indexed direct access method (PHIDAM)
database that contains trusted metadata for IMS databases and applications. The IMS
Catalog Populate utility (DFS3PU00) can optionally be used to initially populate the catalog by
reading an existing ACBLIB and loading the available metadata into the catalog. All the
information that is contained in the runtime ACBLIB (which was derived from the DBDs and
PSBs), is available to users in the IMS catalog. Enhancements to the existing DBDGEN,
PSBGEN, and ACBGEN processes allow database and application metadata to be defined to
IMS. The new ACB Generation and Catalog Populate utility (DFS3UACB) automatically
updates the IMS catalog when the ACB members are generated, to keep the catalog in a
trusted state at all times after initialization. The IMS catalog is designed to be the single,
authoritative source of database and application metadata for all client applications. The
catalog can also contain application metadata such as decimal data specifications (scale and
precision), data structure definitions, and mapping information.

The IMS catalog uses timestamps to identify the version of the metadata for each database,
and can store multiple versions of metadata for each database. IMS provides the facility to
keep a number of generations of this metadata, and remove old metadata according to a
maximum number of generations or longevity that you specify. By default, the IMS catalog
 IMS 12: The IMS Catalog 3

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
contains information for each DBD and PSB in the active IMS system ACBLIB. The IMS
Catalog Record Purge utility (DFS3PU10) must be run to remove the extra definitions in the
catalog.

Physical structure of the catalog database

The IMS catalog is a HALDB (high availability large database) database: a partitioned, IMS
full-function database type. Prior to loading records into an IMS catalog, you must define the
partitions to IMS. The IMS catalog is composed of the following objects:

� Primary database DFSCD000

The access method is OSAM, comprising the following database data sets:

– Primary index data set
– Indirect list data set (ILDS)
– Four data set groups for the segments of the IMS catalog records

� Secondary index DFSCX000

This provides a cross reference between the PSB segment and the DBD it is used to
access.

– The data set for the secondary index database

The data stored in the IMS catalog includes all the metadata that has traditionally been held
in the DBD and PSB libraries, along with additional information that is enabled by the IMS
catalog. The IMS Explorer for Development can also be used to expand the metadata stored
in the catalog (see “The role of the IMS Enterprise Suite Explorer for Development” on
page 30).

Segments of the catalog database
The segments in the catalog are:

� Resource header (Item name and type) for each DBD and PSB

� DBD resource

– Database structure definitions (ACCESS, RMNAME, etc.)
– Data capture parameters
– Physical database data set (DATASET) or area (AREA) definitions
– Segment definitions (SEGM)
– Field definitions (FIELD)
– Marshaller definitions (DFSMARSH)
– Logical children (LCHILD)
– Indexed field (XDFLD)
– Map definitions (DFSMAP)
– Case definitions (DFSCASE)
– Case field definition
– Case marshaller definition

� PSB resource

– Program Control Block (PCB)
– Sensitive segments (SENSEG)
– Sensitive fields (SENFLD)
– DBD cross reference

There are a number of new macros in a DBD which allow IMS 12 to better map the
application data structures. They are all an extension and a subset of the field macro.
4 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
For each macro used in a DBD or PSB there is an equivalent segment in the IMS catalog
database.

The segments in the DBD of the IMS catalog database are shown in Example 1.

Example 1 Segments in the IMS catalog database (DFSCD000)

 DDDD FFFFF SSS CCC DDDD 000 000 000
 D D F S S C C D D 0 0 0 0 0 0
 D D F S C D D 0 00 0 00 0 00
 D D FFF SSS C D D 0 0 0 0 0 0 0 0 0
 D D F S C D D 00 0 00 0 00 0
 D D F S S C C D D 0 0 0 0 0 0
 DDDD F SSS CCC DDDD 000 000 000

 VERSION=04/18/12 11.49
 LEVELS= 8 SEGMENTS= 62 DATA SET GROUPS= 4
 ID= 1* N/A PRIME DS LOG. RCD. LEN= 0, BLOCKSIZE= 32752 SEGMENT LENGTH MAX= 614, MIN= 126
 OFLW DS LOG. RCD. LEN= 0, BLOCKSIZE= 32752 KEY LENGTH MAX= 17, MIN= 16 NUMBSEG= 3
 ID= 2+ N/A PRIME DS LOG. RCD. LEN= 0, BLOCKSIZE= 32752 SEGMENT LENGTH MAX= 934, MIN= 66
 OFLW DS LOG. RCD. LEN= 0, BLOCKSIZE= 32752 KEY LENGTH MAX= 2, MIN= 2 NUMBSEG= 11
 ID= 3" N/A PRIME DS LOG. RCD. LEN= 0, BLOCKSIZE= 32752 SEGMENT LENGTH MAX= 934, MIN= 326
 OFLW DS LOG. RCD. LEN= 0, BLOCKSIZE= 32752 KEY LENGTH MAX= 2, MIN= 2 NUMBSEG= 3
 ID= 4. N/A PRIME DS LOG. RCD. LEN= 0, BLOCKSIZE= 32752 SEGMENT LENGTH MAX= 4022, MIN= 46
 OFLW DS LOG. RCD. LEN= 0, BLOCKSIZE= 32752 KEY LENGTH MAX= 17, MIN= 2 NUMBSEG= 45
 C P P L L P P P L L E RULES PHYS. SEG-NAME D-B-NAME FORM LOG CHLD
SEG-NAME SC# LV PAR -LEN- ---FREQ--- T T P T P H C C C C P N-SEQ OR OR OR INSRT
 R FB FB FB .F .L .F .L S I D R INSRT FLD-NAME LEN STRT PNTR RULES
HEADER * 1 1 0 56 0.00 XX 13 P P P LAST VAR LEN
 PFX LEN= 70 MAX= 56 PFX+MAX= 126
 MIN= 24 PFX+MIN= 94
DBD * 2 2 1 552 0.00 XX X 10 P P P LAST VAR LEN
 PFX LEN= 62 MAX= 552 PFX+MAX= 614
 MIN= 505 PFX+MIN= 567
CAPXDBD . 3 3 2 32 0.00 X X P P P LAST VAR LEN
 PFX LEN= 18 MAX= 32 PFX+MAX= 50
 MIN= 28 PFX+MIN= 46
DBDRMK . 4 3 2 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
DSET . 5 3 2 96 0.00 XX X 1 P P P LAST VAR LEN
 PFX LEN= 26 MAX= 96 PFX+MAX= 122
 MIN= 70 PFX+MIN= 96
DSETRMK . 6 4 5 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
AREA . 7 3 2 40 0.00 XX X 1 P P P LAST VAR LEN
 PFX LEN= 26 MAX= 40 PFX+MAX= 66
 MIN= 26 PFX+MIN= 52
AREARMK . 8 4 7 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
SEGM + 9 3 2 376 0.00 XX X 5 P P P LAST VAR LEN
 PFX LEN= 42 MAX= 376 PFX+MAX= 418
 MIN= 341 PFX+MIN= 383
CAPXSEGM. 10 4 9 32 0.00 X X P P P LAST VAR LEN
 PFX LEN= 18 MAX= 32 PFX+MAX= 50
 MIN= 28 PFX+MIN= 46
SEGMRMK . 11 4 9 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
FLD " 12 4 9 904 0.00 XX X 2 P P P LAST VAR LEN
 PFX LEN= 30 MAX= 904 PFX+MAX= 934
 MIN= 836 PFX+MIN= 866
FLDRMK . 13 5 12 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
MAR " 14 5 12 704 0.00 XX X 2 P P P LAST VAR LEN
 PFX LEN= 30 MAX= 704 PFX+MAX= 734
 MIN= 640 PFX+MIN= 670
MARRMK . 15 6 14 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
PROP " 16 6 14 304 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 304 PFX+MAX= 326
 MIN= 264 PFX+MIN= 286
LCHILD + 17 4 9 72 0.00 XX X 3 P P P LAST VAR LEN
 PFX LEN= 34 MAX= 72 PFX+MAX= 106
 MIN= 56 PFX+MIN= 90
 IMS 12: The IMS Catalog 5

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
LCHRMK . 18 5 17 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
LCH2IDX . 19 5 17 24 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 24 PFX+MAX= 46
 MIN= 20 PFX+MIN= 42
XDFLD + 20 5 17 200 0.00 XX X 1 P P P LAST VAR LEN
 PFX LEN= 26 MAX= 200 PFX+MAX= 226
 MIN= 184 PFX+MIN= 210
XDFLDRMK. 21 6 20 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
MAP + 22 4 9 520 0.00 XX X 2 P P P LAST VAR LEN
 PFX LEN= 30 MAX= 520 PFX+MAX= 550
 MIN= 264 PFX+MIN= 294
MAPRMK . 23 5 22 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
CASE + 24 5 22 656 0.00 XX X 2 P P P LAST VAR LEN
 PFX LEN= 30 MAX= 656 PFX+MAX= 686
 MIN= 400 PFX+MIN= 430
CASERMK . 25 6 24 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
CFLD + 26 6 24 904 0.00 XX X 2 P P P LAST VAR LEN
 PFX LEN= 30 MAX= 904 PFX+MAX= 934
 MIN= 836 PFX+MIN= 866
CFLDRMK . 27 7 26 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
CMAR + 28 7 26 704 0.00 XX X 2 P P P LAST VAR LEN
 PFX LEN= 30 MAX= 704 PFX+MAX= 734
 MIN= 640 PFX+MIN= 670
CMARRMK . 29 8 28 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
CPROP + 30 8 28 304 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 304 PFX+MAX= 326
 MIN= 264 PFX+MIN= 286
DBDVEND . 31 3 2 4000 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 4000 PFX+MAX= 4022
 MIN= 64 PFX+MIN= 86
DBDSXXX . 32 3 2 135 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 135 PFX+MAX= 157
 MIN= 32 PFX+MIN= 54
DBDPXXX . 33 3 2 135 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 135 PFX+MAX= 157
 MIN= 32 PFX+MIN= 54
DBDRES1 . 34 3 2 135 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 135 PFX+MAX= 157
 MIN= 32 PFX+MIN= 54
DBDRES2 . 35 3 2 135 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 135 PFX+MAX= 157
 MIN= 32 PFX+MIN= 54
DBDHXXX . 36 2 1 128 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 128 PFX+MAX= 150
 MIN= 32 PFX+MIN= 54
PSB * 37 2 1 88 0.00 XX X 7 P P P LAST VAR LEN
 PFX LEN= 50 MAX= 88 PFX+MAX= 138
 MIN= 72 PFX+MIN= 122
PSBRMK . 38 3 37 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
PCB + 39 3 37 288 0.00 XX X 2 P P P LAST VAR LEN
 PFX LEN= 30 MAX= 288 PFX+MAX= 318
 MIN= 208 PFX+MIN= 238
PCBRMK . 40 4 39 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
SS + 41 4 39 328 0.00 XX X 2 P P P LAST VAR LEN
 PFX LEN= 30 MAX= 328 PFX+MAX= 358
 MIN= 320 PFX+MIN= 350
SSRMK . 42 5 41 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
SF + 43 5 41 40 0.00 XX X 1 P P P LAST VAR LEN
 PFX LEN= 26 MAX= 40 PFX+MAX= 66
 MIN= 20 PFX+MIN= 46
SFRMK . 44 6 43 264 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 264 PFX+MAX= 286
 MIN= 20 PFX+MIN= 42
DBDXREF . 45 3 37 48 0.00 XX X P P P LAST SNDIXD VAR LEN
 PFX LEN= 22 MAX= 48 PFX+MAX= 70
6 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
 MIN= 36 PFX+MIN= 58
 *LC** DBDPSB DFSCX000 INDX LAST
 XFD DBD2PSB SECONDARY INDEXED FIELD
 SUBSEQUENCE **SRCSEG** **SAME**
 SEARCH IMSNAME 8 29
 PSBNAME 8 37
 TSVERS 13 13
 SUBSEQ /SX1 8 1
PSBVEND . 46 3 37 4000 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 4000 PFX+MAX= 4022
 MIN= 64 PFX+MIN= 86
PSBSXXX . 47 3 37 135 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 135 PFX+MAX= 157
 MIN= 32 PFX+MIN= 54
PSBRES1 . 48 3 37 135 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 135 PFX+MAX= 157
 MIN= 32 PFX+MIN= 54
PSBRES2 . 49 3 37 135 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 135 PFX+MAX= 157
 MIN= 32 PFX+MIN= 54
PSBHXXX . 50 2 1 128 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 128 PFX+MAX= 150
 MIN= 32 PFX+MIN= 54
DBEXXXX . 51 2 1 135 0.00 XX X 1 P P P LAST VAR LEN
 PFX LEN= 26 MAX= 135 PFX+MAX= 161
 MIN= 32 PFX+MIN= 58
DBESXXX . 52 3 51 4000 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 4000 PFX+MAX= 4022
 MIN= 64 PFX+MIN= 86
UXX . 53 2 1 128 0.00 XX X 1 P P P LAST VAR LEN
 PFX LEN= 26 MAX= 128 PFX+MAX= 154
 MIN= 32 PFX+MIN= 58
UXXOXXX . 54 3 53 128 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 128 PFX+MAX= 150
 MIN= 32 PFX+MIN= 54
UXXHXXX . 55 2 1 128 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 128 PFX+MAX= 150
 MIN= 32 PFX+MIN= 54
SXX . 56 2 1 128 0.00 XX X 1 P P P LAST VAR LEN
 PFX LEN= 26 MAX= 128 PFX+MAX= 154
 MIN= 32 PFX+MIN= 58
SXXOXXX . 57 3 56 128 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 128 PFX+MAX= 150
 MIN= 32 PFX+MIN= 54
SXXHXXX . 58 2 1 128 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 128 PFX+MAX= 150
 MIN= 32 PFX+MIN= 54
RESERVE1. 59 2 1 128 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 128 PFX+MAX= 150
 MIN= 32 PFX+MIN= 54
RESERVE2. 60 2 1 128 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 128 PFX+MAX= 150
 MIN= 32 PFX+MIN= 54
RESERVE3. 61 2 1 128 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 128 PFX+MAX= 150
 MIN= 32 PFX+MIN= 54
RESERVE4. 62 2 1 128 0.00 XX X P P P LAST VAR LEN
 PFX LEN= 22 MAX= 128 PFX+MAX= 150
 MIN= 32 PFX+MIN= 54

The hierarchical structure of the IMS catalog database is shown in Figure 2. Note some
segment types were omitted for display reasons, but most of the important ones are shown.
The list above is complete. To see the complete picture of the catalog database, import the
catalog database DBD (DFSCD001) into IMS Explorer. The source of this DBD is available in
the SDFSSRC data set delivered with IMS V12, and instructions for importing DBDs into IMS
Explorer are in “Using IMS Explorer to capture IMS metadata” on page 33.
 IMS 12: The IMS Catalog 7

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Figure 2 Database structure for the catalog Database, DFSCD000

There are five PSBs supplied for access and update to the catalog database:

� DFSCPL00

It is used for an initial load of the database (PROCOPT=L).

� DFSCP000

It has read-only access (PROCOPT=G) for all segments. This PSB can be used for
Assembler and COBOL programs for direct read-only access to the catalog database.

� DFSCP001

It has update access (PROCOPT=A) for all segments. This PSB can be used for
Assembler and COBOL programs for direct update access to the catalog database.

� DFSCP002

It has read-only access (PROCOPT=G) for all segments. This PSB is used for PL/I
programs for direct access to the catalog database.

� DFSCP003

It has read-only access (PROCOPT=G) for all segments. This PSB is used for PASCAL
programs for direct access to the catalog database.

There are several segments in the catalog database, including DBDVEND and PSBVEND, in
the database definition for IBM® tools and vendor products to store additional information.
There are also some reserved segments in the database to allow for future expansion.

HEADER
(RESO URCE HEADER)

SS
(SEN SEG)

PCB

PSB

SF
(SENFL D)

PSBRMK
(REMAR KS)

PCBRMK
(REM ARKS)

SFRMK
(REM ARKS)

SSRMK
(REM AKRS)

XDFLD

LCHILD

AREA
CAPX
DBD SEGMDSET

DBD

MAP
(DFSM AP)

DBD
RMK

CAPXSEGM

CASE
(DFSCASE)

LCHRMK
(REM ARKS)

SEGMRMK
(REM ARKS)

CMAR
(DFSM ARSH)

CPROP
(PRO PERTIES)

CFLD
(F IEL D)

CFLDRMK
(REM ARKS)

CMARRMK
(REM ARKS)

DBDXREF

DSETRMK
(REM ARKS)

AREARMK
(REMAR KS)

FLD
(F IELD)

MAR
(DFSM ARSH)

FLDRMK
(R EMAR KS)

PROP
(PROPER TI ES)

MARRMK
(R EMAR KS)

MAPRMK
(REM ARKS)

CASERMK
(REM ARKS)

RESERVED RESERVED

LCH2IDX
(INDE X NAM E)

XDFLDRMK
(REM ARKS)

…DB DHXXX

DBDVEND PSBVEND
8 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Most of segment types (such as DBD, DSET, AREA, SEGM, FLD,LCHILD, XFLD) contain
metadata about the specific element that they represent, with the name of the segment
corresponding to the metadata stored.

Other segments (DBDRMK, DSETRMK, AREARMK, SEGMRMK, MAPRMK, CASERMK)
contain remarks about the element definition.

The CAPXDBD and CAPXSEGM segments contain information about Data Capture exit
routines used.

IMS catalog database installation and management

The IMS catalog is implemented as a HALDB database. IMS would normally require each
HALDB database to be registered in DBRC. Since there are companies who choose not to
use DBRC in some of their environments, a method is provided to define the IMS catalog
without registering the database in the RECON.

In this section we describe the following steps for installation and management of the IMS
catalog:

� Installation
� IMS catalog initial data population
� ACB generation and changes
� IMS Catalog Copy utility
� Using the IMS catalog without DBRC
� Automatically creating the IMS catalog database data sets
� Keeping multiple versions of metadata in the catalog
� Alias and sharing
� Definitions needed for IMS catalog

IMS provides a number of new utilities to maintain the catalog database when databases or
PSB definitions are changed as part of your normal application development life cycle.

Installation

The first step of installation of the IMS catalog is to copy the supplied catalog DBD and PSB
members from the SDFSRESL data set to your own DBD and PSB libraries. See Example 2.

The source for the catalog DBD and PSBs is shipped for reference in the IMS source library
SDFSSRC, but the object code in SDFSRESL should be used for execution.

Example 2 Copy the supplied DBD and PSB members to your own libraries

//CPYCMEM EXEC PGM=IEBCOPY
//SDFSRESL DD DSN=IMS12.SDFSRESL,DISP=SHR
//DBDLIB DD DSN=IMS12.IMS12X.DBDLIB,DISP=SHR
//PSBLIB DD DSN=IMS12.IMS12X.PSBLIB,DISP=SHR
//SYSIN DD *
 COPY OUTDD=DBDLIB,INDD=((SDFSRESL,R))
 SELECT MEMBER=(DFSCD000,DFSCX000)
 COPY OUTDD=PSBLIB,INDD=((SDFSRESL,R))
 SELECT MEMBER=(DFSCPL00,DFSCP000,DFSCP001,DFSCP002,DFSCP003)

Once the DBDs and PSBs have been copied to your libraries, you need to build them as
ACBs using the traditional ACB process. See Example 3.
 IMS 12: The IMS Catalog 9

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Example 3 ACBGEN for IMS catalog

// JCLLIB ORDER=IMS12.PROCLIB
// EXEC ACBGEN
//SYSIN DD *
 BUILD PSB=(DFSCPL00)
 BUILD PSB=(DFSCP001)
 BUILD PSB=(DFSCP000)
 BUILD PSB=(DFSCP002)
 BUILD PSB=(DFSCP003)

Next, create the catalog database data sets. The space allocated for the catalog database
needs to be sufficient to store the number of DBD and PSB definitions for your environment.
This can be done in three ways.

� The database data sets can be allocated with the JCL similar to that shown in Example 4.

� The IMS Catalog Partition Definition Data Set utility (DFS3UCD0) can be used to create
the catalog partition definition database dataset if DBRC is not being used. It also creates
the database datasets for the catalog database.

� The IMS Catalog Populate utility (DFS3PU00) is used to load or insert records into the
catalog database, whether or not DBRC is used for the catalog database. If any of the
database data sets do not exist, the utility creates them. The size parameters used for
automatic creation are specified in the catalog section of the DFSDFxxx PROCLIB
member.

Example 4 Define the HALDB data sets, the ILDS, and the primary and secondary indexes

//PHIDAM EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
 ALLOCATE DSNAME('IMS12.IMS12X.DFSCDI2D.A00001') FILE(A00001) -
 RECFM(F,B,S) DSORG(PS) NEW CATALOG -
 SPACE(2,2) CYLINDERS VOLUME(SBOXI5) UNIT(SYSALLDA)

ALLOCATE DSNAME('IMS12.IMS12X.DFSCDI2D.B00001') FILE(B00001) -
 RECFM(F,B,S) DSORG(PS) NEW CATALOG -
 SPACE(2,2) CYLINDERS VOLUME(SBOXI5) UNIT(SYSALLDA)

ALLOCATE DSNAME('IMS12.IMS12X.DFSCDI2D.C00001') FILE(C00001) -
 RECFM(F,B,S) DSORG(PS) NEW CATALOG -
 SPACE(2,2) CYLINDERS VOLUME(SBOXI5) UNIT(SYSALLDA)

ALLOCATE DSNAME('IMS12.IMS12X.DFSCDI2D.D00001') FILE(D00001) -
 RECFM(F,B,S) DSORG(PS) NEW CATALOG -
 SPACE(2,2) CYLINDERS VOLUME(SBOXI5) UNIT(SYSALLDA)

DEFINE CLUSTER(NAME('IMS12.IMS12X.DFSCDI2D.L00001') -
FREESPACE(80 10) SHAREOPTIONS(3 3) KEYS(9 0) -
RECORDSIZE(50 50) SPEED CYLINDERS(1,1) VOLUMES(SBOXI5)) -
DATA(CONTROLINTERVALSIZE(4096)) -
INDEX(CONTROLINTERVALSIZE(2048))

DEFINE CLUSTER(NAME('IMS12.IMS12X.DFSCDI2D.X00001') INDEXED -

 KEYS(16,5) VOL(SBOXI5) REUSE RECORDSIZE (22,22)) -
 DATA(CONTROLINTERVALSIZE(4096))

//PSINDEX EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
 DEFINE CLUSTER (NAME('IMS12Q.IMS12X.DFSCXI2D.A00001') INDEXED -
 SHAREOPTIONS(3 3) KEYS(37,45) REUSE RECORDS(5,5) VOL(SBOXI5) -
10 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
 RECORDSIZE(82,82)) DATA(CONTROLINTERVALSIZE(4096))

Once the database data sets are created, you need to update the IMS.PROCLIB(DFSDFxxx)
member to define the catalog parameters for your IMS system. There are two sections to be
added to the member, depending on whether you choose to use:

� A unique IMS catalog for each system,

� A unique DFSDFxxx member for each system,

� A shared IMS catalog, or

� A shared DFSDFxxx member.

Example 5 shows the simplest environment: a single IMS with a single catalog prefixed with
the default name DFSC.

Example 5 IMS.PROCLIB(DFSDFxxx) for a single IMS system

--
* IMS CATALOG SECTION *
--
<SECTION=CATALOG>
 CATALOG=Y
 ALIAS=DFSC

Example 6 shows a shared DFSDFxxx member with a separate IMS catalog for each IMS
system (defined with an ALIAS that matches the IMSID). We explain the use of aliases for the
IMS catalog in “Alias and sharing” on page 17.

Example 6 IMS.PROCLIB(DFSDFxxx) for multiple IMS systems

--
* IMS CATALOG SECTION for IMS I12B *
--
<SECTION=CATALOGI12B>
 CATALOG=Y
 ALIAS=I12B
--
* IMS CATALOG SECTION for IMS I12D *
--
<SECTION=CATALOGI12D>
 CATALOG=Y
 ALIAS=I12D

The catalog can be activated, using the new DFSDFxxx member, with a cold start, warm
start, or even an emergency restart of the IMS system. The restart is required because IMS
only reads the DFSDF member during initialization.

IMS catalog initial data population

Once you have defined the IMS catalog database data sets, you need to run a new utility to
read the IMS 12 ACBLIB to initially load (populate) the IMS catalog database. As is usual for
all new releases of IMS, the ACBLIB needs to have been rebuilt from DBD and PSB libraries
using the type-1 ACB generation utility for the new release before the ACBLIB is used,
including populating the catalog. The catalog populate process should only need to be done
once for each system using that IMS catalog.
 IMS 12: The IMS Catalog 11

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
You start by defining the IMS catalog to DBRC. This can be done with the batch DBCRC utility
(DSPURX00), using the INIT.DB and INIT.PART commands for the catalog database, or it can
be done using the IMS Partition Definition Utility (PDU) application in TSO. DBRC registration
is optional. For more information refer to “Using the IMS catalog without DBRC” on page 16

The initial data population of the IMS catalog is done using a new utility, the IMS Catalog
Populate utility (DFS3PU00), as shown in Figure 3.

Figure 3 IMS Catalog Populate utility (DFS3PU00)

The utility reads the IMS.PROCLIB(DFSDFxxx) member, then builds the IMS catalog from the
ACB libraries referenced in the JCL. The utility also reads the DBD and PSB libraries to
capture the information about any GSAM DBDs, as they are not built as ACB library
members.

After execution, a HALDB REORG record is recorded in the RECON.

The IMS Explorer allows us to add application metadata to these database definitions, since
at this stage the IMS catalog only holds the rudimentary information that is available from the
DBD and PSB definitions. See “The role of the IMS Enterprise Suite Explorer for
Development” on page 30 for details on this process.

Example 7 shows the JCL used to populate an IMS catalog from the current ACB libraries.

Example 7 Running the IMS Catalog Populate utility (DFS3PU00)

//LOADCAT EXEC PGM=DFS3PU00,
// PARM=(DLI,DFS3PU00,DFSCPL00,,,,,,,,,,,Y,N,,,,,,,,,,,,'DFSDF=12D')
//STEPLIB DD DSN=IMS12.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS12.SDFSRESL,DISP=SHR
//IMS DD DSN=IMS12.IMS12X.PSBLIB,DISP=SHR
// DD DSN=IMS12.IMS12X.DBDLIB,DISP=SHR
//PROCLIB DD DSN=IMS12.PROCLIB,DISP=SHR
//SYSABEND DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//IEFRDER DD DISP=(,CATLG),DSN=IMS12.IMS12X.PU000.LOG(+1),
// SPACE=(TRK,(5,5),RLSE),UNIT=SYSALLDA
//DFSVSAMP DD DSN=IMS12.PROCLIB(DFSVSMDB),DISP=SHR

ACBLIB

DBDLIB

PSBLIB

Catalog

Populate

Utility

Catalog

Catalog Definition

DBRC commands
DFSDFxxx member

in IMS.PROCLIB
12 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
//IMSACB01 DD DSN=IMS12.IMS12D.ACBLIBA,DISP=SHR
//IMSACB02 DD DSN=IMS12.IMS12D.ACBLIB.DOPT,DISP=SHR

ACB generation and changes

Once you migrate to an IMS system that is using an IMS catalog, you need to keep the ACB
libraries and the catalog synchronized. IMS uses timestamps to ensure consistency, so you
can ensure the data in the catalog can always be trusted as an accurate equivalent of the
metadata held in the DBD, PSB and ACB libraries.

There is a new ACB Generation and IMS Catalog Populate utility (DFS3UACB). This utility is
used to perform both the generation of ACB members in an IMS.ACBLIB data set and the
creation of the corresponding metadata records in the IMS catalog in a single job step, as
shown in Figure 4. The DFS3UACB utility can be used in load mode to initially populate the
catalog, or in update mode to add a new version of the new or changed definitions. In update
mode, a new version of any changed definitions are created in the catalog, rather than
altering the existing definitions in the catalog.

Note that when the utility is run in load mode, all existing records in the IMS catalog are
discarded.

Figure 4 ACB generation and IMS catalog populate utility

The new ACB generation utility writes logs and if the IMS catalog is defined in DBRC then it
updates the RECON. It can run as a BMP or DLIBATCH utility. If run as a BMP, be careful to
check the catalog database is open by IMS for update access. Typically, IMS opens the
catalog database in read-only mode.

IMS Catalog Copy utility

As soon as you have migrated to an IMS catalog, you have to ensure the IMS catalog is
updated every time you update an IMS ACB library. When migrating applications from one
environment to another, from test through to production for example, the new Catalog Copy
utility can be used to keep the metadata synchronized. This utility allows the export and
import of metadata information between catalogs.

� The utility DFS3CCE0 exports from a catalog, and the ACBLIB, DBDLIB or PSBLIB
libraries.

This utility copies an IMS catalog and any included ACB, DBD, and PSB libraries to export
data sets in the same job step.

PSBLIB

DBDLIB

ACBGEN
and

Catalog
Populate

Catalog

ACBLIB

DFSDFxxx
 IMS 12: The IMS Catalog 13

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
� The utility DFS3CCI0 imports from the export data set into another catalog, ACBLIB,
DBDLIB and PSBLIB.

At the destination environment, the import module DFS3CCI0 loads or updates an IMS
catalog and copies any included ACB, DBD, and PSB libraries from the export data sets
into their destination data sets.

For the import function of IMS Catalog Copy utility, the primary input to the utility is data
set that contains the new copy of the IMS catalog. A CCUCATIM DD statement is required
to identify this data set.

If ACB libraries, DBD libraries, and PSB libraries were copied during the export function,
they are identified in the import JCL by the following DD statements:

– CCUACBIM DD statement for the ACB library export data set
– CCUDBDIM DD statement for the DBD library export data set
– CCUPSBIM DD statement for the PSB library export data set

The new utilities ensure that updates to ACB libraries result in parallel updates to the IMS
catalog.

Optionally, the IMS Catalog Copy utility can also create copies of the ACB, DBD, and PSB
library members that correspond to the IMS catalog records that are being copied.

The IMS Catalog Copy utility creates an import statistics report for the record segments to be
loaded or updated in the IMS catalog. When the IMS Catalog Copy utility runs in analysis-only
mode, the report reflects only the potential statistics if the IMS catalog were loaded or
updated from the ACB libraries currently being used as input to the utility.

The IMS Catalog Copy utility can be run as either a batch job or as an online BMP.

Keeping multiple versions of metadata in the catalog

The catalog is designed to hold multiple versions of the DBD and PSB metadata. The
information in the IMS catalog is timestamped, and IMS uses these timestamps allow multiple
generations of the metadata to be kept.

The catalog section of the DFSDFxxx PROCLIB member specifies the IMS-wide default
values for the retention of metadata in the catalog. The parameters define the maximum
number of generations and/or the minimum retention period for which information is to be kept
in the catalog. This is similar to the way information is stored by DBRC in the RECONs to
keep records of a number of Image Copy sets. However, the information is not automatically
purged, as it is with DBRC. The DBDs and PSBs are only deleted by the IMS Catalog Record
Purge utility (DFS3PU10). The retention parameters for specific databases can be specified
with DFS3PU10.

The two parameters used to control the optional RETENTION statement in the DFSDFxxx
catalog section: VERSIONS=nnn and DAYS=ddd.

� VERSIONS defines the maximum number of versions of a DBD or PSB to be kept in the
IMS catalog database. The value can be from 1 to 65535, default value is 2. When the
maximum value is reached, the oldest version (based on ACBGEN timestamp) is replaced
by the newest.

� DAYS defines the minimum number of days a version remains in the catalog. The value
can be from 0 to 65535, default value is 0 (function disabled). When a version of the
catalog metadata is older that the specified, it becomes candidate for removal when new
versions of the same DBD or PSB are added to the IMS catalog.
14 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
They work in the same way that GENMAX and RECOVPD work with DBRC: if the maximum
number of versions is reached but the retention period has not expired then a new catalog
record will be kept, the oldest will not be removed. Example 8 shows the specification in the
IMS.PROCLIB(DFSDFxxx) member, where at least five generations of metadata is kept, for a
minimum of 30 days.

Example 8 Setting default maximum generations and retention periods for catalog metadata

<SECTION=CATALOG>
CATALOG=Y
ALIAS=DFSC
RETENTION=(VERSIONS=5,DAYS=30)

With multiple versions stored in the catalog, if an online change is reversed, the catalog
should still have the previous version available.

For logically related databases, where the past the DBD information has been kept only in the
DBDLIB and not the ACBLIB, the catalog populate utility sets the timestamp to zero until the
combined ACBGEN/Populate utility has been run for those databases.

Metadata information in the catalog can be removed by the IMS Catalog Record Purge utility
(DFS3PU10) if outdated or the version has exceeded the specified retention value. When
using DFS3PU10, the default of 2 versions applies. If no retention value is specified, each
execution of ACBGEN or Populate Utility will add a new version.

IMS Catalog Record Purge utility

The IMS Catalog Record Purge utility (DFS3PU10) provides several functions:

� Sets the record retention criteria for specific DBD and PSB records in the catalog
database.

� Produces a list of DBDs and PSBs with versions that are no longer needed according to
the current retention criteria for each record

� Purges specific versions (based on the ACB timestamp) of a record for a DBD or PSB
resource from the IMS catalog database.

� Purges unnecessary versions of IMS catalog records from the catalog database based on
criteria that you specify.

Automatically creating the IMS catalog database data sets

Use the DFSDFxxx member of the IMS PROCLIB data set to specify processing options for
the IMS catalog. The DFSDFxxx member contains parameters organized into sections.
Example 9 shows the specify options for the IMS catalog. In a data sharing environment, this
section defines the IMS catalog for all IMS systems that are not individually configured with a
CATALOGxxxx section.

Example 9 IMS catalog parameters in DFSDFxxx

<SECTION=CATALOG>
CATALOG=Y
ALIAS=DFSC
/* IXVOLSER=vvvvvv if DFSMS is not used */
DATACLAS=IMSDATA
MGMTCLAS=EXTRABAK
STORCLAS=IMS
 IMS 12: The IMS Catalog 15

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
SPACEALLOC=500

The additional parameters allow us to define the DFSMS DATALCLAS, MGMTCLAS,
STORCLAS or volume serial number if DFSMS is not used.

Parameter SPACEALLOC=nnnn (with a range of 0 to 9999, default 500) also allows us to
define the space as a percentage of the predefined IMS value.

Using the IMS catalog without DBRC

The IMS catalog database is a standard PHIDAM database. Usually, that would require
registration to DBRC. DBRC tracks the logs used when the database is updated. DBRC can
also be used to generate jobs to perform image copies and accumulate changes with the IMS
Change Accumulation utility.

If you are running your IMS system with non-HALDB databases not registered to DBRC
(which is a common configuration for test systems), then IMS does not insist on the IMS
catalog HALDB database (and index) being registered in RECON. If the HALDB is not
registered then IMS will not track logs, change accumulations or image copies.

The backup, logging, and recovery of the IMS catalog is the user’s responsibility; this could be
done by running stand-alone MVS™ utilities or by DFSMShsm backup and recovery. In some
cases using the IMS catalog populate utility to rebuild the database may be the best choice.

To overcome the need for IMS to have the IMS catalog PHIDAM database metadata (normally
stored in the DBRC RECON), IMS 12 has a special handling for the IMS catalog. Instead of
having database, partition, and database data set records defined in the RECON, IMS uses
the DFSMDA macro with the TYPE=CATDBDEF statement. This statement defines the
dynamic allocation parameter list for the IMS catalog partition definition data set. This data
set contains the definitions for the catalog HALDBs that are not defined in the DBRC RECON
data set. The DD name of the catalog partition definition data set is DFSHDBSC.

A new utility DFS3UCD0 is used to create the HALDB partition definition data set. You need
to supply a SYSIN data set to define the data that you would normally use on INIT.DB and
INIT.PART if the database were registered in DBRC (see Example 10). The structure
information is stored in the definition data set (DFSHDBSC).

Example 10 Example SYSIN for DFS3UCD0

HALDB=(NAME=DFSCD000,HIKEY=YES)

PART=(NAME=DFSCD000,
 PART=DFSCD01,
 DSNPREFX=IMSTESTS.DFSCD000,
 KEYSTHEX=FFFFFFFFFFFFFFFFFFFFFFFFFFFF)

HALDB=(NAME=DFSCX000,HIKEY=YES)

PART=(NAME=DFSCX000,
 PART=DFSCX01,
 DSNPREFX(IMSTESTS.DFSCX000)
 KEYSTHEX=FFFFFFFFFFFFFFFFFFFFFFFFFFFF)

The next thing you need to add is a statement in the IMS.PROCLIB(DFSDFxxx) member to
define the IMS catalog that is not registered in DBRC (Example 11).
16 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Example 11 IMS.PROCLIB(DFSDFxxx) definition for a non-DBRC IMS catalog

<SECTION=DATABASE>
UNREGCATLG=DFSCD000

Optionally, to avoid making JCL changes, you can also build a DFSMDA dynamic allocation
macro to define the DFSHDBSC to IMS as in Example 12. TYPE=CATDBDEF is a new
specification just for the un-registered IMS catalog database.

Example 12 DFSMDA definition

 DFSMDA TYPE=INITIAL
 DFSMDA TYPE=CATDBDEF,DSNAME=IMS12.IMS12D.CATALOG.DEFDS
 DFSMDA TYPE=FINAL
 END

Alias and sharing

In a complex IMSplex, you have a number of options for how to set-up ACBLIB and the IMS
catalog. You can share or clone the ACB libraries ACBLIBA or ACBLIBB. Similarly, the IMS
catalog can be shared, or use a separate IMS catalog for each IMS system.

The way ACB libraries in IMS 10 or IMS 11 are used depends on whether you are using local
online change, global online change and member online change. IMS 12 supports these
configuration options, and you can configure the IMS catalog to participate with your existing
shared or discrete ACB libraries. The IMS catalog can be shared between multiple IMS
systems.

Figure 5 shows a system migrating from an IMSplex where each IMS has its own cloned ACB
library pair but we also introduce a single shared IMS catalog populated from all the existing
ACB libraries.

Tip: Convert your systems to use global online change, dynamically allocating ACB
libraries and using member online change.
 IMS 12: The IMS Catalog 17

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Figure 5 Multiple IMS, cloned ACBLIB, shared IMS catalog

Figure 6 shows a system where we are starting from separate (cloned) ACB libraries so we
chose to create a unique aliased IMS catalog for each IMS system.

Figure 6 Multiple IMS, cloned ACBLIB, one IMS catalog per IMS

1

IMS2

IMS1

IMS4

IMS3ACBLIBA
Catalog

ACBLIBB

ACBLIBA

ACBLIBB

ACBLIBA

ACBLIBB

ACBLIBA

ACBLIBB

DFSDF member
<SECTION=CATALOG>
CAT ALOG=Y
A LIAS =DFSC

DFSDF m em ber
<SECTION=CA TALOG>
CATALOG=Y
ALIAS=DFSC

DFSDF m em ber
<SECT ION=CA TALOG>

CATALOG=Y
ALIAS=DFS C

DFSDF member
<S ECTION=CA TALOG>
CATALOG=Y
ALIAS =DFS C

1

IMS2

IMS1

IMS4

IMS3ACBLIBA

Catalog
(IMS1)

ACBLIBB

ACBLIBA

ACBLIBB

ACBLIBA

ACBLIBB

ACBLIBA

ACBLIBB

Catalog
(IMS2)

Catalog
(IMS4)

Catalog
(IMS3)

DFSDF member
<SECTION=CATALOG>
CAT ALOG=Y
ALIAS=IM S1

DFSDF m em ber
<SECTION=CATALOG>
CATALOG=Y
ALIAS=IMS2

DFSDF m em ber
<SECT ION=CATALOG>

CATALOG=Y
ALIAS=IMS3

DFSDF member
<SECTION=CATALOG>
CATALOG=Y
ALIAS=IMS4
18 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Figure 7 shows the integrated system, where there is one pair of ACB libraries for the IMSplex
and a single shared IMS catalog (registered in DBRC with SHARELVL=3). In this system,
global online change and member online change are used.

Figure 7 Multiple IMS, shared ACBLIBs, shared IMS catalog

IMS handles loading DBDs DFSCD000, DFSCX000 and PSBs DFSCP000, DFSCP001,
DFSCP002, and DFSCP003, and making the internal changes needed for the aliased names.

Definitions needed for IMS catalog

Before you can have the IMS catalog created and initial loaded with the populate utility, you
need to update the IMS system to use it. The definition is done by adding statements to the
IMS.PROCLIB(DFSDFxxx) member.

You have some flexibility in how to define the CATALOG section in the DFSDFxxx member. A
simple single IMS is shown in Example 13 using the recommended ALIAS name.

Example 13 Single IMS system

<SECTION=CATALOG>
CATALOG=Y
ALIAS=DFSC

For example if you have two or more IMS systems using shared queues you may want them
to share a single IMS catalog and the same DFSDFxxx proclib member. In this case you can
define different section suffixes in the CATALOG statement using the IMS ID and define the
catalog database with a single shared ALIAS name. See Example 14.

Example 14 Multiple IMS systems

<SECTION=CATALOGI12A>
CATALOG=Y
ALIAS=I12Q
<SECTION=CATALOGI12C>
CATALOG=Y

1

IMS2

IMS1

IMS4

IMS3
ACBLIBA

ACBLIBB
Catalog

DFSDF member
<S ECTION=CATA LOG>
CAT ALOG=Y
A LIAS=DFSC

DFSDF member
<S ECTION=CATALOG>
CAT ALOG=Y
ALIAS=DFSC

DFSDF m em ber
<SE CT ION=CATALOG>
CATALOG=Y
ALIAS=DFSC

DFSDF m em ber
<SECTION=CATALOG>
CATALOG=Y
ALIAS=DFSC
 IMS 12: The IMS Catalog 19

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
ALIAS=I12Q

Application use of the catalog

IMS 12 can access the IMS catalog when IMS metadata is required. It also provides a user
interface to the IMS catalog data, and a new DL/I call to access the IMS catalog. One source
of metadata for populating the catalog are the DBD and PSBs. The extensions of the
metadata information and the additional data manipulation possibilities that are introduced
require additional information from the DBD and PSB sources, and as a result several
DBDGEN and PSBGEN macros have been enhanced with IMS 12.

We provide details on using the IMS catalog in the following sections:

� DBD and PSB source changes
� Get Unique Record (GUR) DL/I call
� IMS catalog access
� SSA enhancements

DBD and PSB source changes

There are new DBDGEN statements in IMS 12 and changes to existing ones. The new
DBDGEN statements are also represented in the metadata information in the catalog. A lot of
this metadata information is the basis for the extended Object exploitation by the Java
language.

DFSMARSH statement in the DBD
The DFSMARSH statement in a DBD defines the marshalling attributes for field data. The
DFSMARSH statement must immediately follow the FIELD statement to which it applies. You
can use the DFSMARSH statement to specify the following data marshalling attributes for the
data contained in a field:

� You can specify the code page or character encoding that defines the character data in a
field

� You can specify a data-conversion routine for IMS to use when converting field data from
the data type that IMS uses to physically store data to a data type expected by an
application program

� You can specify whether a decimal data type is signed or not with the ISSIGNED
parameter

� The pattern to use for dates and times can be specified with the PATTERN parameter

� You can specify the properties that are used with a user-provided data-conversion routine

The MAR segment type in the catalog database contains information about a field marshaller
definition in an IMS database. Each FLD segment can have a MAR child segment that
contains data marshalling properties for that field. The information in this segment type is
generated from the input parameters of the DFSMARSH statement of the DBDGEN utility.

� ENCODING

Specifies the default encoding of all character data in the database defined by this DBD.

Default ENCODING is CP1047 (EBCDIC)

This default value can be overridden for individual segments and fields.

� USERTYPECONVERTER
20 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Specifies the fully-qualified Java class name of the user provided Java class to be used for
type conversion.

� INTERNALTYPECONVERTER

Specifies the internal conversion routine that IMS uses to convert the IMS data into Java
objects for Java application programs. IMS requires the specification of either
INTERNALTYPECONVERTER or USERTYPECONVERTER, but not both. Valid values for
the INTERNALTYPECONVERTER parameter are:

ARRAY, BINARY, BIT, BLOB, BYTE, CHAR, CLOB, DOUBLE, FLOAT, INT, LONG,
PACKEDDECIMAL, SHORT, STRUCT, UBYTE, USHORT, UINT, ULONG, XML_CLOB,
and ZONEDDECIMAL

� ISSIGNED

Valid only for DATATYPE=DECIMAL. Valid values are Y (default) or N.

� PROPERTIES

Specifies properties for a user type converter names with the USERTYPECONVERTER
parameter. These properties are passed to the user type converter.

� PATTERN

An optional field that specifies the pattern to use for the date, time, and timestamp Java
data types.

The PATTERN parameter applies only when DATE, TIME, or TIMESTAMP is specified on
the DATATYPE keyword in the FIELD statement and CHAR is specified on the
INTERNALTYPECONVERTER keyword in the DFSMARSH statement

DFSMAP statement
The DFSMAP statement enables the alternate mapping of fields within a segment.

The DFSMAP statement defines a group of one or more map cases and relates the cases to
a control field. The control field identifies which map case is used in a given segment
instance, as shown in Figure 8.

Figure 8 Several mappings for same segment

� NAME

Defines the name of this map

� DEPENDING ON

External name of the control field within this segment that contains the value that
determines which map case is used for a given segment instance. If the control field does
not contain a value that corresponds to a CASEID in a DFSCASE statement for this map,
then this map is not being used for this segment instance.
 IMS 12: The IMS Catalog 21

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
If the FIELD statement that defines the control field does not explicitly code the
EXTERNALNAME parameter, specify the value of the NAME parameter in the
DEPENDING ON field.

� REMARKS

Allow for a comment up to 256 characters long to be recorded in the DBD and the IMS
catalog database.

DFSCASE statement
Many applications allow for several different layouts for the same segment type in an IMS
database. Typically, this is done in COBOL with the REDEFINES statement, and in PL/I with
the DEFINED statement. The corresponding facility in IMS 12 is the DFSCASE statement,
which defines a map case - a conditional mapping of a set of fields in a segment. Each map
case has name and an identifier (ID). A single segment can be defined with multiple map
cases. The map cases within a segment are grouped by the DFSMAP statement, which also
associates the map cases with their control field.

Each map case is defined with a case ID. The case ID is stored in the control field to identify
which case map is used for a given segment instance. Typically, the control field is defined at
the beginning of the segment, before the DFSMAP statement.

The fields that make up a map case identify the map case that they belong to by name on the
CASENAME parameter in the FIELD statement. CASENAME is valid and required only to
associate a FIELD statement with the preceding DFSCASE statement that defines the map
case to which this field belongs. The value of CASENAME must match the value specified on
the NAME parameter of the DFSCASE statement.

The ID of a map case is specified on the CASEID parameter. In a segment instance, the ID is
inserted in a control field to indicate which map case is in use.

� NAME

Defines the name of this case

� CASEIDTYPE

Defines the data type of the value specified in the CASEID parameter

� MAPNAME

The name of the map that this case belongs to, as specified on the NAME parameter in
the DFSMAP statement

� CASEID

Defines a unique identifier for the case. A segment instance specifies the CASEID value in
a user-defined control field when part or all of the field structure of the segment is mapped
by this case. The CASEID must be unique within the map to which the case belongs.

� REMARKS

Allow for a comment of up 256 characters to be recorded in the DBD and the IMS catalog
database.

Enhancements to DBD definition statements
There are a number of enhancements to the statements used to describe a database
definition with IMS12.

Changes to the DBD statement:
� ENCODING
22 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Specifies the default encoding of all character data in the database defined by this DBD
otherwise default ENCODING is CP1047 (EBCDIC). Value can be overridden in individual
segments or fields.

Changes to the SEGM statement:
� ENCODING

Specifies the default encoding of all character data in the database defined by this DBD
otherwise default ENCODING is CP1047 (EBCDIC). Value can be overridden in individual
fields.

� EXTERNALNAME

This is used to give a segment an extended (1 to 128 byte) name.

Changes to the FIELD statement:
� NAME

Specifies the name of this field within a segment type, Must be provided to be able to
search on the field.

For key-sequenced field types and field types that are referenced by an XDFLD statement,
the NAME parameter is required.

For other field types, you can optionally omit the NAME parameter when the
EXTERNALNAME parameter is specified.

� PARENT

Specifies the name of a field that is defined as a structure or array in which this field is
contained. Must be the value of the EXTERNALNAME parameter in the definition of the
referenced field.

Referenced field must be defined with either DATATYPE=ARRAY or DATATYPE=STRUCT.

� CASENAME

Name of the map case to which this field belongs.

Required only to associate a field statement with the preceding DFSCASE statement that
defines the map case.

Must match the value specified on the NAME parameter of the DFSCASE statement.

� DATATYPE

Optional value that specifies one of the following external data types for the field

ARRAY, BINARY, BIT, BYTE, CHAR, DATE, DECIMAL (with precision and scale),
DOUBLE, FLOAT, INT, LONG, OTHER, SHORT, STRUCT, TIME, TIMESTAMP, XML

� REDEFINES

Field that specifies the name of another field in the segment, must be the same length as
the field that is being redefined.

Field cannot be an ARRAY or contain an ARRAY.

� EXTERNALNAME

An optional alias for the NAME= parameter. Java application programs use the external
name to refer to the field.

The EXTERNALNAME parameter is required only when the NAME parameter is not
specified. If the NAME parameter is not specified, you cannot search on this field.

� DEPENDSON
 IMS 12: The IMS Catalog 23

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Specifies the name of a field that defines the number of elements in a dynamic array.
Referenced fields must precede the field statement that specifies this parameter.

The name specified must be the value, whether explicitly defined or accepted by default, of
the EXTERNALNAME parameter in the definition of the referenced field.

The DEPENDSON parameter is valid only when DATATYPE=ARRAY is also specified.

The field referenced by the DEPENDSON parameter must be defined with one of the
following DATATYPE values: INT, SHORT, LONG, DECIMAL

� MINOCCURS

For DATATYPE=ARRAY only, a required numeric value specifying the minimum number of
elements in an ARRAY. MINOCCURS is invalid for all other data types.

� MAXOCCURS

For DATATYPE=ARRAY only, a required numeric value specifying the maximum number of
elements in an ARRAY.

MAXOCCURS must be greater than or equal to MINOCCURS and not zero.

� MAXBYTES

Specifies the maximum size of a field in bytes when the byte-length of the field instance
can vary based on the number of elements in a dynamic array. MAXBYTES and BYTES
are mutually exclusive.

The value of MAXBYTES must be greater than or equal to the maximum possible sum
total of the byte values of all fields nested under this field.

The MAXBYTES parameter is required and valid only in the following cases:

– The field is defined as a dynamic array.
– For a field defined as a static array or a structure that contains a nested field that is

defined as a dynamic array.

� STARTAFTER

– Specifies the name of the field that directly precedes this field in the segment. Name
specified must be the value of the EXTERNALNAME parameter in the definition of the
referenced field.

– STARTAFTER is required and valid only when the starting position of a field cannot be
calculated because the field is preceded at a prior offset by a field defined as a
dynamic array.

– The STARTAFTER parameter cannot be specified on fields that define an array field as
a parent

� RELSTART

Specifies the starting position of a field that is defined as an element of an array or a
structure.

– For fields that specify an array field as a parent, RELSTART is required.
– For fields that specify a structure as a parent, RELSTART is required only when a

dynamic array precedes the structure at any prior offset in the segment.

The starting byte offset of the field relative to the start of the array or structure.

Changes to remarks for DBDs and PSBs
The following existing IMS macros are updated to allow up to 256 characters to be stored as a
remark for a DBD or PSB. This allows the user to specify comments that are stored in the
DBDLIB, PSBLIB, ACBLIB and IMS catalog. This helps ensure that comments are not lost if
the source is lost.

� PSB remarks
24 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
PCB, SENFLD, SENSEG

� DBD remarks

DBD, SEGM, FIELD, XDFLD, LCHILD, DATASET, AREA

Get Unique Record (GUR) DL/I call

IMS 12 provides a new DL/I call specifically for the IMS catalog. The Get Unique Record
(GUR) call retrieves the metadata for an IMS DB or PSB from the catalog database. The GUR
call functions similarly to a Get Unique (GU) call followed by a series of Get Next within Parent
(GNP) calls, to read all the segments in this database record. It can only be used to retrieve
the metadata definition of an IMS database or PSB from the catalog database.

The GUR call reads an entire database record from the catalog database, and returns an
XML document containing the metadata definition for the requested IMS resource (DBD or
PSB). If the XML document is larger than the IOAREA provided by the application,
subsequent GUR calls can be issued to retrieve the balance of the XML document by passing
back a token returned by the initial GUR call. The data is buffered by IMS on the assumption
the entire XML document will be needed to minimize the overhead when you ask for
subsequent blocks of data to be returned. The advantage is that you do not need to
over-estimate the size of the IOAREA. If the IOAREA is too small, the call still succeeds and
the balance of the data can be requested without having to re-read the catalog database. This
new call is designed to simplify access to the database definition metadata, and minimize the
overhead when retrieving it.

If you pass a token with a value of zero, IMS assumes it is a new GUR call and starts from the
beginning.

DFSDDLT0 and IMS REXX are updated to add special processing for the IMS catalog and
the XML that is returned from a GUR call.

The GUR call builds an entire XML instance document from the information in the catalog
database. Internally, each GUR call with a zero AIBRTKN executes a GU and multiple GNP
calls to read IMS catalog. When the I/O area is too small for output then output buffer is kept
and a token is returned in the AIB to allow application to resume copying data from buffer to
I/O area on subsequent calls.

GUR reads an entire record. SSAs should be coded starting with the HEADER and then the
DBD or PSB. GUR does not function like GU calls in that you can read a segment with one
qualified SSA and then get a lower level segment with a different SSA.

The GUR call can only be used to the IMS catalog database, and requires the AIB interface. If
an attempt is made to use the GUR call through the ASMTDLI, CBLTDLI or PLITDLI
interfaces, IMS returns a “DE” status code.

During initialization IMS reads the timestamps from the ACBLIB and stores them into the
database control blocks. The GUR call uses the timestamp to find the currently active
member used by IMS or the first record only when IMS doesn’t have a timestamp. IMS does
not have a timestamp for resources not defined to this IMS.

Segment Search Arguments (SSAs) used with the GUR call
Typically, segment search arguments (SSAs) are needed when using the GUR call, to identify
the database or PSB definition to be retrieved. SSAs are specified on the GUR call in the
same was as other GU calls to IMS, that is (field <relational operator> field-value).
 IMS 12: The IMS Catalog 25

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Example 15 shows an application program issue the GUR call, to retrieve the metadata for
the S2U1DBD database.

Example 15 Sample Application using the GUR DL/I call.

Identification division.
 program-id. gur.
 Environment division.
 Data division.
 Working-storage section.
 01 dli-insert pic x(4) value 'ISRT'.
 01 dli-gur pic x(4) value 'GUR'.
 01 dli-gu pic x(4) value 'GU'.
 01 header-ssa.
 02 filler pic x(8) value 'HEADER '.
 02 filler pic x(1) value '('.
 02 ssa-field-name pic x(8) value 'RHDRSEQ '.
 02 ssa-boolean pic x(2) value '= '.
 02 ssa-field-value pic x(16) value 'DBD S2U1DBD '.
 02 filler pic x(1) value ')'.
 01 AIB.
 02 AIBRID PIC x(8).
 02 AIBRLEN PIC 9(9) USAGE BINARY.
 02 AIBRSFUNC PIC x(8).
 02 AIBRSNM1 PIC x(8).
 02 AIBRSNM2 PIC x(8).
 02 AIBRESV1 PIC x(8).
 02 AIBOALEN PIC 9(9) USAGE BINARY.
 02 AIBOAUSE PIC 9(9) USAGE BINARY.
 02 AIBRESV2 PIC x(12).
 02 AIBRETRN PIC 9(9) USAGE BINARY.
 02 AIBREASN PIC 9(9) USAGE BINARY.
 02 AIBERRXT PIC 9(9) USAGE BINARY.
 02 AIBRESA1 USAGE POINTER.
 02 AIBRESA2 USAGE POINTER.
 02 AIBRESA3 USAGE POINTER.
 02 AIBRESV4 PIC x(40).
 02 AIBRSAVE OCCURS 18 TIMES USAGE POINTER.
 02 AIBRTOKN OCCURS 6 TIMES USAGE POINTER.
 02 AIBRTOKC PIC x(16).
 02 AIBRTOKV PIC x(16).
 02 AIBRTOKA OCCURS 2 TIMES PIC 9(9) USAGE BINARY.
 01 gur-returned-data pic x(32000).
 Linkage section.
 1 io-pcb.
 3 filler pic x(60).
 1 db-pcb.
 3 filler pic x(10).
 3 status-code pic x(2).
 3 filler pic x(20).
 Procedure division using io-pcb db-pcb.
 move "DFSAIB " to AIBRID.
 move length of aib to AIBRLEN.
 move length of gur-returned-data to AIBOALEN.
 move spaces to AIBRSFUNC.
 MOVE "DFSCAT00" TO AIBRSNM1.
 call 'AIBTDLI' using dli-gur aib
 gur-returned-data header-ssa.
 set address of db-pcb to aibresa1.
 display '|' status-code '|' db-pcb.
 display 'aib return is ' AIBRETRN .
26 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
 display 'aib reason is ' AIBREASN .
 display gur-returned-data.
 goback .
 End program gur.

The first few lines of the data returned by the GUR call from the program above are shown in
Example 16. Note that the first 56 characters in the IOAREA are not part of the XML
document.

Example 16 Sample data returned by a GUR call

_% ?> > ? > /> /%?> ` <ns2:dbd xmlns:ns2="http://www.ibm.com/ims/DBD" dbdName="S2U1DBD
" timestamp="1215015125765" version="02/10/1114.51" xmlSchemaVersion="1"><access dbType="HIDAM"><hidam datxexit="N" pass
word="N" osAccess="VSAM"><dataSetContainer><dataSet ddname="S2U1DB" label="DSG1" searchA="0" scan="3"><block size="0"/>
<size size="0"/><frspc fspf="0" fbff="0"/></dataSet></dataSetContainer></hidam></access><segment imsName="CUSTROOT" name
="CUSTROOT" encoding="Cp1047"><hidam label="DSG1"><bytes maxBytes="76"/><rules insertionRule="L" deletionRule="L" replac
ementRule="L" insertionLocation="LAST"/><pointer physicalPointer="TWINBWD" lparnt="N" ctr="N" paired="N"/></hidam><field
 imsDatatype="C" imsName="CUSTNO" name="CUSTOMERNUMBER" seqType="U"><startPos>1</startPos><bytes>4</bytes><marshaller><t
ypeConverter>BINARY</typeConverter></marshaller><applicationDatatype datatype="BINARY"/></field><field imsDatatype="C" n
ame="FIRSTNAME"><startPos>5</startPos><bytes>10</bytes><marshaller encoding="Cp1047"><typeConverter>CHAR</typeConverter>
</marshaller><applicationDatatype datatype="CHAR"/></field><field imsDatatype="C" name="LASTNAME"><startPos>15</startPos
><bytes>20</bytes><marshaller encoding="Cp1047"><typeConverter>CHAR</typeConverter></marshaller><applicationDatatype dat
atype="CHAR"/></field><field imsDatatype="C" name="DATEOFBIRTH"><startPos>35</startPos><bytes>10</bytes><marshaller enco
ding="Cp1047"><typeConverter>CHAR</typeConverter></marshaller><applicationDatatype datatype="CHAR"/></field><field imsDa
tatype="C" name="HOUSENAME"><startPos>45</startPos><bytes>20</bytes><marshaller encoding="Cp1047"><typeConverter>CHAR</t
ypeConverter></marshaller><applicationDatatype datatype="CHAR"/></field><field imsDatatype="C" name="HOUSENUMBER"><start

A better way to display this XML information is through a browser. Example 17 shows the
same information as displayed by Microsoft Internet Explorer.

Example 17 Sample data returned by a browser

<ns2:dbd xmlns:ns2="http://www.ibm.com/ims/DBD" dbdName="S2U1DBD" timestamp="1215015125765"
version="02/10/1114.51" xmlSchemaVersion="1">

<access dbType="HIDAM">

<hidam datxexit="N" password="N" osAccess="VSAM">

<dataSetContainer>

<dataSet ddname="S2U1DB" label="DSG1" searchA="0" scan="3">

<block size="0" />

<size size="0" />

<frspc fspf="0" fbff="0" />

</dataSet>

</dataSetContainer>

</hidam>

</access>

<segment imsName="CUSTROOT" name="CUSTROOT" encoding="Cp1047">

<hidam label="DSG1">

<bytes maxBytes="76" />

<rules insertionRule="L" deletionRule="L" replacementRule="L" insertionLocation="LAST" />

<pointer physicalPointer="TWINBWD" lparnt="N" ctr="N" paired="N" />

</hidam>

<field imsDatatype="C" imsName="CUSTNO" name="CUSTOMERNUMBER" seqType="U">

<startPos>1</startPos>
 IMS 12: The IMS Catalog 27

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
<bytes>4</bytes>

<marshaller>

<typeConverter>BINARY</typeConverter>

</marshaller>

<applicationDatatype datatype="BINARY" />

</field>

<field imsDatatype="C" name="FIRSTNAME">

<startPos>5</startPos>

<bytes>10</bytes>

<marshaller encoding="Cp1047">

<typeConverter>CHAR</typeConverter>

</marshaller>

<applicationDatatype datatype="CHAR" />
</field>

The XML schemas for the documents returned as responses to this call are included in the
IMS.ADFSSMPL data set:

� DFS3XDBD.xsd (for DBD records)
� DFS3XPSB.xsd (for PSB records)

� SSAs can only be specified up to the DBD or PSB level in the catalog database

No more than two SSAs:

– One for root HEADER segment
– One for DBD or PSB segment

Example 18 shows the IMS Test Program (DFSDDLT0) statements needed to process a GUR
call. The data statement is needed to provide sufficient IO-AREA for the XML document
containing the database definition to be returned to DSFSDDLT0.

Example 18 DFSDDLT0 statements for GUR

S 1 1 1 1 1 DFSCD000 AIB
L GUR HEADER (RHDRSEQ ==DBD S2U1DBD)
L Z9999 DATA

IMS catalog access

When an IMS application program requires access to the metadata in the IMS catalog, a PSB
to access the catalog database is automatically attached to the PSB loaded for the
application. IMS can then use that to access the metadata in the IMS catalog.

Direct catalog interface
An application user can issue a DL/I call uses the PCB that directly references the IMS
catalog DBD if they have a need to access the metadata.

The application operates as a normal DL/I application. It can, for example, exploit the new
GUR DL/I call to read the whole root and all child segments from the IMS catalog.
28 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Indirect catalog interface
The indirect catalog interface is used when a process needs access to the metadata but isn’t
accessing the IMS catalog directly. The application processes as usual, and can issue DL/I
calls with a PSB that doesn’t reference the catalog DBD. When a process needs access to
the metadata (in the past this would have used the Java class from the DLIMODEL utility)
then IMS dynamically attaches a PSB with a catalog PCB (see Figure 9).

Figure 9 IMS catalog access

The catalog PCB is used by the DL/I engine without any external effects on the calling
application. The normal mode of operation is that you are only reading the IMS catalog with a
PROCOPT=G (read with integrity). The main catalog PCB is DFSCAT00.

For MPP applications (running in an online IMS), the dynamic attach of a PSB containing the
IMS catalog PCB occurs at the first reference during the first DL/I call. The database is
accessed with deferred scheduling that only occurs when the first call is made that needs
access to the IMS catalog. IMS catalog database availability doesn’t affect application
availability: if the IMS catalog is offline you could get an abend (U3303) but that will not cause
the application to terminate.

In a DL/I batch environment, the dynamic attach of the IMS catalog PCB occurs during batch
initialization. Scheduling is only done once for batch when the region starts. A batch job loads
the IMS catalog PSB for later reference if the catalog is enabled in the DFSDFxxx PROCLIB
member.

SSA enhancements

The new SSA format “get by offset” allows new searching by offset and length instead of field
name; fields are no longer required to be defined in the DBD.

� Support is added for DFSDDLT0 and IMS REXX

Distributed
Access
(Java)

Ims
connect

ODBM

PSB
pool

DMB
pool

WAS
DB2 StoredProc

CICS

Type 4

Type 2 Type 2

Appl DBD
MYDATBAS

MYDATBAS

catalog

ACBLIB

MYDATBAS

Catalog PSB
DFSCP001

User PSB
MYPCB

Catalog PSB
DFSCP001

4 attach

Users

DLI

Catalog DBD
DFSCD000

Catalog PSB
DFSCP001

Attached PSB
Indirec t
access

Direct
access
 IMS 12: The IMS Catalog 29

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
� Performance is the same as non key field search
� IMS scans the database looking for matches
� SSA contains offset and length followed by operator and value

In Figure 10, an SSA search on field “type” is executed, although “type” is not known by the
DBD.

Figure 10 Using get by offset

Field level sensitivity allows user to change layout of the segment returned in the I/O area; the
fields can be reordered, omitted, or spaces can be added between, as shown in Figure 11.
The new SSA qualifications can be used in combination with the existing SSA qualification
format. For example, the following SSA combination for the fields "labname" and "type" is
valid.

GU IBMLABS*O (LABNAME =SVL &00000006 00000003=DEV)

Figure 11 Field sensitivity

In this request SSA, offset is relative to the physical starting position in the segment visible to
your program. Should you attempt to search for fields that are outside the sensitive area (that
is, past the end of the segment), IMS returns an ‘AK’ status code. If no segment is found that
matches the SSA qualifications, a ‘GE’ or ‘GB’ status code is returned.

The role of the IMS Enterprise Suite Explorer for Development

The IMS Enterprise Suite Explorer (IMS Explorer) for Development is an Eclipse-based
graphical tool that simplifies IMS application development tasks such as updating IMS
database and program definitions, and using standard SQL to manipulate IMS data.

You can use the IMS Explorer graphical editors to import, visualize, and edit IMS database
and program definitions.

You can also use the IMS Explorer to easily access and manipulate data stored in IMS by
using standard SQL.

Segment name SSA qualification(s)

Offset Operator Compare data …Length

GU IBMLABS (00000030 00000002=CA)

GU IBMLABS (00000006 0000003=DEV)

Offset LengthSegment

Field Offset Len
Labname 1 5
Street 10 20
State 30 2

DBD

Field Offset Len
Labname 1 5
Type 6 3
Street 10 20
State 30 2

COBOL Copybook

Employee # Salary Address PhoneName Birthday

Segment physically stored on DASD

Address PhoneName

Segment returned in I/O area
30 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
The IMS Explorer can also directly import DBDs and PSBs or obtain existing catalog
information from the IMS catalog via a type 4 connection.

The population of the IMS catalog is mainly done from PSB and DBD sources. You have seen
that additional DBDGEN statements and additional attributes on the FIELD macro can
provide more complete metadata information.

Additional metadata can be collected from COBOL copybooks and C or PLI includes. After
updating in the Explorer the metadata information in the PSBs and DBDs, those sources can
be sent to the host for the GEN process which will cause the metadata to be populated into
the IMS catalog.

In Figure 12, you can see how the Explorer is able to interact with the IMS catalog directly via
a type 4 driver connection, and also indirectly via FTP import and export.

Figure 12 Explorer and catalog

Direct update from the explorer is not available, an intermediate ACBGEN with population of
the catalog is required.

DLIModel utility is a helpful tool for visualizing, documenting all details about DBDs and PSBs
sources, and required to produce the “com.ibm.ims.db.DLIDatabaseView class” for accessing
IMS databases from Java applications on remote and local locations via the type 4 and type 2
drivers. Both traditional DL/I SSA and JDBC access can be used.

The DLIModel utility is not changed in Enterprise Suite V 2.1, but its functions are integrated
in the IMS Enterprise Suite Explorer. The IMS Enterprise Suite Explorer uses the centralized
IMS catalog on z/OS®. The metadata currently available in the DatabaseView class, is
integrated in the IMS catalog and many more details are kept. The concept of the IMS catalog
makes the metadata more dynamic and shared and its implementation avoids the need for
distributing the class to all sites where it should be used in Java programs with DL/I (also via
JDBC) access thru the Universal Drivers type 2 and type 4. The IMS database drivers type 2
and type 4 have been adapted to integrate this dynamism.

In summary the Enterprise Explorer:

� Incorporates DLIModel functionality

Distributed z/OS

EXPLORER

PSB/DBD
sources

Cobol/PLI
Copybooks

includes

type4

PSB/DBD
sources

ftp import

ftp export

DBD/PSB/ACB Reversal utility

ACBGEN

Populate
utility

Populate
utilityDBDGEN

PSBGE N

DBDLIB
PSBLIB

catalog

ACBLIB
 IMS 12: The IMS Catalog 31

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
– Support for migration of DLIModel projects is provided.

� Provides graphical editors for development and visualization

– Program Specification Block (PSB)
– DataBase Description (DBD)

� Shows a relational view of IMS data with graphical assistance to build SQL statements

The IMS Universal JDBC type 4 connectivity extracts PSB and DBD information for local
enhancement.

Input for the Explorer
In the previous section we explained how the input was taken from local PSB and DBD
sources.

The explorer can take input in other ways:

� Import of DLIModel utility project

� Remote import

� From the IMS catalog

The IMS catalog is the final location where all information on the PSBs and DBDs is
consolidated. The Explorer, by using the new type 4 driver, can extract from the catalog
PSB and DBD information, that is updated locally. After the update, this information has to
be sent back to the consolidating host by FTP. Figure 13 shows the Export panel.

Figure 13 Export to z/OS host with FTP

A mandatory ACBGEN of the changed PSB or DBD updates the ACBLIB and also populates
the updated information to the catalog.
32 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Enterprise Suite Explorer and the IMS catalog
The IMS catalog is a PHIDAM database that contains trusted metadata for IMS databases
and applications. All the information that is contained in the runtime ACBLIB (also DBDLIB,
PSBLIB), is available to users in the IMS catalog.

The explorer is an important tool for exploiting and updating the information in the catalog.
The ES Explorer can pull information from the catalog database, work with it, update it and
finally send it back to z/OS for consolidation in the catalog.

The following data connections can be used between the Explorer and catalog information.

� From z/OS

– FTP import from DBD and PSB sources
– Via type-4 driver direct access to catalog

� To z/OS

– FTP export to DBD and PSB sources

Extending IMS database definitions with the IMS Explorer

In this section, we take you through the extension of an IMS DBD with the IMS Explorer for
Development. Using the IMS Explorer, we can quickly and easily add metadata information to
IMS databases, using the COBOL Copybooks or PL/I Include members used by application
programs.

Using IMS Explorer to capture IMS metadata

The IMS Explorer facilitates the capture of more metadata for an IMS database than could
previously be stored in the IMS DBD. With Explorer, the layout of the data in the database
segments can be captured and added to the DBD. The enhanced DBD can then be
generated back on the host system, and included in the catalog. This section details how to
use the IMS Explorer for Development to capture the extra metadata information from
COBOL copybooks, and extend the DBD ready for generation on the host system.

Before starting, you need to install IMS Explorer for Development. The code is available as
part of the IMS Enterprise Suite Version 2, freely downloadable from the IMS home page
(http://www.ibm.com/ims). There are several run-time versions of this code, and the one
needed for this task is the “shell-sharing” version. This installs with the IBM Installation
Manager as an extension to IBM Rational® Developer for zSeries® or IBM Rational
Developer for zEnterprise®.

To start, run Rational Developer for zEnterprise (or Rational Developer for zSeries), and open
the IMS Explorer perspective as shown in Figure 14.
 IMS 12: The IMS Catalog 33

http://www.ibm.com/ims

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Figure 14 IMS Explorer perspective in Rational Developer for zEnterprise

To create a new IMS Explorer Project, right-click in the Project Explorer window (top-left), and
select New -> Project... to bring up the create new project wizard (Figure 15).
34 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Figure 15 Create a New Project wizard

The wizard is the IMS Explorer Project wizard. Select this one, and click Next. See Figure 16.

Figure 16 IMS Explorer Project

Enter a name for the IMS Explorer Project in the pane of Figure 17.
 IMS 12: The IMS Catalog 35

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Figure 17 Name the IMS Explorer Project

When the wizard completes, RDz shows the named project in the Project Explorer window
(see Figure 18).
36 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Figure 18 The LGI Application IMS Explorer Project

Next, you must import the database description (DBD) for the database(s) for which you are
going to capture the metadata. To do this, right-click on the Explorer Project (in this case, LGI
Application), and select Import... (Figure 19).
 IMS 12: The IMS Catalog 37

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Figure 19 Options for an IMS Explorer Project

Select the IMS Resources option, and click Next. See Figure 20.

Figure 20 Select an Import Source

Enter the name of the Project in Figure 21.
38 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Figure 21 Provide a name for the IMS Resources to be imported

In Figure 22, select a location from which the resources are to be imported. This can be a file
on your local workstation, a file on a host you are connected to, or an IMS catalog. Then press
Next.
 IMS 12: The IMS Catalog 39

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Figure 22 Select the Import Source of the source to be imported

You can now select the files from that source you want imported into your project. Note that
while there are separate buttons on this window for DBDs and PSBs, IMS Explorer can
identify the resources in the source file selected, and lists them in the appropriate list in this
window. IMS Explorer also understands a file of JCL containing multiple DBDs, PSBs, or a
mixture of both, which simplifies the import process.

The first resources to be imported here are DBDs, so press the Add DBD button in Figure 23.
40 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Figure 23 Select resources from the local file system

Select the file containing the DBDs to be imported. See Figure 24. Note that in this example
multiple DBDs are in a JCL file which has previously been downloaded to the local
workstation. IMS automatically filters out the JCL, and imports each of the DBDs in the file.

Figure 24 Select the file containing the resources to be imported
 IMS 12: The IMS Catalog 41

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
The Import IMS Resources window shows the two DBDs (S2U1DBD and S2U1DXD) which
were in the single JCL file just imported. At this point, any of these DBDs can be deleted from
the import list if desired.

To add PSBs to this import, press the Add PSB... button. See Figure 25.

Figure 25 Keep selecting more files until you are done...

As with the DBDs, a single file can contain multiple PSBs, and possibly the JCL used to
generate them. IMS looks for each of the PSBs and DBDs in the file selected, and adds each
of them to the import selection.

Select the file containing the PSBs you want to import, and press Open. See Figure 26.
42 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Figure 26 Selecting the PSB source to be imported

The Import IMS Resources window shows the two PSBs imported from the single file just
selected. At this point, any of these DBDs and PSBs can be removed from the import list with
the Delete DBD and Delete PSB buttons respectively.

Explorer also shows any DBDs that would still need to be imported to satisfy the databases
referenced in the PSBs to be imported. In this example, the two PSBs reference only the
databases to be imported.

Now, you are ready to import these DBDs and PSBs into your project. In Figure 27, press the
Finish button.
 IMS 12: The IMS Catalog 43

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Figure 27 Lists of the DBD and PSB resources to be imported

The LGI Databases project now includes the DBDs and PSBs you have just imported, as well
as several other artifacts needed later. At any time, you can refer back to this project to see
the DBD or PSB Source which was imported. The project also includes the Generated
Source for the DBDs and PSBs. At this stage, however, the generated source is the same as
the imported source, since you have not yet added any of the metadata from the COBOL
copybooks or PL/I Include members. You will do that soon.

To see the current layout of a database, click on the “twistie” at the left of the DBD, to expand
the list of DBDs in your project. See Figure 28.
44 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Figure 28 LGI Databases project, showing the DBD and PSB resources which have been imported

You can now see the two DBDs which have been imported into your project, S2U1DBD.dbd
and S2U1DXD.dbd. Double-click on the S2U1DBD.dbd in Figure 29 to see the view of this
database.

Figure 29 Expanding the DBD Resources view

You can now see the graphical layout of the database, shown in Figure 30. The segments in
the S2U1DBD database are shown, the relationships between these segments, and the fields
defined to each of the segments.
 IMS 12: The IMS Catalog 45

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Figure 30 The Explorer view of an IMS Database

From here, you can import the rest of the metadata for this database into this IMS Explorer
project. To do this, right-click on the CUSTROOT segment in the graphical view, and select
Import COBOL or PL/I Data Structures. This opens the window shown in Figure 31.
46 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Figure 31 Importing database metadata from COBOL or PL/I

Click on Browse in Figure 32, to select the file containing the COBOL or PL/I definition for the
segment.
 IMS 12: The IMS Catalog 47

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Figure 32 Select the file containing the Copybook or Include member

Select the file containing the COBOL or PL/I definition for the custroot (customer) segment,
and press Open in Figure 33.

Figure 33 Identify the data structure to be imported for a database segment

In the COBOL copybook you selected, there is only one definition layout, so you can simply
press the Add button Figure 34 to add this structure as the metadata for the CUSTROOT
segment.
48 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Figure 34 Importing the metadata for a database segment

From here, press the Finish button, to import this segment layout into the database definition
for the CUSTROOT segment. Figure 35 shows the expanded definition for this segment in the
database.

Figure 35 Explorer database view, with imported metadata for one segment

The same process (right-click on segment, import COBOL or PL/I copybook, press Add, then
Finish) is used to import the metadata for each of the other segments in the database.

Figure 36 shows the database layout with definitions for each of the segments in the
database. Note the asterisk at the left of the database name (*S2U1DBD.dbd). This indicates
the database definition has not yet been saved. Select File -> Save to save the enhanced
database definition to the LGI Database Project.
 IMS 12: The IMS Catalog 49

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Figure 36 Explorer database view, with imported metadata for all segments

You have now captured the metadata for the layout of each of the segments in your database.
If you click on the “twisties” for DBD Source and Generated Source in your project, you come
to the “IMS catalog-enabled DBD source files” heading. Here are the enhanced definitions for
the databases in your project. See Figure 37.

Figure 37 The catalog-enabled DBD source
50 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
You have now captured the expanded metadata for these databases. A snippet of the
expanded DBD definition for this database is shown in Figure 38.

Figure 38 Sample of a DBD with catalog-enabled source

From here, you can use existing IMS database definition processes to include the enhanced
database definition into your IMS system. The steps include:

� Copy the expanded DBD source(s) to the host.

There are several ways to do this. Recent versions of IBM Personal Communications
include an FTP client with a graphical user interface. Simple file transfer through your 3270
emulator is also available.

� Generate these DBDs with standard DBDGEN processes.

� Perform an ACBGEN and Catalog Populate utility execution.

The updated database description needs to be added into your ACB library, and also to
the catalog. This can be done in a single utility execution, or separately as desired.

The database metadata has now been captured into the catalog. Existing applications
continue to access their databases as they always have, and new Java applications can use
the catalog definitions to simplify the JDBC access to the same IMS databases.
 IMS 12: The IMS Catalog 51

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Enhancements to the IMS Universal drivers

All Universal drivers have being enhanced to leverage the IMS catalog as follows:

� Direct access to IMS metadata in the catalog
� No longer require the separate Java metadata class
� No longer file-system dependent for metadata

– Virtual deployment support
� Metadata is trusted and up-to-date
� Application Development community can access any IMS database defined in the catalog
� New complex and flexible data type support

We describe the changes to the IMS drivers in two following sections:

� Access to the IMS databases from Java

� Using the metadata information in the DL/I access

Access to the IMS databases from Java

Before any data can be accessed on DL/I databases, it is required to establish a connection.
Traditionally an access with IMS/DLI requires a PSB, and this also true for Java. Traditional
languages, like COBOL, PL/I... simply work with a segment content, which is accessed by the
“Segment Search Arguments”, protocol. Java supports two ways to access DL/I databases
thru the universal drivers (Type 4 for distributed, Type 2 for local).

� SSA oriented (for DL/I clients)

� JDBC (Java Database Connectivity) clients

JDBC requires the additional support of metadata about the accessed information. In
previous releases this support was given by DatabaseView classes generated by the
DLIModel utility. IMS 12 adds a more centralized approach, by putting the metadata in a
catalog. The use of metadata information offer to the Java language a lot of interesting access
perspectives (case mapping, structure selects...), not available in other languages.

The “metadata” support can come from the DLIModel or the IMS catalog, and the choice has
to be made ad connection time, see Figure 39.

Figure 39 Connect of a Java program thru the drivers

Before being able to access the DL/I databases two elements are required

1. A PSB (for language Java) must exist

DLI data

Catalog

connect
//class:.. Jdbc psb

CATpsb

Jdbc

connect
PSBNAME Metadata(GUR)

metadata

DRIVER

Database
View

Java pgm
52 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
2. DatabaseView class or IMS catalog for obtaining metadata

– A DatabaseView class must have been generated by the DLIModel utility
– Metadata information is available in the catalog.

Connecting to IMS for use with JDBC (JDBC client)
In Example 19 we show a code excerpt of how to obtain a Type 4 connection (with IP address
and port number) with IMS for a JDBC client.

Example 19 Obtain connection with IMSDataSource for use with JDBC

JDBC connection:

import java.sql.Connection;
import java.sql.SQLException;
import com.ibm.ims.jdbc.IMSDataSource;
...

IMSDataSource ds = new IMSDataSource();
Connection conn = null;

ds.setDatastoreName(alias);// IMS alias name defined in ODBM
ds.setDatabaseName(psbName);
// ds.setMetadataURL(url);---> deprecated

ds.setUser(user);
ds.setPassword(password);
ds.setDriverType(driverType);

// optional settings
ds.setLoginTimeout(seconds);
ds.setDescription(description);
try {

ds.setLogWriter(out);// set to a java.io.PrintWriter object
} catch (SQLException e) {

// handle exception
}

// JDBC type 4 driver specific settings
if (driverType == IMSDataSource.DRIVER_TYPE_4) {

ds.setSSLConnection(enableSSL);
ds.setDatastoreServer(host);// IP address or DNS name of the

// LPAR where ICON resides
ds.setPortNumber(port);// ICON DRDA port number

}

try {
// Establish a connection using the data source
conn = ds.getConnection();

// do some work here

conn.close();
} catch (SQLException e) {

// handle exception
}

}

� Notice the use of the IMSDatasource, which gets its properties thru several setters and
finally the getConnection() method to obtain the connection object.
 IMS 12: The IMS Catalog 53

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
� As shown in Example 20, the setMetadataURL() method on the IMSDataSource is now
deprecated and replaced by setDatabaseName(url).

The method setDatabaseName(url) sets the name of the target IMS databases to be
accessed.

– If the metadata repository is the IMS catalog then the database name (url) is the name
of the PSB (program specification block) containing the database(s) to be accessed.

– If the metadata repository is the DatabaseView class then the database name is the
fully qualified name of the Java metadata class generated by the DLIModel utility. In
this case the name must begin with class://.

Connecting to IMS for use as a DL/I client
In Example 20 you can see an excerpt of the code required to obtain access to DL/I data from
a “DL/I client” through the “pcb” object. By a “DL/I client” we indicate that the access takes
place as in the other languages, with PCB, SSAs, and function codes.

Example 20 Obtain connection with PSB for use with DL/I

DLI connection:

import com.ibm.ims.dli.DLIException;
import com.ibm.ims.dli.IMSConnectionSpec;
import com.ibm.ims.dli.IMSConnectionSpecFactory;
import com.ibm.ims.dli.PCB;
import com.ibm.ims.dli.PSB;
import com.ibm.ims.dli.PSBFactory;
import com.ibm.ims.jdbc.IMSDataSource;
...

IMSConnectionSpec connSpec
= IMSConnectionSpecFactory.createIMSConnectionSpec();

PSB psb;
PCB pcb;

connSpec.setDatastoreName(alias);
connSpec.setDatabaseName(databaseName);
// connSpec.setMetadataURL(url);---> deprecated

connSpec.setUser(user);
connSpec.setPassword(password);
connSpec.setDriverType(driverType);

if (driverType == IMSDataSource.DRIVER_TYPE_4) {
connSpec.setSSLConnection(enableSSL);
connSpec.setDatastoreServer(host);
connSpec.setPortNumber(port);

}

try {
psb = PSBFactory.createPSB(connSpec);
pcb = psb.getPCB(pcbName);

// do some work here

psb.commit();// or alternatively, psb.rollback()

Note: For a JDBC client, the “Connection” object is the target for all other interaction with
the DL/I databases
54 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
psb.close();
pcb.close();

} catch (DLIException e) {
// handle exception

}

Using the metadata information in the DL/I access

With traditional languages (COBOL, PL/I, C...), reading a segment brings a complete record
in an I/O area, basically this a byte area. This area has to be interpreted, as it contains value
fields, eventually with structures and substructures. In these languages, the extract of the
elementary values, which can be in different formats (char, binary, packed decimal), is
straightforward by overlaying the I/O area with dummy sections (COBOL copybooks, C, PL/I
includes). This technique is not available for Java.

The changes on the DBDGEN macros, as explained in “New DBDGEN statements in IMS 12”
and extensions to the Java “access” classes allow for an enhanced access approach of the
DL/I databases by Java programs. They give the possibility to put explicit metadata
information in the DBD and to store it in the catalog. Other metadata information, implicitly
present in the “dummy” sections can also be accumulated in the catalog.

Based on the exploitation of the “metadata”, Java (JDBC,DL/I) offers also a powerful detailed
and controlled access to the information in the databases. When programming Java for
accessing the DL/I databases as a JDBC client or a DL/I client, you can use different styles:

� JDBC SQL approach, (with or without) IBM/IMS extensions
� IBM/IMS extended DL/I style

Due to the metadata support for Java, several enhancements are now available for Java. We
describe them in the following sections.

Variable length segment support
The IMS Universal Drivers for both type-2 and type-4 database access are enhanced to
support variable length database segments. Support has been added to the Universal Drivers

� V11 - APAR PM14766
� V12 - APAR PM25951

Because the standards for JDBC do not have a concept of segment length, the default
behavior is that the JDBC driver manages variable length segments internally for read,
update, and insert operations without any additional action from the client.

� SQL clients can directly read and update the length field of a variable length segment by
explicitly requesting access when the connection is created.

� DL/I clients always have access to the length field.

Note: For a DL/I client, the PCB is the target for other interactions

Note: Traditionally, when creating a Struct or an Array object, you have to define it in a
bottom up matter starting with the Struct attributes or the Array Elements.

IBM Extension allows for top down creation of a Struct or a Array object. You can define the
Struct or Array object and then set the attributes and elements. It avoids potential
complexity when dealing with nested structures. It also allows for setting and getting Struct
and Array attributes by the attribute name.
 IMS 12: The IMS Catalog 55

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Variable Length Segments contain a two byte length (LL) field that identify the size of the
segment instance. Universal Drivers are now sensitive to the LL field of a Variable Length
Segment and manage the IO area of the segment instance on standard CRUD calls. A new
Connection Property llField determines whether the ll field of the segment is exposed to the
program or not.

The New Connection Property llField can be set to true/false

� llField = true

The LL field of variable length segments is exposed to the user in both the SQL and DL/I
interfaces. User fully manages the LL field for the segment instance. This is how users
currently manage variable length segments

� llField = false (default)

The universal driver automatically manages the LL field for the user.

Example 21 shows the variable length information related to segment WARD in the
DatabaseView.

Example 21 Variable segment length information in DatabaseView class

static DLISegment PHDAMVARWARDSegment = new DLISegment
(“WARD”,”WARD”,PHDAMVARWARDArray,32,900,DBType,PHAM,false);

// Minlength, Maxlength

Example 22 shows the variable length information in the catalog.

Example 22 Variable segment length information in IMS catalog -XML

<segment imsName=”WARD” name=”WARD”>
<phdam>

<bytes minBytes=”32” maxBytes=”900”/> <======minbytes,maxbytes
</phdam>

....
</segment>

Structure support
Structures are Data Structures that stores a combination of values. Struct support was added
specifically for the IMS catalog in IMS 12 to represent common application metadata.
Example 23 represents a simple structure with name “ADDRESS-INFO”, but for Java it is an
object.

Example 23 COBOL structure example

01 PERSON.
02 PERSNR PIC X(6).

 02 ADDRESS-INFO.
04 CITY PIC X(15).
04 STREET PIC X(25).
04 ZIP PIC X(5).

Structure metadata is stored in the IMS catalog. Universal Drivers can retrieve the metadata
on Structs as XML through the GUR call. See Example 24.

Note: The variable length support is introduced for both “DLIModel” and the “IMS catalog
metadata”.
56 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Example 24 Structure information in the IMS catalog

..........
<field name="ADDRESS_INFO">
 <startPos>6</startPos>
 <bytes>45</bytes>
 <marshaller encoding="CP1047">
 <typeConverter>STRUCT</typeConverter>
 </marshaller>
 <applicationDatatype datatype="STRUCT"/>
 <field imsDatatype="C" name=“CITY">
 <startPos>1</startPos>
 <bytes>15</bytes>
 <marshaller encoding="CP1047">
 <typeConverter>CHAR</typeConverter>
 </marshaller>
 <applicationDatatype datatype="CHAR"/>
 </field>
 other fields
</field>

Example 25 shows the code for JDBC SQLretrieve of the structure (PERSON_INFO), refer to
COBOL definition in Example 10-20. In the code you extract the subfield values from the
structure object, two approaches are shown.

Example 25 JDBC SQL for structure retrieve

Connection conn =
Statement st = conn.createStatement("SELECT * FROM”

 + pcbName +".PERSON WHERE PERSNR = ‘XXXXXX?”);
ResultSet rs = st.executeQuery();
rs.next();

// 2 ways to retrieve the information
//---
// 1) standard SQL

Struct addressInfo = (Struct)rs.getObject("ADDRESS_INFO");
Object[] addressInfoAttributes = addressInfo.getAttributes();
String city = (String) (addressInfoAttributes[0]).trim());
String street = (String) (addressInfoAttributes[1]).trim());
String zip = (String) (addressInfoAttributes[2]).trim());

//---
// 2) with IBM/IMS extensions

StructImpl addressInfoimpl = (StructImpl)rs.getObject("ADDRESS_INFO");
String city = addressInfoimpl.getString(“CITY”);
String street = addressInfoimpl.getString(“STREET”);
String zip = addressInfoimpl.getString(“ZIP”);

//---

With the StructImpl class, you have direct access to the structure fields with the adequate
getters.

Next new values are provided for the fields and a JDBC/SQL update stores the new structure
in the DL/I database. See Example 26.

Example 26 Updating the PERSON segment with JDBC

Connection conn =
PreparedStatement ps = conn.prepareStatement("UPDATE " + pcbName + ".PERSON

SET ADDRESS_INFO =? WHERE PERSNR = “XXXXXX");
//---
 IMS 12: The IMS Catalog 57

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
// 1) standard SQL
Object[] newAddressInfoAttribute = new Object[]

{“LEUVEN”,”BONDGENOTENLAAN”, “3000”};
Struct newAddressInfoStruct = conn.createStruct(pcbName +

".PERSON.ADDRESS_INFO", newAddressInfoAttribute);
ps.setObject(1, newAddressInfoStruct);

//---
// 2) with IBM/IMS extensions

StructImpl newaddressInfoImpl =
(StructImpl)conn.createStruct(pcbName + ".PERSON.ADDRESS_INFO");

newaddressInfoImpl.setString(“CITY”,”LEUVEN”);
newaddressInfoImpl.setString(“STREET”,”BONDGENOTENLAAN”);
newaddressInfoImpl.setString(“ZIP”,”3000”);
ps.setObject(1, newaddressInfoimpl);
//---
int numberOfSuccessfulUpdates = ps.executeUpdate();

The previous examples showed code for a JDBC client, Example 27 shows a Java code
excerpt for a retrieve with DL/I client.

Example 27 DL/I access for structure retrieve

PCB pcb = ... {
SSAList ssaList = pcb.getSSAList("PERSON");

//specify a qualified SSAList for segment PERSON = XXXXXX field PERSNR
ssaList.addInitialQualification("PERSON","PERSNR",SSAList.EQUALS, "XXXXXX");

//Retrieve all fields from PERSON (fixed segment)
ssaList.markAllFieldsForRetrieval("PERSON", true);

//Creates I/O area for data
Path path = ssaList.getPathForRetrieve();

//retrieve the data
pcb.getUnique(path, ssaList, true);
DBStruct personinfo = (DBStruct)path.getObject("PERSON_INFO");

//---
// 1)

Object[] addressInfoAttributes = personinfo.getAttributes();
String city = ((String)addressInfoAttributes[0]).trim();
String street = ((String) addressInfoAttributes[1]).trim();
String zip = ((String) addressInfoAttributes[2]).trim();

//---
// 2)

String city = personinfo.getString(“CITY”).trim();
String street = personinfo.getString(“STREET”).trim();
String zip = personinfo.getString(“ZIP”).trim();

Arrays
If the correct metadata have been assembled in the catalog, arrays are also supported.
Arrays are Data Structures that stores a repeating combination of values, see Example 28.

Example 28 COBOL array

01 STUDENT.
02 STUDENTNAME PIC X(25).
02 AGE PIC 9(2) COMP.
02 COURSE OCCURS 5 TIMES.

04 COURSENAME PIC X(15).
04 INSTRUCTOR PIC X(25).
04 COURSEID PIC X(5).
58 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Dynamic and Static Array support was added specifically for the IMS catalog in IMS 12 to
represent common application metadata. Universal Drivers only support Static Arrays, they
can retrieve the metadata on Arrays as XML through the GUR call.

A proprietary method of setting the elements within a DBArrayElementSet object has been
added, it is similar to a ResultSet. It is possible to position on a specific element in an array
with the following methods: next(), previous(), first(), last(), absolute(int index)

Also common getters and setters are provided for nested fields within an array element

� setBoolean(String, boolean)
� setString(String, String)
� getBoolean(String)
� getString(String)
� etc.

Example 29 shows the retrieve of the segment “STUDENT”, which contains an array. Notice
the usage of the DBArrayElementSet class.

Example 29 Retrieve of segment “STUDENT”

String[] coursename =new String[5];
String[] instname =new String[5];
String[] courseid =new String[5];
st = conn.createStatement();
rs = st.executeQuery("SELECT * FROM " + pcbName +

".STUDENT WHERE STUDENTNAME = XXXX”);
rs.next()
String studname = rs.getString(“STUDENTNAME”);
short age = rs.getShort(“AGE”);

// 2 ways to retrieve the information
//---
// 1) standard SQL

Array fivecourses = rs.getArray("COURSE");
Struct[] fivecourseselem = (Struct[]) fivecourses.getArray();
// Each array element is represented as a Struct
for (int arrayIdx = 0; arrayIdx < fivecourseselem.length; arrayIdx++) {

Object[] courseinfo = fivecourseselem[arrayIdx].getAttributes();
coursename[arrayIdx] = (String) courseinfo[0];
instname[arrayIdx] = (String) courseinfo[1];
courseid[arrayIdx] = (String) courseinfo[2];

}
//---
// 2) with IBM/IMS extensions

int arrayIdx = 0;
ArrayImpl fivecoursesImpl = (ArrayImpl)rs.getArray("COURSE");
DBArrayElementSet fivecoursesArrayElementSet = fivecoursesImpl.getElements();
try {

while (fivecoursesArrayElementSet.next()); {
coursename[arrayIdx] =

fivecoursesArrayElementSet.getString("COURSENAME");
String instname[arrayIdx] =

fivecoursesArrayElementSet.getString("INSTRUCTOR");
String courseid[arrayIdx] =

fivecoursesArrayElementSet.getString("COURSEID");
arrayIdx++;

}
} catch (Exception e {

.....
}

 IMS 12: The IMS Catalog 59

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
//---

Notice in the previous Example 29, the use of the DBArrayElementSet class.

Example 30 shows the insert of a new STUDENT segment, we show again the two ways of
JDBC coding.

Example 30 Insert of a new STUDENT segment

PreparedStatement ps = conn.prepareStatement
("INSERT INTO " + pcbName + ".STUDENT ("STUDENTNAME", "AGE", "COURSE")
VALUES(? ? ?);

String coursenm[] = {“HISTORY”,”ENGLISH”,”FRENCH”,”ITALIAN”,”JAVA”};
String teacher[] = {“SMITH”,”OBAMA”,”SARKOZY”,”PAOLO”,”SVLTEACHER”};
String courseid[] = {“10”,”51”,”52”,”55”,”40”};
ps.setString(1,”FREDERIK”);
ps.setShort(2,41);

//---
// 1) standard SQL
// fill now the ARRAY object

Struct[] courseArrayElements = new Struct[5];
for (int arrayIdx = 0; arrayIdx < 5; arrayIdx++) {

Object[] courseAttributes = new Object[]
{coursenm[arrayIdx], teacher[arrayIdx], courseid[arrayIdx]};

courseArrayElements[arrayIdx] = conn.createStruct
(“COURSE", courseAttributes);

}
Array courseArray = conn.createArrayOf(“COURSE, courseArrayElements);
ps.setArray(3,courseArray);

//---
// 2) with IBM/IMS extensions

int arrayIdx = 0;
ArrayImpl fivecoursesImpl = ((ArrayImpl) ((ConnectionImpl)conn).createArrayOf

(pcbName + ".STUDENT.COURSE"));
DBArrayElementSet fivecoursesArrayElementSet = fivecoursesImpl.getElements();
try {

while (fivecoursesArrayElementSet.next()); {
fivecoursesArrayElementSet.setString(“COURSENAME”,coursenm[arrayIdx]);
fivecoursesArrayElementSet.setString(“INSTRUCTOR”,teacher[arrayIdx]);
fivecoursesArrayElementSet.setString(“COURSEID”,courseid[arrayIdx]);
arrayIdx++;

}
} catch (Exception e) {
}
ps.setArray(3,fivecoursesImpl);

//---
int numberOfSuccessfulInserts = ps.executeUpdate();

Mapping support
A Map is metadata that describes how a field (or set of fields) are mapped for a particular
segment instance. Metadata captures the various cases and for each case defines the set of
fields to be used for that case. Maps can be defined to the catalog.

Maps are interpreted at runtime by the Universal drivers and the proper data elements are
returned based on the runtime case of the segment instance. Figure 40 shows a “case”
selection based on the control field PolicyType.
60 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
Figure 40 Insurance segment mapped multiple ways depending on the Policy Type control field

All case fields are exposed in the “metadata”. There is no concept of maps or cases at the
SQL level. The support by “metadata” creates a requirement that all case fields have unique
names from each other.

What you see in Figure 40 is the SQLview of the data. This representation gives the
impression that a lot of space is empty on disk. The reality is different. All maps have to be of
the same length and in this case the segment physical view would be like in Figure 41.

Figure 41 Segment view on disk

Note that the control field PolicyType is not really a part of the mapping.

Example 31 shows an excerpt of the case mapping information in the metadata.

Example 31 Universal Drivers pull metadata from IMS catalog GUR call as XML

<field imsDatatype="C" imsName="POLTYPE" name="PolicyType"> <-CASE Control field
 <startPos>1</startPos>
 <bytes>1</bytes>
 <marshaller encoding="CP1047">
 <typeConverter>CHAR</typeConverter>
 </marshaller>
 <applicationDatatype datatype="CHAR"/>
</field>
<mapping dependingOnField="PolicyType">
 <case name="HOUSE"><- CASE
 <dependingOnFieldValue valueDatatype="C" value="H"/>
 <field imsDatatype="C" imsName="PROPTYPE" name="PropertyType">
 <startPos>2</startPos>
 <bytes>15</bytes>
 <marshaller encoding="CP1047">
 <typeConverter>CHAR</typeConverter>
 </marshaller>
 <applicationDatatype datatype="CHAR"/>
 </field>
 ...
 </case>

555 Disk

Drive Way,
95141

500K5
Single
Family

H

Red2K1989EscortFord----M

ColorHValueYearModelMakeAddressMValueRoomsProperty
Type

Policy
Type

Policy
Type

Make Model Year HValue Color

M Ford Escort 1989 2K Red

Property Type Rooms MValue Address

H Single Family 5 500K 555 Disk Drive Way, 95141
 IMS 12: The IMS Catalog 61

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
 ...
</mapping>

Maps and cases are a new feature added to both the SQL and DL/I interface and was
designed to be functionally identical. The use of case-mapping supporting offers the following
specific CRUD behaviors.

� SQL Select/DLI Read

When a case is not the active case based on the map’s control field, its fields are treated
as null fields

� SQL Insert/DLI Create

Cannot insert values for a case’s fields unless the insert also includes the value for the
control field that makes the case active

� SQL Update/DLI Update

Cannot update values for a case’s fields unless the case is currently active or the control
field is also being updated to a value that would make the case active

� SQL Delete/DLI Delete

No new behavior

Example 32 shows a case and mapping retrieve.

Example 32 Cases and mapping

st = conn.createStatement();
rs = st.executeQuery("SELECT * FROM " + pcbName + ".INSURANCES");
while (rs.next()) {

byte policytype = rs.getByte("PolicyType");
switch (policytype) {

case ('M'):
String make = rs.getString("Make");
String model1 = rs.getString("Model");
short year = rs.getShort("Year");
int mvalue = rs.getInt("MValue");
String color = rs.getString("Color");

case ('H'):
String propertyType = rs.getString("Make");
short room = rs.getShort("Room");
int hvalue = rs.getInt("HValue");
String address = rs.getString("Address");

}
}

Redefines
Redefines are essentially overlapping fields. Redefines is a way of re-mapping a field in the
database. See Example 33.

Example 33 COBOL structure example

01 PERSON.
02 ADDRESS PIC X(45).
02 ADDRESS-INFO REDEFINES ADDRESS. <-------------------

04 CITY PIC X(15).
04 STREET PIC X(25).
04 ZIP PIC X(5).
62 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
In Example 34 you see the way this redefine information is stored in the catalog.

Example 34 Redefine metadata information in the IMS catalog

<field imsDatatype="C" name=“ADDRESS">
 <startPos>1</startPos>
 <bytes>45</bytes>
 <marshaller encoding="CP1047">
 <typeConverter>CHAR</typeConverter>
 </marshaller>
 <applicationDatatype datatype="CHAR"/>
</field>

<field name=“ADDRESS_INFO“ redefines=“ADDRESS>< redefine
 <startPos>1</startPos>
 <bytes>45</bytes>
 <marshaller encoding="CP1047">
 <typeConverter>STRUCT</typeConverter>
 </marshaller>
 <applicationDatatype datatype="STRUCT"/>
 ...
</field>

Overlapping fields can be interchangeable. Search performance of a query depends on the
type of field in the qualification statement

� Key Fields – Fastest
� Searchable Fields
� Not Searchable (i.e., application defined fields)

Universal drivers promote a field upwards when issuing queries against IMS

Example where the key field, KEY, and non-key field, NONKEY, redefine each other:

SELECT * FROM TBL WHERE NONKEY=A ===>becomes
SELECT * FROM TBL WHERE KEY=A

The trace and log file shows the promotion in the SSA list that is sent from the universal driver
to IMS

Public Converter Interfaces
Public interfaces have been added to the universal drivers internal type converters for
customers to use in implementing their own type converter routines. Support has been added
in IMS 10, IMS 11, and IMS 12

New ConverterFactory class that allows users to create:

� DoubleConverter
� FloatConverter
� IntegerConverter
� LongConverter
� PackedDecimalConverter
� ShortConverter
� StringConverter
� UByteConverter
� UIntegerConverter
� ULongConverter
� UShortConverter
� ZonedDecimalConverter
 IMS 12: The IMS Catalog 63

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Converter classes contains a getter and setter method for converting the data type to a binary
representation

The IMS catalog is built to store information on fields with a user defined type, which allows
users to interpret binary data stored in IMS in whatever form is required for their application

Example 35 show IMS catalog metadata that contains a user defined type.

Example 35 Field with Fully Defined Converter Class

<field name="PACKEDDATEFIELD">
 <startPos>40</startPos>
 <bytes>5</bytes>
 <marshaller encoding="">
 <userTypeConverter>class://com.ims.PackedDateConverter</userTypeConverter>
 <property name="pattern" value="yyyyMMdd"/>
 <property name="isSigned" value="N"/>
 </marshaller>
 <applicationDatatype datatype="OTHER"/> <===== set to Other ====
</field>

User Type converters must extend the com.ibm.ims.dli.types.BaseTypeConverter abstract
class.

Universal Drivers include a User Defined Type Converter along with its source for the
PackedDate type which stores Date information as a PackedDecimal field. See Example 36.

Example 36 User Defined Type Converter for the PackedDate type

public class PackedDateConverter extends BaseTypeConverter {

 public Object readObject(byte[] ioArea,int start,int length,Class objectType,
Collection<String> warningStrings) throws ConversionException {

...
}

 public void writeObject(byte[] ioArea, int start, int length, Object object,
Collection<String> warningStrings) throws ConversionException {

 ...
 }
}

Application-transparent metadata access
Users can explicitly issue a GUR call through the following method, which is only available for
“DL/I clients”:

PCB.getCatalogMetadataAsXML(String resourceName, byte[] resourceType)

The input parameters are:

� resourceName

the name of the PSB or DBD resource to be retrieved

� resourceType in the format PCB.PSB_RESOURCE or PCB.DBD_RESOURCE

identifies whether a PSB or a DBD resource is to be retrieved

The call returns an XML document containing the metadata for the resources requested. The
XML document conforms to IMS managed schemas. The following schemas are made
available with the IMS catalog:
64 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
� DFS3XDBD.xsd
� DFS3XPSB.xsd

Example 37 shows the explicit GUR call.

Example 37 Example of a explicit GUR call

byte[] gurOutput = pcb.getCatalogMetadataAsXML(“STLIVP1”, PCB.PSB_RESOURCE);

Example 38 shows the getCatalogMetaDataAsXML public method definition.

Example 38 Example of getCatalogMetaDataAsXML public method definition

/**
 * This method returns a byte array containing the requested catalog resource
 * as an XML document.
 * <p>The following code fragment illustrates how to retrieve the timestamp
 * (TSVERS) value from the IMS Catalog.
 * <blockquote>
 * <pre>
 * PCB pcb = psb.getPCB("DFSCAT00");
 * SSAList ssaList = pcb.getSSAList("HEADER", "DBD");
 * Path path = ssaList.getPathForRetrieveReplace();
 * pcb.getUnique(path, ssaList, false);
 * String timestamp = path.getString("TSVERS");
 * </pre>
 * </blockquote>
 *
 * @param resourceName the name of the PSB or DBD resource in the catalog
 * @param resourceType the type of resource (PCB.PSB_RESOURCE or PCB.DBD_RESOURCE)
 * @param timestamp the TSVERS version for the resource following the
 * pattern yyDDDHHmmssff
 * @return the resource metadata in XML
 * @throws DLIException if the resource was not found in the catalog or an error
 * occurs during processing
 * @see #PSB_RESOURCE
 * @see #DBD_RESOURCE
 */
 public byte[] getCatalogMetaDataAsXML(String resourceName,

byte[] resourceType, String timestamp)
throws DLIException

;

Recommended maintenance

With a new function made available through the maintenance stream it is important to be
current.

In this section, we summarize the recent maintenance for IMS 12 which provides and
enhances the IMS catalog support. The list of APARs in Table 1 represents a snapshot of the
current maintenance at the moment of writing. As such, the list becomes incomplete or even
incorrect at the time of reading. Make sure that you contact your IBM Service Representative
for the most current maintenance at the time of your installation. Also check on IBM RETAIN
for the applicability of these APARs to your environment, as well as to verify pre- and
post-requisites.
 IMS 12: The IMS Catalog 65

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Table 1 IMS 12 APARs for catalog support

APAR # Area Text PTF and notes

PM36434 Catalog Preconditioning code for IMS 12 UK78043

PM38214 IVP Support for the IMS catalog UK78071

PM38939 Catalog Preconditioning code for IMS 12 UK78042

PM38942 Catalog Preconditioning code for IMS 12 UK78028

PM42903 Catalog Preconditioning code for IMS 12 UK78067

PM42904 Catalog Preconditioning code for IMS 12 UK78066

PM42905 Catalog Preconditioning code for IMS 12 UK78045

PM42906 Catalog Preconditioning code for IMS 12 UK78070

PM42908 Catalog Preconditioning code for IMS 12 UK77993

PM42909 Catalog Preconditioning code for IMS 12 UK78069

PM45935 IMS Universal
drivers

Support for the IMS catalog UK77995

PM55836 Open Database
Manager

ABEND0C4 UK77127

PM61228 Advanced
ACBGEN

Support for the IMS catalog UK78428

PM62879 Catalog
Populate Utility
DFS3PU00

Support for the IMS catalog
(performance)

UK79622

PM63976 ODBM Excessive TCB attach and detach processes when
running ODBM with RRS=N

OPEN

PM63977 ODBM Excessive TCB attach and detach processes when
running ODBM with RRS=N

OPEN

PM64745 High
Performance
Pointer Checker

Support for the IMS catalog UK79246

PM65139 SSA SSA enhancement for IMS 12 OPEN

PM68881 Index Builder Support for the IMS catalog PACKAGING

PM68396 DBD/PSB/ACB Support for the IMS catalog INTRAN

PM69378 IMS Universal
drivers

SSA qualification enhancement for IMS Universal
Drivers to allow searching on application defined fields

OPEN

PM69550 Advanced
ACBGEN

Support for the IMS catalog OPEN

PM70701 Authorized
JSCBAUTH

Support for the IMS catalog OPEN
66 IMS 12: The IMS Catalog

Draft Document for Review August 28, 2012 5:47 pm 4812paper.fm
The supporting documentation for the IMS catalog function is available online in the IMS
Version 12 library in the Information Management for System z information center at
Information Management Software for z/OS Solutions Information Center at
http://publib.boulder.ibm.com/infocenter/imzic

The team who wrote this paper

This paper was produced by a team of specialists from around the world working at the
International Technical Support Organization, San Jose Center.

Geoff Nicholls is a Consulting IT Specialist, working in the IMS Solution Test team for the
IBM Silicon Valley Laboratory, and is based in Melbourne, Australia. Prior to his current role,
Geoff was a member of the Worldwide IMS Advocate team for 12 years, providing Consulting,
Education and Services to customers in many industries around the world. Geoff is the
co-author of 12 IMS Redbooks® publications. Prior to joining IBM, Geoff worked as an
applications programmer and Database Administrator for several insurance companies and
another mainframe vendor. Geoff has a Bachelor of Science, majoring in Computer Science,
from the University of Melbourne.

Paolo Bruni is an Information Management software Project Leader with the ITSO since
1998. He is based in the Silicon Valley Lab, San Jose. Paolo authors IBM Redbooks
publications about IMS, DB2® for z/OS, and related tools and conducts workshops
worldwide.

Dougie Lawson is a senior software specialist in IMS with IBM Global Services in the United
Kingdom. He works in software support for the UK and Ireland and with the European
software support teams. He has 30 years of experience in the IT field and 29 years working
with IMS. His areas of expertise include IMS, DB2, Linux and z/OS. Before he joined IBM in
1994 he was working as a systems programmer for a large United Kingdom bank, responsible
for IMS and DB2 systems and related products.

Egide Van Aershot holds an Engineering degree in Electricity and Nuclear Physics from the
University of Leuven, Belgium. He joined IBM in 1967 and was responsible for many
computer installations related to teleprocessing and database management in Belgium. In
1997 he moved from IBM Belgium to IBM France, where he worked as an Architect and
Consultant at the IBM Program Support Center in Montpellier. Since 1997, he has specialized
in Java, service-oriented architecture, IMS and WebSphere® applications, mainly on z/OS
systems, and has participated in many projects related to the Internet. Egide is co-owner of
the patent “Methods, systems, program product for transferring program code between
computer processes.” Currently, Egide is a contractor for Zinteg C.V. He teaches System z®
WebSphere Application Server and WebSphere MQ classes for IBM in Northern Europe.

Thanks to the following people for their contributions to this project:

Kyle Charlet
Nathan Church
Catherine Cox
Ben Johnson

Note: PM42909 (UK78069) for IMS catalog support has changed the length (INQELEN in
the DFSINQY mapping macro) of AIB INQY ENVIRON I/O area from 100 to 108 bytes by
adding the catalog indicator. This increase in length requires a change and a recompile for
programs using the INQY ENVIRON call.
 IMS 12: The IMS Catalog 67

http://publib.boulder.ibm.com/infocenter/imzic

4812paper.fm Draft Document for Review August 28, 2012 5:47 pm
Jeff Fontaine
Hiroaki Katahira
Susan Kimura
Charles Ling
Rick Long
Victor Sze
Richard Tran
William Li
IBM Silicon Valley Lab

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
68 IMS 12: The IMS Catalog

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Draft Document for Review August 28, 2012 5:47 pm 4812paper-spec.fm
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright International Business Machines Corporation 2011. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp. 69

4812paper-spec.fm Draft Document for Review August 28, 2012 5:47 pm
®

Redpaper™

This document REDP-4812-00 was created or updated on August 28, 2012.

Send us your comments in one of the following ways:
� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks
� Send your comments in an email to:

redbooks@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

DB2®
IBM®
IMS™
MVS™

Rational®
Redbooks®
Redbooks (logo) ®
System z®

WebSphere®
z/OS®
zEnterprise®
zSeries®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
70 IMS 12: The IMS Catalog

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/legal/copytrade.shtml

	Go to the current abstract on ibm.com/redbooks
	IMS 12: The IMS Catalog
	Introduction
	Overview and objectives of the catalog
	Physical structure of the catalog database
	IMS catalog database installation and management
	Installation
	IMS catalog initial data population
	ACB generation and changes
	IMS Catalog Copy utility
	Keeping multiple versions of metadata in the catalog
	IMS Catalog Record Purge utility
	Automatically creating the IMS catalog database data sets
	Using the IMS catalog without DBRC
	Alias and sharing
	Definitions needed for IMS catalog

	Application use of the catalog
	DBD and PSB source changes
	Get Unique Record (GUR) DL/I call
	IMS catalog access
	SSA enhancements

	The role of the IMS Enterprise Suite Explorer for Development
	Extending IMS database definitions with the IMS Explorer

	Using IMS Explorer to capture IMS metadata
	Enhancements to the IMS Universal drivers
	Access to the IMS databases from Java
	Using the metadata information in the DL/I access

	Recommended maintenance
	The team who wrote this paper
	Now you can become a published author, too!
	Stay connected to IBM Redbooks

	Notices
	Trademarks

