Information Management

Draft Document for Review May 7, 2010 1:21 pm SG24-7856-00

IMS 11 Open Database

Install IMS Open Database and its
prerequisites

Implement Java client access to
IMS and DB2 data

Integrate Mash up Center
with IMS Open Database

Paolo Bruni
Angie Greenhaw

Thilo Liedloff
Bob Stone

edhooks

ibm.com/redbooks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Draft Document for Review May 7, 2010 1:20 pm 7856edno.fm

= International Technical Support Organization

IMS 11: The Open Database
May 2010

SG24-7856-00

7856edno.fm Draft Document for Review May 7, 2010 1:20 pm

Note: Before using this information and the product it supports, read the information in “Notices” on
page xv.

First Edition (May 2010)

This edition applies to Version 11 of Information Management System (IMS) Transaction and Database
Servers (program number 5635-A02) and IMS Enterprise Suite for z/OS, Version 1.1 (program numbers
5655-T60 and 5655-T61).

This document created or updated on May 4, 2010.

© Copyright International Business Machines Corporation 2010. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule

Contract with IBM Corp.

Draft Document for Review May 7, 2010 1:20 pm 7856TOC.fm

Contents

FigUIes . .. e vii
Tables e Xi
EXamples Xiii
NOtiCeS e XV
Trademarks XVi
Preface XVii
The team who wrote thisbook XVii
Acknowledgments. e Xviii
Now you can become a published author, too! XiX
Comments WeICOME. ot Xix
Chapter 1. Introduction. 1
1.1 IMS IS 0PN . . e e e e 2
1.2 IMS 10 and SOA 2
1.2.1 The value of including existing IMS assets into SOA 2
1.2.2 IMS Connect and IMS Connect Extensions v, 5
1.2.3 The IMS SOA Integration Suite. 6
1.2.4 DataPowerand IMS e 9
1.3 IMS11andOpenDatabase i e 10
1.4 The IMS Enterprise Suite e e 14
Chapter 2. Open Database architecture 17
2.1 Why IMS Open Databaseot 18
2.2 AccessingIMSDBinVersions9and 10. ...t 19
2.3 Evolution in IMS 11 e 20
2.4 IMS 11 Architecture. e 23
2.5 Open Database functions 24
2.5.1 IMS Open Database uses DRDA e 24
252 OpenDataBase Manager. e e 25
253 IMS Connect.o 28
2.5.4 Distributed sync pointing.o 33
2.5.5 Distributed Data Management 34
2.6 IMS 11 Universal Drivers e 35
Chapter 3. System environment. 41
3.1 Required environment setup for IMS Open Database 42
3.2 Common Service Layer COmponentsttt 42
3.2.1 Base Primitive Environment configuration 43
3.2.2 Structured Call Interface 45
3.2.3 Operations Managerttt e 46
3.2.4 Open Database Managert e 48
B3 IMS CONNECt . . .o e e 59
3.3.1 First-time implementation: setup and configuration 60
3.3.2 Modifying existing IMS Connect definitions for IMS Open DB support. 63
3.4 Using IMS applications to help set up CSL and IMS Connect 63
3.4.1 Installation Verification Program 63

© Copyright IBM Corp. 2010. All rights reserved. iii

7856TOC.fm

Draft Document for Review May 7, 2010 1:20 pm

3.4.2 IMS Syntax ChecCKer o 67
3.5 Security considerations. 71

Chapter 4. Generating IMS metadata class with IMS Enterprise Suite DLIModel Utility

75
4.1 IntrodUCHIONo 76
4.2 Overview of IMS Enterprise Suite DLIModel utility 76
4.21 Requirements e 78
4.2.2 Restrictions 79
4.2.3 HiStOry. . .o 79
4.3 Download andinstallation 80
4.3.1 Installing the IBM Installation Manager. 81
4.3.2 Installing the IMS Enterprise Suite DLIModel utility 83
4.4 Setup for sample scenarios included inthisbook. 86
4.4.1 Downloading the Car Dealer IVP database source. 86
4.5 Using the IMS Enterprise Suite DLIModel utility 86
4.5.1 Generating metadata for Car Dealerdatabase. 87
4.5.2 Editingthe AUTPSB11 Project s 90
4.5.3 Exportthe metadataas Jarfile.......... i 92
4.6 Additional considerations for the IMS Enterprise Suite DLI Model Utility 93
4.6.1 Ensuring consistency between generated class files and other JRE files 93
4.6.2 Track changes of IMS database reorganizations 94
4.6.3 Integrate the DLIModel Utility with other Eclipse products 94
4.6.4 Datatype conversiontable 94
Chapter 5. IMS Open Database for application developers 95
5.1 Overview of IMS Open Database on the applicationside....................... 96
5.1.1 IMS Universal DB AriVerst et 96
5.1.2 IMSdatabase metadata 97
5.1.3 Java version requirements 98
5.2 Architectural considerations 98
5.2.1 Transactional supportt 98
5. 2.2 ACCESS IYPES. . o it 99
5.2.3 Programming approach 102
5.2.4 Comparison of the IMS Universaldrivers 103
5.3 IMS Universal Database resource adapter. 104
5.3.1 JCA/Common Client Interface approach. 105
5.3.2 JCA/UDBC approach.ot 107
5.4 IMS Universal JDBC driver (Stand Alone).ot 109
5.4.1 Connecting to an IMS database using the JDBC DataSource interface. 109
5.4.2 Connecting to an IMS database using the JDBC DriverManager interface 111
5.5 IMS Universal DL/LAriver e e 112
5.5.1 Basic steps in writing a IMS Universal DL/I driver application 112
5.5.2 Example code using IMS Universal DL/l driver. 113
5.6 SQL syntax for the IMS Universaldrivers. 113
5.6.1 SQL KeYWOrds.o e e 114
5.6.2 Primary key and virtual foreign key handling 115
5.6.3 Usage of SELECT statement i 117
5.6.4 Usage of INSERT statement. i 118
5.6.5 Usage of UPDATE statement. i, 118
5.6.6 Usage of DELETE statement 118
5.6.7 Usage of the WHERE statement. 119
5.6.8 Usage of AGGREGATE functions.t 120
5.7 Data transformation support 121

iv IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856TOC.fm

5.7.1 JDBC data types to Java datatypesmapping, 121
5.7.2 Compatible data transformation functions. 122
Chapter 6. Scenario 1 - JDBC data access through tooling 125
6.1 IBM Data Perspective in Data Studio and Rational products 126
6.1.1 Download and Install IBM Data Studio or Rational products 126
6.1.2 Configuring IBM Data Studio for use with the IMS Universal JDBC Driver. 127
6.1.3 Using the Data Perspective with the IMS Universal Drivers 131
6.2 Accessing IMS Data in Cognos.ot vttt e 137
6.2.1 IBM Cognos 8 Virtual View Manager it 138
6.2.2 Configuring Virtual View Manager for IMS Dataaccess................... 141
6.3 Accessing IMS Data Using the IBM Mashup Center. 146
Chapter 7. Scenario 2 - Developing JDBC applications 153
7.1 Developing a stand alone Java application using the IMS Universal JDBC Driver... 154
711 Prerequisites. . ..ot 154
7.1.2 Creating and configuring a new Java Project 154
7.1.3 Writing the application. 157
7.2 Developing a managed Java application using the IMS Universal Database Resource
Adapter (XA) and DB2 Data Server Drivers (XA).o 160
7.2.1 Prerequisites. 160
7.2.2 Installing the products. 161
7.2.3 Creating the Projects in Rational Application Developer. 161
7.2.4 Sample code for a managed environment 163
7.2.5 Exporting the application. 168
7.2.6 Setting up the IMS Universal DB Resource Adapters in WebSphere Application
SEIVEr 7.0 . . e e e 168
7.2.7 Setting up DB2 Data Server Drivers in WebSphere Application Server 7.0. ... 171
7.2.8 Installing and starting the application 172
7.2.9 Running the application 173
7.3 Developing an IMS Java Transaction using the IMS Universal JDBC driver 174
Chapter 8. Scenario 3 - Writing DL/l and mixed applications 179
8.1 Writing applications with the IMS Universal DL/I Driver 180
8.1.1 Accessing IMS data with the IMS Universal DL/l driver 180
8.1.2 Retrieving Data Using the IMS Universal DL/l drivers 181
8.1.3 Inserting data using the IMS Universal DL/l driver 186
8.1.4 Updating data with the IMS Universal DL/l driver. 187
8.1.5 Deleting data with the IMS Universal DL/l driver. 187
8.1.6 Using the Batch Methods with the IMS Universal DL/1 driver. 195
8.2 Writing application with the IMS Universal DB Resource Adapter and the CCI
programming approach 199
8.2.1 Writing the application stepbystep L. 200
8.2.2 Complete Code Example of CCI mixed application 203
Chapter 9. Operational considerations. 207
9.1 Architectural suggestions e 208
9.1.1 Application middle layer 208
9.1.2 Sysplexconsiderationsot e 208
9.1.3 Performance considerations.. e 209
9.2 Enhancing existing applications 210
9.2.1 ODBA accessthrough ODBM.t 211
9.2.2 Enabling unsupported Java environmentso, 212
9.3 Tracingin problem cases e 212

Contents v

7856TOC.fm

Draft Document for Review May 7, 2010 1:20 pm

9.3.1 IMS Universal drivertracingttt 212
9.3.2 ODBM raCing . . . o oottt e e 214
9.8.3 IMS TraCing.t ittt e 214
9.4 Using Tools with IMS Opendatabase. 214
9.4.1 IMS Connect EXtENSIONS.ttt e e e e 215
9.4.2 IMS Problem Investigator 216
9.4.3 Identifying and resolving problems 221
9.5 Additional sample programs e 225
Appendix A. IBM DB2 Data Server Driversand Clients. 227
A.1 IBM Data Server Driversand Clients 228
A.1.1 IBM Data Server Driver forJDBCand SQLJ 228
A.1.2 IBM Data Server Driver for ODBC and CLI (CLIdriver)................... 230
A.1.3 IBM Data Server Driver Package i 230
A.1.4 IBM Data Server Runtime Client. i 230
A1.5 IBMData ServerClient. 231
A.1.6 Driver and Client comparison.t 231
A.2 SupportforJDBC and SQLJ.ot 231
A.3 Using the IBM Data Server DriverforJDBCand SQLJ 232
Appendix B. Car DealerIVP Database 235
B.1 Car Dealer database overviewt 236
B.1.1 AUTOLPCB overview diagram.ttt 236
B.1.2 EMPLPCB overview diagramuitt e 236
B.1.3 Metadata description e 237
B.2 Car Dealer database sourcefiles i 239
B.2.1 AUTPSB11.psb 239
B.2.2 AUTODB.ADdo e 240
B.2.3 EMPDB2.dbd 241
B.2.4 SINDEX11.dbd. 241
B.2.5 SINDEX22.dbd 242
B.2.6 AUTOLDB.ADA e 242
B.2.7 EMPLDB2.dbdt 243
Appendix C. The environmentforourscenarios............................. 245
C.1 Used system configuration. 246
C.2 Used application Versions.t e 246
C.3 Required APAR NUMbEIS i e e e e e 247
Appendix D. Additional material 249
Locatingthe Web material 249
Usingthe Web material e 249
System requirements for downloading the Web material 250
Howtousethe Web material 250
Abbreviations and acronyms 253
Related publications e 257
IBM RedbooKS e 257
Other publications 257
ONliNE rESOUICES . . o oo e e e e e 258
Howtoget Redbooks.o e 258
Help from IBM ... e 259
INdeX . .. e 261

vi IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856LOF.fm

Figures
1-1 The IMSDC and IMSDB components of IMS, 3
1-2 IMS and SOA: The bigpicture i e e 4
1-3 IMS SOAP Gateway development and runtime environment. 7
1-4 DLIModel Utility.o 9
1-5 DataPower COmMpONENtS i e 10
1-6 Open DB environment e 12
1-7 IMS and Java - The options i e 13
1-8 The IMS Enterprise Suite Connect API for Java simplifies client interactions with IMS 16
2-1 IMS 11 Open Database Overviewc i 19
2-2 Methods of accessing online IMSDBinV9andV10 20
2-3 Architecture prior to IMS 11 21
2-4 Effect of leveragingthe SCI 22
2-5 The new CSL address space (IMS Connect), 23
2-6 Thefinalarchitecture 24
2-7 Overview of an IMS configuration that includes ODBM 26
2-8 Overview of IMS Connect support forIMSDB systems 31
2-9 Open database cross LPAR transaction management. 33
2-10 IMS Universal drivers 35
3-1 Sample output from QUERY ODBM TYPE(ALIAS) SHOW(ALL) command 54
3-2 Sample output from QUERY ODBM TYPE(CONFIG) SHOW(ALL) command. 55

3-8 Sample output from QUERY ODBM TYPE(DATASTORE) SHOW(ALL) command. .. 55
3-4 Sample output from QUERY ODBM TYPE(SCIMEMBER) SHOW(ALL) command. .. 56
3-5 Output from QUERY ODBM TYPE(THREAD) SHOW(PSB SCIMEMBER) command. 57
3-6 Sample output from QUERY ODBM TYPE(TRACE) SHOW(ALL) command 57
3-7 Sample response for UPDATE ODBM STOP(CONNECTION) DATASTORE(IMSB) . 58
3-8 Sample response for UPDATE ODBM START(CONNECTION) DATASTORE(IMSB) 59

3-9 The IMS Application Menu et e e e e 64
3-10 Selecting the sub-options of IMS Connect and the Open Database Sample in the IVP.
65
3-11 The IV3E302J and IV3E303J jobs show examples adding required PROCLIB
MM S, . o 66
3-12 The IV3T series of the IVP contains jobs that start IMS Open Database components 67
3-13 Specifying the data set name containing our member definitions to be validated ... 68
3-14 Selecting the IMS Connect configuration member for review within Syntax Checker. 68
3-15 The Syntax Checker requesting input regarding the membertype............... 69
3-16 Syntax Checker prompting for IMS versionlevel 69
3-17 Syntax Checker view of our IMS Connect configuration member, HWSCFODB 70
3-18 Help panel for the PORTTMOT parameter of the ODACCESS statement......... 71
4-1 Input and output associated with the IMS Enterprise Suite DLIModel utility. 77
4-2 IMS family mainpanel. e 78
4-3 Starting point for downloading the IMS Enterprise Suite DLIModel utility plug-in. 80
4-4 Download page for the IBM Installation Manager and IMS Enterprise Suite DLIModel
ULty pIUg-in . .o 81
4-5 The install.exe file initiates the IBM Installation Manager installation process 82
4-6 The confirmation panel after the IBM Installation Manager has been installed. 82
4-7 The main menu displayed when the IBM Installation Manager is launched 83
4-8 Adding the DLIModel utility repository to the IBM Installation Manager 84

4-9 Selecting the IMS Enterprise Suite DLIModel Utility Plug-in package for installation. . 84

© Copyright IBM Corp. 2010. All rights reserved. vii

7856LOF.fm

Draft Document for Review May 7, 2010 1:20 pm

4-10 Option for the DLIModel utility to shell share with other Eclipse products 85
4-11 New DLIModel Utility Project-Step 1. i i 88
4-12 New DLIModel Utility Project - Step 2.o 89
4-13 New DLIModel Utility Project - Step 3.o 89
4-14 AUTPSB11 Overview diagramot e i e 90
4-15 Import Copybook Fields 91
4-16 Export of AUTPSBIT.Jar.o e 92
4-17 Compiler compliance level 93
5-1 Distributed access - Type 4 connectivity. 100
5-2 Extract from overview diagram from Car Dealer IVP Example 116
5-3 Query result from MODEL table i 116
6-1 Data Studio Installation - Operating System Choice. 127
6-2 Data Studio - Workspace selection. i 128
6-3 Data Studio - Welcome panel i e 128
6-4 Data Studio - Configuring IMS Universal Drivers Step 1. 129
6-5 Data Studio - Configuring IMS Universal Drivers Step 2. 130
6-6 Data Studio - Configuring IMS Universal Drivers Step 3. 130
6-7 Data Studio - Configuring IMS Universal Drivers Step 4. 131
6-8 Data Studio - Creating a new Connection Step1........... 131
6-9 Data Studio - Creating a new Connection Step 2. 132
6-10 Data Studio - AUTPSB11 expandedview., 133
6-11 Data Studio - Returnall Rows. 133
6-12 Data Studio - Returnall Rows-Results it 134
6-13 Data Studio-Data Edit. 134
6-14 Data Studio - ExtractData 134
6-15 Data Studio - Add to Overview Diagram. ot 135
6-16 Data Studio - Overview Diagram it 135
6-17 Data Studio - New SQL Script 136
6-18 Data Studio - New SQL ScriptStep 2. i 136
6-19 Data Studio - SQL Script Step 3. 137
6-20 Virtual View Manager in the IBM Cognos 8 architecture. 139
6-21 IBM Cognos Virtual View Manager architecture 140
6-22 Virtual View Manager Studiointerface i i 141
6-23 VVM - Login panel e 142
6-24 VWM -New DataSource-Step 1. e 142
6-25 VWM -New Data Source-Step 2.ottt e 143
6-26 New Adaptervalues e 144
6-27 VVM-New Data Source Step 3. i 144
6-28 VVM - New Data Source Step 4.ot e 145
6-29 JDBC Connection Propertiest 145
6-30 VVM - Show Contentsof atable.......... i, 146
6-31 Install RAR e 147
6-32 Selection of J2C connection factories. 148
6-33 Creatinganew Feed. i e 149
6-34 Database connectionpanel 149
6-35 The SQL query builderpanel i e 150
6-36 Thefinalfeed panel i e 151
7-1 SwitchtoJavaperspectivet e 155
7-2 Configure Build Path. 155
7-3 Java Build Path Properties 156
7-4 New Java Package 156
7-5 New Java Classo e e e 156
7-6 New Java Class Properties. e 157

viii IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856LOF.fm

7-7 New EAR Project e 162
7-8 New EJB Project. e 162
7-9 New EJB 3.0 Sessionbean i 163
7-10 WAS - CONSO0leo e e e 169
7-11 WAS Console - Specify Classpath. 170
7-12 WAS Console - New J2C connectionfactory, 170
7-13 WAS Console - New JDBC Provider. e e 172
7-14 WAS Console - INDIMappingo v e 173
7-15 Managed Application Web Site Results 174
9-1 Atwo member IMSPlex sample environment.c.c ... 209
9-2 IMS Connect Extensions eventcollection. 216
9-3 Tracking a sequence of Open Databaserequests 217
9-4 Application records filtering. e 218
9-5 Tracing a requestinitiation 219
9-6 Viewing segment search arguments.t 219
9-7 ODBM response trackingottt 220
9-8 Zooming on specific fields. 220
9-9 Filtering by AD47 recordsttt 221
9-10 Displayingthemessage areattt e 222
9-11 Trackingthe completeflow. 223
9-12 DRDA and DL/LfIOW oo 224
9-13 Displaying detailed informationwith F11t 224
9-14 Displayingthe l/Oarea e e 225
A-1 IBM Data Server Driver for JDBC and SQLJ connecting directly to DB2 for z/OS. .. 229
B-1 AUTOLPCB Overview diagramottt i e 236
B-2 EMPLPCB Overview diagramttt i 237
C-1 The system configuration used forthisbook 246

Figures ix

7856LOF.fm Draft Document for Review May 7, 2010 1:20 pm

X IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856LOT.fm

Tables

2-1 Options for defining RAS security for applications thatuse ODBA. 28
2-2 z/OS runtime environment support for IMS Universal drivers with type-2 connectivity. 38
2-3 Comparison of programming approaches. 39
4-1 Conversion table - Copybook formattodatatypes.............. 94
5-1 z/OS runtime environment support for IMS Universal drivers with type-2 connectivity 100
5-2 IMS Universal drivers settingsot 101
5-3 Comparison of IMS Universal driver approaches 103
5-4 Comparison of JCAModels - CCland JDBCttt 105
5-5 Mapping between IMS terms and relationalterms 113
5-6 SQAL KeYWOIAS.ot e e 114
5-7 Restricted AQL KeyWOrdso 115
5-8 Aggregate functionsexamples 120
5-9 Aggregate Functions and resulttypes i 121
5-10 JDBC data types to Java datatypesmapping i, 122
5-11 Available get methods fordatatypes i 122
6-1 New AdapterValues e 143
6-2 JDBC Connection Properties.o e 145
8-1 Methods for DL/l retrieve from the PBCinterface. 184
8-2 Thegetmethods. e 185
A-1 IBM Data Server Drivers and Clients comparisonc.coveau... 231
C-1 Products and VErSiONSot e 246

C-2 Products and APARs

© Copyright IBM Corp. 2010. All rights reserved. Xi

7856LOT.fm Draft Document for Review May 7, 2010 1:20 pm

xii IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856LOE.fm

Examples

3-1 Sample BPE configuration member for SCl and OM address spaces 43
3-2 Sample BPE configuration member for ODBM address space. 44
3-8 Sample BPE configuration member for IMS Connect address space. 44
3-4 Sample configuration of the SCl initialization member 45
3-5 Sample SCl startup procedure JCL i 46
3-6 Sample configuration of the OM initialization member 47
3-7 Sample OM startup procedure JCL i e e 48
3-8 Sample ODBM initialization member 49
3-9 Sample ODBM configuration member i 50
3-10 Sample ODBM startup procedure JCL i e 52
3-11 Sample IMS Connect configuration member 60
3-12 Sample startup procedure for the IMS Connect addressspace 62
3-13 Defining the HWSAUTHO user exit within the BPE exit list PROCLIB member 72
3-14 Adding a user exit to the BPE configuration member with the EXITMBR statement . 72
3-15 Sample RACF definitions for authorizing a user to access a protected APSB.. 73
5-1 Extract of the Java metadata class from the Car Dealer IVP Example. 97
5-2 CClwith SQL calls e e e e e 105
5-3 CClwith DL/ Calls. . . . oot e e e 106
5-4 JCA/JDBC with SQL calls. e e e e 108
5-5 JDBC DataSource Connection with Application Managed approach 110
5-6 JDBC DataSource Connection with JNDI Managed approach. 110
5-7 Connecting with the JDBC DriverManager Interface 111
6-1 Contentsof Dealer.csv e 135
7-1 Code of IMSJDBCStandalone Application 157
7-2 XASessionBeanLocal.java e 163
7-3 XASessionBean.java e 164
7-4 XAServlet java e e 166
7-5 XAT St S . o o ottt e 167
7-6 InputMessage.java e 175
7-7 OUutputMeSSage.javao it e 175
7-8 CarDealerTransttt et e e e e 175
7-9 CarDealerDBInteractiont e e 176
8-1 IMSConnectionSpec propertieso 181
8-2 Creatinga PSBinstance. i 181
8-3 Obtaining a PCB handle and specifying SSAs using the SSAList interface 182
8-4 Qualified SSAList with initial qualification 183
8-5 Qualified SSAList with multiple qualifications forone SSA..................... 184
8-6 Qualified SSA usingacommandcodet 184
8-7 CreateandInsertmethod. i 186
8-8 Thereplace method 187
8-9 Deleting all segmentsinthepath 188
8-10 Deleting segments with an unqualified ssalist 188
8-11 dlitest1 - A Complete DL/l application. 188
8-12 Output from the application i 194
8-13 dlitest2 - Batch methods example. i 196
8-14 Import Statements of CCI Application. i 200
8-15 Create MCF e 200
8-16 LoOKUP MCF . . . e e e 200

© Copyright IBM Corp. 2010. All rights reserved. xiii

7856LOE.fm

Draft Document for Review May 7, 2010 1:20 pm

8-17 Transaction calls. e 201
8-18 Create Interaction and InteractionSpecs. i i, 201
8-19 Insert segments with SQL. 201
8-20 Retrieve information with DL/L. 201
8-21 Retrieve information with SQL 202
8-22 Update information with DL/I. 202
8-23 Output of MODKEY retrieveo e 202
8-24 Deletedatawith SQL 203
8-25 CCIStandaloneDLIandSQL. e 203
8-26 Output of CCIStandaloneSQLandDLI Java application 205
9-1 Sample DRA for ODBA access through ODBM 211
9-2 logging.properties entries fortracing. 213
9-3 Application enabled tracing. 213
9-4 DFSERATO OptiONS. . . .ttt e 214
A-1 Determining the driverversion 232
A-2 Using the getConnection()ottt e 233
A-3 Connecting to DB2 for z/OS via the DataSource interface. 233
B-1 DLIModel IMS Java Report e 237
B-2 AUTPSB11 PSB source e e e e 239
B-3 AUTODB DBD SOUICE . . . ottt ettt et e e e e e e ettt e e e 240
B-4 EMPDB2DBD SOUICEottt e e e e 241
B-5 SINDEX11 DBD SOUICEottt e it e et e e e e e e s 242
B-6 SINDEX22 DBD SOUICEottt e it e e e e e e e et e e e s 242
B-7 AUTOLDB DBD SOUICE . .\t vttt ittt it e et e ettt e e e 242
B-8 EMPLDB DBD SOUICEttt e et e e e e e e e et e 243

xiv IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856spec.fm
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2010. All rights reserved. XV

7856spec.fm Draft Document for Review May 7, 2010 1:20 pm

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/Tegal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX® DRDA® pureXML®

CICS® Enterprise Workload Manager™ RACF®

Cognos® IBM® Rational®

DataPower® IMS™ Redbooks®

DB2 Connect™ Informix® Redpaper™

DB2 Universal Database™ InfoSphere™ Redbooks (logo) ¢® ®

DB2® iSeries® System z®

Distributed Relational Database OMEGAMON® WebSphere®
Architecture™ Optim™ z/OS®

The following terms are trademarks of other companies:

Cognos, and the Cognos logo are trademarks or registered trademarks of Cognos Incorporated, an IBM
Company, in the United States and/or other countries.

Hibernate, Interchange, Red Hat, and the Shadowman logo are trademarks or registered trademarks of Red
Hat, Inc. in the U.S. and other countries.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

XVi IMS 11: The Open Database

http://www.ibm.com/legal/copytrade.shtml

Draft Document for Review May 7, 2010 1:20 pm 7856pref.fm
Preface

IMS™ Version 11 continue to provide the leadership in performance, reliability and security
expected from the product of choice for critical online operational applications. IMS 11 also
offers new functions to help you keep pace with the evolving IT industry.

The introduction of the new IMS Enterprise Suite allows application developers with minimal
knowledge of IMS Connect to start developing client applications to communicate with IMS.

With Open Database, IMS 11 also provides direct SQL access to IMS data from programs
running on any distributed platform unlocking DL/I data to the world of SQL application
programmers.

In this IBM® Redbooks® publicatio, the system programmers will see the steps for installing
the new IMS components and the application programmer will follow scenarios of how client
applications can take advantage of SQL to access IMS data.

We describe the installation of prerequisites such as IMS Connect and the Structured Call
Interface component of Common Service Layer address space and document the set up of
the three new IMS drivers:

» Universal DB resource adapter
» Universal JDBC driver
» Universal DLI driver.

Our scenarios use the JDBC driver for type 4 access from Windows® to a remote DL/I
database as well as DB2® tables and extend it to use IBM Mashup Center to provide an
effective Web interface and integrate with Open Database.

The team who wrote this book

This book was produced by a team of specialists from around the world working for the
International Technical Support Organization at the Silicon Valley Lab, San Jose.

f# Paolo Bruni is an Information Management software Project Leader with the
ITSO since 1998. He is based in Silicon Valley Lab, San Jose. Paolo has

‘& authored many IBM Redbooks publications about IMS, DB2 for z/OS®, and
related tools and has conducted workshops worldwide.

Angie Greenhaw joined IBM in 2000 after graduating from Arizona State
University with a Bachelors degree in Computer Information Systems. She is
currently an IT Specialist in the IMS Advanced Technical Skills group, where
she is a primary resource in the areas of IMS security, Dynamic Resource
Definition, Common Service Layer and Online Change. Angie enjoys
educating customers at conferences such as IOD and SHARE, as well as
IMS Regional User Group meetings on these topics among others. Prior to

" this role Angie worked in IMS development, specializing in the Online Change
function, contributing to new IMS functionality and devising solutions as a

© Copyright IBM Corp. 2010. All rights reserved. xvii

7856pref.fm

Draft Document for Review May 7, 2010 1:20 pm

Level 3 Service Representative in this same area. She also spent three years
as the IMS Development Representative at SHARE. Angie has also
contributed to intellectual capital creation, having written a white paper on the
topic of Global Online Change implementation, and having co-authored two
other IBM Redbooks: IBM IMS Version 10 Implementation Guide, SG24-7526
and IMS Version 11 Technical Overview, SG24-7807.

Thilo Liedloff is a field technical professional for IMS in IBM Germany since
2007. He holds a Bachelors degree in Business Information technology from
. | the Baden-Wuerttemberg Cooperative State University Stuttgart, Germany.
He has been working in the area of IMS and IMS Tools for three years. His
specializations are in the area of modern IMS Connectivity and IMS
Application Development.

Bob Stone is a System z® IM technical pre-sales professional in IBM UK.
He had 8 years as a COBOL application developer, 18 years as an IMS
DBA/Systems Programmer and 10 years as a DB2 DBA working for a large
number of commercial companies. He joined IBM in 2000 and spent 8 years
as a System z DB2 DBA and Systems Programmer supporting IBM internal
systems before taking up his current role where he now specializes in IMS.
He has co-authored the book DB2 for z/OS Tools for Database Administration
and Change Management, SG24-6420, published in July 2003.

Acknowledgments

The authors thank Rafael Avigad for his contribution in written content.

Rafael Avigad is is a product architect and information developer with Fundi Software, in
Perth, Western Australia. For the past five years, he has worked on solutions for managing
TCP/IP access to IMS and is helping develop current and future IMS tools graphical user
interfaces. Before working at Fundi, Rafael developed operational support and billing systems
for mobile telephony and ISPs.

Special thanks to Alison Coughtrie and Kevin Hite for making the bases for some example
sources available and Kyle Charlet for the support throughout the project.

Thanks to the following people for their contributions to this project:

Rich Conway

Bob Haimowitz

Emma Jacobs

International Technical Support Organization

John Barmettler
Thomas Bridges
John Butterweck
Kyle Charlet
David Compton
Kevin Hite

Rose Levin
Nisanti Mohanraj

Xviii IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856pref.fm

Danny Nguyen
Richard Tran
IBM Silicon Valley Lab

Alison Coughtrie
IBM UK

Denis Gaebler
IBM Germany

Now you can become a published author, too!

Here is an opportunity to spotlight your skills, grow your career, and become a published
author - all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!
We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:
» Use the online Contact us review Redbooks form found at:
ibm.com/redbooks
» Send your comments in an e-mail to:
redbooks@us.ibm.com
» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

Preface Xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

7856pref.fm Draft Document for Review May 7, 2010 1:20 pm

XX IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch01.fm

Introduction

This chapter provides an introduction to contents of this book.

We describe how IMS continues to provide solutions to exploit the latest technologies to
address customer requirements and provide background information or the IMS Open
Database architecture.

This chapter contains the following:
» IMS is open

» IMS 10 and SOA

» The IMS Open Database provides distributed access to IMS database resources. It also
helps to drive open standards and open technology into IMS. The open standards that are
introduced into this solution include the Java EE Connector Architecture, JDBC, and

DRDA®.
» The IMS Enterprise Suite

© Copyright IBM Corp. 2010. All rights reserved.

7856¢h01.fm

Draft Document for Review May 7, 2010 1:20 pm

1.1 IMS is open

The IBM Information Management System (IMS) is the IBM premier transaction and
hierarchical database management system, the product of choice for critical online
operational applications and data where support for high availability, performance, capacity
and integrity are key factors. IMS manages the world’s mission-critical data and continues as
a major player in the on demand world. IMS customers are still growing in size and in number.
As we are moving into the era of on demand computing, IMS is helping to lead the way by
continuing to provide solutions to exploit the latest technologies to address customers’
requirements for performance and availability, but also focusing on enterprise modernization
through integration and open access with an on demand service-oriented architecture.

New application development tools and the IBM service-oriented architecture capabilities for
IMS can help your business improve the speed and agility of its development efforts. Both
IMS and the IMS SOA Integration Suite support your on demand systems and your
distributed IMS application environment.

The introduction of the new IMS Enterprise Suite Connect API for Java™ allows application
developers with minimal knowledge of IMS Connect to start developing client applications to
communicate with IMS. The Connect API for Java is a simple, easy-to-use, lightweight
programming solution for communicating with IMS transactions through IMS Connect.

With Open Database, IMS 11 provides direct SQL access to IMS data from programs running
on any distributed platform. Open Database reduces the complexity and processing
associated with IMS data access unlocking DL/I data to the wide population of SQL
application programmers.

1.2 IMS 10 and SOA

Service-oriented architecture (SOA) is an architecture style that is centered around
components, or services, with standardized interfaces. It is a methodology of designing and
running the software portion of an information technology infrastructure so that it supports the
various individual and interrelated functions that are needed to operate a particular
enterprise. SOA helps bridge the business/IT gap and helps systems remain scalable and
flexible while your business is growing and changing. SOA is focused on business processes,
and although many legitimate approaches exist for software architecture, SOA is intended
explicitly for business applications:

\{

Reusing

Packaging

Liberating business from the constraints of technology
Services

vvyy

For a more exhaustive discussion on IMS and SOA refere to the IMS manuals and Powering
SOA Solutions with IMS, SG24-7662.

1.2.1 The value of including existing IMS assets into SOA

There is great value in utilizing existing IMS assets in modernization projects:
» Existing IMS assets support core business processes and provide crucial information.
» Existing IMS assets contain billions of lines of valuable business rules.

2 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch01.fm

» Using proven, time-tested IMS applications can significantly lower risk, cost, and time to
market.

» The quality of the IMS system is recognized by all IMS users as fast, reliable, and mature.

» An IMS server is not a single point-of-failure. IMS has built-in recovery features, with
take-over mechanisms, and supports a Sysplex environment.

The traditional IMS application development and database creation do not provide a fast
market driven responsiveness model with the multi-step procedure and the involvement of
several tools and techniques.

When considering IMS assets, we must distinguish two areas or functions of IMS: the
Transaction Manager (IMS TM) and the Database Manager (IMSDB).

» IMSTM or data communication controller (DCCTL) is the facility to link applications that
are running as transactions to networks.

» IMSDB or Data Base Controller (DBCTL) interfaces with non-IMS communication
controllers and traditionally supplies database services though the facilities of Database
Resource Adapter (DRA) code.

Figure 1-1 illustrates these two environments.

IMS

other IMSDC _
Subsystems (DCCTL) ~=::Z_________14 Transactions

IMSDB
DL1
(DBCTL)

DLI Data

Figure 1-1 The IMSDC and IMSDB components of IMS

When considering IMS integration in SOA, we include both domains, TM and DB.

IMS provides the ability to leverage existing IMS transactions by making them available as
callable Web Services. Figure 1-2 illustrates this function. You can view the solutions as
allowing network access to and from the IMS host environment and also opening IMS
databases for access by non-IMS service requestors.

Chapter 1. Introduction 3

7856¢h01.fm

Draft Document for Review May 7, 2010 1:20 pm

VR (. \
Web Direct
service s Database
clients 7~ solutions Solutions access

Web 2.0 Mashup DL Developers
Model
Java/J2EE Utility
Client P
v Java/J2EE
& Jdaeva WebSphere = WebSphere
4 = Developer
IMS T™ n IMS DB
Resource . Q Resource =)
Adapter Transaction jl Database 3 Adapter “
8 o = manager manager § 3 Java
. w
NET .E Services g) Lcilbarsasry
Client o 3 4% e cICS
0 3 App @
Client = > Developer
Developer 8 g DB2 F
= Direct Java > SPICICS m
SOAP class Java
\ Library class
IMS SOAP Library
SAP Gateway - : : —
e Enterprise Suite) DB2
u’ﬁ'ﬁfﬂ&” DL/I Model Utility J Deﬁloper
— - - | &
\—/ \—/

‘ IMS SOA Solutions]

Figure 1-2 IMS and SOA: The big picture

4

The components in Figure 1-2 are:

>

IMS Connect is the TCP/IP gateway to IMS and runs within a separate z/OS address
space to the IMS control region. With IMS 11, IMS Connect isalso an ODBM client and it is
allows distributed applications to access any database in the entire IMSplex.

The IMS TM Resource Adapter (TMRA) is a Java EE Connector Architecture (JCA)
resource adapter that offers support to access existing IMS transactions from callable
Web Services, Enterprise JavaBeans (EJBs), or even from HTML pages and servlets. IMS
TMRA is a WebSphere® Application Server-based solution. The tooling used in this
solution is either IBM Rational® Application Developer (RAD) or WebSphere Integration
Developer (WID), and they receive definitions of the input/output messages in either
COBOL, C, or PL/I and generate all of the necessary artifacts and code.

Another WebSphere Application Server-based solution is targeted at applications that are
MFS based. MFS is much more complex than, for example a simple COBOL copybook,
and as such IMS offers a specific solution for MFS. This solution offers tooling that
consumes the MFS definition of the input/output messages and again generates the
necessary artifacts. The MFS solution is an IMS TM Resource Adapter client so it
leverages all of its functionality.

Another solution offered is the IMS SOAP gateway, which offers direct SOAP access to
existing IMS transactions. It is a non-WebSphere based solution and does not require a
Java EE (Java Platform, Enterprise Edition) container. There is tooling that is specific to
this solution in RAD for z that consumes input/output message definitions, and once again
generates all of the necessary artifacts for exposing an IMS transaction as a callable
SOAP service.

IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch01.fm

» Although the TM-based solutions put focus on leveraging existing IMS transactions, the
DB based solutions are focused on new IMS application development. These solutions
offer direct IMS database access from a variety of environments. IMS allows WebSphere,
CICS®, DB2, and even application developers the ability to access IMS database assets
using industry standard programming models and APIs.

» Two new IMS JMP and JBP-dependent regions were introduced. A JMP region is
analogous to an MPP region and a JBP, to a non-message driven BMP region. The
fundamental difference is that with the new regions, IMS now can fully house and maintain
a JVM (Java Virtual Machine), which enables IMS to now effectively process Java
workloads. In addition to this, IMS offers the Java class libraries, which contain a complete
API for Java developers to use. The Java libraries offer a JDBC driver for IMS, which can
process both SQL and XQuery expressions.

These same Java libraries can be utilized from several different runtime environments:

— WebSphere Application Server
— DB2 stored procedures on z/OS
— CICS using their JCICS API

» The IMS Open Database Access (ODBA) and DRA modules offer Java libraries the ability
to access IMS databases from a non-IMS environment.

» For the WebSphere Application Server environment, IMS offers another JCA resource
adapter, the IMS DB Resource Adapter. The difference with this adapter, as opposed to
the IMS TM Resource Adapter, is that all of the business logic is in the EJBs themselves.
With the IMS DB Resource Adapter, there is no IMS-dependent region involved at all.

» With IMS 11, the IMS Universal drivers, part of the Open Database solution, are software
components that provide Java applications with access to IMS databases from z/OS and
from distributed environments through TCP/IP.

» For all of these solutions, IMS also offers tooling support through the DLIModel utility,
which is an Eclipse-based GUI tool now part of the Enterprise Suite offering. It offers
visualization of IMS databases. It consumes PSB, DBD, and even COBOL copybook
source to visualize all of the PCBs in a particular PSB. Information, such as hierarchies,
segments, fields, and field types, are captured. With respect to new application
development, the utility also generates database metadata definitions that are consumed
at runtime by the Java libraries, for example, this enables the libraries to convert a SQL
query into a native IMS DLI call.

1.2.2 IMS Connect and IMS Connect Extensions

With IMS Version 9, IMS Connect was delivered as an integral component of IMS. It performs
the vital function of connecting from IMS to the TCP/IP world.

IMS Connect Extensions is a key tool for managing access to IMS through IMS Connect:

» Key benefits:

— Provides event collection and instrumentation for IMS Connect
— Streamlines operational management of IMS Connect and its clients
— Assists in the development of TCP/IP clients and the transition to an SOA

» Principal users:
— IMS tuning specialists, application developers, operators, and administrators

One example of using IMS Connect Extensions is in its assistance to monitor your IMS
TCP/IP network flow. OMEGAMON® for IMS on z/OS, as a Real-time monitoring tool for IMS

Chapter 1. Introduction 5

7856¢ch01.fm Draft Document for Review May 7, 2010 1:20 pm

Connect, uses the Connect Extensions Publisher APl where it obtains IMS Connect event
records through the API.

1.2.3 The IMS SOA Integration Suite

The IMS SOA Integration Suite leverages the utilization of your existing assets and running
systems to integrate IMS capabilities in a SOA environment by providing these capabilities:

» Provides access to IMS transactions and data from any Web connection.

» Modernizes your IMS applications and enables them to operate with other clients, such as
Microsoft®.NET or SAP® clients in a service-oriented architecture.

» Integrates business logic that is embedded in your existing IMS applications with other IT
systems, both within your enterprise and in the supply chain.

» Improves development time by using Java, instead of PL/I, COBOL, or Assembler.

» Accesses your IMS data directly for use by your applications from environments, such as
DB2, CICS, and WebSphere Application Server.

» Stores and retrieves your XML content directly in IMS without any intermediate steps, and
exchanges data with other systems by using established schemas.

The following tools and functions support access to IMS transactions:

» IMS SOAP Gateway

» IMS TM Resource Adapter

» IMS MFS Web Solutions

» IMS Web 2.0 Solution

» DLIModel utility and IMS XML DB

The IMS SOA Integration Suite enables you to access IMS transactions and data. In the next
section, we provide an overview of these technologies and their business value.

IMS SOAP Gateway

IMS SOAP Gateway is an XML-based connectivity solution that enables existing or new IMS
applications to communicate outside of the IMS environment using SOAP message protocol
to provide and request services independently of platform, environment, application
language, or programming model.

Figure 1-3 illustrates the IMS SOAP Gateway deployment and runtime environment. IMS
SOAP Gateway uses RDz to generate both the correlator and WSDL files that are used when
deploying Web Services within IMS SOAP Gateway. An IMS SOAP Gateway Deployment
utility is included for you to set up properties to deploy and maintain IMS Web services. Also,
an IMS SOAP Gateway Administrative Console is available to list the deployed Web services
when the server is started.

IMS SOAP Gateway interfaces with IMS Connect using TCP/IP protocols but uses SOAP or
HTTP or HTTPs when communicating with SOAP clients.

6 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch01.fm

IMS SOAP Gateway

Server
SOAP Windows(XP, 2000)/208/zLinux/AIX TCP/IP
XML
Document IMS
— Connect
Server

Properties
Eile e ——
. - S S L -

e R T]
Converter

Figure 1-3 IMS SOAP Gateway development and runtime environment

The value of using SOAP Gateway

IMS SOAP Gateway is a light-weight Web Services solution that enables IMS applications to
interoperate in a SOA environment without needing a full-blown application server (for
example, Java EE Server). One typical usage scenario of providing Web Services with the
IMS SOAP Gateway is to enable Microsoft.NET client applications or intermediary servers
that submit SOAP requests into IMS to drive business logic transactions.

Through SOAP, IMS SOAP Gateway provides and requests services that are independent of
platform, environment, application language, or programming model:

» It enables IMS application assets as Web Services.

» It allows non-WebSphere customers to reuse existing and to create new IMS-based
business logic.

» It operates with any types of client application using SOAP/HTTP protocols.

Generated IMS service definitions (that is Web Services Description Language files) can be
published or exposed to an UDDI directory for businesses to publish their offerings and for
users to discover their needs. You can retrieve IMS WSDL files out of the UDDI directory and
fit them into a tool (such as Microsoft.Net or Apache Axis server tools) to generate SOAP
messages to be sent to the host to run existing IMS applications.

IMS TM Resource Adapter

The IMS TM Resource Adapter, previously known as IMS Connector for Java, is part of the
IMS SOA Integration Suite of middleware functions and tools. Using the IMS TM Resource

Chapter 1. Introduction 7

7856¢h01.fm

Draft Document for Review May 7, 2010 1:20 pm

Adapter you can quickly and easily create Java applications that access new and existing IMS
transactions over the Internet. Using TMRA within a WebSphere or Rational-family
development environment, you can:

» Develop components of business processes in support of SOA.
» Create Java EE applications from Java beans.

The development version of the IMS TM Resource Adapter is included in the following
integrated development environments:

Rational Application Developer for WebSphere Software

WebSphere Integration Developer

WebSphere Transformation Extender

Rational Developer for System z (formerly known as WebSphere Developer for System z)
Rational Software Architect

vyvyyvyyvyy

You can download the runtime component of the IMS TM Resource Adapter from the Web
site:

http://www.ibm.com/software/data/ims/ims/components/tm-resource-adapter.html#downT
oads

The value of using IMS TMRA

The IMS TM Resource Adapter implements the Java EE Connector Architecture (J2C), which
connects Enterprise Information Systems (EISs), such as IMS to the Java EE platform. The
Java EE Connector Architecture provides your applications with the qualities of service that a
Java EE application server can provide, such as connection, transaction, and security
management, which allows for:

» You can use the IMS TM Resource Adapter with a Java EE server, such as IBM
WebSphere Application Server when a Java application accesses an IMS transaction that
is running on a host IMS system. The IMS TM Resource Adapter also enables an IMS
application to act as a client to invoke applications in a Java EE server.

» Although the IMS TM Resource Adapter is intended for use primarily by Java applications
or Web Services that submit transactions to IMS, the IMS TM Resource Adapter can also
be used by services that submit IMS commands to IMS.

MRA provides tooling support for development of Java EE applications, Web Services, and
business processes that access IMS transactions in various Rational and
WebSphere-integrated development environments.

MRA also provides programming for deployment to the WebSphere Application Server and
WebSphere Process Server (WPS) runtime environment on many platforms, which includes
z/OS and Linux® on System z.

IMS TM Resource Adapter Version 9 has PID number 5655-J38, and IMS TM Resource
Adapter Version 10 uses PID number program number 5635-A01.

The DLIModel utility

Without the DLIModel utility, the IMS-Java user must manually create Java classes that
describe the metadata (for example, structure, segment layouts, and so on) of the IMS
databases that are to be processed. The DLIModel utility creates these classes from PSB
and DBD source plus optionally, high-level language source that more fully describes
segment field layouts. The DLIModel utility supplies a Web download version that runs as a
plug-in to Eclipse, WebSphere Developer for System z, RAD for WebSphere, and RDz.

8 IMS 11: The Open Database

http://www-01.ibm.com/software/data/ims/ims/components/tm-resource-adapter.html#downloads

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch01.fm

The value of using the DLIModel utility

The business goal of the DLIModel utility is to ease IMS application development. Using the
DLIModel utility you can transform your IMS database information (program specification
blocks, database descriptions, and COBOL copybooks) into application-independent
metadata. In addition to creating metadata, using the IMS DLIModel utility you can:

» Generate XML schemas of IMS databases, which are used to retrieve XML data from or
store XML data in IMS databases.

» Incorporate additional field information from COBOL copybooks.

» Incorporate additional PCB, segment, and field information or override existing
information.

» Generate a DLIModel report, which is designed to assist Java application programmers in
developing applications based on existing IMS database structures.

» Generate an optional DLIModel trace log.

Figure 1-4 illustrates the input and output flows from the DLIModel utility.

DLIModel Utility

IMS database visualization tool
— Visualize an entire IMS PSB

— Can view each PCB individually EE_E
- Hierarchy, segments, fields, types, etc

GUI (Eclipse Plugrin) Control stetements COBOL copybock members

IMS database metadata generation tool \

PsB |
S rPDS)
— Generates the necessary metadata that / 080
. . —
is consumed at runtime by IMS DB 8\ DLlode! e

Resource Adapter, XML-DB support .o\ ity
+ Database metadata m(el_tlaFdSa)ta
- XML schema / \ —
= Bottom up tooling approach C% \ E
b
— Parses PSB and DBD source - S ot e
— Optionally COBOL copybook me'EaFdSafa g = (HFS)
definitions of segments e _ =

i i 1 XNL Schemas)
= An Eclipse 3.x plug-in (HFS) IMS Java Metadata
classes (HFS)

Figure 1-4 DLIModel Utility

1.2.4 DataPower and IMS

DataPower® is a powerful solution for XML acceleration, XML security, monitoring, and
managing SOA environments.

Included in the DataPower firmware V3.6.1 is a feature called "IMS Protocol Support" that
adds support to allow Multi-Protocol Gateway services to accept IMS connections from clients
and connect to IMS-based applications. This functionality provides:

» An IMS Connect proxy to IMS Connect clients. The use case is for existing IMS Connect
clients who want to make in-flight modifications to headers and payloads without changing
the client or IMS.

Chapter 1. Introduction 9

7856¢ch01.fm Draft Document for Review May 7, 2010 1:20 pm

» Web Service facade to IMS Connect transactions. The use case is to make use of the

strong Web Service features in DataPower to quickly enable Web Service support for IMS
Connect.

Figure 1-5 presents the DataPower hardware components and their primary roles.

- X150 Integration Appliance

+ Expands support to non-XML solutior
+ Advanced architecture @
Add: DataPower XML + Integrated message-level security i
m Inte gration & existing
systems connectivity s v e
SW . ﬁl!.ﬂ!!!!.u.l
= Security, agility and performance IniciWorld
» Device can off-load application security software
Jl— Add: DataPower = Performs XML Web services security functions
e | XML Security SW (parse, filter, validate schema, encrypt/decrypt,
signatures, access control, and more)
T «XA35 XML Accelerator
» Offloads overtaxed servers by processing XML,
XSD, XPath and XSLT at wire speed
» SW provides significant performance improvements

over WebSphere solutions
« HW + SW provides enterprise-class performance

Figure 1-5 DataPower components

1.3 IMS 11 and Open Database

The ease with which you can install IMS 11 ensures that you can continue to rely on IMS and

its hallmarks of reliability, availability, matchless scalability, and performance. You can take
advantage of:

» Dynamic commands to query and change IMS Transaction Manager and IMS Database

Manager resources, to create points of consistency, and to reduce the time databases are
offline.

» User exit services enhancements to define multiple instances and to dynamically refresh
modules.

» Enhanced syntax checking.

» System performance enhancements and improved availability through IMS Fast Path
Buffer Manager, Application Control Block library, and Local System Queue Area storage
reduction, which utilize 64-bit storage, freeing up valuable ECSA.

When running core applications that are at the heart of business processing, most large
corporations worldwide continue to depend on IMS. Today’s enterprise IT needs are more
closely tied to the business than ever before. Businesses require efficiency to meet the cost
challenges and responsiveness demanded by the global economy. IMS 11 provides an
easier-thanever roadmap that supports your business growth for years to come.

This capability reduces the complexity and processing associated with IMS data access. IMS
Connect now provides simplified TCP/IP access to both IMS transactions and data.

10 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch01.fm

This support for easier integration and open access can also help with industry regulations
compliance and internal controls, and can enable you to more rapidly develop and deploy new
applications and services.

The IMS Open Database provides distributed access to IMS database resources. It also
helps to drive open standards and open technology into IMS. The open standards that are
introduced into this solution include the Java EE Connector Architecture, JDBC, and DRDA®.

Historically, the IMS database was a closed architecture, and by opening it up, IMS is
positioned for the future as it pertains to industry standard access APIs and the emerging
SOA market.

The business challenges addressed by Open Database are:

» Data can be difficult to access outside of the IMS environment. Clients might want to
participate in the emerging SOA market.

» Traditional IMS support skills are becoming increasingly rare and difficult to acquire and
train.

» It requires too long a time to deploy new applications and enhance existing applications.

The value of using IMS Open Database

The ability to access IMS data from outside of the IMS environment simplifies the process of
developing new applications that leverage existing investment in IMS data. Also, it reduces
costs by providing distributed access to IMS database resources through industry-standard
interfaces.

The distributed access function offers two distinct types of IMS database resource
distribution:

» The distribution of IMS database resources across LPARs in an IMSplex. IMS data can be
accessed through TCP/IP from a Java EE application server that resides on a z/OS
platform that is on a different logical partition (LPAR) from the IMS subsystem.

» Pure distribution, which means that IMS database resources are now directly accessible
from non-mainframe platforms, which includes full distributed transaction processing and
two-phase commit semantics.

All of this is accomplished by three main components:

» Client-side libraries that implement the industry-standards interfaces and protocols.
» IMS Connect, which processes the distributed requests.
» The use of the Open Database Manager (ODBM) address space.

Figure 1-6 introduces the Open Database environment available with IMS Version 11.

Chapter 1. Introduction 11

7856¢ch01.fm Draft Document for Review May 7, 2010 1:20 pm

JCA 15

h

|
DBC Driver

-

DBC Driver APl XA API

DBC Driver API

}

TCP/IP z/0S

IMS Connect ODBM

D
R
D
A

> W O O

Figure 1-6 Open DB environment

For details about Open Database environment, see Chapter 2, “Open Database architecture”
on page 17.

Data is one of the largest and most valuable assets of any business. An organization’s ability
to share and deliver trusted information is not only essential to the success of that business,
but provides a competitive advantage. However, IMS data hasn’t always been easily
accessible and shareable in the way that supports the growth and agility of businesses. To
meet these needs, IMS needed to overcome two obstacles: connectivity to the data and the
lack of industry standards as part of the data access model for IMS. The IMS Version 11
Open Database solution addresses the challenges of modernizing and standardizing both
IMS database access and application development by providing an integrated distributed data
access solution. Now you can more easily integrate IMS assets with other products and
platforms across your enterprise and the Internet.

The IMS Universal drivers

The IMS Universal drivers, part of the Open Database Solution, are software components
that provide Java applications with connectivity and access to IMS databases from z/OS and
from distributed environments through TCP/IP. See Figure .

IMS provides three Universal drivers that support multiple standards and runtime
environments:

» IMS Universal DB Resource Adapter - A JCA-compliant resource adapter that provides all
the services that the JEE platform provides, including connection, transaction, and
security management

12 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch01.fm

» IMS Universal JDBC Driver - A Java Database Connectivity (JDBC) driver that supports
access to IMS data by using SQL calls

IMS Universal DL/I Driver - An IMS-specific Java API for DL/l that can access IMS data by
using Java methods that are based on IMS DL/l semantics.

The term Universal is used because the drivers share the same common framework and can
be deployed in multiple platforms and runtime environments. Because the drivers have
environment-detection protocols built into them, application developers do not need to be
concerned with where the application will be deployed—the drivers handle all runtime
environment and platform-specific needs.

The IMS Open Database solution focuses on Java programming skills. The ability to tap into
this skill base opens significant opportunities for new IMS application development. The
standard data access interface in Java today is JDBC. JDBC offers support for SQL, which is
used almost exclusively across all major database management systems. The IMS Open
Database solution provides an implementation of JDBC, coupled with an engine for SQL
processing. If you want to develop an IMS application in Java you have now several options
as shown in Figure 1-7.

IMS and Java
CICS: @Z) WebSphere

ODBA
DRA

IMS DB

DLI
Database
View

IMS Java
App

| soec/saL |

pBDGEN
psBGEN
ACBGEN

COPYLIB

CEETDLI Interface

Figure 1-7 IMS and Java - The options

The main choice for many application architects is enterprise application development in
tightly managed application servers. The Java EE and Java Connection Architecture
standards are built around integration into these server runtime environments. WebSphere
Application Server, the IBM Java EE server, adheres to these standards, as does the IMS
Open Database solution. Application developers can now deploy their applications into the
WebSphere Application Server runtime environment and take full advantage of its
management, connection pooling, and security capabilities.

Chapter 1. Introduction 13

7856¢h01.fm

Draft Document for Review May 7, 2010 1:20 pm

IMS Connect has been the gateway for TCP/IP access to IMS transactional resources. The
IMS Open Database solution enhances IMS Connect so that it now provides access to IMS
database resources via a new CSL address space: Open Database Manager (ODBM).

To provide programmatic access to IMS data, the Universal drivers can be deployed in the
following runtime environments:

» IMS Java dependent regions

WebSphere Application Server for distributed platforms
WebSphere Application Server for z/OS

CICS

DB2 and DB2 for z/OS stored procedures

Standalone Java SE

vVvyyvyyvyy

The drivers can run on both distributed and z/OS platforms. TCP/IP is used to access IMS
data from distributed platforms, which include Windows, Linux, AIX®, Sun Solaris, UNIX®,
and Linux for System z. Pre-existing assembler interfaces are used to access IMS data from
z/OS runtime environments.

The Open Database solution allows authentication of all clients at various layers. For
example, in a WebSphere Application Server (Java EE) runtime environment, you can use
encrypted credentials to manage the security credentials, instead of having the application
manage them. RACF® on z/OS (or an equivalent security product) is used to both
authenticate the user and ensure that the user has the authorization to the PSB. The Secure
Sockets Layer (SSL) protocol is supported for the type 4 Universal drivers, to ensure that your
communication layer is encrypted. Rest assured that the Open Database solution offers a
robust security model to fit your needs.

1.4 The IMS Enterprise Suite

Developing an IMS Connect client application to access IMS transactions can be challenging
for application developers. To implement complex business scenarios, an IMS Connect
application developer needs specific programming skills to code an IMS Connect client,
including in-depth knowledge of IMS Connect protocols, TCP/IP socket programming,
message and header formats, and how to set header fields.

With the introduction of the new IMS Enterprise Suite Connect API for Java, application
developers need only minimal knowledge of IMS Connect to start developing client
applications to communicate with IMS. The Connect API for Java is a simple, easy-to-use,
lightweight programming solution for communicating with IMS transactions through IMS
Connect. Developers can use a high-level programming language to write IMS Connect client
applications. In addition, developers have the flexibility to run the applications standalone,
without the overhead of an enterprise application server environment.

The components of the IBM IMS Enterprise Suite V1.1 fully integrate with IBM WebSphere,
IBM Rational, and industry tooling. They utilize a common programming model for a
service-oriented architecture (SOA) based on standards such as XML, SOAP, Java, JDBC,
and other emerging standards. This release of IMS Enterprise Suite V1.1 includes:

» Connect API for Java

Java Message Server (JMS) API
DLI Model Utility plug-in

SOAP Gateway

>
»
>
» The IBM Installation Manager and SMP/E support

14 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch01.fm

The Connect APIs enable application to more easily develop client applications that
communicate with IMS. Distributed platforms can now more easily connect to IMS; the
design, development, and test of IMS access for client TCP/IP applications has never been
simpler. The Connect APIs provide a simple, standard way to describe TCP/IP socket
connections, interaction protocols, message headers, and data. Developers can use
preconfigured values to create connections and interactions rather than manually setting
these values.

The industry-standard JMS API allows applicationdevelopers to define a common set of
messaging concepts and programmingstrategies that are supported by all JMS
technology-compliant messaging systems, increasing their overall productivityand addressing
skills issues. The JMS API can be used for synchronous callout from an IMS Java application.

DLIModel utility plug-in

The DLIModel utility plug-in, now delivered as part of IMS Enterprise Suite V1.1, helps
application developers transform IMS database information into metadata. Application
Developers can now integrate their existing PL/I and COBOL data structures into IMS
metadata. JDBC driver performance is enhanced with the addition of PROCOPT to the
DLIDatabaseView metadata class. Application developers can now see Virtual Foreign Key
fields and a relational view of data, enabling use of the Universal JDBC driver and Universal
DB resource adapter. They can also automatically select DBDs referred to by a PSB, and
merge existing metadata with modified PSB and DBD sources. Because the DLIModel utility
plug-in is Eclipse-based, there is seamless shell-sharing with other Eclipse-based products
from IBM with IBM Installation Manager.

IMS Enterprise Suite Connect API for Java is a lightweight programming solution in Java
requiring minimal setup, easy to configure, with no additional tooling required. Developers can
leverage Java support for code portability, exception handling, and logging. To accelerate
development, developers can take advantage of an integrated development environment
(IDE) for Java development such as IBM Rational Application Developer or IBM Rational
Developer for System z.

Figure 1-8 shows how the Connect API for Java hides the complexity of communication
protocols for interactions with IMS Connect behind a simple programming interface.

The client application sets connection and interaction properties by loading from a profile, or
configures the property values programmatically. To perform an interaction, the client
application simply issues an execute function call. The interaction types supported by the
Connect API for Java include SENDRECV, RESUMETPIPE, and several SENDONLY
interaction types.

Chapter 1. Introduction 15

7856¢ch01.fm Draft Document for Review May 7, 2010 1:20 pm

Client Application Client Application
Create connection reate TCP/IP \ Establish
and interaction object Connection < sta '? >
and set properties connection
Provide input Execute Provide input
Message data interaction e \Message data
Structurelmput Send request
message in the VT dal
i + data —
\request fashion =
0]
Process output Return response 8
Returned in byte format| CSM/RSM S
>
D
5
Convert messages to
User-readable format)
(") |Send acknowledgement
Process output « Return output Perform >
response message acknowledgement
If required ~ [Return acknowledgement
response
Release connection to Disconnect Disconnect open P Disconnect _
Connect API for Java > socket connection /
\—/ \ -

Figure 1-8 The IMS Enterprise Suite Connect API for Java simplifies client interactions with IMS

The Connect API for Java handles the work of establishing a connection, creating an IMS
Connect input message, sending the input message to IMS Connect, retrieving any output
message returned by IMS Connect, and storing the message in a data structure for easy
client application retrieval. .

The Connect API for Java also supports profiles. Profiles are plain text files that contain
property name-value pairs that can be predefined for specific connection and interaction
scenarios and reused to load connection and interaction property values in different
application clients. Developers can also configure the connection and interaction properties
dynamically in the client by using property-setter methods.

16 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch02.fm

2

Open Database architecture

In this chapter we describe the architecture of an IIMS Open Database environment.

The chapter contains the following:

Why IMS Open Database

Accessing IMS DB in Versions 9 and 10
Evolution in IMS 11

IMS 11 Architecture

Open Database functions

IMS 11 Universal Drivers

vyvVvyVvyvYyyvyy

© Copyright IBM Corp. 2010. All rights reserved. 17

7856¢ch02.fm Draft Document for Review May 7, 2010 1:20 pm

2.1 Why IMS Open Database

IMS Open Database is a new function in IMS 11 taking on the challenge of modernizing IMS
Database access and application development. It provides an environment that manages
access to online IMS databases from anywhere in the enterprise. It supports open-standards
for connectivity to online IMS databases:

» Within a z/0OS LPAR
» Across z/OS LPARs
» From distributed platforms

It addresses two significant bottlenecks for business growth:

» Connectivity — IMS DB has been historically grounded to the mainframe...certainly there
are ways to get to it but none straightforward and simple.

» Application development — even when connectivity is not an issue — the skills are not
readily available to develop new application workload. DL/l is not industry standard and
skills are not plentiful.

IMS 11 rolls out a complete suite of Universal drivers in support of IMS database connectivity
and programmatic access. The intent is to access IMS in a uniform way using the most
relevant industry standards from any platform and from within the most strategic runtimes. A
standards-based approach opens a lot of growth and expansion opportunity. The
fundamental communication protocol for communicating with IMS Connect is the industry
standard Distributed Relational Database Architecture™ (DRDA) protocol. Single Universal
driver in support of both type-4 and type-2 connectivity in all supported runtimes — there is no
need to learn another driver’s semantics to toggle between environments and desired
connectivity — it is all built into the framework. Distribution of resources within an IMSplex is
included. The idea is to extend the reach of IMS by extending the data. IMS DB metadata is
exposed by use of the standard JDBC API and therefore can be consumed and visualized by
JDBC tooling. By allowing inspection of metadata, the next step is query. Query syntax uses
standard query language syntax.

IMS Open Database — IMS Open Database offers direct distributed access to IMS database
resources. The distributed nature is two-fold. At the IMSplex level, it allows cross-LPAR
access to any IMS database in the IMSplex. At the pure distributed level, it allows
non-mainframe (e.g., Windows OS) access directly to IMS database resources through
industry standard interfaces. This enhancement extends IMS Connect as the gateway to IMS
DB. It adds a new Common Service Layer address space which manages connections to the
IMS ODBA interface. This enhancement improves application access to IMS.

IMS has seen an increased number of requests for distributed access to all database types.
IMS Connect is currently the gateway to IMS TM. It also becomes the gateway to IMS DB.

Distribution of database assets comes in two flavours

» Distribution within an IMSplex. Applications on one LPAR can access an IMS database on
another LPAR

» Distribution to non-System z platforms. Applications on a non-System z platform can have
direct IMS DB access without needing an IMS transaction to proxy the data.

The Universal drivers (JCA, JDBC, DLI) allow both distributed as well as local (CICS, IMS,
WAS z, DB2 z) access to IMS databases.

Figure 2-1 shows an IMS 11 Open Database overview.

18 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch02.fm

IMS 11 Open Database Overview

Application Types z/OS]
CSLRYO LPAR Stand- [Stand-alone*
DRDA RYO Client alone* | Java DL/1
Client JDBC j

eg.
WAS{l J2EE JDBC

IMS

TCP/IP
Connect

—and

Stand-alone*

co JDBC
DB2S
IMSTM 4
cics

Stand-alone* Note: In addition, you can use the CCl programming style in a
Java DL/1 J2EE environment to access IMS databases using
- (either simple SQL calls (non-JDBC) or simple DL/1 calls

Java

% In this context, “stand-alone” means “standalone Java SE”

Figure 2-1 IMS 11 Open Database Overview

2.2 Accessing IMS DB in Versions 9 and 10

The interfaces to Online IMS DB in IMS 9 and 10 are:

» Open Data Base Access (ODBA) which is used by WAS/z and DB2 SP and with these
Resource Recovery Services (RRS) is required to be used as the Sync Point coordinator.

» The transaction manager Customer Information Control System (CICS) uses CCTL as its

interface with CICS itself being the sync point coordinator and there is no requirement for
RRS.

» Both ODBA and CCTL use the Database Resource Adapter (DRA). Some IMS modules
reside in ODBA application or CICS address spaces, in particular the DRA Startup Table
(Assembled DFSPRP macro)

» IMS Java provides two IMS DB “Classic” Drivers:

— For Java dependent regions, CICS, and DB2 Stored Procedures used with DLI calls or
JDBC SQL

— For J2EE Environments the interface used is the JDBC Resource Adapter.

Figure 2-2 shows methods of accessing Online IMS DB in V9 and V10.

Chapter 2. Open Database architecture 19

7856¢ch02.fm

Draft Document for Review May 7, 2010 1:20 pm

Ways of Accessing Online IMS DB in IMS 9/10

(Non-java) Dependent Region (MPP or BMP)
Java Dependent Region (JMP or JBP) Distributed

WAS
(Non-java) ODBA (requires RRS)
e.g. COBOL DB2 Stored Procedure
RRS
Java ODBA (requires RRS) WAS/z DB2 SP CICS
e.g. WAS/z or Java DB2 Stored Procedure DRA oA DRA

(Non-java) CCTL ~ |/

e.g. CICS DBCTL CICSis ——
syncpoint lII\DABS
Java CCTL co-ordinator z/0S IMS

e.g. Java CICS DBCTL ‘

Distributed WAS (requires WAS/z and RRS)

Dependent
regions

Figure 2-2 Methods of accessing online IMS DB in V9 and V10

There are several problems associated with the IMS 9/10 methods

» If an ODBA application terminates in the middle of a DL/1 call, there is the possibility of
crashing IMS with a 113 abend

» When WAS/z is used it must run in same LPAR as IMS and this can effect machine
capacity and licence charges

» If remote WebSphere solutions are being used WAS/z is needed and “helper” EJB running
in WAS/z relays remote request to ODBA.

» Distributed applications accessing IMS DB, must execute on WAS there is no support for
other distributed platforms

2.3 Evolution in IMS 11

The intent of this section is to show the topology prior to IMS 11 and illustrate the evolution to
IMS 11, pointing out the enhancements at each step. As a point of fact, WebSphere
Application Server (WAS) z/OS cannot take advantage of the cross-LPAR feature of ODBM
unless WAS itself embraces Structured Call Interface (SCI). Applications can use the
‘out-of-the-box’ compatibility mode to use AERTDLI and have those calls routed to an ODBM
which still prevents the U113 abend — but WAS and the ODBM address space will still need to
be on the same LPAR. It is just an illustrative example showing what can be possible with
WAS z/OS as an ODBM client.

The IMS 9 and 10 solution (whether or not we are talking about distributed or local access to
IMS DB) leverages Open Database Access (ODBA) as the API to access IMS database

20 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch02.fm

resources. ODBA is capable of making address space to address space calls (PC calls) in the
same logical partition. This means that the ODBA modules need to be on the same LPAR as
the IMS CTL region. These modules (ODBA) are loaded in the address space of the
application, which is in turn loaded in the address space of the container. In this case the
container is WAS. As a result of this the WAS installation has to be on the same LPAR as the
IMS DB itself. There is no isolation

Figure 2-3 shows the architecture prior to IMS 11.

z/OS | LPARA

Pre-IMS 11 IMS
Solution WAS 203
Distributed CTL <> |MSDB
WebSphere 1IOP
s o LPAR B
o CRINE »
A A P
= I
10| P
LPAR C

Figure 2-3 Architecture prior to IMS 11

By leveraging SCI, the applications can be on any LPAR in an IMSplex. SCI uses either PC or
Cross-System Coupling Facility (XCF) calls to communicate with other SCI components. XCF
allows calls to go across LPARs in an IMSplex. This allows applications (and their containers)
to be isolated on their own LPARs.

Figure 2-4 shows the effect of leveraging the SCI.

Chapter 2. Open Database architecture 21

7856¢ch02.fm Draft Document for Review May 7, 2010 1:20 pm

Open Database Environment

LPAR A
_ z/0S WAS 2/0S ODBM IMS
Evolution T 5
© S o
© PC s PC
P CTL IMS DB
Distributed Ll AlC— ¢ M [
P 1.0 A
WebSphere 1IOR.
) T LPARB
o G| ® WAS z/0S
Al e
A -] T J XCF
P ' m , cle
10| P > | Al C L
P 10| !
LPAR C

Figure 2-4 Effect of leveraging the SCI

IMS 11 has a new CSL address space to house the ODBA modules. This interface use SCI
as its communication mechanism. The ODBA modules are no longer tightly coupled with the
applications themselves (and therefore the containers).

Figure 2-5 shows the new CSL address space (IMS Connect).

22 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch02.fm

Evolution z/OS | LPARA
ODBM IMS
L -
Distributed B o e
WAS on Any Platform o 1 2
Universal
DB Resource | LPAR B
s Adapter Cc
° J p ™
. c | XCF
P
W P
1.5
TCP/IP
LPAR C
IMS Connect
\ T
C o
P s
| c
P (N

Figure 2-5 The new CSL address space (IMS Connect)

2.4 IMS 11 Architecture

This leads us to our real goal, which is to use IMS Connect as the complete gateway solution
for IMS TM, OM, and now DB. IMS Connect is augmented to be an ODBM client. This allows
distributed applications to use the Transmission Control Protocol/Internet Protocol (TCP/IP) to
communicate with IMS Connect, which can then access any database in the entire IMSplex.

Figure 2-6 shows the final architecture.
IMS Connect has become the IMS Gateway to both IMS TM and IMS DB.

WebSphere and DB2 Stored Procedures no longer have to be on the same LPAR with IMS
when they interface with the IMS ODBM address space. The ODBM address space must be
on the same LPAR with IMS due to the use of the ODBA interface.

Distributed clients would now have the option of going directly to IMS Connect for IMS DB
requests.

Existing DB Resource Adapter applications are unaffected by Open Database. In order to

exploit Open Database from existing DB Resource Adapter applications, a migration to the
JCA 1.5 programming model would have to be done.

Chapter 2. Open Database architecture 23

7856¢ch02.fm

Draft Document for Review May 7, 2010 1:20 pm

. z/OS| LPAR A IMS
IMS 11 Solutions "
2105 was Universal IR Traditional ODBA
. . DB
Distributed T resource QY
© Adapter D) © PC CTL R
WAS on Any Platform T d -«
JEE : p
Universal . (CF
DB Resource LPAR B |MS
: b c Traditional ODBA
@ « J AN IMS Universal Drivers
A —4
e € I JDBC [|«—
P
Java A = Eii_’ /'_. CTL IMS DB
£S5 Java DLI —>
Non- LPAR C IMS
JEE
TCPIP IMS Connect
=
CTL
- g 5 '« IMS DB
TCP/IP [| c
| P I
RYO DRDA Appl.

Figure 2-6 The final architecture

2.5 Open Database functions

In this section we describe the following Open Database functions:

IMS Open Database uses DRDA
Open DataBase Manager

IMS Connect

Distributed sync pointing
Distributed Data Management

vyvyyvyyvyy

2.5.1 IMS Open Database uses DRDA

Distributed Relational Database Architecture (DRDA) is an open vendor-independent
architecture that provides a set of protocols and functions allowing connectivity between a
client and database servers. DRDA is used for IMS DB access through TCP/IP, IMS Connect
and ODBM and provides:

» Communication protocol
» Two-Phase commit protocol
» Security

IMS Connect serves as the TCP/IP server or router for DRDA messages sent by way of the
TCP/IP protocol.

ODBM routes the database connection requests received from IMS Connect to the IMS
systems that are managing the requested database.

24 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch02.fm

The Distributed Data Management (DDM) architecture provides the command and reply
structure for accessing distributed databases.

ODBM translates the incoming database requests from the DDM protocol submitted by the
IMS-provided connectors and user-written DRDA applications into the DL/I calls expected by
IMS.

Manuals and further information about DRDA and DDM can be found at

http://www.opengroup.org/dbiop

2.5.2 Open DataBase Manager

Open DataBase Manager (ODBM) is a new optional IMSplex Common Service Layer (CSL)
component that runs in its own address space. ODBM uses the Structured Call Interface
(SCI) services of the CSL for communications and Operations Manager (OM) services of the
CSL for command processing. ODBM provides distributed and local access to IMS databases
that are managed by IMS DB systems running in either the DBCTL or DB/TM environments in
an IMSplex.

One ODBM instance must be defined in the IMSplex to use ODBM functions. Each z/OS
image can have more than one ODBM. If multiple instances of ODBM are defined in the
IMSplex, any ODBM instance can perform work from any z/OS image in the IMSplex.

ODBM routes the database connection requests received from IMS Connect to the IMS
systems that are managing the requested database. Before establishing the connection to the
IMS system, ODBM translates the incoming database requests from the DDM protocol
submitted by the IMS-provided connectors and user-written DRDA applications into the DL/I
calls expected by IMS. When ODBM returns the IMS output to the client, ODBM translates
the response to the DDM protocol. From the ODBM perspective, application programs that
interact directly with ODBM, such as IMS Connect, are ODBM clients. Users can create their
own ODBM clients by using the new ODBM CSLDMI API. ODBM client application programs
can access databases that are managed by IMS DB on any LPAR in an IMSplex.

Independently and together with IMS Connect, ODBM supports various interfaces to ease the
development of application programs that access IMS databases from many different
distributed and local environments. Supported ODBM interfaces include:

» IMS Universal DB resource adapter

» IMS Universal JDBC driver

» IMS Universal DL/I driver

» The ODBA interface

» The ODBM CSLDMI interface for user-written ODBM client application programs

Figure 2-7 shows an IMS configuration that includes ODBM.

Chapter 2. Open Database architecture 25

http://www.opengroup.org/dbiop

7856¢ch02.fm Draft Document for Review May 7, 2010 1:20 pm

IMS Universal drivers

S \
IMS Universal IMS Universal
— | DB resource e JDBC
adapter driver
~__

Y
IMS Universal
DI/I
driver

e —

A 4

User-written

DRDA client
TCPI/IP
User-written
ODBM client z/OS ODBA
J application
SCI

' 3

/ IMS \ / Open Database \

Connect Manager (ODBM)

)
g— g—

<
<

SCI /

Figure 2-7 Overview of an IMS configuration that includes ODBM

v

vy

Additionally as well as supporting the above interfaces, the following functions are provided
by ODBM:

» Supports 1PC (one phase commit) with or without RRS as the sync point coordinator. If
the ODBM parameter RRS=N is specified, the Database Resource Adapter (DRA is used
to communicate with IMS.

26 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch02.fm

» Receives incoming database requests to IMS systems based on an alias name. Alias
names for IMS systems are defined to ODBM on the CSLDCxxx PROCLIB member and
specified on the incoming database requests by the client application programs.

— If the client application program does not specify an alias name on a database access
request, ODBM routes the request among multiple IMS systems by using a round-robin
method of distribution, in which ODBM routes each incoming request. to the active IMS
systems that are defined to ODBM.

» Before establishing the connection ODBM translates the incoming database requests from
the DDM protocol submitted by the IMS-provided connectors and user-written DRDA
applications into the DLI calls expected by IMS.

» Translates responses to the client into the DDM protocol

» Enables ODBM client application programs to access databases from other LPARs within
an IMSplex.

» Manages connections to ODBA

» Protects IMS control regions from the unexpected termination during DL/I processing of
z/OS application programs hat use the ODBA interface through ODBM.

» Functions as an RRMS resource manager capable of participating in RRS controlled sync
point functioning for ODBA applications that are configured to use ODBM.

» Functions as a resource manager and issues the necessary calls to RRS for single-phase
commit processing for local RRS transactions.

» Functions together with IMS Connect as a complete Distributed Relational Database
Architecture (DRDA) target server for client application programs that use the DRDA
specification.

Because ODBM and IMS Connect support DRDA, you can develop your own DRDA source
application server that communicates with IMS by using the Distributed Data Management
(DDM) Architecture commands that are part of the DRDA specification.

From the ODBM perspective, application programs that interact directly with ODBM, such as
IMS Connect, are ODBM clients. Users can create their own ODBM clients by using the new
ODBM CSLDMI API. ODBM client application programs can access databases that are
managed by IMS DB on any LPAR in an IMSplex.

ODBM does not perform user authentication or authorization itself.

If you are using IMS Connect with ODBM, you can authenticate the user IDs on request
messages before they reach ODBM by using IMS Connect security. In addition to being able
to call RACF directly, IMS Connect provides the IMS DB Security user exit routine
(HWSAUTHO) to facilitate the customizing of the security checking for communications with
IMS DB.

You can have IMS check the authority of a user to allocate a PSB or access IMS resources by
using APSB and Resource Access Control (RAS) security.

APSB security is enabled by specifying the ODBASE parameter. RAS security is specified by
the I1SIS parameter. Both the ODBASE and ISIS parameters can be specified on the IMS or
DBC startup procedure or the DFSPBxxx PROCLIB member. If the ODBASE parameter is set
to 'Y’ whatever value is specified for the ISIS parameter is ignored.

When using APSB you need to do the following:

Chapter 2. Open Database architecture 27

7856¢ch02.fm

Draft Document for Review May 7, 2010 1:20 pm

1. Define the PSBs that you want protected by RACF to the AIMS or Axxxxxxx general
resource class (where xxxxxxx is the value specified on the RCLASS= parameter of the
IMS SECURITY macro).

2. Specify RCLASS=IMS | RACFCOM | RACFTERM | RASRACF | RAS on the IMS
SECURITY macro at IMS system definition time.

When RAS is used the actions you need to perform depends on the value specified for the
ISIS parameter. See Table 2-1.

Table 2-1 Options for defining RAS security for applications that use ODBA

Specifications

Actions to perform

ISIS=0 | N and ODBASE=N No action required. No PSB security checking is performed.

ISIS=R and ODBASE=N Define the PSBs that you want protected by RACF to the IIMS or Ixxxxxxx resource

class, and then define the user IDs of the dependent region that you want
authorized to access the PSBs. The ODBA support for IMS uses the security
environment (ACEE) passed in the dependent region's task (TCBSENV), if present,
or the dependent region's address space (ASXBSENYV), if the ACEE is not present
at the task level.

ISIS=C and ODBASE=N Create a Resource Access Security exit routine that is named DFSRASO00. This

routine must determine if the user is authorized to use the PSB.

ISIS=A and ODBASE=N Define the PSBs that you want protected by RACF to the IIMS or Ixxxxxxx resource

class, and then define the user IDs of the dependent region that you want
authorized to access the PSBs. The ODBA support for IMS uses the security
environment (ACEE) passed in the dependent region's task (TCBSENYV), if present,
or the dependent region's address space (ASXBSENYV), if the ACEE is not present
at the task level.

Create a Resource Access Security exit routine that is named DFSRASO00. This
routine must determine if the user is authorized to use the PSB

RACEF is called first, and then the exit routine is called.

If a user-written ODBM client passes a security object for a security product such as RACF,
ODBM invokes RACROUTE REQUEST=VERIFY to create an Accessor Environment
Element (ACEE) for the APSB thread. IMS can then use the ACEE during APSB or RAS
authorization for allocating PSBs or access to other resources.

2.5.3 IMS Connect

IMS Connect provides high performance TCP/IP and local z/ OS communications between
one or more IMS Connect clients and one or more IMS systems. IMS Connect, which
previously provided access to only IMS Transaction Manager (IMS TM), through Open
Transaction Manager Access (OTMA), in IMS 11 now also provides access to IMS DB,
through ODBM. IMS Connect for Open Database enables:

» Distributed clients to exchange messages with IMS DB by using TCP/IP connections and
ODBM.

» IMS operators that use the IMS Control Centre to issue commands to an IMSplex and
receive command replies by using TCP/IP and the IMS Operations Manager (OM).

Communication with ODBM and OM requires the use of the IMS SCI.

With reference to WebSphere Application Server, WAS/z can run in same or different LPAR
from IMS. When located in a different LPAR, it uses TCP/IP through IMS Connect.

» Distributed WAS does not require WAS/z, communication is through IMS Connect

28 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch02.fm

» Distributed applications do not require a J2EE (e.g. WAS) environment

IMS Connect enhancements for Open Database support
IMS Connect has had the following enhancements in support of IMS Open Database:

» IMS Connect Configuration member HWSCFGxx
— New ODACCESS statement
* DRDA ports, timeout value, IMSplex name etc.
» Changes to existing commands
— VIEWHWS, VIEWDS, VIEWPORT
» New Commands
— STARTOD, STOPOD, STARTIA, STOPIA, VIEWIA, SETOAUTO
» New User Exits
— HWSROUTO - Routing Exit for ODBM
* can override the IMS alias and optionally select the ODBM target
— HWSAUTHO — Security Exit for ODBM
¢ can perform the authentication of the userid

IMS Connect, with ODBM, supports the following types of clients in accessing IMS DB:

» Application programs using the IMS Universal DB resource adapter for the J2EE platform

» Application programs using the IMS Universal JDBC driver

» Application programs using the IMS Universal DL/I driver

» User-written client application programs using the open standard DRDA communications
architecture

For IMS Connect clients, such as the IMS Universal drivers, that access databases that are
managed by IMS DB in DBCTL and DB/TM environment, IMS Connect manages TCP/IP
connections and routes incoming access requests among the instances of the ODBM and the
IMS DB systems in an IMSplex.

IMS Connect is the TCP/IP server and front-end IMSplex message router for the IMS
Universal drivers, which include:

» IMS Universal DB resource adapter for the J2EE platform

» IMS Universal JDBC driver

» IMS Universal DL/I driver

Because IMS Connect supports a subset of the DRDA protocol and, with ODBM, can be
considered a DRDA target server, you can write application programs to the DRDA protocol
directly; however, the IMS Universal DB resource adapter for the J2EE platform is the

recommended API for accessing IMS databases through TCP/IP from a distributed
environment.

IMS Connect support for the IMS Universal drivers includes support for global two-phase
commit transactions.

IMS Connect supports communication with the IMS Universal drivers only on dedicated
DRDA ports and only through shareable persistent sockets.

Chapter 2. Open Database architecture 29

7856¢ch02.fm Draft Document for Review May 7, 2010 1:20 pm

IMS Connect security support includes the IMS Connect DB Security user exit routine
(HWSAUTHO), which can be used for greater control over the authentication of user IDs on
connections that access IMS DB. RACF is also supported.

IMS Connect support for the IMS Universal drivers is defined by the ODACCESS
configuration statement in the IMS Connect configuration PROCLIB member and requires at
least one instance of ODBM running in the same IMSplex as IMS Connect.

Figure 2-8 shows an overview of IMS Connect support for IMS DB systems.

30 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch02.fm

IMS Universal IMS Universal IMS Universal User-written
DB JDBC DL/ DRDA
resource adapter driver driver source server
TCPI/IP
z/0S ()
> ODBM <
-/
SR
XCF
SCI » <
PC oM
v v v v v S J
a Ms O\
Connect IMS
DB —
System 1
Optional
HWSROUTO and
HWSAUTHO IMS
User message DB D
System 2
\ exits /
z/0S
IMS
DB —
System 3

Figure 2-8 Overview of IMS Connect support for IMS DB systems

IMS Connect invokes the routing user exit first to allow the exit to select an ODBM and
optionally override the IMS ALIAS.

» If the routing exit selects an ODBM, IMS Connect uses that ODBM and does not perform
the round robin routing method.

Chapter 2. Open Database architecture 31

7856¢ch02.fm

Draft Document for Review May 7, 2010 1:20 pm

» If the routing exit does not select an ODBM, IMS Connect selects an ODBM and perform
the round robin routing method based upon the explicit ALIAS name as well as the
blanked ALIAS name.

» If the routing exit overrides the IMS ALIAS, IMS Connect uses that IMS ALIAS.
» IMS Connect validates the ALIAS and the ODBM upon returning from the exit.

For clients that connect to IMS DB through ODBM, such as the IMS Universal drivers and
clients using the Distributed Relational Database Architecture (DRDA), IMS Connect
authenticates the user, but does not check the authority of the user to perform any actions.

To authenticate a user ID for an IMS DB client, IMS Connect can use the IMS Connect DB
Security user exit routine (HWSAUTHO), a security product such as RACF, or both.

» HWSAUTHO user exit is always called by IMS Connect, regardless of whether RACF or
another security product is enabled. If RACF support is included in your IMS Connect
configuration, IMS Connect calls the HWSAUTHO user exit before invoking RACF.

» HWSAUTHO performs the authentication of the userid/passticket of the ODBM client.

» HWSAUTHO can override the input userid with a different userid and is able to provide a
RACF groupid to be authenticated further by IMS Connect.

» HWSAUTHO is a BPE type-1 user exit and is refreshable.
» Password is passed in the clear.

RACEF is enabled in IMS Connect for IMS DB and IMS TM clients by specifying RACF=Y in
the IMS Connect configuration member or by issuing the IMS Connect command SETRACF
ON.

IMS Connect does not support Secure Sockets Layer (SSL) directly for clients that connect to
IMS DB. To secure connections to IMS DB with SSL, use IBM z/OS Communications Server
Application Transparent Transport Layer Security feature (AT-TLS). The use of AT-TLS is
transparent to IMS Connect.

IMS Connect provides several features to help you manage RACF passwords. Some of these
features only apply when IMS Connect is configured to call RACF directly.

» When IMS Connect is configured to call RACF directly, users of the user message exit
routines HWSSMPLO, HWSSMPL1, and HWSJAVAO can change RACF passwords by
submitting a client message that includes a password change request keyword.

» IMS Connect supports mixed-case passwords.

» An alternative to the RACF password is a PassTicket. PassTicket allows you to
communicate with a host without using a RACF password. When IMS Connect is
configured to call RACF directly, you can use PassTicket to authenticate user IDs and log
on to computer systems that contain RACF.

For information on these features refer to IMS Version 11 Communications and Connections,
SC19-2433.

Note: If you configure IMS Connect to call RACF, you should evaluate the impact of the
RACEF calls on IMS Connect performance

IMS Connect workload distribution

IMS Connect can also provide workload distribution by routing database connection requests
to ODBM based on an alias name that is submitted by the client application program. To the
client application, the alias name represents the IMS system, or data store, to which the

32 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch02.fm

application program connects. Depending on the value of the alias name submitted, IMS
Connect either routes the incoming connection request to a specific ODBM instance or
distributes the incoming connection request to any available instance of ODBM in an IMSplex.

» ODBM clients can specify an IMS “ALIAS” in the message
— Alias represents the IMS datastore that the client wants to send the message to

e Multiple Alias names for an IMS datastore can be defined in the ODBM
configuration member

» If the client sends a message with a blank alias, IMS Connect routes the message to an
ODBM using a round robin algorithm

» If an alias points to multiple ODBMs, IMS Connect routes the message to one of those
ODBMs using a round robin algorithm

2.5.4 Distributed sync pointing

Figure 2-9 shows how Open Database achieves cross LPAR transaction management.

IMS Open Database and distributed sync pointing

Use of RRS with ODBM is optional
RRS=Y|N parm for ODBM start-up
RRS=Y is needed to supported Distributed Two-Phase Commit
RRS=Y in IMS Connect and ODBM and IMS Control Region
If RRS=Y (default), ODBM will use the ODBA interface (i.e. AERTDLI)

If RRS=N, ODBM will use the CCTL DRA interface

Distributed LPAR A z/OS
WebSphere IMS Connect Parent UOR RRS
T | RRS=Y
u €
z IJJ ° Start UOW P c
A gl 7 | CI Coordinated
P c|! P
P
v
LPAR B opem | RRS -
RRS=Y IMS >
Note: An individual ODBM has either S g Child |RRS=Y IMS
RRS=Y or RRS=N, but can not ¢ 3 DB
support both concurrently A E—

Figure 2-9 Open database cross LPAR transaction management

RRS=Y must be specified in the configuration for a global transaction.

When a client establishes a connection through IMS Connect to ODBM several things are
done to establish a coordinated Unit of Work.

» First IMS Connect creates the parent Unit of Recovery.

» IMS Connect then sends the UR token to ODBM.

» ODBM then expresses interest in the UR as a child.

» At this point we have a coordinated Unit of Recovery established.

Chapter 2. Open Database architecture 33

7856¢ch02.fm

Draft Document for Review May 7, 2010 1:20 pm

For each request to access IMS data, connection information on the IMS host system, port
number, and a valid user ID and password must be supplied in order to establish
communication with IMS. A socket connection is first established to connect to the host IMS
Connect system. When IMS Connect receives the request, it proceeds to authenticate the
user based on the supplied user ID and password. After successful authentication, necessary
information on the socket, such as PSB name and IMS alias (database subsystem) is sent to
ODBA in order to allocate the PSB to connect to the database. An actual connection to an
IMS database is only established when a PSB is allocated. Authorization for a particular PSB
is done by the ODBA component during the allocation of a PSB.

Distributed Syncpoint (global transaction) requires RRS on z/OS.

Use of RRS with ODBM is optional

» RRS=YIN parameter for ODBM start-up
— If RRS=Y (also the default), ODBM uses the ODBA interface (i.e. AERTDLI)
— If RRS=N, ODBM uses the DRA interface like CICS

Global transactions are not supported if RRS=N

Distributed Relational Database Architecture (DRDA) is set of protocols and functions
providing connectivity between a client and database servers.

» Communication protocol
» Two-Phase commit protocol
» Security

DRDA is used for IMS DB access through TCP/IP, IMS Connect and ODBM

IMS Connect serves as the TCP/IP server or router for DRDA messages sent by way of the
TCP/IP protocol.

2.5.5 Distributed Data Management

IMS supports the Distributed Data Management (DDM) architecture of the Distributed
Relational Database Architecture (DRDA). You can develop your own source DDM server that
communicates with the IMS target DDM server to provide access to databases managed by
IMS DB in DBCTL and DB/TM IMS systems.

The IMS documentation for the DDM architecture includes only the DDM structures that are
required to connect to and communicate with IMS and the DDM structures that have been
changed or defined by IMS.

For the complete documentation of the DDM, see DRDA, Version 4, Volume 3: Distributed
Data Management (DDM) Architecture, which is available from The Open Group at
WWW.Opengroup.org.

The DDM architecture includes the following elements or terms:

Commands
Command objects
Reply objects
Reply messages

v

vYyy

Each term, whether it is a command, command object, reply object, parameter, or message,
is represented by a codepoint, a hexadecimal value that represents and identifies the
component in communication between a source server and the target server. For example,

34 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch02.fm

the EXCSAT command is represented by X’1041’, the EXCSATRD reply object is represented
by X'1443’, the SRVNAM parameter is represented by X’116D’, and so on.

As an open standard, the DRDA specification requires that products that use the specification
must conform to the conventions, protocols, standards, and so on, of its architecture.
However, the DDM architecture that is a part of the DRDA specification allows products to
create product-unique extensions, in which a product, such as IMS, uses a subset of the
existing DDM-defined commands, parameters, and messages, as well as product-unique
structures that are defined by the product. When creating a product-unique extension that has
product-unique structures, the product must conform to the DDM architecture.

The product-unique extension for IMS conforms to both the DDM architecture and the DRDA
specification. IMS uses a subset of the existing DDM-defined commands, parameters, and
messages, as well as a variety of IMS-defined structures that conform to the DDM
architecture, but are unique to IMS.

2.6 IMS 11 Universal Drivers

Figure 2-10 shows the new IMS Universal Drivers

IMS Open Database — JDBC Universal drivers

z/OS platforms

Dir» Mainframe

Distributed platforms (e.g.; LUW)

Mainframe

Figure 2-10 IMS Universal drivers

The Universal drivers have a framework capable of processing any of the three main
programming models: J2EE, JDBC, DLI. The Universal drivers are able to connect to any IMS
subsystem on any mainframe system. The same application can have active connections to
any number of IMS systems on any number of mainframe installations.

When running in a distributed environment on a server such as WebSphere Application
Server for distributed platforms, or in a remote z/OS environments on a server such as

Chapter 2. Open Database architecture 35

7856¢ch02.fm

Draft Document for Review May 7, 2010 1:20 pm

WebSphere Application Server for z/OS, the IMS Universal drivers connect to IMS using a
type-4 connection architecture, which supports TCP/IP communications and socket
management.

When running locally on the same logical partition (LPAR) as IMS, the IMS Universal drivers
connect to IMS by using a type-2 connection architecture, which supports direct
communication with IMS through the IMS Open Database Access (ODBA) and IMS database
resource adapter (DRA) interfaces.

WebSphere Application Server supports all of the IMS Universal drivers in both distributed
and z/OS environments.

CICS and DB2 for z/OS support the IMS Universal JDBC driver and the IMS Universal DL/I
driver.

The IMS Universal drivers are software components that provide Java applications with direct,
non-transactional connectivity and access to IMS databases from z/OS and distributed
environments through TCP/IP. Applications using the IMS Universal drivers can reside on the
same logical partition (LPAR) or on a different LPAR from the IMS databases.

Programming approaches

The IMS Universal drivers provide an application programming framework that offers multiple
options for access to IMS data. These programming options include:

» IMS Universal DB resource adapter

Provides connectivity to IMS databases from a Java Platform, Enterprise Edition (Java
EE) environment, and access to IMS data using the Common Client Interface (CCI) and
Java Database Connectivity (JDBC) interfaces.

» IMS Universal JDBC driver

Provides a stand-alone JDBC 3.0 driver for making SQL-based database calls to IMS
databases.

IMS Universal DL/l driver

Provides a stand-alone Java API for writing granular queries to IMS databases using
programming semantics similar to traditional DL/I calls.

Open standards
The IMS Universal drivers are built on the following industry open standards and interfaces:

» Java EE Connector Architecture (JCA)

JCA is the Java standard for connecting Enterprise Information Systems (EISS) such as
IMS into the Java EE framework. Using JCA, you can simplify application development
and take advantage of the services that can be provided by a JAVA EE application server,
such as connection management, transaction management and security management.
The Common Client Interface (CCI) is the interface in JCA that provides access from JAVA
EE clients such as Enterprise JavaBean (EJB) applications, JavaServer Pages (JSP), and
Java servlets, to backend IMS subsystems.

» Java Database Connectivity (JDBC)

JDBC is the SQL-based standard interface for database access. It is the industry standard
for database-independent connectivity between the Java programming language and any
database that has implemented the JDBC interface.

» Distributed Relational Database Architecture (DRDA) specification

36 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch02.fm

DRDA is an open architecture that enables communication between applications and
database systems on disparate platforms. These applications and database systems can
be provided by different vendors and the platforms can be different hardware and software
architectures. DRDA provides distributed database access with built-in support for
distributed, two-phase commit transactions.

» Distributed and local connectivity with the IMS Universal drivers

The IMS Universal drivers support distributed (type-4) and local (type-2) connectivity to IMS
databases.

Distributed connectivity with the IMS Universal drivers

With type-4 connectivity, the IMS Universal drivers can run on any platform that supports
TCP/IP and a Java Virtual Machine (JVM), including z/OS. To access IMS databases using
type-4 connectivity, the IMS Universal drivers first establish a TCP/IP-based socket
connection to IMS Connect. IMS Connect is responsible for routing the request to the IMS
databases using the Open Database Manager (ODBM), and sending the response back to
the client application. The DRDA protocol is used internally in the implementation of the IMS
Universal drivers. You do not need to know DRDA to use the IMS Universal drivers.

The IMS Universal drivers support two-phase commit (XA) transactions with type-4
connectivity. IMS Connect builds the necessary Recovery Resource Services (RRS) structure
to support the two-phase commit protocol. If two-phase commit transactions are not used,
RRS is not required.

When establishing a connection to IMS, the driverType connection property must be set to
indicate distributed (type-4) connectivity to IMS.

After successful authentication, the IMS Universal drivers sends other socket connection
information, such as program specification block (PSB) name and IMS database subsystem,
to IMS Connect and ODBM in order to allocate the PSB to connect to the database.

A connection to an IMS database is established only when a program specification block
(PSB) is allocated. Authorization for a particular PSB is done by the ODBM component during
the allocation of a PSB.

The IMS Universal drivers support connection pooling with type-4 connectivity, which limits
the time that is needed for allocation and deallocation of TCP/IP socket connections. To
maximize connection reuse, only the socket attributes of a connection are pooled. These
attributes include the IP address and port number that the host IMS Connect is listening on.
As a result, the physical socket connection can be reused and additional attributes can be
sent on this socket in order to connect to an IMS database. When a client application of the
IMS Universal drivers using type-4 connectivity makes a connection to IMS, this means:

» A one-to-one relationship is established between a client socket and an allocated PSB that
contains one or more IMS databases.

» A one-to-many relationship is established between IMS Connect and the possible number
of database connections it can handle at one time.

» IMS Connect does the user authentication.

» ODBM ensures that the authenticated user is authorized to access the given PSB.

You can also use the IMS Universal drivers with type-4 connectivity if your Java clients are
running in a z/OS environment but are located on a separate logical partition from the IMS

subsystem. Use type-4 connectivity from a z/OS environment if you want to isolate the
application runtime environment from the IMS subsystem environment.

Chapter 2. Open Database architecture 37

7856¢ch02.fm

Draft Document for Review May 7, 2010 1:20 pm

Local connectivity with the IMS Universal drivers

Local (or type-2) connectivity with the IMS Universal drivers is targeted for the z/OS platform
and runtime environments. Use type-2 connectivity when connecting to IMS subsystems in
the same logical partition (LPAR).

Table 2-2 shows the z/OS runtime environments that support client applications of the IMS
Universal drivers using type-2 connectivity.

Table 2-2 z/OS runtime environment support for IMS Universal drivers with type-2 connectivity

z/OS Runtime Environment IMS Universal Drivers with Type-2
connectivity supported

WebSphere Application Server for z/OSS IMS Universal DB resource adapter

IMS Java dependent regions (JMP and JBP IMS Universal DL/I driver

regions), DB2 for z/OS stored procedures and IMS Universal JDBC driver

CICS

The DRDA protocol is not used to establish type-2 connectivity. Instead, type-2 connectivity
from WebSphere Application Server for z/OS and DB2 for z/OS stored procedures
environments is established using Open Database Access (ODBA). Type-2 connectivity from
a CICS environment uses the database resource adapter (DRA).

Because it runs on the same LPAR as the IMS subsystem, during connection time, a client
application of the IMS Universal drivers using type-2 connectivity does not need to supply an
IP address, port number, user ID, or password. The driverType property must be set to
indicate local (type-2) connectivity to IMS.

RRSLocalOption connectivity type

In addition to type-4 and type-2 connectivity, the RRSLocalOption connectivity type is
supported by the IMS Universal DB resource adapter running on WebSphere Application
Server for z/OS. With RRSLocalOption connectivity, applications using the IMS Universal DB
resource adapter do not issue commit or rollback calls. Instead, transaction processing is
managed by WebSphere Application Server for z/OS.

Comparison of IMS Universal drivers programming approaches for
accessing IMS

Depending on your IT infrastructure, solution architecture, and application design, choose the
IMS Universal drivers programming approach that is best for your development scenario.

Table 2-3 lists the recommended IMS Universal drivers programming approach to use, based
on the application programmer’s choice of application platform, data access method, and
transaction processing option.

38 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

Table 2-3 Comparison of programming approaches

7856ch02.fm

Application platform

Data access method

Transaction
processing required

Recommended approach

WebSphere
Application Server for
distributed platforms or
WebSphere
Application Server for
z/OS

CCI programming
interface to perform
SQL or DL/I data
operations.

Local transaction
processing only.

Use the IMS Universal DB resource
adapter with local transaction support
(imsudbLocal.rar), and make SQL calls
with the SQLInteractionSpec class or
DL/l calls with the DLlIInteractionSpec
class.

CCI programming
interface to perform
SQL or DL/l data
operations.

Two-phase (XA)
commit processing* or
local transaction
processing.

Use the IMS Universal DB resource
adapter with XA transaction support
(imsudbXA.rar), and make SQL calls with
the SQLInteractionSpec class or DL/I
calls with the DLIInteractionSpec class.

JDBC programming
interface to perform
SQL data operations.

Local transaction
processing only.

Use the IMS Universal JCA/JDBC driver
version of the IMS Universal DB resource
adapter with local transaction support
(imsudbdJLocal.rar), and make SQL calls
with the JDBC API

JDBC programming
interface to perform
SQL data operations.

Two-phase (XA)
commit processing* or
local transaction
processing.

Use the IMS Universal JCA/JDBC driver
version of the IMS Universal DB resource
adapter with XA transaction support
(imsudbJXA.rar), and make SQL calls
with the JDBC API.

Standalone Java
application (outside a
Java EE application
server) that resides on
a distributed platform
or a z/OS platform

JDBC programming
interface to perform
SQL data operations.

Two-phase (XA)
commit processing™*
or local transaction
processing.

Use the IMS Universal JDBC driver
(imsudb.jar), and make SQL calls with the
JDBC API.

Traditional DL/I
programming
semantics to perform
data operations.

Two-phase (XA)
commit processing**
or local transaction
processing.

Use the IMS Universal DL/I driver
(imsudb.jar), and make DL/I calls with the
PCB class.

Standalone non-Java
application that
resides on a
distributed platform or
a z/OS platform

Data access using
DRDA protocol.

Two-phase (XA)
commit processing or
local transaction
processing.

Use a programming language of your
choice to issue DDM commands to IMS
Connect. The application programmer is
responsible for implementing the
two-phase commit mechanism.

* XA transaction support is available only with type-4 connectivity.
** The driver is enabled for local and XA transactions, but the application programmer is responsible for
implementing the two-phase commit mechanism. XA transaction support is available only with type-4

connectivity

Generating the runtime Java metadata class using the IMS Enterprise
Suite DLIModel utility plug-in

To connect to an IMS database using the IMS Universal drivers or the IMS classic JDBC
driver provided by the classic Java APlIs for IMS, you need to include on your Java classpath
the Java metadata class that provides the database view.

The Java metadata class is a subclass of com.ibm.ims.db.DLIDatabaseView that is generated
using the IMS Enterprise Suite DLIModel utility plug-in. The Java metadata class represents
the application view information specified by a program specification block (PSB) and its

Chapter 2. Open Database architecture

39

7856¢ch02.fm Draft Document for Review May 7, 2010 1:20 pm

related Program Control Blocks (PCBs). The Java metadata class provides a one-to-one
mapping to the segments and fields defined in the PSB.

To generate the metadata class, use the DLIModel utility plug-in to import the application PSB
source and related DBD source files. The Java metadata class must be compiled and made
available through the classpath for any Java application attempting to access IMS data using
that PSB.

During database connection setup, pass the name of this metadata class to the resource
adapter or JDBC driver. The Java metadata class is used at runtime by the IMS Universal
drivers and the IMS classic JDBC driver to process both SQL and Java-based DL/I calls.

Chapter 4, “Generating IMS metadata class with IMS Enterprise Suite DLIModel Utility” on
page 75 provides the implementation details.

40 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

System environment

7856¢ch03.fm

3

IMS Open Database uses several IMS components that all interface with each other when a
Java application calls IMS to retrieve data. In this chapter, we detail the setup, configuration
and management of each component. In addition, we discuss how to secure access to IMS

data when using the IMS Open Database capability. We cover these topics in the following

sequence:

»

>

Required environment setup for IMS Open Database

Common Service Layer components

Base Primitive Environment configuration

Structured Call Interface

Operations Manager

Open Database Manager

e ODBM commands

IMS Connect

— First-time implementation: setup and configuration

— Modifying existing IMS Connect definitions for IMS Open DB Support
— IMS Connect considerations for IMSplex

Using IMS applications to help set up CSL and IMS Connect

— Installation Verification Program

— Syntax Checker

Security considerations

© Copyright IBM Corp. 2010. All rights reserved.

41

7856¢ch03.fm Draft Document for Review May 7, 2010 1:20 pm

3.1 Required environment setup for IMS Open Database

In order for a Java application to access IMS data, it must send a request to IMS in a format
that IMS can understand and in turn, IMS must return the requested data in a format that the
application can understand. The IMS Enterprise Suite DLIModel utility plug-in translates your
existing IMS source data, consolidating it into a class file. Using this class file along with the
IMS Universal Drivers now available in IMS 11, a Java application can speak the language of
IMS and retrieve the data using the IMS Open Database capability.

Note: The installation, setup and use of the IMS Enterprise Suite DLIModel utility plug-in is
covered separately in Chapter 4, “Generating IMS metadata class with IMS Enterprise
Suite DLIModel Utility” on page 75.

As for the flow of a Java application’s request for IMS data, it first sends a message to IMS
Connect over TCP/IP using DRDA protocol. IMS Connect then interfaces with the Open
Database Manager (ODBM) using the Structured Call Interface (SCI). ODBM in turn uses SCI
to route the request to the IMS that contains the requested data so that the data can be
retrieved. The ODBM component is the key capability that enables this data access, whose
configuration can be can dynamically updated using Operations Manager (OM) commands
known as type-2 commands, which we discuss later.

Important: The address spaces associated with the components mentioned here need to
be started in the following order:

SCI

oM

IMS control region
ODBM

IMS Connect

kRN

Working together, these components bridge the gap between the more modern Java
development environment and the data that it requires, contained on the mainframe in IMS.
We now explore how to setup, configure, and enable these components, beginning with the
Common Service Layer.

For details on the architecture of IMS Open Database, see Chapter 2, “Open Database
architecture” on page 17.

3.2 Common Service Layer components

The Common Service Layer (CSL) is an architecture that simplifies IMSplex management by
providing a single point of control from a single system image, as well as plex-wide resource
sharing. The Open Database capability introduces a new CSL address space called Open
Database Manager (ODBM), which handles incoming database requests from distributed
applications. Like other IMSplex members, the ODBM address space communicates with
other members using SCI, another CSL component mentioned in the previous introduction
section. Finally, the new ODBM address space can be queried and updated via type-2
commands, which are sent to IMS using the Operations Manager (OM) CSL component.

In this section, we cover the setup for the CSL address spaces used with IMS Open
Database: SCI, OM and ODBM. Each of these are based on the Base Primitive Environment

42 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

(BPE), and therefore you must specify a BPE configuration member in each component’s
startup JCL.

Note: In addition to completing setup for each individual CSL address space, you must
also define the name of your IMSplex in the DFSDFxxx PROCLIB member with the
IMSPLEX parameter. Each CSL address space has an initialization member that also
contains an IMSPLEX parameter, which should match the IMSplex name that you specified
in the DFSDFxxx member. You can also specify this value in the DFSCGxxx PROCLIB
member.

The xxx suffix of DFSDFxxx will be specified on the CSLG startup parameter of IMS, so
IMS will know which member will contain the CSL definitions (either DFSDFxxx or
DFSCGxxx). If you specify your CSL definitions in both of these PROCLIB members,
DFSCGxxx will take precedence. For instructions on how to find a sample member
definition, refer to the section entitled “OM, SCI, and DFSCGxxx samples” on page 66.

This section includes details about each of the address spaces required to use the IMS Open
Database capability:

» Base Primitive Environment configuration

Structured Call Interface

Operations Manager

Open Database Manager and commands used to dynamically manage it

vvyy

3.2.1 Base Primitive Environment configuration

The Base Primitive Environment (BPE) configuration member is used to enable tracing and
defines the BPE execution environment values for running CSL address spaces as well as the
IMS Connect address space. BPE trace records can be written to internal (memory only)
trace tables and to external data sets. Use the TRCLEV parameter to indicate the type, level
and number of storage pages allocated (optional) for the trace table. The default setting is for
the records to be written internally. The sample BPE configuration member for SCI and OM,
named BPECONFG, takes this default in the bottom portion of Example 3-1. In Example 3-5
and Example 3-7 we later reference the BPECONFG configuration member with the
BPECFG= parameter (respectively) in our SCI and OM startup procedures.

Example 3-1 Sample BPE configuration member for SCI and OM address spaces

R Rk Rk R ok R R R R Rk Rk Rk kR

* BPE CONFIGURATION FILE FOR SCI AND OM (BPECONFG) *
R R Rk Rk R ok R R R R R R R R R R R R R R Rk R R R R R R R R R R R R R R R R R Rk R Rk Rk kR
LANG=ENU /* LANGUAGE FOR MESSAGES */
/* (ENU = U.S. ENGLISH) */
#
DEFINITIONS FOR BPE SYSTEM TRACES
#
TRCLEV=(*, LOW,BPE) /* DEFAULT ALL TRACES TO LOW */
NOTE: KEEP THE FOLLOWING FOR COMPATIBILITY WITH 6.1 BPE
TRCLEV=(STG, LOW, BPE) /* STORAGE TRACE */
TRCLEV=(CBS, LOW, BPE) /* CONTROL BLK SRVCS TRACE ~ */
TRCLEV=(DISP, LOW,BPE) /* DISPATCHER TRACE */
TRCLEV=(AWE, LOW, BPE) /* AWE SERVER TRACE */
TRCLEV=(LATC, LOW, BPE) /* LATCH TRACE */
TRCLEV=(SSRV, LOW, BPE) /* SYSTEM SERVICES TRACE */
TRCLEV=(USRX, LOW, BPE) /* USER EXIT SERVICES TRACE */

Chapter 3. System environment 43

7856¢ch03.fm

Draft Document for Review May 7, 2010 1:20 pm

#

DEFINITIONS FOR OM/SCI TRACES

#

TRCLEV=(*,LOW,0M) /* DEFAULT OM TRACES TO LOW */
TRCLEV=(*,LOW,SCI) /* DEFAULT SCI TRACES TO LOW */

We have chosen to use a different BPE configuration member named BPEODBM for
initializing our ODBM address space, which is shown below in Example 3-2. Later, in
Example 3-10, you will see that we reference this configuration member with the BPECFG=
parameter in our ODBM startup procedure.

Example 3-2 Sample BPE configuration member for ODBM address space

KKK KKEAKK KRR AR KRR RKRAKRKR R XK A KRR RXRKRA KRNI AR A AR R Rk hkkhhhhkhkkhkhkhkhkkhkhkkhkhkkhkhkk*,%x

* CONFIGURATION FILE FOR BPE FOR ODBM (BPEODBM) *
KKK KK AR KK R KR AR KRR RKR A KRR A RKR A KRR R KRR A RKRRARRRRR AR R RRRhhhhkhhkhkhkkhkhkkhkhkkhkhkk*,%x
LANG=ENU /* LANGUAGE FOR MESSAGES ~ */

/* (ENU = U.S. ENGLISH) */
#
DEFINITIONS FOR BPE SYSTEM TRACES
#
TRCLEV=(*,HIGH, BPE, PAGES=20) /* DEFAULT TRACES TO HIGH */
TRCLEV=(STG,MEDIUM, BPE) /* STORAGE TRACE */
TRCLEV=(CBS,MEDIUM, BPE) /* CONTROL BLK SRVCS TRACE */
TRCLEV=(DISP,HIGH,BPE) /* DISPATCHER TRACE */
TRCLEV=(AWE ,HIGH, BPE) /* AWE SERVER TRACE */
TRCLEV=(SSRV,HIGH, BPE) /* SYSTEM SERVICE TRACE */
o m e #
DEFINITIONS FOR ODBM TRACES
oo #
TRCLEV=(*,HIGH, 0DBM) /* SET DEFAULT FOR ALL ODBM */

/* TRACES TO HIGH. */

Next, we include here in Example 3-3 a final sample of a BPE configuration member named
BPECFGIV that we later use when initializing IMS Connect. To see how this member is
specified in our IMS Connect startup procedure, refer to Example 3-12 on page 62.

Example 3-3 Sample BPE configuration member for IMS Connect address space

kkhkkkkhkkkhkkhkhkkhkkhhkkhhkhkhkkhhkkhkkhkhkkhhkkhhkhhkkhhkhkhkkhkhkkhhkhkhkkhhkkhkkhkhkkhkkkhkkkkx*

* CONFIGURATION FILE FOR BPE FOR IMS CONNECT (BPECFGIV) *

khkkkkkkkhkhkhkhkhhhhkkkkkhkhkkhkhkhhhhhkkkkhkhkhkhkhkhkhhhhhkkhkkhkhkhkhkhhhhkkkkkhkhkkk khkhkkxx

LANG=ENU /* LANGUAGE FOR MESSAGES */
/* (ENU = U.S. ENGLISH) */

#

DEFINITIONS FOR BPE SYSTEM TRACES

#

TRCLEV=(*,HIGH,BPE, PAGES=20) /* DEFAULT TRACES TO HIGH */

TRCLEV=(STG,MEDIUM, BPE) /* STORAGE TRACE */

TRCLEV=(CBS ,MEDIUM, BPE) /* CONTROL BLK SRVCS TRACE */

TRCLEV=(DISP,HIGH,BPE) /* DISPATCHER TRACE */

TRCLEV=(AWE ,HIGH, BPE) /* AWE SERVER TRACE */

TRCLEV=(SSRV,HIGH, BPE) /* SYSTEM SERVICE TRACE */

#

DEFINITIONS FOR IMS CONNECT TRACES

#

44 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

TRCLEV=(*,HIGH,HWS,PAGES=20) /* DEFAULT TRACES TO HIGH */
TRCLEV=(HWSI ,HIGH,HWS,PAGES=100) /* OTMA COMM ACTIVITY TRACE */
TRCLEV=(HWSN,HIGH,HWS ,PAGES=100) /* LOCAL OPT DRIVER ACTIVITY */
TRCLEV=(HWSW,HIGH,HWS ,PAGES=100) /* TCP/IP DRIVER ACTIVITY */
TRCLEV=(0TMA,HIGH,HWS,PAGES=100) /* XCF CALLS TRACE */
TRCLEV=(TCPI,HIGH,HWS,PAGES=100) /* TCP/IP CALLS TRACE */

Note: The IVP application contains a job that defines a sample BPE configuration member
and adds it to IMS PROCLIB. Refer to “BPE, ODBM and IMS Connect samples” on
page 66 to determine how to locate this job within the IVP.

3.2.2 Structured Call Interface

Structured Call Interface (SCI) is the component of the CSL that enables IMSplex members to
communicate with one another. Therefore, it is required that the SCI address space is started
before any other IMSplex address spaces are started on a z/OS image. Each member must

first register with SCI before it is allowed to join the IMSplex, even in the case of a single IMS
system. We now discuss SCI implementation.

Configuration

The SCl initialization member CSLSIxxx must first be defined and configured. You must select
a suffix to use with this member which you will later reference on the SCI startup procedure.
Refer to Example 3-4 for a sample configuration of the SCl initialization member, which we
have named CSLSI000.

Example 3-4 Sample configuration of the SCI initialization member

R e e e e e e o o e e e . *
* SCI INITIALIZATION PROCLIB MEMBER - CSLSIO00 *
R e e e e e e o o e e e *
ARMRST=N, /* SHOULD ARM RESTART SCI ON FAILURE */
SCINAME=SCI1, /* SCI NAME (SCIID = SCI1SC) */
IMSPLEX (NAME=PLEXB) /* IMSPLEX NAME (CSLPLEXB) */
R e e e e e o o e *
* END OF MEMBER CSLSI000 *
* *

The parameters that you see defined in the sample are required. There is also an optional
FORCE parameter associated with global interface storage that you could specify here, but it
is not shown for simplicity. Let’s examine our specifications in a bit more detail here:

» ARMRST=N: the SCI address space is not automatically restarted by the z/OS Automatic
Restart Manager (ARM) capability in the event that a system abend occurs

» SCINAME=SCI1: the SCI address space name SCI1 (can be 1-6 characters) will be used
to define an SCIID of SCI1SC for use in SCI processing

» IMSPLEX(NAME=PLEXB): the IMSplex group name is PLEXB (can be 1-5 characters)
and should match the IMSplex group name specified in the OM, ODBM, IMS initialization
and IMS Connect configuration members; note that the characters “CSL’ will be attached
to the beginning of the IMSplex group name to create the ultimate name of CSLPLEXB

There must be one SCI address space on each z/OS image where the CSL is active, to allow
communication with other components. These components can reside both within the same
logical partition (LPAR) and on other z/OS images on other LPARs. For more information

Chapter 3. System environment 45

7856¢ch03.fm

Draft Document for Review May 7, 2010 1:20 pm

about configuring the SCI initialization member, refer to IMS Version 11 System Definition,
GC19-2444.

Note: The IVP application contains a job that defines a sample SClI initialization member
and adds it to IMS PROCLIB. Refer to “OM, SCI, and DFSCGxxx samples” on page 66 to
determine how to find this job within the IVP.

Starting the SCI address space

To start the SCI address space as a task, execute the SCI procedure and specify the xxx
suffix of the configuration member CSLSIxxx on the SCIINIT= parameter. Refer to
Example 3-5 for a sample procedure that starts SCI as a task.

Example 3-5 Sample SCI startup procedure JCL

/] ¥ = e e e e e *
//* SCI *
/] ¥ m e e e e e e *
/1* PARAMETERS : *
/1* BPECFG - NAME OF BPE MEMBER *
/1* SCIINIT - SUFFIX FOR YOUR CSLSIXXX MEMBER *
/1* ARMRST - INDICATES IF ARM SHOULD BE USED *
/1* SCINAME - NAME OF THE SCI BEING STARTED *
J /¥ = e e e e e *
/1*

//TEFPROC EXEC PGM=BPEINI00,REGION=3000K,
// PARM=('BPECFG=BPECONFG', 'BPEINIT=CSLSINIO','SCIINIT=000",

// "ARMRST=N','SCINAME=SCI1"')
/1*

//STEPLIB DD DSN=IMS11B.SDFSRESL,DISP=SHR
/1*

//PROCLIB DD DSN=IMS11B.PROCLIB,DISP=SHR
/1*

//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
/1*

You must also designate the BPE configuration and initialization members associated with the
SCI address space with the BPECFG and BPEINIT parameter values, respectively. We have
specified SCIINIT=000 in our sample, so the SClI initialization member CSLSIO000 is read
when the procedure is invoked. You can override certain parameter values defined in the
CSLSI000 initialization member by specifying them here. For example, the ARMRST and
SCINAME parameters specified in this member can override the values included in the SCI
initialization member. Had the values shown in our sample procedure differed from those
specified in CSLSI000, they would prevail over those other settings when the procedure is
invoked.

3.2.3 Operations Manager

OM is the component of the CSL that provides the single point of command entry into an
IMSplex and is the focal point for operations management and automation. It uses SCI to
communicate with other IMSplex members for command routing and sending a consolidated
response to the command originator. The Open Database capability uses the ODBM address
space to handle incoming IMS database requests. You can use the type-2 QUERY and
UPDATE commands to display ODBM-related information and update its configuration

46 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

settings. You must use an OM interface when entering type-2 commands to one or more IMS
systems that exist in an IMSplex. Therefore we strongly recommend that you start an OM
address space in your IMSplex (again, even if you only have a single IMS system) to enable
this capability. Let’s now discuss the steps required to implement OM.

Configuration

Just like the SCI component of the CSL, OM must also be configured before we start its
address space. Begin by defining the OM initialization member CSLOIxxx and defining its
associated parameter values. We have included a sample OM initialization member in
Example 3-6, named CSLOIO000.

Example 3-6 Sample configuration of the OM initialization member

ARMRST=N, /* SHOULD ARM RESTART OM ON FAILURE */
CMDLANG=ENU, /* USE ENGLISH FOR COMMMAND DESC */
CMDSEC=N, /* NO COMMAND SECURITY */
OMNAME=0M1, /* OM NAME (OMID = OM1OM) */
IMSPLEX(

NAME=PLEXB, /* IMSPLEX NAME (CSLPLEXB) */

AUDITLOG=SYSLOG.0M2Q01.LOG), /* MVS LOG STREAM */
CMDTEXTDSN=IMS11B.SDFSDATA /* CMD TEXT DATASET */

Let’s look at our initialization settings more closely now:

>

ARMRST=N: the z/OS Automatic Restart Manager (ARM) is not to restart the OM address
space after an abend

CMDLANG=ENU: the English language is used for IMS command text that is distributed to
OM automation clients upon request, which affects only the command descriptions that
are displayed on a workstation SPOC that requests command text from OM

CMDSEC=N: we do not want any security checking to be done when a command is
entered to the IMSplex from an OM API; other settings could specify that RACF or an OM
security user exit is used for command security

OMNAME=0M1: the OM address space name OM1 (can be 1-6 characters) is used to
define an OMID of OM10M for use in OM processing

IMSPLEX(NAME=PLEXB): the IMSplex group name is PLEXB (can be 1-5 characters)
and should match the IMSplex group name specified in the SCI, ODBM, IMS initialization
and IMS Connect configuration members; note that the characters “CSL’ will be attached
to the beginning of the IMSplex group name to create the ultimate name of CSLPLEXB

IMSPLEX(AUDITLOG=SYSLOG.OM2Q01.LOG): the name of our z/OS system logger log
stream that OM will write all IMSplex activity to, including command input/output and
unsolicited messages (this function is optional and is not required to use the Open
Database capability)

CMDTXTDSN=IMS11B.SDFSDATA: the data set name for our PDS containing the
command syntax translatable text (can be 1-44 characters and must be a PDS with fixed
length record members)

Chapter 3. System environment 47

7856¢ch03.fm

Draft Document for Review May 7, 2010 1:20 pm

There must be one OM address space per IMSplex. You are not required to have an OM on
on each z/OS image, as is the case with SCI. We do recommend that you have a backup OM
in the IMSplex, to be used in the event that the primary OM experiences a failure. For more
information about configuring the OM initialization member, refer to IMS Version 11 System
Definition, GC19-2444.

Note: The IVP application contains a job that defines a sample OM initialization member
and adds it to IMS PROCLIB. Refer to “OM, SCI, and DFSCGxxx samples” on page 66 to
determine how to find this job within the IVP.

Starting the OM address space

Use the OM startup procedure to start the OM address space as a task, specifying the xxx
suffix of the OM initialization member CSLOIxxx to be used. Refer to Example 3-7 for a
sample OM startup procedure.

Example 3-7 Sample OM startup procedure JCL

J /¥ = e e e *
/1* OM *
J /¥ = m e e e *
/1* PARAMETERS: *
/1* BPECFG - NAME OF BPE MEMBER *
/1* OMINIT - SUFFIX FOR YOUR CSLOIXXX MEMBER *
/1* ARMRST - INDICATES IF ARM SHOULD BE USED *
/1* CMDLANG - LANGUAGE FOR COMMAND DESCRIPTION TEXT *
/1* CMDSEC - COMMAND SECURITY METHOD *
/1* OMNAME - NAME OF THE OM BEING STARTED *
/] F = e e e e *
/1*

//IEFPROC EXEC PGM=BPEINI0O0,REGION=3000K,
// PARM=('BPECFG=BPECONFG', 'BPEINIT=CSLOINIO','OMINIT=000",

// "ARMRST=N', 'CMDSEC=N', 'OMNAME=0M1')
/1*

//STEPLIB DD DSN=IMS11B.SDFSRESL,DISP=SHR
/1*

//PROCLIB DD DSN=IMS11B.PROCLIB,DISP=SHR

/1*

//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
/1*

Since OM is a CSL address space and it is based on BPE, you must specify the BPE
configuration and OM initialization members to be used. For example, we have specified
OMINIT=000, so we know that the OM initialization member CSLOI000 will be read when we
start this procedure. The ARMRST, CMDSEC, and OMNAME parameter values can all be
specified in this procedure to override the definitions included in the CSLOI000 initialization
member.

3.2.4 Open Database Manager

The Open Database capability uses the Open Database Manager (ODBM) to handle IMS
database access requests from distributed applications as well as z/OS applications. It uses

48 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

SCI for communication and OM for command processing capability. We’ll now review the
steps required to define and enable the ODBM component.

Configuration

One ODBM instance must be defined in the IMSplex to use ODBM functions. Each LPAR
containing an IMS control region should have at least one ODBM address space, but is not
limited to that single instance. If multiple instances of ODBM are defined in the IMSplex, any
of them can fulfill requests received from other z/OS images in the IMSplex. Two
OBDM-related PROCLIB members should be defined before starting the ODBM address
space: CSLDIxxx and CSLDCxx, which we now review.

CSLDIxxx

Like the other CSL components, each ODBM has an initialization member named CSLDIxxx
which must be defined, similar to our sample member CSLDIO01 shown in Example 3-8.

Example 3-8 Sample ODBM initialization member

kkhkkkkhkkkhkkhkhkkhkkhhkkhhkhkhkkhhkkhkkhkhkhkhhkkhhkhhkkhhkhkhkkhkhkkhhkhkhkkhhkkhkkhkhkkhkkkhkkkk*

% CSLDIOO1 member: *
** This PROCLIB member is specified by the ODBMINIT=001 *
** value on the ODBM start up procedure. *
** *
** Parameters specified here are used for ODBM initialization. *
** *
** (ODBM configuration parameters are specified in the *
*% (CSLDCO01 PROCLIB member which can be specified by either *
** the ODBMCFG=001 EXEC parameter or in this PROCLIB member *
** on the ODBMCFG=001 parameter. *
** *%*

kkhkkkkkkkhkkhkhkkhhkhhkkhhkhkhkkhhkkhkkhkhkkhhkkhhkhhkkhhkhkhkkhkhkkhhkhkhkkhhkkhkkhkhkkhkkkhkkkkk

ODBMNAME=IMSBBO
IMSPLEX (NAME=PLEXB)
ODBMCFG=001

Looking more closely at our parameter definitions:

» ODBMNAME=IMSBBO: the name of our ODBM address space IMSBBO (can be 1-6
characters) will be used to define an ODBMID of IMSBBOOD for use in ODBM
processing; note that if you have additional ODBM address space instances in your
IMSplex, you must define a separate CSLDIxxx initialization member for each one and
ensure that a unique name is used (or designate a unique name on the startup procedure)

» IMSPLEX(NAME=PLEXB): the IMSplex group name is PLEXB (can be 1-5 characters)
and should match the IMSplex group name specified in the SCI, OM, IMS initialization and
IMS Connect configuration members; note that the characters “CSL” will be attached to the
beginning of the IMSplex group name to create the ultimate name of CSLPLEXB

» ODBMCFG=001: by specifying a suffix of “001”, we are setting the name of our ODBM
configuration member to be CSLDCO001, which contains definitions for our Open Database
Access (ODBA) connection initialization parameters as well as additional ODBM
configuration statements which we explore in the following section

You are also able to specify the ARMRST parameter in the ODBM initialization member,
which indicates whether the z/OS Automatic Restart capability should automatically restart
the ODBM address space in the event of a failure.

Chapter 3. System environment 49

7856¢ch03.fm

Draft Document for Review May 7, 2010 1:20 pm

Also not shown in our example is the RRS= parameter, which is used to indicate whether
ODBM uses z/OS Resource Recovery Services (RRS). While it is optional to specify this
keyword, ODBM runs with RRS by default. This is significant because in this case, both IMS
Connect and the IMS control region must also run with RRS.

Note: RRS is the z/OS sync point manager and is responsible for coordinating all of the
resource managers that are associated with a Unit Of Recovery (UOR). When ODBM runs
with RRS, it uses a sync point protocol called two-phase commit (2PC), which ensures that
either all or none of an application program’s resource updates are made to a set of
resources. Refer to IMS Version 11 Application Programming, SC19-2428 for more detail
about 2PC syncpoint protocol.

ODBM is required to run with RRS when ODBA access is needed, as is the case when IMS
data is requested by DB2 stored procedures or from an application running in WebSphere
Application Server (WAS) on z/OS. When ODBM runs without RRS, it functions like a
Coordinator Controller (CCTL) that connects to IMS data via a database resource adapter
(DRA) interface.

Refer to the manual IMS Version 11 System Definition, GC19-2444 for details about the
CSLDIxxx member.

Tip: You can find a sample job that defines an ODBM initialization member and adds it to
IMS PROCLIB within the IVP application. Refer to “BPE, ODBM and IMS Connect
samples” on page 66 for more detail.

Now that we have defined our ODBM initialization member to be used in starting the ODBM
address space, we now must setup the ODBM configuration member, CSLDCxxx. Defining
this member will connect ODBM to one or more IMS systems, referred to as data stores in
this arena. The ODBMCFG parameter defined in the ODBM CSLDIxxx initialization will point
to this configuration member, which we now review.

CSLDCxxx

ODBM must be configured to recognize the IMS data stores that are referenced as alias
names by incoming IMS database requests from application programs. The CSLDCxxx
member establishes these associations, and contains a global section with settings that apply
to all IMS data stores and a local section with settings that apply to specific data stores (which
override the global setting if specified). In the previous section, we specified ODBMCFG=001
in our CSLDIO01 ODBM initialization member, indicating that CSLDCO001 will be used for our
ODBM configuration member. We show a sample of this member in Example 3-9.

Example 3-9 Sample ODBM configuration member

kkhkkkkhkkkhkkhkhkkhkhkhhkkhhkhkhkkhhkkhkkhkhkkhhkkhhkhhkkhhkhkhkkhhkkhhkhkkhkkhhkkhkkhkhkkhkkkhkkkkxk

** This PROCLIB member is specified by the ODBMCFG=001 *k
** value on the ODBM start up procedure or from the *k
**% (ODBMCFG=001 parameter in the DFSDIOO01 PROCLIB member *k
** *%
** Parameters specified here are used for ODBM configuration. *k
** *%
** This member is split into 2 sections. *k
** *%
** <SECTION=GLOBAL DATASTORE_CONFIGURATION> *x
** <SECTION=LOCAL_DATASTORE_CONFIGURATION> *x
** *%

50 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

R Rk R R R ok R R R R R R Rk R Rk R R R Rk R R R R R R R Rk R R R R Rk R R R R R R Rk Rk kR

** <SECTION=GLOBAL_DATASTORE_CONFIGURATION>

*%

** This section defines configuration parameters that will be
** used when their corresponding parameters are not present in
** the local data store section.

*%

** Defaults shown

% IDRETRY=0 (Can only be specified here.)

** TIMER=60 (Can only be specified here.)

% MAXTHRDS=1

** FPBUF=000

** FPBOF=000

CNBA=325

%

%

%

%

%

%

%

%

%

%

%

%

R R Rk R R R ok R R R R R R R R R Rk Rk Rk ok

** <SECTION=LOCAL_DATASTORE_CONFIGURATION>

**

** This section defines ODBM configuration parameters.

*%

** Multiple ODBMs may be appended, each with its unique
** (ODBMNAME=odbmname. Optional parameters that are not

** specified in an ODBM configuration statement group will
** take on the corresponding parameter value specified in
** the global data store section, if one was specified.

%

** ODBM(NAME=odbmname,

xx DATASTORE (NAME=datastorename) ,
x* ALIAS (NAME=aliasname),
*x FPBUF=nnn,

*x FPBOF=nnn,

*x CNBA=nnn,

** MAXTHRDS=nnn

%]

%

*% MAXTHRDS=

** FPBUF=

** FPBOF=

** CNBA=

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

R R R R R R R ok R R R R R R Rk Rk R R R R Rk R Rk R Rk kR

<SECTION=LOCAL_DATASTORE_CONFIGURATION>
ODBM(NAME=IMSBBO

DATASTORE (NAME=IMSB

ALIAS (NAME=IMS2)

)

)

7856¢ch03.fm

The comments at the beginning of the sample indicate which defaults will be used for all
ODBM instances if the parameter settings are not specified. It also indicates which sections
the parameters can be specified in -- either global, local or both. In our local section, we
establish the association between our ODBM instance and a specific IMS control region, or
data store. Multiple ODBMs can be defined here and each one’s associated data store can
have multiple alias names using the ALIAS parameter. Parameters not defined in the local

section will default to the values defined in the global section.

Chapter 3. System environment 51

7856¢ch03.fm

Draft Document for Review May 7, 2010 1:20 pm

As you can see, we have specified our ODBM name to be IMSBBO and created an
association with the IMSB control region using the DATASTORE statement. An application
program will not know the name of the data store (IMSID, or control region name) and can
only reference it as an alias name. The IMSB data store can be referenced as IMS2 by
incoming application program requests for IMS data, since we have specified an alias name
of IMS2 using the ALIAS statement. Note that the alias name can be different than the data
store name. Specify these settings in the local section of the configuration member, the start
of which is designated by the <SECTION=LOCAL_DATASTORE_CONFIGURATION>
header.

Note: The ALIAS parameter is optional. If one is not specified in this section, an
application can reference the data store name and IMS will internally create an ALIAS
name using the data store name.

Next, there are certain parameters that you can only specify in the global section, which
begins with the <SECTION=GLOBAL_DATASTORE_CONFIGURATION> header.
Specifically, you can use the IDRETRY parameter to specify the number of attempts an
ODBM instance should make to connect to a data store when it does not connect right away,
and use the TIMER parameter to indicate how many seconds should elapse before the
connection is attempted again. As you can see, we have taken the defaults in our sample.

You can define the remaining parameters in the configuration member in either the local or
the global section. As a reminder, any parameter defined in the local section will override any
definitions in the global section. In our sample, we have only defined the CNBA global
parameter (specifies the total number of Fast Path NBA buffers for ODBM use), whereas we
have taken the default setting for each of the others. Use the MAXTHRDS parameter to
indicate how many concurrently active threads an IMS data store can have, and the FPBUF
and FPBOF parameters to show how many Fast Path DEDB buffers and Fast Path DEDB
overflow buffers are allocated per thread, respectively. You can find more information about
how ODBM configuration parameters are defined in CSLDCxxx in the manual IMS Version 11
System Definition, GC19-2444.

Tip: You can find a sample job that defines an ODBM configuration member and adds it to
IMS PROCLIB within the IVP application. Refer to “BPE, ODBM and IMS Connect
samples” on page 66 for more detail.

Starting the ODBM address space

Use the ODBM startup procedure to start the ODBM address space as a task, specifying the
BPE configuration member and suffix of the ODBM initialization member to be used. Keep in
mind that startup parameters specified here in the procedure will override those predefined in
our CSLDIO01 ODBM initialization member. Refer to Example 3-10 for a sample of the ODBM
startup procedure that we used.

Example 3-10 Sample ODBM startup procedure JCL

//**

/1* ODBM Procedure

/1*

/1*

/1* Parameters:

/1* BPECFG - Name of BPE member

//* BPEINIT - CSLDINIO, the module that contains the ODBM start up values
/1* ODBMINIT - Suffix for your CSLDIxxx member

/1* PARMI - other override parameters:

52 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

/1* ARMRST - Indicates if ARM should be used

/1* ODBMNAME - Name of ODBM being started

/1* ODBMCFG - Suffix for your CSLDCxxx member

//* RRS - Indicates RRS is (Y) or is not (N) used
/1*

/1* example:

//* PARM1="'ARMRST=Y,0ODBMNAME=0DBM1,0DBMCFG=000,RRS=N"
/1*

//IMSBBOPD PROC RGN=0M,TME=1440,S0UT=*,

// BPECFG=BPEODBM,

// ODBMINIT=001,

// CSLDI=CSLDINIO,

// PARM1="'RRS=Y,ARMRST=N"

/1*

//0DBMPROC EXEC PGM=BPEINIOO,REGION=&RGN,TIME=&TME,

// PARM='BPECFG=&BPECFG,BPEINIT=&CSLDI,ODBMINIT=&0DBMINIT,&PARM1"
//STEPLIB DD DSN=IMS11B.SDFSRESL,DISP=SHR

// DD DSN=SYS1.CSSLIB,UNIT=SYSALLDA,DISP=SHR

//PROCLIB DD DSN=IMS11B.PROCLIB,DISP=SHR

//SYSPRINT DD SYSOUT=&SOUT

//SYSUDUMP DD SYSOUT=&SOUT

We have designated BPECFG=BPEODBM, so we know that the BPEODBM member defined
in Example 3-2 on page 44 will be used in starting the ODBM address space. We have also
specified ODBMINIT=001, so the ODBM initialization member CSLDIO01 shown in

Example 3-8 on page 49 will be read when we start this procedure. The BPE initialization
member that will be used is CSLDINIO (not shown in this book). The ARMRST and RRS
parameter values can both be included in this procedure to override the definitions contained
in the CSLDIOO1 initialization member.

ODBM user exits
You are able to customize and monitor your ODBM environment by writing one or more of the
following ODBM user exits, called and managed by BPE:

» CSL ODBM Initialization and Termination user exit: called when an ODBM or IMSplex
initializes or terminates; can be used to track the timing of these events

» CSL ODBM Input user exit routine: called when a CSLDMI request (from the ODBM API)
is issued; can change segment search arguments (SSAs), an I/O area, or an application
interface block (AIB)

» CSL ODBM Output user exit routine: called when an ODBM is returning a response to an
ODBM client that sent in a request; can view and modify response data before sending it
to client

» CSL ODBM Client Connect and Disconnect user exit routine: called when an ODBM client
registers to or de-registers from ODBM

» CSL ODBM statistics available through BPE statistics user exit: tracks statistics about both
BPE and ODBM

For additional details about any of these exits, refer to the manual IMS Version 11 Exit
Routines, SC19-2437.

ODBM commands

You can issue type-2 commands to display ODBM information with the QUERY ODBM
command and update the configuration settings with the UPDATE ODBM command. These

Chapter 3. System environment 53

7856¢ch03.fm

Draft Document for Review May 7, 2010 1:20 pm

are type-2 commands, so you must enter them through an OM interface such as the IMS TSO
SPOC application (also referred to as just “TSO SPOC”), which we will show several
examples of shortly. Using this application, you are able to send these commands to the
entire IMSplex. To invoke the TSO SPOC, select option 1 from the IMS application menu,
shown in Figure <$paran<$paranumé64.

Note: Before you can issue IMS commands from the TSO SPOC application, you must set
your desired user preferences from the OPTIONS menu.

QUERY ODBM
You can display information about ODBM in several different aspects, including:

» Alias names that are associated with all ODBM instances in the IMSplex. Refer to Figure

3-1 for sample output from the QUERY ODBM TYPE(ALIAS) command, which shows that
two alias names IMS2 and IMSZ are associated with our ODBM instance.

File Action Manage resources SPOC View Options Help
S555SS
PLEXB IMS Single Point of Control

Command ===>

$55555SSSSSSSSSSSSSSSSS Plex . . Route . . Wait . .
Response for: QUERY ODBM TYPE(ALIAS) SHOW(ALL)
MbrName AliasName CC AliasStatus ThreadCount DatastoreName DatastoreStatus

IMSBBOOD IMSZ 0 STARTED 0 IMSB STARTED
IMSBBOOD IMS2 0 STARTED 1 IMSB STARTED
Fl1=Help F3=Exit F4=Showlog F6=Expand F9=Retrieve Fl12=Cancel

Figure 3-1 Sample output from QUERY ODBM TYPE(ALIAS) SHOW(ALL) command

» Configuration information for all ODBM instances drawn from each one’s CSLDCxxx

configuration member. See Figure 3-2 for sample output from the QUERY ODBM
TYPE(CONFIG) command, which shows the parameter definitions. Scrolling to the right
displays two more columns named Timer and Aliases, not shown here. For this command,
the output is sorted by configuration member name.

54 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

File Action Manage resources SPOC View Options Help
$555SS
PLEXB IMS Single Point of Control

Command ===>

$55555555555555555555ss Plex . . Route . . Wait . .
Response for: QUERY ODBM TYPE(CONFIG) SHOW(ALL) More: >
MbrName ConfigName Global DatastoreName CC FPBUF FPBOF CNBA MaxThrds IdRetry
IMSBBOOD CSLDCOO1 Y 0
IMSBBOOD CSLDCO01 N IMSB 0 50

Fl=Help F3=Exit F4=Showlog F6=Expand F9=Retrieve F12=Cancel

Figure 3-2 Sample output from QUERY ODBM TYPE(CONFIG) SHOW(ALL) command

» Configuration information for ODBM drawn from its CSLDCxxx configuration member,
displayed by data store. See Figure 3-3 for sample output from the QUERY ODBM
TYPE(DATASTORE) command, which shows how we defined the parameter values.
Scrolling to the right displays two more columns: the CNBA, MaxThrds, IdRetry, and Timer
values, not shown here. For this command, the output is sorted by data store name.

File Action Manage resources SPOC View Options Help
$55S55SS
PLEXB IMS Single Point of Control
Command ===>
$S555555555555555555Sss Plex . . Route . . Wait . .
Response for: QUERY ODBM TYPE(DATASTORE) SHOW(ALL) More: >
MbrName DatastoreName CC ConnectionStatus ThreadCount Aliases FPBUF FPBOF
IMSBBOOD IMSB 0 STARTED 0 IMS2,IMSZ 0 0
Fl=Help F3=Exit F4=Showlog F6=Expand F9=Retrieve F12=Cancel

Figure 3-3 Sample output from QUERY ODBM TYPE(DATASTORE) SHOW(ALL) command

» Clients of ODBM, as shown in the sample output for the QUERY ODBM
TYPE(SCIMEMBER) command in Figure 3-4. Note that the command response shows

one ODBM client, IMS Connect.

Chapter 3. System environment 55

7856¢ch03.fm

Draft Document for Review May 7, 2010 1:20 pm

File Action Manage resources SPOC View Options Help
SSS5S55SSSSSSSSS
PLEXB IMS Single Point of Control

Command ===>

$55555555555555555555ss Plex . . Route . . Wait . .
Response for: QUERY ODBM TYPE(SCIMEMBER) SHOW(ALL)
MbrName SCIMbrName CC Type ThreadCount
IMSBBOOD IMSBBHWS 0 IMSCON 0

Fl=Help F3=Exit F4=Showlog F6=Expand F9=Retrieve F12=Cancel

Figure 3-4 Sample output from QUERY ODBM TYPE(SCIMEMBER) SHOW(ALL) command

» Individual ODBM threads. You can filter the command response to show only those
threads that are associated with certain specified PSBs, ODBM clients such as IMS
Connect, data stores, and threads that have a specific status. Refer to the sample
response to the QUERY ODBM TYPE(THREAD) command in Figure 3-5 and note that we
have not included a filter for the command. Instead we chose to display the IMS Connect
name and PSB associated with the ODBM thread currently running and have scrolled to
the right to display the information of interest.

56 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

File Action Manage resources SPOC View Options Help
$55SSSSS
PLEXB IMS Single Point of Control
Command ===>
$S555555555555555555Sss Plex . . Route . . Wait . .
Response for: QUERY ODBM TYPE(THREAD) SHOW(PSB SCIMEMBER) More: <
MbrName ThreadID AliasName SCIMbrName PSB
IMSBBOOD 255388382556ACE015A1534004619040 IMS2 IMSBBHWS AUTPSBI11
Fl=Help F3=Exit F4=Showlog F6=Expand F9=Retrieve F12=Cancel

Figure 3-5 Output from QUERY ODBM TYPE(THREAD) SHOW(PSB SCIMEMBER) command

Trace status, which you can see an example of in the response to the QUERY ODBM
TYPE(TRACE) command shown in Figure 3-6. As you can see, we currently do not have
an active trace running for our ODBM instance.

File Action Manage resources SPOC View Options Help
$55S5SSS
PLEXB IMS Single Point of Control

Command ===>

$S555555555555555555Sss Plex . . Route . . Wait .
Response for: QUERY ODBM TYPE(TRACE) SHOW(ALL)
MbrName DatastoreName CC TraceStatus
IMSBBOOD IMSB 0 INACTIVE

Fl=Help F3=Exit F4=Showlog F6=Expand F9=Retrieve F12=Cancel

Figure 3-6 Sample output from QUERY ODBM TYPE(TRACE) SHOW(ALL) command

Chapter 3. System environment 57

7856¢ch03.fm

Draft Document for Review May 7, 2010 1:20 pm

UPDATE ODBM

You can dynamically change ODBM configuration settings with the type-2 UPDATE ODBM
command. You can also use this command to start and stop data stores, aliases, and tracing
activity. We now discuss each type of UPDATE ODBM command in detail:

» If you need to dynamically stop a connection between ODBM and IMS, you can do so with

the UPDATE ODBM STOP(CONNECTION) command. On this command, you can specify
one or more data store or alias names. See Figure 3-7 for a sample. When the connection
is broken, you will also see a message issued to the system console similar to the
following: CSL4009]1 ODBM Disconnected from IMS data store IMSB IMSBBOOD.

File Action Manage resources SPOC View Options Help
SSSSS55SSSSSSSSSSSSSSS
PLEXB IMS Single Point of Control Keylist saved

Command ===>

$SSSSSSSSSSSSSSSSSSSSSS Plex . . Route . . Wait . .
Response for: UPDATE ODBM STOP(CONNECTION) DATASTORE(IMSB)

MbrName DatastoreName CC

IMSBBOOD IMSB 0

Fl=Help F3=Exit F4=Showlog F6=Expand F9=Swap F12=Cancel

Figure 3-7 Sample response for UPDATE ODBM STOP(CONNECTION) DATASTORE(IMSB)

You can dynamically start the connection between ODBM and IMS again with the UPDATE
ODBM START(CONNECTION) command. See Figure <$paran<$paranum59 for a sample.
When the connection is established, you will also see a message issued to the system
console similar to the following: CSL40041 ODBM Connected to IMS data store IMSB

IMSBBOOD.

Note: You can start and stop connections between OBDM and a data store, or between
ODBM and an alias. These two are mutually exclusive and it is important to understand
that when you start or stop a connection between ODBM and alias, it does not impact
ODBM's connection to the actual data store. Therefore, it is possible to stop an ODBM
connection to an alias, but the ODBM will still be connected to the associated data store
afterwards. The ability to start and stop a connection to an alias is useful in that it allows
you to isolate programs using a specific alias, while other aliases still connected to ODBM

may still access the underlying data store.

58 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

File Action Manage resources SPOC View Options Help
$55SSSSS
PLEXB IMS Single Point of Control

Command ===>

$S555555555555555555Sss Plex . . Route . . Wait . .
Response for: UPDATE ODBM START(CONNECTION) DATASTORE(IMSB)
MbrName DatastoreName CC

IMSBBOOD IMSB 0

Fl=Help F3=Exit F4=Showlog F6=Expand F9=Swap F12=Cancel

Figure 3-8 Sample response for UPDATE ODBM START(CONNECTION) DATASTORE(IMSB)

The UPDATE ODBM commands allow you also to dynamically change the ODBM’s
configuration. To update the configuration, use the commands in the following sequence:

UPDATE ODBM STOP(CONNECTION) DATASTORE(*)
UPDATE ODBM TYPE(CONFIG) MEMBER(xxx)
UPDATE ODBM START(CONNECTION) DATASTORE(*)

This sequence reads and activates PROCLIB member CSLDCxxx. If you change the suffix
xxX, you must also remember to change member CSLDIxxx or the ODBM task JCL,
otherwise ODBM will revert to the old settings when it is next started.

Note: As you can infer from the command sequence example above, ODBM requires the
existing data stores to be stopped before the configuration can be changed.

You can find more command examples in the manual IMS Version 11 Commands, Volume 2:
IMS Commands N-V, SC19-2431.

3.3 IMS Connect

IMS Connect uses ODBM to enable distributed DRDA application access to IMS data. You
may already be using IMS Connect for TCP/IP access to IMS transactions and/or commands.

Chapter 3. System environment 59

7856¢ch03.fm Draft Document for Review May 7, 2010 1:20 pm

But if you have not yet implemented IMS Connect, you must do so in order to use the Open
Database capability. This section examines both scenarios.

Important: The user ID associated with a request for IMS data from a distributed
application should be authenticated in IMS Connect. Refer to 3.5, “Security considerations”
on page 71 for recommendations and further detail about how to accomplish this.

3.3.1 First-time implementation: setup and configuration

If you are already using IMS Connect, go to “IMS Connect user exits” on page 62. Otherwise,
begin by defining two configuration members: one for BPE and one for IMS Connect. Once
these members are in place, you can then start the IMS Connect address space as a task.
We now discuss each of these steps in more detail, beginning with the BPE configuration
member.

BPECFxxx

First, we define our IMS Connect BPE execution environment settings in the BPECFxxx
member. This member contains IMS Connect message language information and tracing
specifications for IMS Connect’s internal trace tables. Refer to Example 3-3 on page 44 for a
sample of the member named BPECFGIV that we will use for our initializing our IMS Connect
address space.

HWSCFxxx

Next, you must define your IMS configuration member to designate IMS Connect’s
environment settings. This establishes how IMS Connect will communicate with TCP/IP, the
CSL and ODBM, among other components. You must define several parameters in this
member, which are very thoroughly documented in the manual IMS Version 11 System
Definition, GC19-2444 as well as in the book IMS Connectivity in an On Demand
Environment: A Practical Guide to IMS Connectivity, SG24-6794. Let’s now take a look at the
way we have defined our IMS Connect configuration member HWSCFODB in Example 3-11.

Example 3-11 Sample IMS Connect configuration member

kkhkkkkkkkhkkhkhkkhkhkhhkkhhkhkhkkhhkkhkkhkhkhkhhkkhhkhhkkhhkhkhkkhhkkhhkkhkkhhkkhkkhkhkkhkkkhkkkkx*

* CONFIGURATION FILE FOR IMS CONNECT (HWSCFODB) *

oo ek ok ek ek e e o ok o ek ok ek e ok e e o Rk ke kR ek

HWS=(ID=IMSBBHWS ,XIBAREA=100,RACF=N,RRS=Y)

TCPIP=(HOSTNAME=TCPIP)

ODACCESS=(ODBMAUTOCONN=Y, IMSPLEX= (MEMBER=IMSBBHWS , TMEMBER=PLEXB) ,
DRDAPORT=(1ID=5555,PORTTMOT=6000) ,0DBMTMOT=6000)

We have defined several parameters here:

» HWS=
— (ID=IMSBBHWS): The name of our IMS Connect address space is IMSBBHWS.
— (XIBAREA=100): We allow 100 full words to be allocated for the XIB user area.
— (RACF=N): The user ID is passed to IMS without calling RACF for authentication.

60 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

Note: If no user ID is passed by the calling application, IMS Connect will not set a
default user ID. Instead, the address of the ODBM address space will be used for
any security checks that later occur in IMS. See Chapter 3.5, “Security
considerations” on page 71 for further detail about security methods used with the
Open Database capability.

— (RRS=Y): Two-phase commit is enabled by Resource Recovery Services (RRS).
» TCPIP=

— (HOSTNAME=TCPIP): The jobname of our TCP/IP host z/OS address space is TCPIP.
» ODACCESS=

— (ODBMAUTOCONN=Y): When our IMS Connect initializes, it will automatically register
with all current and future ODBM instances. We can later disable this function by
issuing the IMS Connect command SETOAUTO.

— IMSPLEX=(MEMBER=IMSBBHWS, TMEMBER=PLEXB): The name of our IMS
Connect instance within the IMSplex is IMSBBHWS. The IMSplex name is PLEXB and
must be the same as the IMSPLEX name specified in the SCI initialization member,
which you can see in Example 3-4 on page 45. If you are using OTMA for IMS
Transaction Manager access and have specified the name of the IMS data store using
the ID parameter on the DATASTORE statement, keep in mind that it must be different
than the value you define for the TMEMBER on this IMSPLEX statement.

— (DRDAPORT=(ID=5555,PORTTMOT=6000)): The port number IMS Connect will
receive incoming requests for IMS data on is 5555 and must be unique among all other
port specifications. Our IMS Connect instance will wait 6000 hundredths of seconds for
the next input message (after having already received the initial message) from a client
application connected on a DRDA port. After this time has elapsed, it will disconnect
the client. This is useful because it prevents IMS Connect from unnecessarily waiting
for requests when a client is looping or hung. Not shown in our example is the KEEPAV
parameter, which defines the frequency interval at which a packet is sent by the z/OS
TCP/IP layer to port 5555, thus maintaining a connection when it is otherwise idle.
Since we did not specify this parameter on the DRDAPORT statement, it will be set to
0, meaning that we will use the KeepAlive value defined in the z/OS TCP/IP stack.

— (ODBMTMOT=6000): Our IMS Connect instance will wait 6000 hundredths of seconds
for each response message from ODBM and also for the initial message after a client
application establishes a socket connection with it. When ODBM does not respond
within 60 seconds, a message HWSJ2530W is sent to the client but the socket
connection is retained. On the other hand, if the client application does not send data
to IMS Connect after making the initial socket connection within 60 seconds, then the
connection is terminated.

Note: If you already have IMS Connect set up for use with other IMS capabilities such as
Open Transaction Manager Access (OTMA) or the IMS Control Center, you simply need to
add the ODACCESS statement to your existing HWSCFGxx configuration member as just
detailed in this section.

For additional detail about defining parameters in the HWSCFGxx member, refer to the
manual IMS Version 11 System Definition, GC19-2444. If this is your first time setting up IMS
Connect, we recommend reviewing the book IMS Connectivity in an On Demand
Environment: A Practical Guide to IMS Connectivity, SG24-6794, as it has extensive detail
about IMS Connect functionality and additional setup recommendations. We are now ready to
start our IMS Connect address space, which we now explore.

Chapter 3. System environment 61

7856¢ch03.fm

Draft Document for Review May 7, 2010 1:20 pm

Starting the IMS Connect address space

Use the IMS Connect startup procedure to start the IMS Connect address space as a task,
specifying the BPE configuration member and suffix of the IMS Connect configuration
member to be used. Refer to Example 3-12 for a sample IMS Connect startup procedure.

Example 3-12 Sample startup procedure for the IMS Connect address space

//IMSBBHWS PROC RGN=0M,TME=1440,S0UT=S,

// BPECFG=BPECFGIV,HWSCFG=HWSCFODB

/1*

//* FUNCTION: START IMS CONNECT REGION.

/1*

//HWSREGN EXEC PGM=HWSHWSO00,REGION=&RGN, TIME=&TME,

// PARM='BPECFG=&BPECFG,HWSCFG=&HWSCFG'
//STEPLIB DD DSN=IMS11B.SDFSRESL,DISP=SHR

/1* DD DSN=CEE.SCEERUN,UNIT=SYSALLDA,DISP=SHR
/1* DD DSN=SYS1.CSSLIB,UNIT=SYSALLDA,DISP=SHR

//PROCLIB DD DSN=IMS11B.PROCLIB,DISP=SHR
//SYSPRINT DD SYSOUT=&SOUT

//SYSUDUMP DD SYSOUT=&SOUT

//HWSRCORD DD DSN=IMS11B.HWSRCDR,DISP=SHR
/1*

As you can see, we have defined our BPE configuration member with BPECFG=BPECFGIV.
This member is shown in Example 3-3 on page 44 and contains the tracing definitions that
will be used for this IMS Connect address space instance. We have also specified
HWSCFG=HWSCFODB, which is the IMS Connect configuration member shown in
Example 3-11 on page 60 and will be read when we run this procedure.

Tip: Make sure that your IMS Connect load library is APF-authorized and allow your IMS
Connect to run in authorized supervisor state (key 7) by updating the program properties
table (PPT) in SYS1.PARMLIB.

IMS Connect user exits

You can use several user exits with IMS Connect. With IMS Open Database, you can use the
HWSROUTO user exit to route an IMS data request to a specific IMS. Either the calling DRDA
application or the IMS Universal Driver can specify this IMS, overriding the IMS alias that
would have otherwise been selected. You can also use the exit routine to route requests to a
specific ODBM instance during processing. For detail about this and other IMS Connect user
exits, refer to IMS Version 11 Exit Routines, SC19-2437.

Tip: As a final step in setting up IMS Connect, install the default user exits into the IMS
Connect resident library.

IMS Connect considerations for IMSplex

When defining an IMS Connect instance in an IMSplex environment, there are a few things to
keep in mind:

» You are not limited to defining an IMS Connect instance to a single IMSplex. You can

include multiple IMSPLEX statements within the HWSCFGxx configuration member to
define a single IMS Connect instance to more than one IMSplex.

62 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

» An IMS Connect instance can register with an IMSplex with only one name. As previously
stated, you can define an IMS Connect to multiple IMSplexes using the same name, but
ensure that each statement designates a different IMSplex.

» Defining an SCI instance within the IMSplex enables communication between IMS
Connect and the ODBM address space either within the same LPAR or cross-LPAR.
When they reside on the same LPAR, SCI uses the z/OS Program Call (PC) function to
enable communication, but on separate LPARs SCI uses the cross-system coupling facility
(XCF).

3.3.2 Modifying existing IMS Connect definitions for IMS Open DB support

You may already be using IMS Connect for TCP/IP access to IMS transactions and/or
commands. In this case you already have IMS Connect installed. To use the IMS Open
Database capability, you simply need to modify your IMS Connect configuration member
HWSCFGxx to include the ODACCESS statement as described in “HWSCFxxx” on page 60
and shown in Example 3-11 on page 60. Once you have updated the configuration member,
start IMS Connect as you usually do, using JCL similar to Example 3-12 on page 62.

3.4 Using IMS applications to help set up CSL and IMS Connect

The IMS product comes with two applications that can assist you in defining the PROCLIB
members associated with the different IMS Open Database components that we have just
covered. In this section, we discuss the Installation Verification Program and the Syntax
Checker applications.

3.4.1 Installation Verification Program

IMS provides a program that you can use to install a sample IMS system and try out different
IMS functions. This program is called the IMS Installation Verification Program (IVP) and you
can use it as a reference when setting up the required PROCLIB members for the CSL and
IMS Connect address spaces. In it, you will find sample JCL that starts each of these address
spaces.

Note: While the IVP starts the CSL and IMS Connect address spaces as jobs, you can
also start them as started tasks.

The IVP also includes a sample application that exercises the IMS Open Database capability,
which you can test if you would like to use it as more than just a reference for defining IMS
Open Database-related PROCLIB members and procedures.

To begin, invoke the IVP using option 6 from the IMS Application menu shown in Figure 3-9.

Chapter 3. System environment 63

7856¢ch03.fm Draft Document for Review May 7, 2010 1:20 pm

Help
$55SSSSS
DFSAPPL IMS Application Menu

Command ===>

Select an application and press Enter.

Single Point of Control (SPOC)

Manage resources

Knowledge-Based Log Analysis (KBLA)
HALDB Partition Definition Utility (PDU)
Syntax Checker for IMS parameters (SC)
Installation Verification Program (IVP)
IVP Export Utility (IVPEX)

IPCS with IMS Dump Formatter (IPCS)
Abend Search and Notification (ASN)

O 00N WN -

To exit the application, press F3.

Fl=Help Fl12=Cancel

Figure 3-9 The IMS Application Menu

Follow the prompts until you reach Execution mode, which lists a series of jobs and tasks that
start the sample IMS system and test different functions. In our case, we selected a Database
and Transaction Management (DB/DC) environment as well as the IMS Connect and Open
Database Sample sub-options, shown below in Figure 3-10.

64 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

Help
SS555SSS5SSSSSSSSSS
Ivp Sub-Option Selection - DBT IMS 11.1

Command ===>

Select the desired Sub-Options and press ENTER

IRLM - Use IRLM in IVP Applications
FP - Use Fast Path in IVP Applications
ETO - Use Extended Terminal Option
CQS - Add CQS to CSL Applications
RACF - Use RACF Security
JAVA - Use JAVA Applications
PRA - Use Parallel RECON Access
/ ICON - Use IMS Connect
/ OPDB - Use Open Database Sample

Note: Your Sub-Option selection affects the user variables, jobs, and tasks
that will be presented. If you later change your selection, you must redo
the IVP Table Merge, Variable Gathering, File Tailoring, and Execution
processes. RACF is required when Java sub-option is selected.

Fl=Help F3=Exit F7=Backward F8=Forward F10=Actions

Figure 3-10 Selecting the sub-options of IMS Connect and the Open Database Sample in the IVP

Sample PROCLIB member definitions

Using the IVP, you can view sample PROCLIB member definitions for all of the components
associated with the IMS Open Database capability. Scroll down to the /V3E series of
jobs/tasks within the Execution panel and look for the IV3E302J and IV3E303J jobs, shown in
Figure 3-11.

Chapter 3. System environment 65

7856¢ch03.fm Draft Document for Review May 7, 2010 1:20 pm

Help
$S555S55SSSSSSSSSSSS
Execution (LST Mode) - DBT Row 32 to 47 of 215
Command ===> Scroll ===> PAGE

Action Codes: Brm Doc Edm eNt eXe Ft1 spR

JOB/Task Y A=Y N I =St
IV3EQOLT EO NOTE - Introduction - Build IVP Appl / System
IV3E101J El JOB - Allocate Data Sets
IV3E201J E2 JOB - DBDGENs
1V3E202J E2 JOB - PSBGENs
IV3E203J E2 JOB - ACBGEN
1V3E204J E2 JOB - MFS Language Utility
IV3E206J E2 JOB - Assembly/Bind Applications
IV3E207J E2 JOB - Assembly/Bind Install. Default Block
IV3E301J E3 JOB - Create Dynamic Allocation Members
IV3E302J E3 JOB - Add Control Statements to IMS.PROCLIB
IV3E303J E3 JOB - Add SCI/OM/RM Members to IMS.PROCLIB
IV3E305J E3 JOB - Define EXEC PARM Defaults
IV3E306T E3 TASK - Syntax Checker Sample
IV3E307T E3 TASK - Define z/0S Policies
IV3E308J E3 JOB Define DRA Start-up Table
IV3E309J E3 JOB Verify TCO Scripts

Fl=Help F3=Exit F7=Backward F8=Forward F10=Actions

Figure 3-11 The IV3E302J and IV3E303J jobs show examples adding required PROCLIB members

BPE, ODBM and IMS Connect samples

If you browse the IV3E302J job you will see several examples of the IVP defining members to
IMS PROCLIB:

» HWSCFODB specifies IMS Connect configuration statements.

» CSLDI001 and CSLDCO001 define ODBM initialization and configuration statements,
respectively.

» BPEODBM is the sample BPE configuration member which is specified later in the IVP’s
sample IMS Open Database application when starting the ODBM address space.

OM, SCI, and DFSCGxxx samples

Next, browse the IV3E303J job to see sample PROCLIB definitions for the SCI and OM
initialization members: CSLOI000 and CSLSI000, respectively. Within this job, you will also
find two examples of how to define a DFSCGxxx PROCLIB member, which is important in
designating the IMSplex name that all CSL components will be a part of.

Attention: As of IMS V10, you can specify your CSL definitions in the CSL section of the
DFSDFxxx PROCLIB member. If the CSL definitions are present in both DFSDFxxx and
DFSCGxxx members, those contained in DFSCGxxx will take precedence.

Now that we have seen examples of how the Open Database components’ initialization and
configuration members are defined to IMS PROCLIB, we will now review how to find sample
jobs that start the associated address spaces within the IVP application.

66 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

Sample startup JCL

You can find the jobs that start SCI, OM, ODBM and IMS Connect in the /V3T series of IVP
jobs shown in Figure 3-12.

Help
$SS555SSSSSSSSSSSSSSSSSS
Execution (LST Mode) - DBT Row 194 to 209 of 215
Command ===> Scroll ===> PAGE

Action Codes: Brm Doc Edm eNt eXe Ftl spR
JOB/Task N TR I A D
IV3T101T T1 NOTE - Introduction - Open Database sample
IV3T101J T1 JOB - Allocate Data Sets
IV3T102J T1 JOB - Initialize RECON
1V3T103J Tl JOB - Register Data Bases
1V3T104J T1 JOB - Data Base Initial Load
1V3T105J T1 JOB - Batch Image Copy
IV3T201T T2 TASK - Start TCP/IP And RRS
IV3T201J T2 JOB - Start SCI
1V3T202J T2 JOB - Start OM
IV3T203J T2 JOB - Start RM
1V3T204J T2 JOB - Start IRLM
IV3T206J T2 JOB - Start DB/DC
IV3T208T T2 TASK - Cold Start IMS DB/DC
IV3T210J T2 JOB - Start ODBM
IV3T211J T2 JOB - Start IMS Connect
1V3T7220J T2 JOB - Create a Unix Script to run the application
1V37230J T2 JOB - Run the sample and copy the output to joblog
Fl=Help F3=Exit F7=Backward F8=Forward F10=Actions

Figure 3-12 The IV3T series of the IVP contains jobs that start IMS Open Database components

For more information about how to use the IVP refer to the manual entitled IMS Version 11
Installation, GC19-2438.

3.4.2 IMS Syntax Checker

You can also use the IMS Syntax Checker to assist you in defining, verifying and validating
the parameters contained in your PROCLIB members. In this section we use the IMS
Connect configuration member HWSCFODB as an example and show how to use Syntax
Checker to validate the settings contained in it.

First, invoke the IMS Application Menu and select option 5 for the IMS Syntax Checker shown
in Figure 3-9.

On the next panel, enter the name of the data set that contains the member definitions you
would like to validate with the Syntax Checker, as shown in Figure 3-13. Our members are
contained within the IMS11B.PROCLIB data set, so we have specified it here with single
quotes.

Chapter 3. System environment 67

7856¢ch03.fm

Draft Document for Review May 7, 2010 1:20 pm

File Help
SS5S55SSSSSSSSS
DFSSCSRT IMS Parameter Syntax Checker Enter required field

Command ===>

Enter the name of the IMS proclib dataset and press enter.

ISPF Library:

Project

Group

Type

Member . . . (Blank for member 1ist)

Other Partitioned Data Set:
Data Set Name . . 'IMS11B.PROCLIB'
Volume Serial . . (If not cataloged)

Fl=Help F3=Exit Fl2=Cancel

Figure 3-13 Specifying the data set name containing our member definitions to be validated

The next panel displays a member list, from which you can select a member to review, as
shown in Figure 3-14. In our example, we would like to check the syntax of our IMS Connect
configuration member, HWSCFODB.

Menu Functions Utilities Help
$S555S55SSSSSSSSSSSS
DFSSCSRT ST IMS11B.PROCLIB Row 00046 of 00093
Command ===> Scroll ===> PAGE

Name Prompt Size Created Changed ID

. DFSVSMDC 14 2010/02/25 2010/02/25 20:51:52 IMSR2
. DFSVSMO00 8 2010/02/25 2010/02/25 20:52:29 IMSR2
. DFSWT000
. DLIBATCH
. FDR
. FMTCPY
. FPUTIL
. HWSCFGIV
S HWSCFODB 4 2010/02/22 2010/03/03 18:02:01 IMSR3
. HWSCFODX 6 2010/02/22 2010/02/22 15:27:55 IMSR1
. ICJCL
. ICRCVJCL
. IMS
. IMSBATCH
. IMSBBDL1

Fl=Help F2=Sp1it F3=Exit F5=Rfind F7=Up F8=Down F9=Swap
F10=Left Fl1l=Right F12=Cancel

Figure 3-14 Selecting the IMS Connect configuration member for review within Syntax Checker

68 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

The next panel will prompt you to indicate whether this member is a BPE exit list member or
an IMS Connect configuration member; select the latter as shown in Figure 3-15.

File Help
S555SS
DFSSCSRT IMS Parameter Syntax Checker

Command ===>
Enter the following information and press enter.

Select member type 2 1. BPE Exit List Member
2. IMS Connect Configuration Member

Fl=Help F3=Exit Fl2=Cancel

Figure 3-15 The Syntax Checker requesting input regarding the member type

Then select IMS 11.1 from the next menu as shown in Figure 3-16.

File Help
$555SS
DFSSCSRT IMS Parameter Syntax Checker

Command ===>
Enter the following information and press enter.
IMS Release 1 1. IMS 11.1

2. IMS 10.1
3. IMS 9.1

Fl=Help F3=Exit Fl2=Cancel

Figure 3-16 Syntax Checker prompting for IMS version level

Chapter 3. System environment 69

7856¢ch03.fm

Draft Document for Review May 7, 2010 1:20 pm

Next, the Syntax Checker displays a list of the values you can define within the member along
with a brief explanation of each parameter’s function. We have scrolled down to the
ODACCESS section of the HWSCFODB member in our sample shown in Figure 3-17. You
can alter the display by choosing to collapse or expand certain sections.

File Edit View Help
$555SSS
DFSSCSRT IMS 11.1 Parameters for ANY
Command ===>

Press enter (without other input) to check for errors.

Data Set Name . . : IMS11B.PROCLIB(HWSCFODB)
IMS Release . . . : 11.1

Sel Codes: C = Comment D = Delete I = Insert
P = Process + = Expand - = Contract / = Select
Sel Keyword Description More: -+
ODACCESS (ODACCESS statement
DRDAPORT = (Define ports
_ ID = 5555 Port number
KEEPAV = KeepAlive interval seconds
_ PORTTMOT = 6000) Timeout value in hundredths of a second
_ DRDAPORT = (Define ports
Fl=Help F3=Exit F6=Default F7=Backward F8=Forward F10=Edit

F12=Cancel

Figure 3-17 Syntax Checker view of our IMS Connect configuration member, HWSCFODB

One very useful feature within Syntax Checker is the F1=Help function. If you place your
cursor on a field and press F1, it displays detailed information about the parameter meaning,
as well as what values are valid. Refer to Figure 3-18 for an example of the help panel for the
PORTTMOT parameter.

70 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

File Help
SSSS555SSSSSSSSS
DFSSCSRT HELP FOR PORTTMOT

Command ===>

More +
Keyword: PORTTMOT

PORTTMOT=
Defines the amount of time that IMS Connect waits for the next
input message from a client application that is connected on a
DRDA port before IMS Connect disconnects the client.

The timeout interval is specified as a decimal integer in
hundredths of a second. Valid values for PORTTMOT are from 0 to
2 147 483 647 (X'7FFFFFFF'). The default is 18 000 (3 minutes).
A 0 disables the timeout function.

Specifying a timeout value can avoid hang conditions when a
client stops sending messages as expected due to, for example:
* A looping client application

Fl=Help F3=Exit F7=Backward F8=Forward F12=Cancel

Figure 3-18 Help panel for the PORTTMOT parameter of the ODACCESS statement

3.5 Security considerations

When a data request comes into IMS through ODBM from either a DRDA application or one
of the IMS Universal Drivers, it must go through security checking before the data can be
retrieved. This process is two-fold. First, use IMS Connect security to authenticate the user
before the request reaches ODBM. This authentication confirms that users really are who
they claim they are. Second, determine whether the user is authorized to access the IMS
resource using either allocate PSB (APSB) security or Resource Access Security (RAS).
ODBM will be able to retrieve the requested data from IMS only if these security checks are
passed.

We now explore how to use IMS Connect to authenticate a user ID, then how to authorize this
user to allocate a PSB or access an IMS resource using the APSB and RAS facets of IMS
security.

Authenticating a user ID using IMS Connect security

IMS Connect security gives you two options to authenticate users who are requesting IMS
data: using the Security Authorization Facility (SAF) interface or the IMS Connect DB Security
user exit routine, HWSAUTHO.

Using the Security Authorization Facility

IMS Connect can call a SAF interface such as RACF to authenticate a user. To activate this
option, define RACF=Y in the HWSCFGxx configuration member (this setting can later be
changed using the IMS Connect SETRACF command). When an application sends in a

Chapter 3. System environment 71

7856¢ch03.fm

Draft Document for Review May 7, 2010 1:20 pm

request for IMS data, it will include a user ID (if it is not being provided by an exit) and either a
password or a RACF PassTicket.

Note: A RACF PassTicket is a one-time-only password that is generated by the calling
application or a user exit, and is an alternative to the RACF password. This is considered to
be more secure than using the RACF password because it removes the need to send the
password across the network in clear text.

IMS Connect will then perform authentication with a call to RACF. When the request reaches
ODBM, the user will have already been authenticated and will only then need to be authorized
to access the APSB or the particular IMS resource.

IMS Connect DB Security user exit (HWSAUTHO)

Instead of SAF, you can use the IMS Connect DB Security user exit routine (HWSAUTHO) to
perform the necessary user ID security checking when a message is received from an
application program. This refreshable exit is shipped with IMS Connect and link-edited into
the IMS Connect RESLIB, and will always be called even if RACF=Y has been specified and
RACEF is called afterwards.

It can authenticate a user ID that has been passed in by an application, and can even
designate a different user ID to replace the original before it is sent to ODBM. The exit can
also provide a RACF group ID to be authenticated further by IMS Connect.

HWSAUTHO is a standard BPE type-1 exit routine and you can manage it using the BPE
DISPLAY USEREXIT and REFRESH USEREXIT commands. To use the exit, you must first
create or modify your current BPE exit list PROCLIB member using a name of your choice --
we have used HWSICNXO. Also in the member, define HWSAUTHO as an exit similar to what
we show in Example 3-13. Note that the example contains all values exactly as you should
code them, but you can specify a number of your choice for the ABLIM= parameter, which
tells IMS how many times the exit can abend before it becomes disabled.

Example 3-13 Defining the HWSAUTHO user exit within the BPE exit list PROCLIB member

EXITDEF(TYPE=0DBMAUTH,EXITS=(HWSAUTHO) ,ABLIM=8,COMP=HWS)

Finally, add an EXITMBR statement to your BPE configuration member, specifying the name
of your new exit, similar to our sample shown in Example 3-14. Note that we have designated
that our new exit, HWSICNXO, be used.

Example 3-14 Adding a user exit to the BPE configuration member with the EXITMBR statement

EXITMBR=(HWSICNXO,HWS) /* IMS CONNECT EXITS */

Authorizing a user ID to access a resource using IMS security

Once a user ID has been authenticated by IMS Connect, the request for IMS data flows to
ODBM, which in turn passes the request to the appropriate IMS system. At this point, we
must determine whether the user ID is authorized to allocate the PSB or access another IMS
resource. The path we take here depends on what value we have specified for our ODBASE=
execution parameter in our DFSPBxxx PROCLIB member. If we have specified ODBASE=Y
and our ODBM is running with RRS, we will use APSB security. Otherwise if we specified
ODBASE-=N (the default) or our ODBM is not running with RRS, we will use RAS security.

72 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch03.fm

Attention: If you choose to track statistics for a RACF user ID, keep in mind that
performance could be affected.

Let’'s now look at how each of these security types function.

Allocate PSB (APSB) security

To protect APSBs from unauthorized access, protect them in the AIMS RACF class and grant
the user access to each protected resource. See Example 3-15 for a simple model of what
these RACF definitions might look like.

Example 3-15 Sample RACF definitions for authorizing a user to access a protected APSB

ADDUSER APPLUID1
RDEFINE AIMS APSBX UACC(NONE)
PERMIT APSBX CLASS(AIMS) ID(APPLUID1) ACCESS (READ)

In our example, the user ID of our calling application is APPLUID1. We protect an APSB
named APSBX in the AIMS RACF class with an RDEFINE statement, then we grant our
APPLUID1 user access to this APSB with a PERMIT statement. Before the PSB can be
dynamically allocated, the application’s user ID will first be authorized against the APSB.

Restriction: You can only use APSB security if ODBM is running with Resource Recovery
Services (RRS), which is the default setting.

Resource access security (RAS)

As we previously mentioned, RAS is used if you specified ODBASE=N in either your IMS
startup procedure or your DFSPBxxx PROCLIB member. It will also be used if your ODBM is
running without RRS. RAS determines whether the user passed to ODBM is authorized to
access a requested PSB. You can specify the type of security that RAS will use with the ISIS
parameter, also defined in either the IMS startup procedure or the DFSPBxxx member. Here
are the possible values that you can define for the ISIS parameter:

ISIS=N disables RAS security

ISIS=R will use RACF for RAS security

ISIS=C will use the DFSRASOO user exit for RAS security

ISIS=A will use both RACF and the DFSRASOQO0 user exit for RAS security

vyvyyy

Note: In previous IMS releases, you were able to specify ISIS=0, ISIS=1, or ISIS=2 which
were related to SMU AGN security. After IMS V9, SMU security is no longer supported and
if you specify any of these no longer supported values, they are internally translated to
ISIS=N and RAS is disabled.

You can also activate RAS with the SECURITY macro’s TYPE parameter. Here are the
possible values:

NORAS disables RAS security

RASRACF will use RACF for RAS security

RASEXIT will use the DFSRASOO0 user exit for RAS security

RAS will use both RACF and the DFSRASOQ0 user exit for RAS security

v

vYyy

Important: The ISIS parameter always overrides any RAS-related specification on the
SECURITY macro. To use the SECURITY macro’s designation, you must omit the ISIS
parameter entirely.

Chapter 3. System environment 73

7856¢ch03.fm Draft Document for Review May 7, 2010 1:20 pm

For more information about the SECURITY macro, refer to IMS Version 11 System Definition,
GC19-2444.,

When you use RAS with RACF, the user ID is authorized to access a PSB protected in the
RACEF class IIMS (or the JIMS RACF grouping class for PSBs). The user ID passed to ODBM
can vary depending on its source, which can be from any of the following:

» IMS Connect, the user ID is passed with the request, and is typically that of the application

» An ODBA application such as WebSphere Application Server (WAS) or DB2 stored
procedure, the user ID is that of the user

» A batch ODBA application, the user ID is the batch job’s user ID
» If no user ID was passed on the ODBM request, the user ID is the ODBM address space’s
user ID, specified on the USER= parameter of the ODBM address space’s startup JCL

If you specify that both RACF and the exit are used, the exit will always be called after RACF
is called. For more information about how to use the DFSRASO0O0 user exit routine, refer to the
manual entitled IMS Version 11 Exit Routines, SC19-2437.

74 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch04.fm

4

Generating IMS metadata class
with IMS Enterprise Suite
DLIModel Utility

In this chapter, we explain the functionalities that the IMS Enterprise Suite offers for Open
Database support. The IMS Enterprise Suite DLIModel Utility is required to generate the IMS
database metadata file.

This chapter is intended to be read by the person responsible for generating the IMS
metadata files. Depending on how the tasks are assigned in your organization, this can be the
IMS system programmer, the IMS database administrator or the application developer which
has some knowledge of IMS and has access to the necessary resources.

Several SOA technologies (both existing and as improved by IMS 11) are now packaged in
the IMS Enterprise Suite product, made available with IMS 11. IMS Enterprise Suite V1.1
(program numbers 5665-T60 and 5665-T61) contains the following items:

IMS SOAP Gateway

IMS Connect API for Java and C
JMS API

DLIModel Utility

vVvyyy

In this chapter we concentrate on the new IMS Enterprise Suite DLIModel utility’s functions,
which we will cover in the following order:

» Introduction

Overview of IMS Enterprise Suite DLIModel utility

Download and installation

Setup for sample scenarios included in this book

Using the IMS Enterprise Suite DLIModel utility

— Generating metadata for Car Dealer database

— Editing the AUTPSB11 Project

— Export the metadata as Jar file

» Additional considerations for the IMS Enterprise Suite DLI Model Utility

>
>
>
>

© Copyright IBM Corp. 2010. All rights reserved. 75

7856¢ch04.fm

Draft Document for Review May 7, 2010 1:20 pm

4.1 Introduction

The IMS Enterprise Suite consists of components that are designed to support open
integration technologies to enable new application development and extend the access to
IMS transactions and data. Here, we focus on a single component of the IMS Enterprise
Suite: the IMS Enterprise Suite DLIModel utility plug-in (also referred to as the DLIModel
utility). The plug-in is based on Eclipse and can therefore be integrated into an existing
Eclipse development environment.

Once installed, it can take existing IMS source files such as COBOL copybooks and PL/I
structures and convert them into metadata, which describes the layout and contents of these
source files. You can then use this metadata to write Java applications in Eclipse, IBM
Rational Application Developer for WebSphere, or IBM Rational Developer for System z with
no requirement to create or work with z/OS control statements.

In this chapter, we show how to download, install and use the DLIModel utility for this
purpose. First, let’s discuss a more detailed overview of the utility, including its requirements,
restrictions and a brief history of its evolution.

4.2 Overview of IMS Enterprise Suite DLIModel utility

IMS data is traditionally stored in mainframe-based IMS source files such as PSBs (program
specification blocks) and DBDs (database descriptions). To use this data in a modern Java
application, it must first be transformed into a format that can be understood by the
application. As of IMS V11, IMS does not have a catalog that contains these transformed
definitions. Rather, the DLIModel utility is the mechanism that performs this transformation. It
takes IMS source files such as PSB libraries, DBD libraries and COBOL and PL/I copybooks
as input and generates metadata, which describes the IMS data. More specifically, it
generates a Java class called the IMS Java metadata class, which is a subclass of the
com.ibm.ims.db.DLIDatabaseView class. This class can then be used within a Java
application to access the IMS data which was previously inaccessible by the application due
to the mainframe-based format.

Not only can the DLIModel utility generate metadata for use with IMS Open Database, but it
can also generate elements that you can use with other functions, like exposing IMS
database operations as Web services. For example, the utility can:

» Generate a graphical UML model that illustrates the IMS database structure in an
interactive tree model

» Generate annotated XML schemas of IMS databases, which are used to retrieve XML
data from or store XML data in IMS databases

» Incorporate additional field information from COBOL or PL/l copybooks

» Incorporate additional PCB, segment, and field information, or override existing
information through a graphical view of the PCB

» Generate a DLIModel database report, which assists Java application programmers in
developing applications based on existing IMS database structures

» Generate an optional DLIModel trace log

» Provide a configuration editor as a launching point for generating IMS database Web
services artifacts

» Generate XMI descriptions of the PSB and its databases

76 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch04.fm

Refer to Figure 4-1 for a representation of the input that the DLIModel utility accepts and what
it generates as output.

IMS Enterprise Suite DLIModel Utility Plug-In

XML schemas

IMS Java Meta-

l e — data classes
;] T] — (Open DB)

—-

PSB metadata

Control

statements o s - — @
- e - DBD metadata

1 2]

—_—

COBOL IMS DB
Copybooks /] i))) o - Web Service

www. ibm.com/softwar €/ data/i ms/oa-i ntegr at ion-suit & enter prise-suite/dlimodel-utility artifacts

PL/lI'structures

Figure 4-1 Input and output associated with the IMS Enterprise Suite DLIModel utility

For more detail about the utility’s generation capabilities, access the online IMS Information
Center by going to the IMS homepage at http://www.ibm.com/ims and entering the search
string DLIModel utility. To locate the Information Center from the IMS homepage, click the
Library link on the left as shown in Figure 4-2.

Chapter 4. Generating IMS metadata class with IMS Enterprise Suite DLIModel Utility 77

7856¢ch04.fm

Draft Document for Review May 7, 2010 1:20 pm

m IBM - IMS - Information Managemen..., -

Partners
Success stories
Hews

How to buy
Events

Training and certification

IMS family

Information Management System

é—_ !.a_l M.

IMS 11 is here! IMS & IMS Tools

IDC

IDC White Paper

Services IMS 11 GA on October 30, 2002 Technical Update Seminars 7 The Proven Power and
Support = Seewhat's new T in select US cities - register tadayl Flexibility of IMS {157 KB)
Why IS Vihat's New in IMS and
Related links Information Management System - 115 is IBM's premier transaction & hierarchical database SNt -
« Information Center management system. The latest capabilities enable S0A exploitation, secure your investment
and enable new application development i %
.. M
What we offer O I tion Packs
E:m Business Software ar
. o o -
IMs IMS Solution Packs System z & IMS in the

IBI's Premier Transaction and Database Providing outstanding ROl and best practices. = Press
Managers for critical enling applications: IMS IS Seminars 4

11, IM3 10, IMS 9, NS 8 IMS Community 4

IMS Tools IS Regional User Group
Tools to enhance IMS performance and Events 4
management IS Telecons 3
0 Embed hd

Comnongant:

Dans

Figure 4-2 IMS family main panel

Then click the Information centers link shown on the next page. Now that we have described
a bit about the DLIModel utility’s capabilities, let’'s now take a look at its requirements.

4.2.1 Requirements

To use the DLIModel utility, certain software requirements must be met. This includes the
scenario where you are migrating from an older version of the utility to the current one. You
must be using:

» Eclipse Version 3.4.1
» Graphical Editor Framework (GEF) 3.4.1
» Eclipse Modeling Framework (EMF) 2.4.2

There are also other general requirements that need to be met before you can use the
DLIModel utility:

» Eliminate all errors from your PSB and DBD source code, as well as from your COBOL or
PL/I copybooks before running the utility, as it does not validate the input data.

» Obtain your IMS source files first, then copy them to your distributed platform.

» Include a name for all PCBs in each PSB definition using statement labels or the
PCBNAME parameter.

» Ensure that all PSBs and DBDs either directly or indirectly related to resources included in
the IMS source files are accessible. This includes DBDs that are indirectly referenced by a
PSB in the case of secondary indexing on a main database, as well as DBDs that are
externally referenced by other DBDs due to a logical relationship.

» Specify PROCOPT=P in your PCB statements or in the SENSEG statement for the root
segment during PCB generation if your application includes JDBC calls that span more
than one segment in a hierarchical path.

78 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch04.fm

» When your application is using IMS Java hierarchical database interfaces (SSA database
access) to retrieve IMS data, ensure that you choose appropriate PSB processing options
since you are controlling path calls.

» Keep track of the length field when you have variable length segments for INSERT or
UPDATE statements.

» Ensure that your COBOL and PL/I copybook files that supply additional information about
field layouts describe physical segments. The files cannot describe logical database
segment layouts.

Now that we are familiar with the requirements for using the DLIModel utility, we will now
review some restrictions that need to be adhered to when using the utility.

4.2.2 Restrictions

When using the DLIModel utility to transform IMS data, there are a few items to keep in mind.
We previously mentioned that utility can process PSB libraries, DBD libraries and COBOL
and PL/I copybooks.

In the case of the copybooks, you can only import these if you have installed the utility plug-in
into IBM Rational Application Developer for WebSphere Software or IBM Rational Developer
for System z Version 7.5 or later.

In the case of DBD libraries, it can process all database organizations except MSDB, HSAM,
and SHSAM databases. It can process all types and implementations of logical relationships,
and secondary indexes, except for shared secondary indexes. Lastly, it is not able to process
the PROCOPT=K option in a PSB SENSEG statement, which makes an application sensitive
only to the segment key of a segment.

If you would like to modify actual IMS mainframe data, you must first acquire the respective
source files from the z/OS system either by copying them from the mainframe using FTP copy
or by copying them over to a distributed platform. The DLIModel utility cannot manipulate this
data.

The DLIModel utility does not use DLITypelnfoList classes in its generated classes. If you
want to define repeating groups of fields in segments other than by explicitly defining each
group of fields separately, you must create the classes manually or modify the classes that
are generated by the DLIModel utility.

Field types will vary depending on how they were created. When it is defined by a DBD, itis a
CHAR field type but when imported from a COBOL or PL/I copybook, it is defined by the
COBOL or PL/I copybook. You can change the field type by modifying it manually.

4.2.3 History

Prior to IMS 11, the DLIModel utility could be shipped with IMS and run from UNIX System
Services or from the z/OS BPXBATCH utility. It required knowledge of zZ/OS development and
also required writing control statements. However, this version of the utility is no longer
supported (after IMS 10), so your sole option for obtaining the utility is via Web download.

The Web download version of the DLIModel utility was also available prior to IMS 11 as a
plug-in, but it was packaged differently in that it was not yet part of the IMS Enterprise Suite. It
was simply called the “IMS DLIModel utility plug-in”. This version of the utility is still available
for download, but it does not include enhancements made to the newly packaged version of
the utility, which is currently called the “IMS Enterprise Suite DLIModel utility plug-in”. These

Chapter 4. Generating IMS metadata class with IMS Enterprise Suite DLIModel Utility 79

7856¢ch04.fm

Draft Document for Review May 7, 2010 1:20 pm

latest enhancements include a shell-sharing capability with an existing Rational Application
Developer Software for WebSphere or Rational Developer for System z. We therefore
recommend that you use the latest version of the DLIModel utility and download the IMS
Enterprise Suite DLIModel utility from the Web using the IBM Installation Manager. This will
allow you to take advantage of the most current utility features.

4.3 Download and installation

To obtain the IMS Enterprise Suite DLIModel utility plug-in, you must use the IBM Installation
Manager and configure its installation repository. Begin by navigating to the IMS homepage
located at http://www.ibm.com/ims.

On this page, scroll down to find the IMS SOA Integration Suite link, as shown in Figure 4-3.

What we offer

Software

IMs IMS Solution Packs

IBIM's Premier Transaction and Providing outstanding ROl and
Database Managers for critical best practices.

online applications: IMS 11, M3
10, IMS 9, IMS 8

IMS Tools

Tools to enhance IMS
performance and management

Components

IMS Control Center
IMS SOA tools and functions for Distributed graphical user

integration and on demand interface for IMS operations

environments, including IMS

Enterprise Suite components IMS Web 2.0 solutions for IBM
Mashup Center and IBM

IMS Connect function WebSphere sMash

Enables easier access to IMS Unleash your IMS assets into

applications and data from the XML, ATOM, or RSS feeds

Internet

Figure 4-3 Starting point for downloading the IMS Enterprise Suite DLIModel utility plug-in

Follow the “IMS Enterprise Suite” link on the next two panels to navigate to the IMS
Enterprise Suite download site. You will be prompted to sign in with your IBM ID (or create
one if you do not yet have an IBM ID) and agree to the license terms before proceeding. The
next page will present a checkboxed list of items that you can select for download, as shown
in Figure 4-4. To download both the IBM Installation Manager and the IMS Enterprise Suite
DLIModel utility components using Download Director, select the following items in the list
and then click the “I confirm” button at the bottom of the page:

» Installation Manager for Windows
» IMS Enterprise Suite DLIModel utility plug-in for Red Hat® Linux and Windows XP
» Agreement to the license terms

80 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch04.fm

United States [change]

Home Solutions ~ Services - Products - Support & downleads ~ My IBM ~

| IMS Enterprise Suite

Products

services Downloads Need help?

Downloads = Sign up support

Library IMS Enterprise Suite for AlX, Linux, Linux for System z, Windows, z/OS (English only)

News English - Sign up and Software
2009-11-08 Download FAQ

Training and certification
= Software download support
Events X . . . - (English only)
To download using Download Director, select the files you want below and click on 'l confirm'.

Support Learn more
You can also download the files using http.

Communities:

+ IBM Business Pariners Download using Downlcad Directer Download using http

T Installation Manager
- Developers

E Installation Manager for Windows
agent.installer win32.win32 x86.zip (82 MB)

B Installation Manager for zLinux
agent.installer linux.gik 5390 zip (84 MB)

Figure 4-4 Download page for the IBM Installation Manager and IMS Enterprise Suite DLIModel utility plug-in

Note that on the page shown in the figure, there is one item in the list entitled “Contains all
IMS Enterprise Suite features. SMP/E installable” under the “IMS Enterprise Suite (SMP/E)”
heading. The DLIModel utility is part of this particular item, however if you select this, all of the
other IMS Enterprise Suite components will be downloaded as well (and can be installed via
SMP/E). We recommend that you select the individual DLIModel utility link as mentioned
previously since the other IMS Enterprise Suite components do not play a role in the IMS
Open Database capability.

Once you have clicked the “I confirm” button, two files will be downloaded:

» agent.installer.win32.win32.x86.zip (IBM Installation Manager)
» dlimodel_distribute_repository.zip (IMS Enterprise Suite DLIModel Utility)

Let’'s now review the installation procedures for each of these.

4.3.1 Installing the IBM Installation Manager
To install the IBM Installation Manager, open the downloaded

agent.installer.win32.win32.x86.zip file and use the “install.exe” file to initiate the installation
process as highlighted in Figure 4-5.

Chapter 4. Generating IMS metadata class with IMS Enterprise Suite DLIModel Utility ~ 81

7856¢ch04.fm

Draft Document for Review May 7, 2010 1:20 pm

(1 agent.installer.win32.win32.x86.zip

: File Edit View Favorites Tools Help

/ Back \.} l.ﬁ /__j Search |{~ Folders v

: Address

[E] c:'\pocuments and Settings\Administrator\Desktop\agent.installer. win32.win32,x86.zip

|C3) configuration
a |3 features

(2] Extract all files

@naﬁve
I3 Offerings

Other Places

b

L E

(B Desktop Elinstalc.exe

E} My Documents Euserinst.exe

[y Shared Documents ﬁuserinstc.exe

; %) adiplus. di

\g My Metwork Places = -
repository.config
}install.ini

Details ¥ }silent-install.ini
}userinst.ini

b user-silent-nstall.ini
=h
(=] install, xml

< ;
|=| repository.xml

[C)jre_5.0.3.5r85_20080811b

Figure 4-5 The install.exe file initiates the IBM Installation Manager installation process

Follow the prompts to complete the installation and agree to the terms of the license
agreement. Once the IBM Installation Manager has been successfully installed, you will see

the panel shown in Figure 4-6.

@ IBM Installation Manager

BEIX|

Install Packages

Manager:

The packages are installed. Jizw loa Fild

The following package was installed into package group IBM Installation

[1BM® Installation Manager

Click on "Restart Installation Manager” to launch the new Installation Manager
and to start installation of other package(s).

[Restart Installation Manager]

Figure 4-6 The confirmation panel after the IBM Installation Manager has been installed

82 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch04.fm

Attention: Any program installed by the IBM Installation Manager will not appear in the
standard Windows Control Panel “Add/Remove Programs” list. You must use the IBM
Installation Manager to remove any program that it has installed.

4.3.2 Installing the IMS Enterprise Suite DLIModel utility

Now that you have installed the IBM Installation Manager, go ahead and launch it in order to
install the IMS Enterprise Suite DLIModel utility. The IBM Installation Manager’s main menu is
shown in Figure 4-7.

@ IBM Installation Manager E:]@

File Help

Install

Install software packages.

= Update

Discover and install updates and
fixes to installed software packages.

l ¥ :
‘-._wij Manage Licenses

i Roll Back
S = Modify
/ Change installed software packages AL] :
L by adding or remaoving features and N . Uninstall

functions.

Figure 4-7 The main menu displayed when the IBM Installation Manager is launched

When you use the IBM Installation Manager to install software packages, you must connect to
repositories that contain these software packages. To connect to the repository associated
with the IMS Enterprise Suite DLIModel utility, select “Preferences...” from the File menu.
Then click the “Add Repository...” button and select the dlimodel_distribute_repository.zip file
that you just downloaded from the webpage in the previous section to add it to the dialog as
shown in Figure 4-8.

Chapter 4. Generating IMS metadata class with IMS Enterprise Suite DLIModel Utility =~ 83

7856¢ch04.fm Draft Document for Review May 7, 2010 1:20 pm

- L
€Y Add Repository X

Add a repository
Specify a repository and add to the repository preference list.

Repository:

| Ci'\Documents and Settings\Administrator\Desktop'dlimodel_distribute_repositary. zip [v] [Brnwse...]

o]

Progress Information

\y Checking repository C:'\Documents and S...limodel_distribute_repository.zip ...

Cancel

Figure 4-8 Adding the DLIModel utility repository to the IBM Installation Manager

Now that you have added the repository, click OK. After a few seconds you will be brought
back to the main menu of the IBM Installation Manager, where you can now click the “Install”
icon. The next panel displayed will contain the packages that are available to install. Check
the DLIModel utility plug-in package as shown in Figure 4-9.

@ IBM Installation Manager g@
Install Packages : é

Select the packages to install.

Installation Packages Status Vendor License Key Type
= [#] I[] IMS Enterprise Suite DLIMadel Utiity Plug-in
([}, version 2.0.3.20091102_1145 IEM
[C15haw &l versions Check for Other Versions and Extensions
Details

IMS Enterprise Suite DLIModel Utility Plug-in 2.0.3.20091102_1145

* Repository: C:'\Documents and Settings\Administrator\Desktop'dimodel_distribute_repository. zip

Figure 4-9 Selecting the IMS Enterprise Suite DLIModel Utility Plug-in package for installation

84 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch04.fm

Click the “Next” button, accept the terms of the license agreement on the next page, and
follow the rest of the dialog prompts to complete the installation process.

Shell sharing

During the installation process, you will notice that one of the panels includes a checkbox that
enables you to extend an existing Eclipse IDE or JVM, as shown in Figure 4-10. Leave this
box unchecked unless you are already using Eclipse and simply want to add the
Eclipse-based DLIModel utility features to your existing environment. In the latter case, check
the box and specify the location of your Eclipse.exe and continue to follow the prompts.

@ IBM Installation Manager g@
Install Packages =
Select the check box anly if you want the packages you are installing to extend an existing version of Eclipse. _'___ -3
= = = |
Insta Licenses | Location > Features Summary |
Packages are bundled with a version of the Edlipse integrated development environment {IDE or workbench). Click Mext for this default
installation.
However, if you already have a compatible version of the Eclipse IDE on your system, you can extend that version of Eclipse instead
e) ofinstaling & new one. When you extend Edlipse, the package functions are available in your Edipse IDE, but the package files are stil
installed in their own directory, For more information, see the installation topics for the package that you are installing,
If you choose to extend Eclipse and dick Mext, the specified Edlipse is initizlized as though the 'edlipse -initialize’ command is run from a
command line.
[CJExtend an existing Eclipse
Eclipse IDE:
Eclipse JVM:
v]
@ [< Back " Next =]

Figure 4-10 Option for the DLIModel utility to shell share with other Eclipse products

The ability to install products that will share a common environment is provided by the IBM
Installation Manager and is known as “shell sharing”, which has several advantages. You are
able to consolidate separate product features into one user interface, eliminating duplicate
installations of the common environment on your machine. Not only does this save disk space
and installation time, but it allows all products sharing the same shell to receive updates when
they are installed by the IBM Installation Manager. Refer to section 4.6.3, “Integrate the
DLIModel Utility with other Eclipse products” on page 94 for an alternate way to extend an
existing Eclipse IDE.

Restriction: In order for the DLIModel utility plug-in to shell share with another
Eclipse-based product, they both must be using the same version of Eclipse. In addition,
the features associated with each product must not conflict with each other.

Chapter 4. Generating IMS metadata class with IMS Enterprise Suite DLIModel Utility =~ 85

7856¢ch04.fm

Draft Document for Review May 7, 2010 1:20 pm

4.4 Setup for sample scenarios included in this book

In order to be able to follow the scenarios presented in the other chapters in this book, there
are a few required prerequisite setup steps. These steps include downloading the sample
database source, then using the DLIModel Utility plug-in to generate and edit its metadata,
which you will ultimately export as a jar file for use with Java application development. We
begin with describing how to download the database source.

4.4.1 Downloading the Car Dealer IVP database source

The IMS product includes a sample database called Car Dealer. The source associated with
this database is included in the IVP and is located in the HLQ.SDFSISRC data set. In our
case, the HLQ is ‘IMS11B’ so the data set we will use is named IMS11B.SDFSISRC.

You have several options to copy the database source from the host to your workstation. You
can use the functions of your 3270 terminal emulation or you could use Rational Developer for
System z to easily access the members in this data set. You can either copy/paste the
members or use FTP to download them. In the following steps we show an example of
downloading the data set members with the Microsoft Windows XP integrated FTP client:

» Click Windows Start -> Run... and type cmd.exe to open the command prompt.

» Start the FTP session by using the command FTP <HOSTIP> and when prompted, insert
your TSO user name and your password. After login enter the following commands:

cd 'IMS11B.SDFSISRC'

lcd c:\temp to change to an existing directory on your system
ASC to set transfer mode to ascii

get DFSAUTDB AUTODB.dbd (for the DBD)

get DFSEMPDB EMPDB2.dbd (for the DBD)

get DFSEMLDB EMPLDB2.dbd (for the Logical DBD)

get DFSLAUTO AUTOLDB.dbd (for the Logical DBD)

get DFSIND22 SINDEX22.dbd (for Index DBD)

get DFSIND11 SINDEX1l.dbd (for Index DBD)

get DFSAUT11 AUTPSBll.psb (for PSB)

» To exit the FTP session, type quit and to end the command prompt type exit.

You should now have the source members in your local directory, in this case c:\temp. You
must rename the source members to match the DBD name statements that were included the
source data. To do this, use the ‘get’ command by specifying get <sourcename on the
current remote directory> <destination name on the current local directory>.

For a detailed explanation of the Car Dealer database and its source code, refer to
Appendix B, “Car Dealer IVP Database” on page 235. Now that you have obtained the
sample database source files, you can use the DLIModel utility plug-in to generate metadata
for it, which we will now cover.

4.5 Using the IMS Enterprise Suite DLIModel utility

To use the DLIModel utility plug-in to generate metadata and other artifacts that Java can
understand, we will use the IMS source files obtained in the previous section as input. In this
section, we discuss using the DLIModel wizard and DLIModel editor to generate and edit
metadata associated with the sample database (respectively) as well as exporting this
metadata as a jar file.

86 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch04.fm

When working with the DLIModel utility, all associated data is contained within a ‘DLIModel
project’, which you must first create. The DLIModel wizard assists you in creating a project
and gives you the option of creating an XML schema, generating a result report, and writing a
trace log. If you already have a DLIModel project that you are working with, you can import
IMS PSB and DBD source files into it.

Once you have generated the metadata, you can use the DLIModel editor to modify it and
also import information from COBOL or PL/I copybooks. The editor also allows you to search,
save, and print the hierarchy of the IMS database.

4.5.1 Generating metadata for Car Dealer database

In this section, we examine how to use the DLIModel utility to generate the Java Metadata
class file, which is required in the scenario use cases in this book. A prerequisite to this step
is downloading the required source files, which we covered in 4.4, “Setup for sample
scenarios included in this book” on page 86.

Once you have launched the Eclipse-based IMS Enterprise Suite DLI Model Utility, follow
these steps to generate metadata for our Car Dealer sample database (which is included in
the IVP):

» Click on File->New->Projects and select DLIModel Utility Project and click Next.

» Specify AUTPSB11 for the project name and samples.ims.openDb for the Java package
name. If you show the ‘Advanced’ section by clicking the button, you can then select
additional options for the generation, including the ability to use an IMS control statement
from the former version of the DLIModel utility to generate the Metadata Class file (see
Figure 4-11).

Important: Be aware that the Java package is case-sensitive and is referenced in all
scenarios in this book as the package and class name shown here.

Chapter 4. Generating IMS metadata class with IMS Enterprise Suite DLIModel Utility 87

7856¢ch04.fm Draft Document for Review May 7, 2010 1:20 pm

= New DLIModel Utility Project

DLIModel Utility Project
Create a new DLIModel utility project.

Project name; | AUTPSE11 [v]

Java package: | samples.ims.openbDb

Project contents
Use default

[Hiu:le Advanced <<

Select optional output files
XML schema
DLIModel utility result report

[]7race log

[Jrun utility from an IMS control statement Find out more

® <teck_J[_texts

Figure 4-11 New DLIModel Utility Project - Step 1

» Leave the defaults as they are and click Next.

» Highlight your local directory and select the downloaded AUTPSB11.psb file as shown in
Figure 4-12. Since the DBD source files are in the same directory and will be named as
defined in the PSB’s DBDNAME statement, it will automatically find and select the
associated DBDs. Otherwise, you must manually select all of the DBD source members
associated with the databases and indexes. These members can have either file extension
of .dbd or .psb or none.

88 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch04.fm

2 New DLIModel Utility Project - o3
Import IMS PSE and DBD Source X
Click Finish to open the IMS DLIModel Utility perspective. -
| —
al
PSE source
From directory: |C:';temp'|,-5.Ll'I'F‘5EEll M [Browse...]
[E] &= AUTPSB11 [[6 auToDE. dbd
O [auToLDB. dbd
5 AUTPSB 1 1.psb
[[cemPDB2.dbd
[[c'emPLDE2.dbd
[[65'sTNDEX 11.dbd
O [Bsmoex22.dbd
DED source
Same directory as above
':?:' = Finish l [Cancel

Figure 4-12 New DLIModel Utility Project - Step 2

» Click Finish and you will see the generated files in the Package Explorer as shown in
Figure 4-13.

P
3 Package Explorer @3 r|h_‘| Froject Explu:urerw

= 22 AUTPSB11
E Diagrams
L IMSSource
=} samples.ims.openCh
m AUTPSE11Databaseview.java
AUTPSE11JavaReport. tt
2 ¥MLSchema
B JRE System Library [jdk]
B\ Referenced Libraries
= webServices

-

Figure 4-13 New DLIModel Utility Project - Step 3

» The required file is in the samples.ims.openDb Java package and is automatically called
AUTPSB11DatabaseView.

Chapter 4. Generating IMS metadata class with IMS Enterprise Suite DLIModel Utility =~ 89

7856¢ch04.fm Draft Document for Review May 7, 2010 1:20 pm

4.5.2 Editing the AUTPSB11 Project

Since the DLIModel utility is not able to obtain all of the required data from the PSB and DBD
source files, you must review and if necessary edit the files that have been generated.

After generating the files now contained in the Project, the Overview diagram should open
itself automatically as shown in Figure 4-14. Notice that at the bottom of this view, you can
switch between different PCBs associated with this PSB. Any saved changes that you make
in the diagram will result in the regeneration of the files in the project.

AUTPSE11DatabaseView.java & AUTPSB1l.mdl 23 = O
Project: AUTPSB11 PSE Mame: ALTPSE11 DBD Mame: AUTOLDE (LOGIC)
F DEALER A

Total length: 81
% DLRNO [e]
-

] MODEL
Total length: 37

g MODKEY [€]

-

] ORDER1] sALES
Total length: 74 Total length:
% ORDMNER (e g SALENUM
> .| ™
< >

B8 autoLrce | B® auTsipce | B® auTszrce | B® ausizrce | B® EMPLPCE

Figure 4-14 AUTPSB11 Overview diagram

When you look at the definition of the different fields, you may notice that the fields are all
defined as Character Data Type. This is because IMS doesn’t have a large variety of data
types. The only differentiation which the DBDs and PSBs make concerning the data type is in
the FIELD parameter and can be any of the following:

» X stands for Hexadecimal data
» P stands for Packed decimal data

» C stands for Alphanumeric data or a combination of types of data

» F stands for Binary fullword data (only MSDB)

» H stands for Binary halfword data (only MSDB)

However, it can be important to change the data type from Character to another data type --
for example if it is a Packed decimal field in IMS. This particular field format is normally
handled by the application in IMS. For example, the Packed decimal field which needs five
bytes can contain more than five numbers. The format of these fields is normally specified by
the IMS application. Therefore, you have two options for correcting the data types:

» Use the COBOL copybook import function to get the required data out of the copybook.
This is done by right-clicking on the diagram and selecting Import Copybook Fields as
shown in Figure 4-15.

90 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch04.fm

Note: The import COBOL copybook feature only works if your DLI Model Utility is running
in Rational Application Developer or Rational Developer for System z.

=l Sawve As,,,

Edit
_. Import Copybook Fields

= Prinit

+] Expand All

Figure 4-15 Import Copybook Fields

» The second option is to specify the values manually in the diagram by right-clicking a field
and select Edit.

Open the AUTODB.dbd in the Project’s IMSsource folder of the Package Explorer. When you
have a look at the types you will find the following fields which are not TYPE=C in the ORDER
segment:

FIELD NAME=MSRP,BYTES=5,START=27,TYPE=P
FIELD NAME=COUNT,BYTES=2,START=32,TYPE=P

and the following line the STOCK segment:
FIELD NAME=WRNTY,BYTES=1,START=46,TYPE=X NEW (BOOLEAN)

You have two options for this example.

1. Leave the fields as CHAR (recommended), as they are currently filled with CHAR data
by the IVP jobs.

2. You can also delete the contents in the database manually (e.g. with a DFSDDLTO job)
and adjust the types in the diagram. Since there is no copybook provided for this IVP
sample database, you must adjust them manually. To do this, right-click in the diagram on
one of the values and click Edit or use the Properties view to edit the fields. Specify MSRP
as data type PACKEDDECIMAL with the representation of S9999999V99 and COUNT as
data type PACKEDDECIMAL with the representation of S999. Change the WRNY field to
BIT as it is used here only as a Boolean field with two hexadecimal values

Attention: The MSRP and COUNT segments are currently loaded by the IVP with a few
values in CHAR format which are not PACKEDDECIMAL as defined. So the type
conversion does not work if you specify these fields as PACKEDDECIMAL.

Chapter 4. Generating IMS metadata class with IMS Enterprise Suite DLIModel Utility ~ 91

7856¢ch04.fm

4.5.3 Export the metadata as Jar file

92

Draft Document for Review May 7, 2010 1:20 pm

After finishing editing the Project you can now export the project by following these steps:

» Click on File->Export and select Java->Jar file and click Next.

» By default the whole project should be selected for export. Deselect the diagram and the
WebService folder. Select the Export Java Source files and resources checkbox to
include the source files in your Jar file. This way, when you provide the Jar file to your
application developer, (s)he will be able to review the generated Java Report and the
source code used to generate the files. Also, if you have future database changes, you will
be able to easily identify the correct version of the Jar file. Type in the path and the name
where the Jar file should be exported. In Figure 4-16 you can see that we have specified

c:\temp\AUTPSB11.jar.

Fas

= JAR Export

EX]

JAR File Specification

Define which resources should be exported into the JAR.

Select the resources to export:

5 [W]1=2 AUTPSB11] Bl .casspath
[Diagrams [] B .project
EES MsSource

3 samples.ims.openDb
H XMLSchema
[]= webservices

Export generated dass files and resources
[1Export all output folders for checked projects
Export Java source files and resources

[1Export refactorings for checked projects,

Select the export destination:
JAR file: | c:\temp'ALTPSB11.jar

Options:
Compress the contents of the JAR file
[] add directary entries

[] overwrite existing files without warning

w Browse...

) (e]

Figure 4-16 Export of AUTPSB11.jar

» Click Finish to complete the Export.

IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

4.6 Additional considerations for the IMS Enterprise Suite DLI

Model Utility

There are several other considerations for using the IMS Enterprise Suite DLI Model Utility,

which we discuss here.

7856ch04.fm

4.6.1 Ensuring consistency between generated class files and other JRE files

The current Eclipse version of the IMS Enterprise Suite DLIModel utility uses JDK 6.0 by
default to generate the metadata class files. If you will be working with other files that are
based on a different Java Runtime Environment (JRE) -- for example, version 1.5 -- you must
change the version to match before compiling a java application. If you do not do this, you will
receive a Java class version error when you compile. To change the version, follow these
steps:

»

>

Right-click on your project and select Properties.
Select the Java Compiler page and select the Enable Project specific settings

checkbox. Select your Compiler compliance level to the level you need. In Figure 4-17 it

is specified as 1.5.

2 Properties for AUTPSB11 =<

type filter text Java Compiler #=

Resource
Builders
Java Build Path DK, Compliance
#- Java Code Style
=I- Java Compiler
+- Annotation Processing |se default compliance settings
Building
ErrarsfWarnings
Javadoc
Task Tags
+- Java Editor
Javadoc Location
Project References
Run/Debug Settings Classfile Generation

Add variable attributes to generated class files (used by the debugger)

Enable project specific settings

Add line number attributes to generated dass files (used by the debugger)
Add source file name to generated dass file (used by the debugger)

Preserve unused (never read) local variables

When selectng 1.5 compllance make sure to have & compatible JRE |nsta||ed and Ench\r ated
{currently 1.6). Configure the I = = or change the JRE on the] D

Compiler compliance level: 1.5 v

[Restore Defaults] [Apply

?) [[a]'4 l [Cancel

Figure 4-17 Compiler compliance level

» You will be asked to regenerate the project. Click Yes to rebuild it. Make sure that you

export your Jar file again in order to be able to use it.

Chapter 4. Generating IMS metadata class with IMS Enterprise Suite DLIModel Utility

93

7856¢ch04.fm

4.6.2 Track changes of IMS database reorganizations

If you change your IMS database design and do a reorganization of a database, you must
also recreate the metadata files for this database. This should be considered in the change
management process of your company when databases are being changed. If you do not
have the source of your DBDs and PSBs, you can use IMS Tools such as the IBM IMS Library
Integrity Utilities for z/OS to recover it from the IMS libraries. This also guarantees that you

Draft Document for Review May 7, 2010 1:20 pm

have the most current source for your database definitions and PSBs.

4.6.3 Integrate the DLIModel Utility with other Eclipse products

If you want to use the DLIModel Utility without installing it on every PC, one option is copying
the plug-in to the Eclipse plug-in folder. As a reminder, the Eclipse installation must have the
minimum requirements to run the DLIModel Utility plug-in. If you did not originally use the IBM
Installation Manager to install Eclipse, we recommend that you manually check for updates
associated with newer Eclipse versions. To copy the plug-in manually, follow these steps:

» Copy the com.ibm.ims.dlimodel.ui_2.0.3 directory from your installation directory
(whose default is C:\Program Files\IBM\IMS Enterprise Suite V1.1\DLIModel Utility

Plug-in\plugins) to your target Eclipse plug-ins directory. If you are using Rational

Developer for System z, version 7.6 the default is C:\Program Files\IBM\SDP\plugins.

Note: With newer Eclipse versions you do not have to issue an Eclipse -clean command to

load the plug-in. Instead, simply restart your Eclipse to begin using it.

4.6.4 Data type conversion table

94

Table 4-1 shows a mapping of COBOL copybook data definitions and how they can be

mapped to the DLIModel Utility.

Table 4-1 Conversion table - Copybook format to data types

Copybook format DLIType info data type Java data types
PIC X(25) CHAR java.lang.String
PIC S9 (1-4 figures) COMP SMALLINT (2 Bytes) short

PIC S9 (5-9 figures) COMP-4 INTEGER (4 Bytes) int

PIC S9 (10-18 figures) BINARY | BIGINT (8 Bytes) long

COMP-1 FLOAT float

COMP-2 DOUBLE double

PIC S9(06)V99 COMP-3

PACKEDDECIMAL

java.math.BigDecimal

PIC S9(06)V99

ZONEDECIMAL

java.math.BigDecimal

PIC 9(06).99

ZONEDECIMAL

java.math.BigDecimal

PIC 9 DISPLAY

ZONEDECIMAL

java.math.BigDecimal

IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch05.fm

S

IMS Open Database for
application developers

In this chapter, we provide an overview about the IMS Version 11 Open Database functions
and how to use them for developing applications.

This chapter is intended to be read by Java application programmers who want to get an
understanding of what the IMS Version 11 Open Database feature can provide for developing
applications, the components involved and their requisites.

In this chapter we discuss the following topics:

Overview of IMS Open Database on the application side
Architectural considerations

IMS Universal Database resource adapter

IMS Universal JDBC driver (Stand Alone)

IMS Universal DL/I driver

SQL syntax for the IMS Universal drivers

YyVyVYyVvYYVvYYy

© Copyright IBM Corp. 2010. All rights reserved. 95

7856¢h05.fm

Draft Document for Review May 7, 2010 1:20 pm

5.1 Overview of IMS Open Database on the application side

Since IMS Version 11 it is much easier to get to data stored in IMS Databases. The Open
Database feature from IMS Version 11 enables you to leverage your existing valuable IMS
data by reusing it easily in new applications.

IMS provides certain drivers for different environments and programming paradigms. The
exciting about this drivers are, that it is for the first time possible to access IMS data out of the
box without any additional Tool or Product. And it also doesn’t matter whether the application
is running on the z/OS Mainframe side or it is running on any other distributed platform. This
helps your company to keep costs down for additional Tools and Products and get rid of
additional steps like replicating the data to an accessible place.

For developing a Java application to access IMS data you will need, beside your Integrated
Development Environment (IDE), one of the IMS Universal DB drivers as well as the
Database metadata for the databases you want to access in IMS.

5.1.1 IMS Universal DB drivers

The IMS Universal DB drivers are a set of Java classes and resource adapters that enable
the access to IMS databases. They are built on industry standards and open specifications.
The IMS Universal DB drivers are able to communicate remotely by using TCP/IP (type-4
connectivity) and locally (type-2 connectivity).

The type-4 connectivity is based on the Distributed Relational Database Architecture (DRDA)
protocol, but you do not need to know how to program with DRDA if you are using Java as
programming language. If you are using the type-4 connectivity, it will need IMS Connect on
the z/OS side, which is an integral part of IMS. IMS Connect interacts as the TCP/IP Endpoint
for the IMS Universal drivers.

The IMS Universal DB drivers also have a local option (type-2 connectivity) included. You can
use this type of connectivity for accessing IMS data when your application program is running
on the same logical partition (LPAR) as your IMS. For the local connectivity you do not need
IMS Connect as TCP/IP is not used for this direct communication.

The drivers have different implementations you can use based on your application
environment and your application architecture. They provide an application programming
framework that offers the greatest choice of options for accessing IMS data. These
programming options include:

» IMS Universal DB resource adapter: A Java EE Connector Architecture (JCA)
1.5-compliant resource adapter for your managed JEE Environment. It provides access to
IMS data using the Common Client Interface (CCl) and Java Database Connectivity
(JDBC) interfaces

» IMS Universal JDBC driver: A stand-alone Java Database Connectivity (JDBC) driver that
implements the JDBC 3.0 API for making SQL-based database calls against IMS
Databases

» IMS Universal DL/I driver: A Java API for making calls with traditional DL/I programming
semantics

The IMS Universal drivers are part of the IMS Installation Procedure (SMP/E) as an optional
part (FMID JMK1106). They are maintained during the normal maintenance process of IMS.

96 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch05.fm

The IMS Universal drivers are mounted in the zZOS OMVS file system and can be
downloaded via FTP from your mainframe. Usually they are mounted to the following path:

Jusr/1pp/ims/ims11/imsjava/

The exact path to download the files may vary depending on your system configuration. Ask
your IMS System programmer for help on how to get the drivers.

Note: Make sure that, when you download the IMS Universal drivers via FTP, you
download them in binary mode.

5.1.2 IMS database metadata

IMS has its own catalog-like library called ACBLIB. There are all information about the IMS
application’s view on the database called PSB (Program Specification Block) and the Physical
Layout of the database called DBD (Database Definition) stored. The ACBLIB is currently
only accessible by IMS itself and not by external applications. But the IMS Universal DB driver
has to know how the database looks like when you want to access it from your application.
Therefore you need metadata about the database you want to access in your application.

The metadata files are Java class representations of the IMS Database View generated out of
the PSB and DBD sources from IMS. This step is done with the help of the IMS Enterprise
Suite DLI Model Utility. This step should be done from your IMS System programmer,
because he has access to the necessary resources in IMS.

The metadata Java class defines maps the hierarchy of the segments to Java arrays of the
Type DLITypelnfo. These arrays contains the fields and defines the data type of each column,
the column length and start offset within the segment. Example 5-1 shows an extract of the
metadata Java class from our Car Dealer IVP Example.

Example 5-1 Extract of the Java metadata class from the Car Dealer IVP Example

import com.ibm.ims.db.*;
import com.ibm.ims.base.*;

public class AUTPSB11DatabaseView extends DLIDatabaseView {

// This class describes the data view of PSB: AUTPSB11
// PSB AUTPSB11 has database PCBs with 8-char PCBNAME or label:
// AUTOLPCB,AUTS1PCB,AUTS2PCB,AUSI2PCB,EMPLPCB

// Constructor

public AUTPSB11DatabaseView() {
super("2.0.3","AUTPSB11", "AUTOLPCB", "AUTOLPCB", AUTOLPCBarray, "AP");
addDatabase("AUTS1PCB", "AUTS1PCB", AUTS1PCBarray, "GRP");
addDatabase("AUTS2PCB", "AUTS2PCB", AUTS2PCBarray, "GRP");
addDatabase("AUSI2PCB", "AUSI2PCB", AUSI2PCBarray, "GRDP");
addDatabase("EMPLPCB", "EMPLPCB", EMPLPCBarray, "AP");

} // end AUTPSBl1DatabaseView constructor

// The following describes Segment: DEALER ("DEALER") in PCB: AUTOLPCB ("AUTOLPCB")
static DLITypeInfo[] AUTOLPCBDEALERArray= {
new DLITypeInfo("DLRNO", DLITypeInfo.CHAR, 1, 4, "DLRNO", DLITypeInfo.UNIQUE KEY),
new DLITypeInfo("DLRNAME", DLITypelInfo.CHAR, 5, 30, "DLRNAME"),
new DLITypeInfo("CITY", DLITypeInfo.CHAR, 35, 10, "CITY"),
new DLITypeInfo("ZIP", DLITypeInfo.CHAR, 45, 10, "ZIP"),
new DLITypeInfo("PHONE", DLITypeInfo.CHAR, 55, 7, "PHONE")
}s
static DLISegment AUTOLPCBDEALERSegment= new DLISegment

Chapter 5. IMS Open Database for application developers 97

7856¢ch05.fm Draft Document for Review May 7, 2010 1:20 pm

("DEALER", "DEALER" ,AUTOLPCBDEALERArray,61);

// The following describes Segment: MODEL ("MODEL") in PCB: AUTOLPCB ("AUTOLPCB")
static DLITypeInfo[] AUTOLPCBMODELArray= {
new DLITypeInfo("MODTYPE", DLITypelInfo.CHAR, 1, 2, "MODTYPE"),
new DLITypeInfo("MODKEY", DLITypeInfo.CHAR, 3, 24, "MODKEY",
DLITypeInfo.UNIQUE_KEY),
new DLITypeInfo("MAKE", DLITypeInfo.CHAR, 3, 10, "MAKE"),
new DLITypeInfo("MODEL", DLITypeInfo.CHAR, 13, 10, "MODEL"),
new DLITypeInfo("YEAR", DLITypeInfo.CHAR, 23, 4, "YEAR"),
new DLITypeInfo("MSRP", DLITypeInfo.CHAR, 27, 5, "MSRP"),
new DLITypeInfo("COUNT1", DLITypeInfo.CHAR, 32, 2, "COUNT")
}s
static DLISegment AUTOLPCBMODELSegment= new DLISegment
("MODEL","MODEL" ,AUTOLPCBMODELArray,37);

This example shows that the Java class contains all segments with its fields as Java objects.
The metadata class defines the type, the length and the name of the columns. These
attributes can be changed manually if you have special needs.

Note: You can also see that the column “COUNT” in the “MODEL” segment has been
assigned automatically the alias “COUNT1” as Count is a restricted SQL keyword.

5.1.3 Java version requirements

Java application programs that use the IMS Universal drivers require at least the Java
Development Kit 5.0 (JDK 5.0). Java programs that run in IMS Java dependent regions
require the Java Development Kit 6.0 (JDK 6.0) or later.

5.2 Architectural considerations

The IMS Universal drivers have several implementations you can choose from. Which driver
you should take for application development and which options you have to set is depending
on several factors:

5.2.1 Transactional support

You have to decide which level of transactional support you need in your application. JCA
differentiates between drivers with Global Transaction support and Local Transaction support.

Global transaction support (XA)

The XA standard is an X/Open specification for distributed transaction processing (DTP). It
describes the interface between the global transaction manager and the local resource
manager. The XA specification describes what a resource manager must do to support
transactional access. In the J2EE platform, the XA specification is driven via the transactional
system contract. The interface the contract uses is the XAResource interface. A resource
adapter that is XA compliant must implement this interface. At transaction commit time, the
resource managers are informed by the transaction manager to prepare, commit, or rollback
a transaction according to the two-phase commit protocol. There are also one-phase
optimizations built into the XAResource system contract.

98 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch05.fm

The X/Open XA Protocol ensures that all components in a transaction whether commit or
rollback their changes for one transaction. This is done by using the 2 Phase Commit Protocol
with all used resources. A higher instance, usually an application server, interacts as Sync
Point Manager. It controls each connection and executes the necessary 2 Phase Commit
functions for each resource in the responsible driver. The driver has therefore to implement
the necessary functions for the two-phase commit handling.

If you choose this option with the IMS Universal drivers this means that Recovery Resource
Services (RRS) will be used on the z/OS side and the JEE Container will take place as Sync
point Manager across all connections to z/OS and distributed. IMS Connect builds the
necessary RRS structure to support the two-phase commit protocol. The XA supporting
drivers have a detection for one-phase commit processing, if no two-phase processing is
necessary.

Local transaction support

The Local Transaction support means, that each connection to a resource runs in an own
transactional unit of work. This gives you the ability to decide for your own where you want set
a commit point or rollback the transaction. But this means also that you have to take care for
the consistency of your data for your own. This can be very complex, especially when you
have an application which connects to IMS and other resources like DB2 and you do not have
global transaction support in place across the different drivers and connections. You have to
commit and rollback each unit of work individually and take care for data integrity in case of
application failures.

Local Transaction support can be useful if you have an application which only connects to one
resource. It can be faster because the driver doesn’t have to handle the two-phase commit
functions. It can be also useful if you do not want to use RRS on the z/OS side or if you have
a need for individual handling of the commit-points

5.2.2 Access types

Two major types of connectivity are supported by the IMS Universal drivers. Local
connectivity to IMS databases on the same Logical Partition as IMS (type-2 connectivity) and
distributed connectivity through TCP/IP from anywhere (type-4 connectivity).

Distributed access (type-4 connectivity)

Distributed Access means that the IMS Universal drivers can run on any platform that
supports TCP/IP and a Java Virtual Machine (JVM), including z/OS. This is referenced as
type-4 Connectivity. Type-4 drivers are pure Java and implement the network protocol for a
specific data source. The client connects directly to the data source.

The IMS Universal drivers first establish a TCP/IP-based socket connection to IMS Connect
on a certain Port. IMS Connect is responsible for routing the request to the IMS databases
using the Open Database Manager (ODBM), and sending the response back to the client
application.

The IMS Universal drivers support connection pooling with type-4 connectivity, which limits
the time that is needed for allocation and deallocation of TCP/IP socket connections. To
maximize connection reuse, only the socket attributes of a connection are pooled. These
attributes include the IP address and port number that the host IMS Connect is listening on.
As a result, the physical socket connection can be reused and additional attributes can be
sent on this socket in order to connect to an IMS database.

Chapter 5. IMS Open Database for application developers 99

7856¢h05.fm

100

Draft Document for Review May 7, 2010 1:20 pm

Figure 5-1 shows how the IMS Universal drivers route communications between your Java
client applications running in a distributed environment and an IMS subsystem, using type-4
connectivity.

Distributed g z/OS

JEE IMS Universal
DB Resource

Application
i Adapter

IMS Universal
JDBC Driver

IMS Universal
DL/I Driver

Figure 5-1 Distributed access - Type 4 connectivity

You can also use the IMS Universal drivers with type-4 connectivity if your Java clients are
running in a zZ/OS environment but are located on a separate logical partition from the IMS
subsystem. Use type-4 connectivity in a z/OS environment if you want to isolate the
application runtime environment from the IMS subsystem environment.

Local access (type-2 connectivity)

Local Access means that the application with the IMS Universal drivers has to be on the same
logical Partition (LPAR) as IMS. This access is referenced as type-2 connectivity. This type of
access doesn't need IMS Connect because it communicates directly local instead via TCP/IP.

Type-2 drivers are written partly in the Java programming language and partly in native code.
The drivers use a native client library specific to the data source to which they connect.
Because of the native code, their portability is limited.

Table 5-1 shows the z/OS runtime environments that support client applications of the IMS
Universal DB drivers using type-2 connectivity.

Table 5-1 z/OS runtime environment support for IMS Universal drivers with type-2 connectivity

Z/OS runtime environment Recommended IMS Universal | Used component
type-2 driver

WebSphere Application Server | » IMS Universal DB resource | ODBA, DRA
for z/OS adapter

IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

7856¢ch05.fm

z/0S runtime environment

Recommended IMS Universal
type-2 driver

Used component

CICS Java Applications » IMS Universal JDBC driver | DRA
» IMS Universal DL/l driver
DB2 for z/OS Stored » IMS Universal JDBC driver ODBA, DRA

Procedures in Java

» IMS Universal DL/l driver

IMS Java dependent regions
(JMPs & JBPs)

» IMS Universal JDBC driver
» IMS Universal DL/l driver

IMS native access

Each of the Products has already a type-2 interface integrated which will be used by the IMS

Universal drivers.

RRSLocalOption connectivity type
In addition to type-4 and type-2 connectivity, the RRSLocalOption connectivity type is
supported by the IMS Universal DB resource adapter running on WebSphere Application
Server for z/OS. With RRSLocalOption connectivity, applications using the IMS Universal DB
resource adapter do not issue commit or rollback calls. Instead, transaction processing is
managed by WebSphere Application Server for z/OS.

Tip: Set the driverType setting of the connection settings to the value “RRSLocalOption”

IMS Universal driver settings
The settings in Table 5-2 can be used with the IMS Universal drivers depending on your

Access type.

Table 5-2 IMS Universal drivers settings

Setting and Description

Type-4

Type-2 / RRSLocalOption

driverType
Defines the type of access
whether TCP/IP or within LPAR

4 or
IMSManagedConnectionFactor
y.DRIVER_TYPE_4

2 / RRSLocalOption

datastoreName
Defines to which IMS should be
connected

IMS ID (or Alias) configured in
the ODBM Configuration or
empty for IMSplex

IMS ID specified in the DRA
table used for accessing IMS

metadataURL

Describes the fully qualified
classname of the metadata
generated through the DLI
Model Utility

class://samples.PSBDatabase
View

class://samples.PSBDatabase
View

datastoreServer
Defines the endpoint for the
IMS Universal driver

IP or Hostname of IMS Connect

portNumber
Specifies the ODAccess Port of
IMS Connect

5555 (Default)

user
Specifies the UserlD

RACF User ID

password
Specifies the User password

RACF Password

Chapter 5. IMS Open Database for application developers

101

7856¢ch05.fm Draft Document for Review May 7, 2010 1:20 pm

5.2.3 Programming approach

There are different programming approaches for the IMS Open Database feature with
different capabilities and access methods. The following overview should help you to find the
right programming approach for your application’s requirements:

JCA/JDBC with SQL

The JCA/JDBC programming model eases your life in a managed Application Server
environment as it uses standard JDBC methods with standard SQL syntax and makes use of
the management capabilities of the environment via the JCA. With the XA supported IMS
Universal drivers, the Application Server takes care of the two-phase commit handling
between different JCA drivers in your application. The big advantage of this approach is that
JDBC and SQL is usually very well known by application developers as it is used by very
much database drivers.JDBC is the industry standard for database-independent connectivity
between the Java programming language and any database that has implemented the JDBC
interface. The client uses the interface to query and update data in a database. It is the
responsibility of the JDBC driver itself to implement the underlying access protocol for the
specific database the driver is implemented for.

JCA/CCI with SQL or DL/I

The Common Client Interface (CCI) is the other approach for managed Application Server
environments and is part of the JCA specifications. The advantage of this approach is that
you are able to use SQL syntax and also DL/I commands within one unit of work to get the
maximum out of your IMS database and at the same time using the management capabilities
of the Application Server. The disadvantage of this approach is, that the CCI model is more
difficult to understand and in the handling. Beside of the complexity of the CCl model this
approach can help you to realize applications with special requests to your IMS database.
Such requests could be for example batch processing of data in sequential hierarchical order
and using SQL for the rest of the application.

Standalone/dDBC with SQL

The Standalone/JDBC programming model is basically the same as the JCA/JDBC
programming model because it uses JDBC with SQL. The difference is that is intended to be
used in non-managed environments. This means you have to keep track of your two-phase
commit in the XA driver by yourself, because there is no higher management instance who
manages it. You are also not able to easily predefine standard values in a common way for all
your applications, like in it the JCA drivers. But the syntax and supported SQL functions are
the same, so that it should be easily expandable to the JCA approach if necessary.

Standalone/ DL/I

The Standalone/DL/I programming model is for writing applications with DL/I syntax in
standalone Java applications. It uses a DL/I programming API which also enables you
programming in the same way you usually code non-Java IMS applications with data access.
This gives you the ability to leverage all IMS database functions in Java if necessary.

RYO/DRDA

The Roll-Your-Own (RYO) approach can be used for all cases where you have the
requirement to write non-Java applications which have to access IMS databases via TCP/IP
directly. The IMS Open Database feature uses DRDA under the cover for communication. So
you have to write your own connection socket handling and implement all features you want to
have manually. This is not the recommended programming approach because it is the most
complex one. You should consider if there are other options for your requirements like a
wrapper or middle-layer possible which uses one of the other programming models.

102 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch05.fm

For more informations about the possible DRDA commands see the Chapter 14 ‘DRDA DDM
command architecture’ of IMS Version 11 Application Programming APIs, SC19-2429

5.2.4 Comparison of the IMS Universal drivers

Depending on your IT infrastructure, solution architecture, and application design, choose the
IMS Universal drivers programming approach that is best for your development scenario.

Table 5-3 lists the recommended IMS Universal drivers programming approach to use, based
on the application programmer's choice of application platform, data access method, and

transaction processing option.

Table 5-3 Comparison of IMS Universal driver approaches

Target Runtime

Programming
approach

Transactionality
support

Recommended IMS
Universal driver

WebSphere
Application Server

JCA/JDBC with SQL

XA and Local-like
support

imsudbJXA.rar

Local support only

imsudbdJLocal.rar

CCI with SQL or DL/I

XA and Local-like
support

imsudbXA.rar

Local support only

imsudblLocal.rar

Standalone Java
Application

JDBC with SQL XA (self managed) and | imsudb.jar
local support
DL/I API with DL/I XA (selfmanaged) and | imsudb.jar

local support

Non-Jdava Application

DRDA with DDM

XA (self implemented)
possible

Restriction: The XA support is only available with type-4 connectivity.

Note: The IMS Universal Database resource adapters have normally the file extension rar
for Resource Adapter Archive. The IMS Universal Standalone drivers are Java jar files.

The IMS Universal DB resource adapters with XA support have XA support as well as
local-like transaction support. Which one is used is decided by the transaction settings of the
application, whether you use container-managed transactions or bean-managed

transactions.

The IMS Universal JDBC and the IMS Universal DL/I driver for the Standalone Java
applications have XA support and local support implemented. But as there is no higher
instance who controls the 2 Phase Commit execution, you have to implement them in your
application by yourself if you want to use the XA support.

For Non-Java applications you can create your own implementations by using the DRDA
standard and sending DDM commands to IMS Connect. The application programmer is
responsible for implementing the two-phase commit procedure for XA support.

Chapter 5. IMS Open Database for application developers 103

7856¢ch05.fm Draft Document for Review May 7, 2010 1:20 pm

5.3 IMS Universal Database resource adapter

The IMS Universal DB resource adapter is intended to be used in managed Java Enterprise
Edition Application Servers (JEE Servers). It makes use of the Java Connector Architecture
(JCA) to integrate easily into standard conform servers. JCA offers many advantages for the
programmer as it provides globally managed services as security management, connection
pooling and transaction management via system contracts without additional coding by the
application programmer.

JCA is a Java-based technology solution for connecting application servers and enterprise
information systems (EIS) as part of enterprise application integration (EAI) solutions. While
JDBC is specifically used to connect Java EE applications to databases, JCA is a more
generic architecture for connection to non-standard systems (including databases). JCA
offers a standard interface between the J2EE application server and any EIS via a JCA
resource adapter.

A resource adapter is a J2EE component that implements the J2EE Connector architecture
for a specific EIS. It is through a resource adapter that a J2EE application communicates with
the EIS itself. There are two types of contracts (interfaces) implemented by a resource
adapter — the application contract and the system contract. The application contract defines
the API through which a J2EE component such as an Enterprise bean accesses the EIS. This
API is the only view an application has of the EIS. The system contracts and the resource
adapter implementation are transparent to the application component. The EIS specific
communication is handled by the resource adapter implementation itself. The system
contracts define the interfaces that link the resource adapter to the services managed by the
J2EE server itself. These services include connection, transaction, and security services.

The IMS Universal DB resource adapters with XA support are intended to be used in
two-phase commit transaction processing but you can also use them in single-phase commit
applications. The IMS Universal DB resource adapters with local transaction only support
provides only single-phase commit functionality.

With the IMS Universal DB resource adapters you can group interactions in applications
together to make sure that all interactions are committed or rolled back. This can be done
using container-managed or bean-managed transaction demarcation.

In container-managed transactions, all work performed in an EJB method invocation is part of
one unit of work, and no explicit demarcation by the application is required. Transactional
integrity is managed by the Java EE application server.

Use a bean-managed EJB if you need to have multiple units of works within the same EJB
method invocation. In bean-managed transactions, you must use the
javax.resource.cci.LocalTransaction or javax.transaction.UserTransaction interface to
programmatically demarcate units of work explicitly.

» If you use the LocalTransaction interface you can only group work performed through the
used resource adapter

» Using the UserTransaction interface allows all transactional resources within the
application to be grouped.

With the IMS Universal Database resource adapters you have the choice of two different
programming styles: The Common Client Interface style and the JCA/JDBC style

Table 5-4 gives a brief overview about the major differences

104 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

Table 5-4 Comparison of JCA Models - CCIl and JDBC

7856¢ch05.fm

Attribute / Function JDBC CCli
Data Access Language SQL SQL and DU/I
Main Java classes java.sql javax.resource.cci

Connection creation

DataSource or driverManager

ConnectionFactory with

ConnectionSpec

Command creation Connection Connection

Execution commands Statement Interaction with
SQLInteractionSpec or
DLlInteractionSpec

Result ResultSet RecordFactory and Records or

ResultSet

5.3.1 JCA/Common Client Interface approach

The JCA specification defines a programming interface called the Common Client Interface
(CCI). This interface is used to communicate with any Enterprise Information System. The
IMS Universal DB resource adapter implements the CCI for interactions with IMS databases.
The CCl interfaces for the IMS Universal DB resource adapter are in the com.ibm.ims.db.cci
package. The CCl implementation provided by IMS allows applications to make either SQL or
DL/I calls to access the IMS database.

The following two drivers are available for the IMS Universal DB resource adapter for CCI
» imsudbXA.rar with XA and local-like transaction support

» imsudbLocal.rar with local transaction support only

Restriction: XA transaction support is only available with type-4 connectivity.

Note: Local transaction with the XA driver means Single Phase Commit when possible but
it still requires RRS.

Example for CCI application with SQL calls

Example 5-2 shows an EJB using the CCI programming model. It gets a connection through
using JNDI to lookup the Connection Factory in the JEE Server and it uses SQL with the
SQLlInteractionSpec class to get a result from the Car Dealer IVP Database.

Example 5-2 CCI with SQL calls

import java.sql.SQLException;

import javax.naming.InitialContext;

import javax.resource.ResourceException;
import javax.resource.cci.Connection;

import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Interaction;
import javax.resource.cci.ResultSet;

import javax.transaction.UserTransaction;

import com.ibm.ims.db.cci.SQLInteractionSpec;

public class BeanManagedCCISQLBean implements javax.ejb.SessionBean{

Chapter 5. IMS Open Database for application developers 105

7856¢ch05.fm Draft Document for Review May 7, 2010 1:20 pm

private javax.ejb.SessionContext mySessionCtx;
public void execute() throws Exception {
InitialContext ic = new InitialContext();
ConnectionFactory cf = (ConnectionFactory) ic.lookup("java:comp/env/MyMCF");
Connection conn = null;
UserTransaction ut = null;
try {
ut = this.mySessionCtx.getUserTransaction();
ut.begin();
conn = cf.getConnection();
Interaction ix = conn.createlnteraction();
SQLInteractionSpec iSpec = new SQLInteractionSpec();
iSpec.setSQL("SELECT * FROM AUTOLPCB.DEALER WHERE ZIP='12345-6789'");
ResultSet rs = (ResultSet) ix.execute(iSpec, null);
while (rs.next()) {
System.out.printin(rs.getString("DLRNAME"));
}
rs.close();
ix.close();
ut.commit();
conn.close();
} catch (ResourceException e) {
ut.rollback();
conn.close();
} catch (SQLException e) {
ut.rollback();
conn.close();
}
}
public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;
}
public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;
}
public void ejbCreate() throws javax.ejb.CreateException {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void ejbRemove() {}

Example for CCl application with DL/l calls

The coding in Example 5-3 shows you an EJB using the CCI programming model. It gets a
connection through using JNDI to lookup the Connection Factory in the JEE Server and it
uses DL/I calls with the DLIInteractionSpec class to get a result from the Car Dealer IVP
Database.

Example 5-3 CCI with DL/ calls

import java.sql.SQLException;

import javax.naming.InitialContext;

import javax.resource.ResourceException;
import javax.resource.cci.Connection;

import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Interaction;
import javax.resource.cci.MappedRecord;
import javax.resource.cci.RecordFactory;
import javax.resource.cci.ResultSet;

import javax.transaction.UserTransaction;

106 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch05.fm

import com.ibm.ims.db.cci.DLIInteractionSpec;

public class BeanManagedCCIDLIBean implements javax.ejb.SessionBean{
private javax.ejb.SessionContext mySessionCtx;
public void execute() throws Exception {
InitialContext ic = new InitialContext();
ConnectionFactory cf = (ConnectionFactory) ic.lookup("java:comp/env/MyMCF");
Connection conn = null;
UserTransaction ut = null;
try {
ut = this.mySessionCtx.getUserTransaction();
ut.begin();
conn = cf.getConnection();
Interaction ix = conn.createlnteraction();
DLIInteractionSpec iSpec = new DLIInteractionSpec();
iSpec.setFunctionName ("RETRIEVE");
iSpec.setPCBName ("AUTOLPCB") ;
iSpec.setSSAList ("DEALER (DLRNO = '1235')");
RecordFactory rf = cf.getRecordFactory();
MappedRecord input = rf.createMappedRecord("DEALER");
input.put ("DLRNAME", null);
input.put("ZIP", null);
ResultSet results = (ResultSet) ix.execute(iSpec, input);
while (results.next()) {
System.out.printin(results.getString("DLRNAME"));
System.out.printin(results.getString("ZIP"));
}
results.close();
ix.close();
ut.commit();
conn.close();
} catch (ResourceException e) {
ut.rollback();
conn.close();
} catch (SQLException e) {
ut.rollback();
conn.close();
}
}
public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;
}
public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;
}
public void ejbCreate() throws javax.ejb.CreateException {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void ejbRemove() {}

5.3.2 JCA/JDBC approach

In addition to the CCI interface provided by the IMS Universal DB resource adapter, you can
also write JDBC applications to access your IMS data from a managed environment, while
leveraging the Java EE services provided by the application server. This capability is provided
by the IMS Universal JCA/JDBC driver version of the IMS Universal DB resource adapter.

Chapter 5. IMS Open Database for application developers 107

7856¢h05.fm

Draft Document for Review May 7, 2010 1:20 pm

The IMS Universal JCA/JDBC driver is based on the Java Platform, Enterprise Edition (Java
EE) Connector Architecture (JCA) 1.5 and Java Database Connectivity (JDBC) 3.0 standard.
The following two drivers are available for the IMS Universal JCA adapter with JDBC

» imsudbJXA.rar with XA and local-like transaction support

» imsudbdLocal.rar with local transaction support only

Restriction: XA transaction support is only available with type-4 connectivity.

Note: Local transaction with the XA driver means Single Phase Commit when possible but
it still requires RRS

Example for JCA/JDBC application with SQL calls

Example 5-4 shows you an EJB using the JDBC programming model for the IMS Universal
DB resource adapter with JDBC. It gets a DataSource Object through using JNDI to lookup
the Data Source in the JEE Server and it uses SQL calls through the JDBC API to get a result
from the Car Dealer IVP Database.

Example 5-4 JCA/JDBC with SQL calls

import java.sql.SQLException;

import javax.naming.InitialContext;
import javax.sql.DataSource;

import java.sql.Connection;

import java.sql.Statement;

import java.sql.ResultSet;

import javax.transaction.UserTransaction;

public class BeanManagedJDBCSQLBean {
private javax.ejb.SessionContext mySessionCtx;
public void execute() throws Exception {
InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("java:comp/env/MyMCF");
Connection conn = null;
UserTransaction ut = null;
try {
ut = this.mySessionCtx.getUserTransaction();
ut.begin();
conn = ds.getConnection();
Statement st = conn.createStatement();
ResultSet rs = st.executeQuery("SELECT DLRNAME, ZIP FROM AUTOLPCB.DEALER");
while (rs.next()) {
System.out.printin(rs.getString("DLRNAME"));
System.out.printin(rs.getString("ZIP"));
}
rs.close();
ut.commit();
conn.close();
} catch (SQLException e) {
e.printStackTrace();
ut.rollback();
conn.close();

}

public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;

108 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch05.fm

}

public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;

}

public void ejbCreate() throws javax.ejb.CreateException {}
public void ejbActivate() {}

public void ejbPassivate() {}

public void ejbRemove() {}

5.4 IMS Universal JDBC driver (Stand Alone)

The IMS Universal JDBC driver is intended to be used in Stand Alone Java Applications on
the client side. It provides the capability of issuing SQL calls to IMS databases. The IMS
Universal JDBC driver is based on the JDBC 3.0 standard.

JDBC is an application programming interface (API) that Java applications use to access
relational databases or tabular data sources. The JDBC API is the industry standard for
database-independent connectivity between the Java programming language and any
database that has implemented the JDBC interface. The client uses the interface to query
and update data in a database. It is the responsibility of the JDBC driver itself to implement
the underlying (specific) access protocol for the specific database the driver is implemented
for. drivers convert requests from Java programs to a protocol that the database management
system (DBMS) can understand.

IMS support for JDBC lets you write Java applications that can issue dynamic SQL calls to
access IMS data and process the result set that is returned in tabular format. The IMS
Universal JDBC driver is designed to support a subset of the SQL syntax with functionality
that is limited to what the IMS database management system can process natively. Its
DBMS-centric design allows the IMS Universal JDBC driver to fully leverage the high
performance capabilities of IMS. The IMS Universal JDBC driver also provides aggregate
function support, and ORDER BY and GROUP BY support.

There are three ways to establish a connection to an IMS with the IMS Universal JDBC driver
by using

» JDBC DataSource Interface and providing the necessary values directly

» JDBC DataSource Interface and using JNDI to lookup the Connection

» JDBC DriverManager Interface

5.4.1 Connecting to an IMS database using the JDBC DataSource interface

JDBC versions starting with version 2.0 provide the DataSource interface for connecting to a
data source. Using the DataSource interface is the preferred way to connect to IMS from your
IMS Universal JDBC driver application. This model has the advantage that it allows you to
keep your application dynamically by using JNDI to look up the Connection or specifying it
manually by using the setter methods belonging to the specific DataSource.

Application managed connection parameters

You can provide all necessary information to access the IMS database directly in your
application. The code in Example 5-5 shows how to do this using the JDBC DataSource
Interface.

Chapter 5. IMS Open Database for application developers 109

7856¢ch05.fm Draft Document for Review May 7, 2010 1:20 pm

110

Example 5-5 JDBC DataSource Connection with Application Managed approach

import java.sql.*;
import com.ibm.ims.jdbc.*;

public class DataSourceAppManagedApp {
public static void main(String[] args) {
Connection conn = null;
// Create an instance of DataSource
IMSDataSource ds = new com.ibm.ims.jdbc.IMSDataSource();
// Set the URL of the fully qualified name of the Java metadata class
ds.setmetadataURL("class://samples.ims.openDb.AUTPSB11DatabaseView");
// Set the data store name
ds.setDatastoreName("IMS2");
// Set the data store server
ds.setDatastoreServer("myhost.itso.ibm.com");
// Set the port number
ds.setPortNumber(5555) ;
// Set the JDBC connectivity driver type
ds.setdriverType(IMSDataSource.DRIVER TYPE_4);
// Disable SSL for connection
ds.setSSLConnection(false);
// Set timeout for connection
ds.setLoginTimeout (10);
// Set user ID for connection
ds.setUser("IMSUSR");
// Set password for connection
ds.setPassword("myPW");
// Create JDBC connection
try {
conn = ds.getConnection();
conn.close();
} catch (SQLException e) {
e.printStackTrace();
}

JNDI managed connection parameters

The better alternative is to specify the values once in Java Naming and Directory Interface
(JNDI) and create a connection through obtain the object from the there. You can anyway
override values like username, password or the metadata classes. Through specifying the
MetadataURL in your application you can define only one JNDI connection per IMS and
define the used database metadata in you application. The code in Example 5-6 shows you
how to do this by using the JDBC DataSource Interface and JNDI in a managed environment.

Example 5-6 JDBC DataSource Connection with JNDI Managed approach

import java.sql.*;
import com.ibm.ims.jdbc.*;
import javax.naming.*;

public class DataSourceJNDIManagedApp {
public static void main(String[] args) {
try {
Context ctx = new InitialContext();
IMSDataSource ds = (IMSDataSource)ctx.lookup("jdbc/imsopendb");
// Optional Overrides
ds.setMetadataURL("class://samples.ims.openDb.AUTPSB11DatabaseView");

IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

ds.setUser("IMSUSR");
ds.setPassword("myPW");
// Create Connection
Connection conn = ds.getConnection();
conn.close();

} catch (Exception e) {
e.printStackTrace();

}

7856¢ch05.fm

5.4.2 Connecting to an IMS database using the JDBC DriverManager interface

A JDBC application can also establish a connection to a data source using the JDBC
DriverManager interface, which is part of the java.sql package. See Example 5-7.

Example 5-7 Connecting with the JDBC DriverManager Interface

import java.sql.*;
import java.util.Properties;

public class DriverManagerJdDBCApp {
public static void main(String[] args) {
try {
Connection conn = null;
// Create Properties object
Properties props = new Properties();
// Disable SSL for connection
props.put("sslConnection", "false");
// Set driverstoreName for connection

props.put("driverstoreName", "IMS2");

// Set timeout for connection
props.put("ToginTimeout", "10");
// Set user ID for connection
props.put("user", "IMSUSR");
// Set password for connection
props.put("password", "myPW");
// Set URL for the data source

Class.forName("com.ibm.ims.jdbc.IMSDriver");

// Create connection

conn = DriverManager.getConnection("jdbc:ims://myhost.ibm.com:5555/> +

»class://samples.ims.openDb.AUTPSB11DatabaseView",props);

// Close Connection
conn.close();

} catch (Exception e) {
e.printStackTrace();

}

Instead of using the Java.Util.Properties you can also provide the properties directly in the
DriverManager.getConnection(url) function. Here is an example of this approach:

conn = DriverManager.getConnection("jdbc:ims://myhost.ibm.com:5555/> +
?class://samples.ims.openDb.AUTPSB11DatabaseView:datastoreName=IMS2;" +
"ToginTimeout=10;ss1Connection=false;user=IMSUSR;password=myPW;");

Chapter 5. IMS Open Database for application developers 111

7856¢h05.fm

Draft Document for Review May 7, 2010 1:20 pm

The necessary values are specified directly in the DriverManagerURL in this case. The
disadvantage of using this is that you application is defines a static connection. When you
change for example the IP Address or Port you have to recompile your application. The
DriverManager Interface is used very often in Tools to create a Connection. The syntax of the
DriverManagerURL is

jdbc:ims://<IP>:<PORT>/class://<Package.PSBDatabaseView>:<Parameterl>=<Valuel>;
<Parameter2>=<Value2>;

5.5 IMS Universal DL/l driver

Use the IMS Universal DL/I driver when you need to write granular queries to access IMS
databases directly from a Java client in an non-managed environment.

The IMS databases are hierarchical organized instead of relational. Because of this, the
JDBC API cannot give you the full capability of all IMS functions. So sometimes it can be
useful to use the natural way of accessing IMS resources, which is Data Language /I (DL/1).
The IMS Universal DL/I driver is closely related to the traditional IMS DL/l database call
interface that is used with other programming languages for writing applications in IMS.

By using the IMS Universal DL/I driver, you can build segment search arguments (SSAs) and
use the methods of the program communication block (PCB) object to read, insert, update,
delete, or perform batch operations on segments. You can gain full navigation control in the
segment hierarchy.

5.5.1 Basic steps in writing a IMS Universal DL/l driver application

If you are familiar with DL/l processing, then the usage of the DL/l APl is very similar. It tries to
give you the possibilities to work with the traditional programming model in a new
environment like Java. This book concentrates on leveraging industry standards which in
principle is JDBC and SQL programming. To explain DL/I in detail would be to much for the
purpose of this book. Therefore the following steps explain briefly the general steps of writing
an application program with the IMS Universal DL/I driver:

1. Import the com.ibm.ims.dli and com.ibm.ims.base packages that contains the IMS
Universal DL/I driver classes, interfaces, methods and exceptions.

2. Create an IMSConnectionSpec instance by calling the create IMSConnectionSpec
method in the IMSConnectionSpecFactory class.

3. Set the connection properties for the IMSConnectionSpec instance.

4. Obtain a program specification block (PSB), which contains one or more PCBs by passing
the connection request properties to the PSBFactory class to create the PSB instance.
When the PSB instance is created successfully, a connection is established to the
database.

5. Obtain a PCB handle, which defines an application's view of an IMS database and
provides the ability to issue database calls to retrieve, insert, update, and delete database
information.

6. Obtain an unqualified segment search argument list (SSAList) of one or more segments in
the database hierarchy.

7. Add qualification statements to specify the segments targeted by DL/I calls.
8. If retrieving data, mark the segment fields to be returned.
9. Execute DL/I calls to the IMS database.

112 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch05.fm

10.Handle errors that are returned from the DL/I programming interface.
11.Disconnect from the IMS database subsystem.

For more Informations about DL/I programming with the IMS Universal DL/I driver see
Chapter 36 “Programming with the IMS Universal drivers” of IMS V11 Application
Programming Guide, SC19-2428 and IMS Version 11 Application Programming APIs,
SC19-2429.

5.5.2 Example code using IMS Universal DL/I driver

For a detailed explanations and code samples using the IMS Universal DL/I driver see
Chapter 8, “Scenario 3 - Writing DL/I and mixed applications” on page 179.

5.6 SQL syntax for the IMS Universal drivers

SQL stands for structured query language and is used to query and manipulate data in
relational database management systems. IMS Databases are hierarchically organized
instead of relational. This organization form has a lot of advantages for many application
areas like XML processing or sequential processing of data usually called as batch
processing.

The data access language of IMS for the hierarchical databases is traditionally DL/I. But today
SQL is de-facto industry standard for data access language in applications. But this isn’t a
problem for IMS as it can take advantage of both models relational and hierarchical. It can
provide a relational view of your hierarchical IMS Databases and make it accessible via SQL
and you can use traditional programming languages for hierarchical database access in new
environments. At the same time you do not have to change your existing DL/l using
applications.

The Java database metadata class contains information about the IMS database, including
segments, segment names, the segment hierarchy, fields, field types, field names, fields
offsets, and field lengths. The metadata is used by the IMS Universal JDBC drivers to allocate
program specification blocks (PSBs), issue DL/I calls, perform data transformation, and
translate SQL queries to DL/I calls.

Table 5-5 shows the mapping between hierarchical database terms and relational database
terms.

Table 5-5 Mapping between IMS terms and relational terms

Hierarchical IMS DB term Relational DB equivalent
Segment name Table name

Segment instance Table row

Segment field name Column name

Segment unique key Table primary key

Virtual foreign key field Table foreign key

PCB Database View

PSB Collection of Database View

Chapter 5. IMS Open Database for application developers 113

7856¢ch05.fm Draft Document for Review May 7, 2010 1:20 pm

The following sections give an overview about the most important SQL statements and how to
use them with the IMS Universal drivers supporting JDBC:

5.6.1 SQL keywords

If you use a SQL keyword as a name for a PCB, segment, or field, your JDBC application
program will return an error when it attempts an SQL query. The keywords are not
case-sensitive. The SQL keywords are listed in Table 5-6.

Table 5-6 SQL keywords

ALL DISTINCT SELECT
AND FROM SET

AS GROUP BY SUM
ASC INSERT UPDATE
AVG MAX VALUES
COUNT MIN WHERE
DELETE OR

DESC ORDER BY

In addition to the supported SQL keywords, there are several more keywords known by the
SQL syntax. These are restricted keywords by the IMS Universal drivers as they might be
used in future releases of the IMS Universal drivers. Therefore is our recommendation not to
use these keywords as column names.

Note: The IMS Enterprise Suite DLIModel Utility should detect if these keywords are used
as a field or segment name and should rename them. In our Car Dealer Database this is
for example the case for the COUNT field in the MODEL Segment which is renamed to
COUNTH1

Table 5-7 lists the restricted SQL keywords.

114 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

Table 5-7 Restricted AQL keywords

7856¢ch05.fm

ABORT
ANALYZE
AND

ALL
ALLOCATE
ALTER
AND

ANY

ARE

AS

ASC
ASSERTION
AT

AVG
BEGIN
BETWEEN
BINARY
BIT
BOOLEAN
BOTH

BY
CASCADE
CAST
CHAR
CHARACTER
CHECK
CLOSE
CLUSTER
COLLATE
COLUMN
COMMIT
CONSTRAINT
COPY
COUNT
CREATE

CROSS
CURRENT
CURSOR
DECIMAL
DECLARE
DEFAULT
DELETE
DESC
DISTINCT
DO
DOUBLE
DROP
END
EXECUTE
EXISTS
EXPLAIN
EXTRACT
EXTEND
FALSE
FIRST
FLOAT
FOR
FOREIGN
FROM
FULL
GRANT
GROUP
HAVING
IN

INNER
INSERT
INT
INTEGER
INTERVAL
INTO

IS

JOIN
LAST
LEADING
LEFT

LIKE
LISTEN
LOAD
LOCAL
LOCK
MAX

MIN
MOVE
NAMES
NATIONAL
NATURAL
NCHAR
NEW

NO

NONE
NOT
NOTIFY
NULL
NUMERIC
ON

OR
ORDER
OUTER
PARTIAL
POSITION
PRECISION
PRIMARY
PRIVILEGES
PROCEDURE
PUBLIC

REAL
REFERENCES
RESET
REVOKE
RIGHT
ROLLBACK
SELECT
SET
SETOF
SHOW
SMALLINT
SUBSTRING
SUM
TABLE

TO
TRAILING
TRANSACTION
TRIM

TRUE
UNION
UNIQUE
UNLISTEN
UNTIL
UPDATE
USER
USING
VACUUM
VALUES
VARCHAR
VARYING
VERBOSE
VIEW
WHERE
WITH
WORK

5.6.2 Primary key and virtual foreign key handling

In relational databases the relations are build by using foreign key relationships between
tables. In IMS the relations are part of the hierarchy itself. The IMS Universal JDBC driver
introduces the concept of virtual foreign keys to capture these explicit hierarchies in a

relational sense.

Figure 5-2 shows an extract of the Car Dealer IVP Database Diagram created by the IMS
Enterprise Suite DLIModel Utiltiy using the AUTOLPCB.

Chapter 5. IMS Open Database for application developers 115

7856¢h05.fm

Draft Document for Review May 7, 2010 1:20 pm

F| DEALER
Total length: 61
-3 DLRNO (e]
g DLRNAME [€]
dg cImy [e]
dgzZP [e]
3 PHOME [g]
]
[l MODEL| ol SALESF"EII‘.
Total length: 37 Total length: 62
g MoDTYPE [e] 9 EMPNO (5]
fgMoDKEY [E] QgEMPNOL [E]
0§ MAKE [e] Qg LASTHNME [E]
g MODEL [e] Qg FIRSTNME [€]
d§ YEAR (] -
g MSRF [e]
ggcounTtl [E
Fs

Figure 5-2 Extract from overview diagram from Car Dealer IVP Example

The DEALER segment is the root segment in this view and has two child segments MODEL
and SALESPER. The DLRNO field is the primary key for the DEALER segment. As well as
MODKEY is the primary key in the MODEL segment.

Every table that is not the root table in a hierarchic path will virtually contain the unique keys
of all of its parent segments up to the root of the database. These keys are called virtual
foreign key fields.

The IMS Universal JDBC drivers automatically generates a Virtual Foreign Key Column
based on the Segment Names. The following SELECT query shows an example.

SELECT * FROM AUTOLPCB.MODEL

This statement returns all columns from the MODEL segment which are physically stored in
the database as well as one more column called DEALER_DLRNO which contains the
reference to the parent’s segment primary key field. This field is not stored physically in the
database. Figure 5-3 shows the result of this query.

DEALER._DLRMO MOCTYPE | MODKEY MAKE MODEL YEAR | M5SRP | COUNT1
1234 5 FORD FQ... FORD FOCUS 2002 17995 03

1235 5 Volvo 540... Volvo 540 2002 21000 M

1236 5 TRABAMNT 5... TRABANT SUPERIOR 1983 03

Figure 5-3 Query result from MODEL table

The purpose of the virtual foreign key fields is to maintain referential integrity, similar to
foreign keys in relational databases. This allows SQL SELECT, INSERT, UPDATE, and
DELETE queries to be written against specific tables and columns located in a hierarchic
path.

116 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch05.fm

5.6.3 Usage of SELECT statement

The SELECT statement is used to retrieve data from one or more tables. The result is
returned in a tabular result set.

When using the SELECT statement with the IMS Universal JDBC driver:

» If you are selecting from multiple tables and the same column name exists in one or more
of these tables, you must table-qualify the column or an ambiguity error will occur.

» The FROM clause must list all the tables you are selecting data from. The tables listed in
the FROM clause must be in the same hierarchic path in the IMS database.

» In Java applications using the IMS JDBC drivers, connections are made to PSBs. Because
there are multiple database PCBs in a PSB, queries must specify which PCB in a PSB to
use. To specify which PCB to use, always qualify segments that are referenced in the
FROM clause of an SQL statement by prefixing the segment name with the PCB name.
You can omit the PCB name only if the PSB contains only one PCB.

Here are some examples of valid SELECT statements against the Car Dealer IVP Database:
SELECT * FROM AUTOLPCB.DEALER

Returns all rows and all columns from the DEALER Segment in the AUTOLPCB.
SELECT DLRNAME FROM AUTOLPCB.DEALER WHERE PHONE=6667777

Returns the DLRNAME column from all rows where the PHONE equals the search string
from the DEALER Segment in the AUTOLPCB.

SELECT DISTINCT MODEL FROM AUTOLPCB.MODEL

Returns the MODEL column from all distinct rows from the MODEL Segment in the
AUTOLPCB.

SELECT ZIP,CITY,DLRNAME AS NAME FROM AUTOLPCB.DEALER ORDER BY ZIP

Returns all rows from ZIP, CITY and DLRNAME column. The DLRNAME column is
referenced as NAME. The Resultset is ordered by ZIP ascendingly by default.

SELECT MAKE AS BRAND,MODEL FROM AUTOLPCB.MODEL GROUP BY BRAND,MODEL ORDER BY
MAKE

Returns all rows from the columns MAKE and MODEL grouped by MAKE (AS BRAND) and
MODEL. It is also ordered by the column MAKE.

SELECT MAX(YEAR) FROM AUTOLPCB.MODEL

Returns the highest YEAR from the MODEL column. The column name is a combination of
the aggregate function name and the field name separated by an underscore character (_). In
this case you would get the result by using resultSet.getInt("MAX_YEAR"). If the aggregate
function argument field is table-qualified, the ResultSet column name is the combination of
the aggregate function name, the table name, and the column name, separated by
underscore characters (_). For example, SELECT MAX(Model.year) results in a column name
MAX_Model_year.

SELECT * FROM AUTOLPCB.DEALER, AUTOLPCB.MODEL WHERE MODEL.DEALER_DLRNO =
DEALER.DLRNO

This select statement returns data from the DEALER root segment as well as from the
MODEL segment. It uses the virtual foreign key DEALER_DLRNO field in the DEALER table.

Chapter 5. IMS Open Database for application developers 117

7856¢ch05.fm Draft Document for Review May 7, 2010 1:20 pm

So it will give you all entries from the MODEL database and the referred parent entries in the
DEALER table.

5.6.4 Usage of INSERT statement

The INSERT statement is used to insert new rows into a table.

The following sample SQL shows the insert of a record at root level:
INSERT INTO AUTOLPCB.DEALER (DLRNO, ZIP, DLRNAME, CITY, PHONE) VALUES ('8888',
'71139', 'Thilo', 'Stuttgart', '555-888')
When inserting a record in a table at a non-root level, you must specify values for all the
virtual foreign key fields of the table:
INSERT INTO AUTOLPCB.MODEL (DEALER DLRNO, MODTYPE, MAKE, MODEL, YEAR, MSRP,
COUNT1) VALUES ('8888', 'S', 'LIDLA', 'SuperABC', '2010', '66000', '05')

This insert statement creates a MODEL record which refers to the DEALER segment with the
primary key DLRNO=8888.

Attention: The MODKEY field should not be inserted because it is a primary key field and
is automatically build by combining the MAKE, MODEL and YEAR values. Alternatively you
can insert the MODKEY in the proper format and therefore do not specify the MAKE,
MODEL and YEAR.

5.6.5 Usage of UPDATE statement

The UPDATE statement is used to update existing records in a table.

The following sample SQL shows an update in a dependent table:

UPDATE AUTOLPCB.MODEL SET MSRP='50000' WHERE DEALER_DLRNO = '8888' AND MSRP >=
'60000'

This UPDATE statement sets the MSRP value to 50000 for all MODEL records that refer to
DEALER with the DLRNO = 8888 and where the MSRP value is higher or equal to 60000.

Restriction: Updates on a virtual foreign key field will fail, because they doesn’t exist in the
database. To change a dependent segment you have to delete the segment and reinsert it
referring to the segment you want to put it under.

5.6.6 Usage of DELETE statement

The DELETE statement is used to delete rows in a table. DELETE operations are cascaded
to all child segments.

The following sample SQL shows the usage of the DELETE statement.

Deleting the root Segment DEALER without a where clause, as in the following statement,
deletes the whole database with all its records in it:

DELETE FROM AUTOLPCB.DEALER

118 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch05.fm

The following statement deletes all entries in the MODEL table and referenced segments
under it in the whole database.

DELETE FROM AUTOLPCB.MODEL

The following SQL statement deletes the root record of DLRNO= 8888 and all referenced
children segments connected to it.

DELETE FROM AUTOLPCB.DEALER WHERE DLRNO =°8888°

The following SQL statement deletes the MODEL segments and all referenced segments
under it for the DEALER with DLRNO= 8888:

DELETE FROM AUTOLPCB.MODEL WHERE DEALER_DLRNO =°8888°

5.6.7 Usage of the WHERE statement

The WHERE statement can be used in combination with the SELECT,UPDATE and DELETE
statements. It is used to specify an exact record or filter results in a query.

You can use the following operators in the WHERE clause to select data conditionally:

= Equals

1= Not equal

> Greater than

>= Greater than or equals
< Less than

<= Less than or equals

Note: Our recommendation is to compare columns to values and not to other columns.
This is better for the performance of the queries and helps to reduce errors in your SQL
statements where you get the wrong results back. However, it is legal to compare the
virtual foreign key column with another primary key column.

The WHERE statement has the following usage rules:

» Do not use parentheses. Qualification statements are evaluated from left to right. The
order of evaluation for operators is the IMS evaluation order for segment search
arguments.

» List all qualification statements for a table adjacently. For example, in the following valid
WHERE clause, the qualified columns from the same DEALER table are listed adjacently:

SELECT * FROM AUTOLPCB.DEALER, AUTOLPCB.MODEL WHERE AUTOLPCB.DEALER.ZIP =
'88888' OR AUTOLPCB.DEALER.ZIP = '88888' AND AUTOLPCB.MODEL.MODEL = 'B Plus'

The following statement would be an invalid WHERE clause as they are not grouped
together:

SELECT * FROM AUTOLPCB.DEALER, AUTOLPCB.MODEL WHERE AUTOLPCB.DEALER.ZIP =
'88888' AND AUTOLPCB.MODEL.MODEL = 'B Plus' OR AUTOLPCB.DEALER.ZIP = '88888'

» The OR operator can be used only between qualification statements that contain columns
from the same table. To combine qualification statements for different tables, use an AND
operator.

» The columns in the WHERE clause must be DBD-defined fields. The only exception to this
is when the columns in the WHERE clause are subfields that make up a DBD-defined
field.

Chapter 5. IMS Open Database for application developers 119

7856¢h05.fm

Draft Document for Review May 7, 2010 1:20 pm

Note: The columns that are in the DBD are marked in the DLIModel IMS Java report
as being either primary key fields or search fields.

For example, a DBD-defined field is named ADDRESS and is 30 bytes long. In a COBOL
copybook, this field is broken down into CITY, STATE, and ZIP subfields as illustrated by
the following code:

01 ADDRESS
02 CITY PIC X(10)
02 STATE PIC X(10)
02 ZIP PIC X(10)

Without the subfield support, the ADDRESS value in the WHERE clause would have to be
padded manually, and entered like this:

WHERE ADDRESS = 'Stuttgart GER 70565 '

With the subfield support, you can enter the WHERE clause like this:
WHERE CITY = 'Stuttgart' AND STATE = 'GER' AND ZIP = '70565'
The following rules apply for subfields:

— Subfields must always be fully defined, as it is only possible to search for the whole
DBD-defined search-field.

— The columns in the WHERE clauses are not allowed to be separated and must be
combined by an AND operator

— The EQUAL (=) is the only allowed operator on subfields.

5.6.8 Usage of AGGREGATE functions

The following aggregate functions are supported by the IMS Universal drivers:

- AVG
— COUNT
- MAX
- MIN
- SUM

The following supported keywords can be also used to aggregate the results or influence the
above aggregate functions

- AS

DISTINCT

GROUP BY

ORDER BY ASC/DESC

The ResultSet column name from an aggregate function is a combination of the aggregate
function name and the field name separated by an underscore character (_). The examples in
Table 5-8 show the query and the example method of getting the column results from the
ResultSet.

Table 5-8 Aggregate functions examples

SQL Select statement ResultSet column name

SELECT MAX(year)

rs.getint("MAX_year")

SELECT MAX(MODEL.year) rs.getLong(“MAX_MODEL _year”)

SELECT MAX(MODEL.year) AS ‘oldest’ rs.getint("oldest")

120 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

7856¢ch05.fm

SQL Select statement

ResultSet column name

SELECT COUNT(DEALER.DLRno)

rs.getint(“COUNT_DEALER_DLRno”)

SELECT COUNT(DISTINCT DEALER.DLRNAME)

rs.getint(“COUNT_DISTINCT_DEALER_DLRNAME”)

SELECT COUNT(DISTINCT AUTOLPCB.DEALER.DLRNAME)

rs.getint(“COUNT_DISTINCT_DEALER_DLRNAME”)

Note: The schema name (PCB name) is not added to the column name.

Attention: Only the COUNT aggregate function allows the DISTINCT keyword in it.

Table 5-9 shows the aggregate functions allowed arguments and the corresponding result

types.

Table 5-9 Aggregate Functions and result types

Aggregate Function Argument Type Result Type
SUM and AVG Byte Long
Short Long
Integer Long
Long Long
BigDecimal BigDecimal
Single-precision floating point Double-precision floating point
Double-precision floating point Double-precision floating point
MIN and MAX Any type except BIT, BLOB, or | Same as argument type
BINARY
COUNT Any type Long

A type conversion can be done by using the ResultSet.getXXX() function, as long as it is valid

conversion.

5.7 Data transformation support

The IMS Universal drivers allow you to transform easily data from a in the metadata defined
format to an other supported Java format. This is done by using the get<type> function of the
ResultSet in JDBC applications or by using these functions on the path object in DL/I

applications.

5.7.1 JDBC data types to Java data types mapping

Table 5-10 shows the mapping between JDBC data types, which are used in the IMS
Metadata class file to define the data type of the fields in the IMS database, and the Java data

types.

Chapter 5. IMS Open Database for application developers 121

7856¢h05.fm

Draft Document for Review May 7, 2010 1:20 pm

Table 5-10 JDBC data types to Java data types mapping

JDBC data type Java data type Length

BIGINT long 8 bytes

BINARY byte[] 1-32 KB

BIT Boolean 1 byte

CHAR java.lang.String 1-32 KB

DATE java.sql.Date Application-defined
DOUBLE double 8 bytes

FLOAT float 4 bytes

INTEGER int 4 bytes
PACKEDDECIMAL @ java.math.BigDecimal 1-10 bytes
SMALLINT short 2 bytes

TIME java.sql.Time Application-defined
TIMESTAMP java.sqgl.Timestamp Application-defined
TINYINT byte 1 byte

VARCHAR java.lang.String 1-32 KB
ZONEDECIMAL 2 java.math.BigDecimal 1-19 bytes

a. Data types of the IMS drivers (not in JDBC Standard)

5.7.2 Compatible data transformation functions

Table 5-11 shows the available get methods in the ResultSet or Path Interface for accessing
data of a certain JDBC type.

Table 5-11 Available get methods for data types

INTEGER
BINARY
DATE

TIME
TIMESTAMP

JDBC Type

getByte

getShort

getint

getLong

getFloat

getDouble

getBoolean

O[O |O|O| O] O] Of >] TINYINT

O[O|O|O| O] O | O| SMALLINT
Oo|o|O|O]|]o]|]o| o O] PACKEDDECIMAL

OoO|l|O|O|O|]O|XxX]|]O]O
O|O|]O|O]|>X]O|O| O] BIGINT

O[Ol OfX]| O] O|O| O] FLOAT
O[lOo|XxX|O|O]|]O|O| O] DOUBLE
O|*xX]|]O|]O]J]O]J]O|O|O]BIT
X|O|O|[O]J]O]|]O| O] O] CHAR
X|O|O|O|O]|]O]|O| O] VARCHAR
O|lo|O|O| O] O] O| O] ZONEDECIMAL

getString

122 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch05.fm

-
s |4
o <
= w (2 =
- |2 | & w E 8 D <
>] 1] - = | T w [a) E =
Z |2|lo|E |5 @ (o |x |m w &
JDBC T 212 E|8|9(83|c|2|2|2|3 |2 |5 |8 |5
ype F|®a|2|a|2|e|&d|c|S|E|R|& |8 |F(F
getBigDecimal oOo|l|O0OfOf[O]J]O]J]O]J]O|JO]|O |X |X
getBytes X
getDate O |O X
getTime O |O X
getTimestamp O|O O|O

Those marked with “X” indicate methods designed for accessing the given data type. No
truncation or data loss will occur using those methods. Those marked with “O” indicate all
other legal calls; however, data integrity cannot be ensured using those methods. If the box is
empty (it neither contains an “X” or an “O”), using that method for a data type will result in an
exception.

Note: At this time PackedDecimal and ZoneDecimal data types DO NOT support the Sign
Leading or Sign Separate modes. Sign information is always stored with the Sign Trailing
method.

Note: PackedDecimal and ZoneDecimal are no data types of the JDBC specification

Chapter 5. IMS Open Database for application developers 123

7856¢ch05.fm Draft Document for Review May 7, 2010 1:20 pm

124 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch06.fm

6

Scenario 1 - JDBC data access
through tooling

This chapter shows you the possibilities of the IMS Open Database feature for leveraging your
existing programs and tools. What is shown in this chapter should also work for other
products as the IMS Universal DB drivers are building on open standards like JDBC. They
should be compatible with all tools supporting that standard as long as the IMS Universal
JDBC driver and the metadata class file are in the application class path available. This
solution opens access to IMS data for many available products as well as open source
projects.

In this chapter, we demonstrate the following tools and products which you probably have in
your shop already or want to try it out for this purpose:

» IBM Data Perspective in Data Studio and Rational products

» Accessing IMS Data in Cognos

» Accessing IMS Data Using the IBM Mashup Center

© Copyright IBM Corp. 2010. All rights reserved. 125

7856¢ch06.fm Draft Document for Review May 7, 2010 1:20 pm

6.1 IBM Data Perspective in Data Studio and Rational products

A Perspective is an arrangement of views in Eclipse. IBM has in some of their Eclipse based
Products a Data Perspective integrated. In this case it is an arrangement of useful views
concerning databases access, maintenance in combination with application development. It
is very much focused on databases with SQL access. With IMS Version 11 and the IMS
Universal DB Drivers, it now becomes also easily usable for IMS databases access and
application development.

6.1.1 Download and Install IBM Data Studio or Rational products

You should be able to use what is shown here with Rational Application Developer, Rational
Developer for System z and IBM Data Studio depending on which product you already have
your company. Beside this products there are several open source projects and other vendor
products available with similar capabilities, which should be configurable and usable in a
similar way.

If you do not have one of these products you can try them out by downloading and installing
them on your workstation.

» A special Rational Developer for System z Version for IMS can be downloaded from the
IBM IMS Enterprise Suite web site from

http://www.ibm.com/software/data/ims/soa-integration-suite/enterprise-suite/
» A trial version of Rational Application Developer can be downloaded from
http://www.ibm.com/developerworks/downloads/r/rad/
» IBM Data Studio is also as a no-charge product available as download
http://www.ibm.com/software/data/optim/data-studio/features.html

In this example we are showing the capabilities of this Perspective along with the IBM Data
Studio as it is available as a no-cost product via the IBM web site. For the no-cost Version of
IBM Data Studio there are currently two packages available the stand-alone package and the
IDE package:

» The stand-alone package is a lighter weight offering ideal for administrators to get up and
running quickly and easily. This package is sufficient for most users who do standard
database administration or database routine development and includes the new query
formatting and pureScale administration support. The stand-alone package does not
include SQLJ, Data Web Services, or XML development capability — users who need that
capability should download the Integrated Development Environment (IDE) package
described below.

» The integrated development environment (IDE) package includes most administrative
capabilities as well as an integrated Eclipse development environment for Java, XML (for
DB2 for Linux, UNIX, and Windows), and Web services development. You can install this
package with compatible Eclipse-based products such as InfoSphere™ Data Architect,
Optim™ Development Studio, Optim Database Administrator, and Optim Query Tuner
within the same Eclipse instance (shell share), providing seamless movement between
data-centric roles, or to share objects across geographically distributed teams.

In our case we have chosen the IDE package for download. The following steps describe
shortly the way of installing the product:

1. Go to the IBM Data Studio web site and select the IDE Package for download

126 IMS 11: The Open Database

http://www.ibm.com/software/data/ims/soa-integration-suite/enterprise-suite/
http://www.ibm.com/developerworks/downloads/r/rad/
http://www.ibm.com/software/data/optim/data-studio/features.html

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch06.fm

2. You will need an IBM ID for the download, which can be also created on the web site (if
you do not have one yet).

3. Select the correct Download for your Workstation Operating System as shown in
Figure 6-1 and click Continue.

Offering Platform Format
{:;. IBM Data Studio Red Hat Linux download
erzion 2.2 SUSE Linux Enterprize

Desktop(SLED)
USE Linux Enterprize
erver (SLES)

Languages: 5
Chineze Simplified, Chinese Traditicnal, Czech, Engligh, g
French, German, Hungarian, talian, Japanese, Korean,

Polizh, Portuguese Brazilian, Ruzsian, Spanizh

{:} IBN Data Studio Windows Vista download
‘erzion 2.2 Buzinez=
Windows Vista
Languages: Enterprize
Chineze Simplified, Chinese Traditional, Czech, Englizh, Windows Vizta
French, German, Hungarian, ftalian, Japanese, Korsan, Ultimate
Polizh, Portuguese Brazilian, Russian, Spanish Windows XP

Profez=ional

o Continue

Figure 6-1 Data Studio Installation - Operating System Choice

4. Download the Data Studio Install zip File.
5. After Downloading the zip file, extract it to a temporary Directory
6. To Install it you have two options

a. Using the Launchpad which is part of the Installation zip File. Therefore change to the
extracted directory and start setup.exe.

b. If you have IBM Installation Manager already installed, you can also use the Installation
Manager and add the disk1 directory of the extracted files to the Repository of the IBM
Installation Manager. This approach is necessary if you want to do shell-sharing with
other Eclipse Products or if you want to do all Installations with one product.

7. Inour case we choose option a) in the previous step and continue the Installation steps on
the panel until it is finished.

If you need more Information or help with the Installation see the IBM Data Studio Information

Center

http://publib.boulder.ibm.com/infocenter/idm/v2r2/topic/com.ibm.datatools.ds.insta
11.doc/topics/t_install over.html

6.1.2 Configuring IBM Data Studio for use with the IMS Universal JDBC Driver

After Installing IBM Data Studio you now have to do the necessary steps to configure it for the
use with the IMS Universal JDBC Driver.

Chapter 6. Scenario 1 - JDBC data access through tooling 127

http://publib.boulder.ibm.com/infocenter/idm/v2r2/topic/com.ibm.datatools.ds.install.doc/topics/t_install_over.html

128

7856¢ch06.fm

Draft Document for Review May 7, 2010 1:20 pm

Tip: The following steps are similar in other Eclipse based products which has the IBM

Data Perspective.

» You can start IBM Data Studio now from the Windows Start Menu or a Desktop Shortcut. It
will ask you for a directory for its workspace. The Workspace is a folder where all Eclipse
based settings as well as your projects are stored in. If the Directory is not there it will be
automatically created. Figure 6-2 shows an example of our Workspace selection:

@ Workspace Launcher

Select a workspace

IBM Data Studio stores your projects in a folder called a workspace,
Choose & workspace folder to use for this session.

Workspace: | C\WWSDSY1

M [Browse...

b Copy Settings

@

l

OK] [Cancel

Figure 6-2 Data Studio - Workspace selection

» When you start IBM Data Studio the first time or with a new workspace it will show you the

welcome panel shown in Figure 6-3.

(=) Data - IBM Data Studio

Welcome

Overview
IBM Data Studio product overview

Learn about the functions of IBM Data Studio and the
tasks that they can help you to accomplish.

£ Creating a data development project
More >> = 9 P proj
t—d Before you create routines or other database
development objects, create 3 data development
' project to store your objects. A data development
What S NeW project is linked to a database connection in the Data
Source Explorer.
What's New in IBM Data Studio
Learn about the new features in IBM Data Studio.
More >>
More >>
Samples
Web Resources
More >>
£ 1RM Nara Shudin develoneniorks farmm [v]
o
u

=/OEd
File Edit MNavigate Search Project Data Run Window Help
() welcome 3 Al SR R

“ﬂf\

First Steps
L}# Connecting to a database

Use the New Database Connection wizard to create a
JDBC connection to a database.

Figure 6-3 Data Studio - Welcome panel

» You can close the Welcome panel by clicking on the x on the top tab bar and it will

automatically show you the Data Perspective.

IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

7856¢ch06.fm

» From the Menu select Window -> Preferences. In the Menu drill down to Data
Management -> Connectivity -> Driver Definitions and select the predefined Generic

JDBC 1.0 Driver as shown in Figure 6-4.

@ Preferences

- oEy

type filter text

General
Adopter Usage Reports
Ant
[=)- Data Management
Administrative Options
Authorization Administr
[=1- Connectivity
Driver Definitions.
Open Data Access
Diata Source Explorer
DB2 Options
DDL Generation
Diagram
Information Center Hom|
Label Decorations
Mapping Editor
Multivariate Value Distril
SQL Development
Visual Explain
Ecore Diagram
Help
Install/Update
Java
JavaScript
Model Validation
Modeling
Flug-in Development
Remote Systems
Run/Debug
Server
Service Polides

[(] I |

- -

T

(e T e R R

(2]

(v

@ Driver files not specified in driver definition. =1 —
Filter: [al [v]~
Mame System Yendor System Version Add

AS/400 Toolbox for Java Default

Cloudscape - Other Driver Default

Derby 10.0 - Other Driver Default

Derby 10.1 - Other Driver Default

Derby 10.2 - Other Driver Default

Cloudscape - Cloudscape Embedded ...

Derby 10.0 - Embedded JDBC Drriver ...
Derby 10.0 - IBM Data Server Driver ...
Derby 10.0 - IBM Data Server Driver ...

Derby 10,1 - Derby Client JDBC Drive...
Derby 10.1 - Embedded JDBC Driver ...
Derby 10.1 - IBM Data Server Driver ...
Derby 10.1 - IBM Data Server Driver ...

Derby 10.2 - Derby Client JDEC Drive...
Derby 10.2 - Embedded JDEC Driver ...

Generic JDBC 1.0 - Generic JDBC Driv...
IBM Data Server Driver for JDBC and ...
IBM Data Server Driver for JDBC and ...
1BM Data Server Driver for JDBC and ...
1BM Data Server Driver for JDBC and ...
IBM Data Server Driver for JDBC and ...
IBM Data Server Driver for JDBC and ...
1BM Data Server Driver for JDBC and ...
1BM Data Server Driver for JDBC and ...
IBM Data Server Driver for JDBC and ...
IBM Data Server Driver for JDBC and ...
1BM Data Server Driver for JDBC and ...
1BM Data Server Driver for JDBC and ...
IBM Data Server Driver for JDBC and ...
IBM Data Server Driver for JDBC and ...
1BM Data Server Driver for JDBC and ...
1BM Data Server Driver for JDBC and ...

DE2 for i5/05

Derby

Derby

Derby

Derby

Derby

Derby

Derby

Derby

Derby

Derby

Derby

Derby

Generic JDEC

DB2 for zfOS

DB2 for Linux, UMNIX, and Windows
DE2 for i5/05

DB2 for i5/05

DB2 for zfOS

DB2 for Linux, UMNIX, and Windows
DB2 for Linux, UNIX, and Windows
DB2 for i5/05

DB2 for zfOS

DB2 for Linux, UMNIX, and Windows
DE2 for i5/05

DB2 Alias

DB2 for zfOS

DB2 for zfOS

DB2 for Linux, UNIX, and Windows
DB2 for i5/05

WSR3

10.0
10.0
10.0
10.0
10.1
10.1
10.1
10.1
10.1
10.2
10.2
10.2
1.0

V9 (Mew-Functi...

Va1
WSR3
VoR3

V9 (Mew-Functi...

ve.1
va.1
ViR3

V9 (Mew-Functi...

V9.1
WER3

V9 (Mew-Functi...
V9 (Mew-Functi...

va.1
VSR3

Edit. ..

Remove

11

Copy

v)

OK.

H Cancel]

Figure 6-4 Data Studio - Configuring IMS Universal Drivers Step 1

» Click on Edit... and switch in the appearing panel to the Jar List tab.

» Click the Add Jar/Zip button and select the imsudb.jar as the IMS Universal Driver on

your hard disk.

» Repeat the previous step for adding the Database Metadata Jar Files you want to access
in our example this is AUTPSB11.jar which is generated in the IMS Enterprise Suite
DLIModel Utility chapter. In our example the Jar List tab looks like Figure 6-5.

Chapter 6. Scenario 1 - JDBC data access through tooling

129

7856¢ch06.fm Draft Document for Review May 7, 2010 1:20 pm

(2) Edit Driver Definition
Provide Driver Details

@ Required property in driver definition migsing value: Driver Class.

Mame,Type | Jar List |F‘r0perﬁes

Driver files:

Ci\temp ALTPSE 11, jar Add JAR/Zip...

C: \tempimsudb. jar

Clear all

oy —
1) T Cancel

Figure 6-5 Data Studio - Configuring IMS Universal Drivers Step 2

» Switch to the Properties tab and click on the ... in the Driver Class Value field.

» Select Browse for class and select com.ibm.ims.jdbc.IMSDriver as shown in Figure 6-6
and Click OK.

@ Available Classes from Jar List = @

Provide the name of the driver dass or select a dass from the available jars.

) Type dlass name

{*) Browse for dass

com.ibm.ims.jdbc, IMSDriver

I Ok] [Cancel

Figure 6-6 Data Studio - Configuring IMS Universal Drivers Step 3

» You can now optionally specify the Connection URL template which is then the default for
new connections. We set it to
jdbc:ims://host:5555/class://samples.xDatabaseView:datastoreName=IMS2 as well
as the Database Name and the Default User ID as shown in Figure 6-7 and Click OK.

130 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

7856¢ch06.fm

(=) Edit Driver Definition

Provide Driver Details
and applicable property values.

Mame Type | Jar List | Properties

Modify details in the fields below to provide a unique name, a list of reguired jars, and set any available

Properties:
Property Value
= General
Connection LURL jdbciims: ffhost: 5555/ cass: /fsamples. xDatabaseView:datastoreName =IM32
Database Mame IMSSAMPLE
Driver Class com.ibm.ims. jdbec, IMSDriver
User ID
@ ok ||

Cancel

Figure 6-7 Data Studio - Configuring IMS Universal Drivers Step 4

» After Clicking Finish you are done with setup of the workstation and can now use the Data

Perspective in your product.

6.1.3 Using the Data Perspective with the IMS Universal Drivers

This chapter should give you a brief overview about some interesting features of the Data

Perspective and how it works with the IMS Universal Drivers.

Creating a Connection to IMS

» At first you have to create a new connection to an IMS Database. Right-click on Database
Connections in the Data Source Explorer and Select New... as shown in Figure 6-8.

8 Data Source Explorer 53 = B8
=
8w W] S yed| F

= Database Conpartinme |
..................................... NEW- "

Configure Connections Working Set...

Refresh F5

e i —

Figure 6-8 Data Studio - Creating a new Connection Step 1

» Select Generic JDBC in the left list and fill in the necessary informations for the correct

URL, User name and Password. In our case the URL would look like this

jdbc:ims://myhost:5555/class://samples.ims.openDb.AUTPSB11DatabaseView:data

storeName=IMS2;dpsbOnCommit=true; as shown in Figure 6-9.

Chapter 6. Scenario 1 - JDBC data access through tooling 131

7856¢ch06.fm Draft Document for Review May 7, 2010 1:20 pm

9 New Connection @

Connection Parameters

Select the database manager, JDBC driver, and required connection parameters,

Connection identification
Use default naming convention

Connection Name:

Select & database manager:

JDBC driver: |Generic JDBC 1.0 - Generic JDBC Driver Default w i
DB2 for i5/05
DB2 for Linux, UNIX, and Windows Properties
DB2 for z/OS -
Derby General Optional
Generic DAC Database: | IMSSAMPLE
Informix
URL: jdbctims: ffmyhost: 5555 /class: /fsamples.ims..openDb. AUTPSE 1 1DatabazeView: dat,
User name: | IMSR3
Password: | esessese
Save password
Test Connection

@ Hext =] I Finish l [Cancel

Figure 6-9 Data Studio - Creating a new Connection Step 2

Note: The dpsbOnCommit=true parameter is recommended in environments which are
doing an internal pooling of the connections without notifying the Driver.

» Click Finish and you should see your new connection open in the Data Source Explorer.

Returning Sample Data through Data Source Explorer
After we have now created the connection we can now use it in our further steps

» You can drill down and expand the connection until you see the schemas (PCBs), the
tables (segments) and columns (fields) as shown in Figure 6-10.

132 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢h06.fm

wnam Source Explorer 53 = 8
0% % o |[5] || F
= [Database Connections [:]

= &4 IMSSAMPLE (Generic JDBC 1.0) |
- (] MssAMPLE
[:l Authorization IDs
B[:I Cataloas
= 3 auTPsB1L
EI[:I Schemas

-85 ausrzrce

=88 auToLrce
I:I Dependencies
I:I Stored Procedures
BI:I Tables
- DEALER
B[:I Columns
&~ B ZIP [CHAR(10)]
£- | DLRMAME [CHAR(30]]
- B CITY [CHAR(10)]
-88 DLRNO [CHAR(S) PK]
- B PHOME [CHAR(7)]
F-[Constraints
[:I Dependencies
[Indexes
#-[) Triggers
= EMPLINFO
- MODEL
Figure 6-10 Data Studio - AUTPSB11 expanded view

Rl

» You can right-click on a table and select Data -> Return All Rows as shown in
Figure 6-11.

- AuTPsB11
=7 schemas
-85 ausizrce
=88 auToLrPce

I:I Dependencies
-7 Stored Procedures
500 Tables
-
e Data ’ E,Relh.lnﬂlﬂﬂws
®-(J ¢ 3§ Drop Edit
— - - I nad...

Figure 6-11 Data Studio - Return all Rows

The results back from the IMS Database are shown in Figure 6-12.

Chapter 6. Scenario 1 - JDBC data access through tooling 133

7856¢ch06.fm

Draft Document for Review May 7, 2010 1:20 pm

= Properties | = 5QL Results 23

Type query expression here Status |Resultl
Status Operation D | Connection Profile DLRMO | DLRMAME CITY ZIP PHOME
v Succeec Return AllRows 0., IMSSAMPLE 1 1235 Cupertino European Autos Cupertino 12345-6789 6067777
2 1234 SAMN JOSE FORD SAM JOSE 95777-3333 777444
3 33338 Thilo Stuttgart 09333583588 B858-888
4 9923 i)

Total 4 records shown

Figure 6-12 Data Studio - Return all Rows - Results
This is a way to easily return some sample Data of a specific segment in a IMS Database

Editing Data via Data Source Explorer
It is also possible to edit the data in a tabular form with the Data Source Explorer.

» Therefore right-click on a table (e.g. AUTOLPCB.SALESINF) in the Data Source Explorer
and select Data -> Edit

» You will see the contents of the data in the editor as shown in Figure 6-13.

=] SALESINF &3
DEALER_DLRMO [CHAR(4)] | SALESPER_EMPNO [CHAR(S)] | COMSSION [CHAR{SY] | QUOTA [CHAR(S)] | SALESYTD [CHAR(S)]

234 | 111111 01375 73000 23400
1234 222222 02450 28000 11750
<NEW row >

Figure 6-13 Data Studio - Data Edit

When you have edited some values and save the table it will do automatically all updates,
inserts and deletes to the IMS Database

Restriction: Be aware that in this example the first two columns are virtual foreign key
segments and they cannot be updated, because they do not exist in the database.

Extracting Data via Data Source Explorer

You can also easily extract some data in a specific format like a comma separated value
(CSV) or a XML file.

» Therefore right click on a table-> Select Data->Extract... as shown in Figure 6-14

=I-_] Tables

= | DEALET

[EMPLI Data M B Return All Rows
+- [MODE ¢ prop Edit

+- [ORDE Load...

+-EH saLES [B8 Add to Overview Diagram Extract...

+ [SALES &y sample Contents

5 FH car e Bt Generate DOL...
Figure 6-14 Data Studio - Extract Data

» We specify a name Dealer.csv and select comma as separator and click finish. The result
is a file which contains the values of the table as shown in Example 6-1.

134 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch06.fm

Example 6-1 Contents of Dealer.csv

"1235","Cupertino European Autos ","Cupertino ","12345-6789","6667777"
"1236","IBM Bristol Cars ", "Bristol ","BS1 6DG ","3338888"
"8892","Thilo ","Stuttgart ","8888888888","888-888"
"1234","SAN JOSE FORD ","SAN JOSE ","95777-3333","7774444"
"8888","Test1234 ","Stuttgart ","8888888888","888-888"
II9999II , II99 n , n n , n n , n n

Creating an Overview Diagram
You can also create some overview diagrams for your data with the Data Source Explorer.

» Therefore select

multiple tables (by holding <CTRL>) and right-click and select Add to

Overview Diagram as shown in Figure 6-15.

=88 aUToLPCE

=I-[__] Tables
+- [DEALER

¥
+- [MODEL
+-[H ORDER1
-F5 SALES
=
¥

¥

+-_0 Dependencies
+-|__| Stored Procedures

B2 EMPLINFO Data b

3 Crop
82 Add to Overview Diagram

E Generate DOL...

Figure 6-15 Data Studio - Add to Overview Diagram

The generated Ove

rview Diagram is shown in Figure 6-16.

& MODEL

S? <Table > DEALER - Connection "IMSSAMPLE™1 &3

7] DEALER

[SALESPER.

Figure 6-16 Data Studio - Overview Diagram

Working with D

ata Development Projects

To write own SQL Queries you have first to create a new Data Development Project.

» Therefore Click on File -> New... -> Data Development Project

» Specify the Project Name and click Next.

» Select your created IMS Data Source and click Finish.

Now you will see a

new project in the Data Project Explorer.

» Expand the Project and right click on the SQL Scripts Folder and select New -> SQL or
XQuery Script as shown in Figure 6-17.

Chapter 6. Scenario 1 - JDBC data access through tooling

135

7856¢ch06.fm Draft Document for Review May 7, 2010 1:20 pm

U= Data Project Explorer 53 = <}==f> ¥ =0

= ms sqL (M
=] s
3 xmL Mew ¥ s SOL or XQuery Script

AMPLE:jdbc:ims: ffwtsca3.itso.ibm. com: 5555,d

p—

Figure 6-17 Data Studio - New SQL Script

» You will be asked what type of SQL Script you want to write. Select a single SELECT
statement as shown in Figure 6-18 and Click Finish.

Tip: The Other Option will give you the ability to write several SQL statements separated
through a semicolon like a batch job.

9 MNew SQL or XQuery Script - @
Script and Tool

Mame the script and choose the tool to use to create it.

Mame: Selectl

Edit using
{71501 and ¥Query editor {for scripts that contain one or more SQL and ¥Query statements)

(%) 50L Query Builder (for single SQL SELECT, INSERT, UPDATE, or DELETE statement)

Statement type: |SELECT |

)] Finish] [Cancel

Figure 6-18 Data Studio - New SQL Script Step 2

You can now adding tables by right-clicking on the middle pane and selecting some tables
which are in the same schema and hierarchical path for your select statement. You can also
specify the Where clauses with the context help of the tool. Figure 6-19 shows an example for
a more complex SELECT statement:

136 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch06.fm

[0] *selectl.zgl 3

DELLER MODEL

ZIF : | DEALER_DLRr-Kﬂ

DLRMAME COUNT1

CITY MSRP

DLRNO L] RAMCNE] —/_/

DLRNG < 1] T I
[IpisTIveT

Columns | Conditions | Groups || Group Conditions

Column Operator | Value AMD/OR
ALTOLPCE.DEALER.DLRMO = ALUTOLPCE.MODEL.DEALER,_DLRMO

Figure 6-19 Data Studio - SQL Script Step 3

You can now save the SQL and right-click it and say Run SQL and you will get the results
back.

There are a lot of more features you can do with the Data Perspective. There are of course
also some functions that right now cannot work with the IMS Universal Drivers like a CREATE
DB statement. If you want to learn more about IBM Data Studio and its features you will find
many samples in the help feature of the product.

6.2 Accessing IMS Data in Cognos

Business needs drive the need for information. Sometimes not all information can fit into a
data warehouse; moreover, some online data is often indispensable. These reasons are why
we want to retain the option to merge different data sources in a Bl deployment.

IBM Cognos® is a Business Intelligence and Data Warehouse solution from IBM. You can
collect Data from various Data Sources in the Cognos solution. Currently IMS Data access is
not supported as a direct DataSource. Up to now to be able to do this you had to either
replicate the IMS data to an other Data Source like DB2 to access it or you needed a
Federation Server to access IMS databases directly. Starting with IMS Version 11 and the
new IMS Universal JDBC Drivers there is an easy way of getting data from your IMS. This
section explains what you have to do to get it working and which components are used.

IBM Cognos 8 Bl can deliver data from various sources by accessing data sources through
IBM Cognos direct access and federating data sources through InfoSphere Federation Server
or by using IBM Cognos Virtual View Manager. For accessing IMS data we will use the
Cognos Virtual View Manager.

Chapter 6. Scenario 1 - JDBC data access through tooling 137

7856¢ch06.fm Draft Document for Review May 7, 2010 1:20 pm

6.2.1 IBM Cognos 8 Virtual View Manager

IBM Cognos Virtual View Manager enables data source federation inside the Bl environment.
As an Enterprise Information Integrator, it provides benefits in terms of connectivity (by way of
JDBC) and improves performance in multiproduct joins.

Virtual View Manager is the primary tool used to access multiple data sources and define,
publish, and manage resources. Virtual View Manager allows you to:

» Create, edit, and manage data sources, transformations, views, SQL scripts,
parameterized queries, packaged queries, definition sets, triggers, Virtual View Manager
databases, and Web services.

» Publish data sources, transformations, views, SQL scripts, parameterized queries,
packaged queries, definition sets, triggers, Virtual View Manager databases, and Web
services.

» Archive Virtual View Manager resources and deploy them back to a desired location with
the export/import options. This function is based on Composite Information Server
technology, and it delivers standard JDBC drivers to deliver high performance connectivity.

138 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

7856¢ch06.fm

More information about Virtual View Manager software environments can be found at the
following address:

http://www.ibm.com/support/docview.wss?rs=34428&uid=swg27014427

Virtual View Manager creates views of the database, optimized for IBM Cognos 8, and
Framework Manager is then used to model the database view and create a single business
view. IBM Cognos 8 components, including Framework Manager, use an Open DataBase
Connectivity (ODBC) interface to access a Virtual View Manager data service. The Virtual
View Manager Server accesses the data sources through Java Database Connectivity
(JDBC), a Java API, ODBC, the OS File System, or SOAP (see Figure 6-20).

Rtmrm; mvsmﬂus___ommn%m |

COGNOS & BI DISPATCHER(S)

IBM Cognos 8

EOHIEH JOB& pRESENTATION QUERY EVENT MONITORING AUDIT

MANAGER SCHEDULING
SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE

RELATIONAL

=

=SAP B3, mySAP, Siebel, SFDC

= B DE? : =Microsoft SalLServer, ather. .. = FowesrCubes
« Qyacle 0 =Dimensionally Aware Relational « Enterprise Pianning ReakTine
=ML, WWSDL, LDARP, JDBC. .. Fians with TM{

= linfoSphers Warehouse Cubing

Srevices

Figure 6-20 Virtual View Manager in the IBM Cognos 8 architecture

Virtual View Manager is composed of two main components: Virtual View Manager Server,
which is the main engine that runs processes, and Virtual View Manager Studio, which is a
client console that is used to connect, model, and expose data sources.

Basic concepts of Virtual View Manager
The workflow for using Virtual View Manager is separated into three processes:

» Setting up the environment by installing and configuring the appropriate software and
drivers. The installation also installs IBM Informix® and creates a repository to contain
your Virtual View Manager content.

» Creating a data source using Virtual View Manager Studio, which includes accessing and
simplifying the metadata using Virtual View Manager Server.

» Accessing Virtual View Manager views using IBM Cognos 8 and preparing metadata for
reporting in IBM Cognos 8.

Virtual View Manager Server can be installed in the same environment as Cognos 8, but an
installation on a separate computer gives better performance and availability. The installation

Chapter 6. Scenario 1 - JDBC data access through tooling 139

http://www.ibm.com/support/docview.wss?rs=3442&uid=swg27014427

7856¢ch06.fm

Draft Document for Review May 7, 2010 1:20 pm

creates a Virtual View Manager repository and starts both the Virtual View Manager process
and the Virtual View Manager Server.

Because IBM Cognos 8 uses the Virtual View Manager ODBC driver to access Virtual View
Manager data sources, the ODBC driver and driver manager must be installed on each
instance of the IBM Cognos 8 report server (refer to Figure 6-21) and the Framework
Manager. The driver manager routes all IBM Cognos 8 requests to the appropriate ODBC
driver to access the data sources. When you add an ODBC Data Source Name (DSN) using
the ODBC Data Source Administrator, you identify an ODBC driver for the driver manager.
The driver manager then knows that the data source associated with this DSN is accessed
through a particular ODBC driver.

IBM Cognos 8 Framework
\ / -

Virtual View
Manager

ODBC driver and

driver manager

Virtual View
Manager Server

Virtual View
Manager Studio

Virtual View Manager
Data Services

Relational Flat Files,
Data Source Web Services XML

CDS

Figure 6-21 IBM Cognos Virtual View Manager architecture

Virtual View Manager Studio

Virtual View Manager Studio serves as a data view design and development area. It provides
three important functions: resource management, modeling, and publishing. Figure 6-22
shows the Virtual View Manager Studio interface.

140 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch06.fm

2 virtual Yiew Manager Studio 8.4 @ svlxcod3.svlibm.com = Dlll
File Edit Resource Administration Help
Sla]| e 4w e x| e
"% Desktop {admin) :I
5 E@ Wirbual View Manager Data Services
o =@l Databases
2 system
[+ % examples
- g% product19
SQLServer_TERADGTA
= (- % td_gosales
® [+ (@ Web Services
g & iy Home
E| = SR
a

1§ product19

g SQLServer

[E td_gosales

5 TERADATA

(-l examples

(T wim

E-@ svhecod3.sl ibm.com ([}
(- b
=3 g services

(@ databases

syskem

examples

product19

SQLServer TERADATA

td_gosales
- (@ webservices

#-{@l shared

g users

Ly o

Figure 6-22 Virtual View Manager Studio interface

|§'|- 31M of 1330 |

Modeling a Virtual View Manager data source

Use ODBC to access the Virtual View Manager data source from IBM Cognos 8 using the
command-line utility named driverConfig to add an ODBC DSN. The data source associates
a particular ODBC driver with the data you want to access through that driver. In order to be
able to create an ODBC DSN, the user publishing the views must have the appropriate
permissions for the Virtual View Manager configuration files and libraries. The ODBC DSN
must be configured with the same parameters on the client in which Cognos 8 Framework
Manager is used to model and publish Bl contents.

In IBM Cognos 8 BI, a data source is a named set of connections to a physical database or
other data source. Cognos 8 Bl connects to Virtual View Manager data sources using an
ODBC data source connection. Data source authentication is needed when adding a data
source.

6.2.2 Configuring Virtual View Manager for IMS Data access

In this example we are showing how to configure IBM Virtual View Manager (VVM) 8.4.1 for
Windows with the Virtual View Manager Studio on your workstation, but the steps should be
very similar in other runtime environments.

Note: As VVM is currently using JRE Version 1.5 the Java Metadata files have to be also
JRE 1.5 compatible exported, otherwise you will get a Java unsupportedClassVersion
Exception.

First you have to copy the IMS Universal JDBC Driver and the IMS DB Metadata Jar files to
the correct path that VVM can make use of it. Therefore you should create a directory called

Chapter 6. Scenario 1 - JDBC data access through tooling 141

7856¢ch06.fm

Draft Document for Review May 7, 2010 1:20 pm

ims_universal_jdbc_driver in the confladapters\custom directory of your vvm installation
directory. In our case this would look like:

C:\Program Files\cognos\vvm\conf\adapters\custom\ims_universal_jdbc_driver

Copy the IMS Universal JDBC Driver (imsudb.jar) and the IMS DB Metadata Jar files (in this
case: AUTPSB11 jar) to this directory.

Note: Alternatively, there is always the option to put the driver and metadata files in the
JRE lib/ext folder, in this case this would be C:\Program Files\cognos\vvm\jre\lib\ext. But
you should avoid this when possible, as it is not a good usage paradigm.

Now you can start the VVM Server via the Windows start menu -> Programs -> IBM
Cognos Virtual View Manager -> Server -> Server start.

When the Server is started you can start the VVM Console via Windows start menu ->
Programs -< IBM Cognos Virtual View Manager -> Studio -> Studio

You can now login with the userid and password (default is admin/admin) as shown in
Figure 6-23.

[virtual View Manager Studio 8.4 E]

IBM" COGNOS" 8

VIRTUAL VIEW MANAGER

-l aq
Username: |admin |
Password: |""""‘| |
Daomain: |cl:lgnl:ls | bt |
Server: |Iocalhost | - |
Port: 9400] Encrypt

Licensed Material - Property of IEWM Carp. @ Copyright IBM
Corparation and its licensars 2003, 2004, IBM, the IBM loga,
and Cognos are trademarks of IBM Corp., registered in
many jurisdictions warldwide.

Figure 6-23 VVM - Login panel

In the VVM Studio you can right-click on the Shared Directory and select New Data Source
as shown in Figure 6-24.

F& Deskkop (admin) A

|z +|E| Wirtual Views Manager Data Services
."E-: ------- 8 My Home
2|z @

(@ localhos [open Strg+0
[@) Refresh
5 ik Export...
m
= & Impart...
c
I= A Lock Resource Strg+L
=
- 'Eg Mew Data Source

[Mew Definition Sst

Figure 6-24 VVM - New Data Source - Step 1

142 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

7856¢ch06.fm

In the appearing window (see Figure 6-25) click on the New Adapter button.

|2 Newe Physical Data Source

Select Data Source Adapker

Custom Java Procedure
DEZ 7 (Type 2)

DEBZ w7 {Type 43

DE2 & (Type 2)

B2 v8 (Type 4)

DE2 w3 (Type 2)

DEZ v3 (Type 4)

LEZ2 /05 w3 (Type 4)
Databirect Mainframe
File-Cache

File-Delimited

File-=rML

Informiz 9,x

LOWAP

Microsoft Access

Microsoft Excel

Microsoft QL Server 2000
Mirrnenft SOl Server 2O05

Thig wizard will help connect the Virtual View Manager Server with 3 new data source.

Select a Data Source Adapter and click "Mext” if the target data source has default capabilities settings.
To create a new custom adapter for a data source that has customized settings orto connectto a new
data source, click "Mew Adapter”. Ifyou aren't familiar with what data sources are available an the network,
try "Auta Discovery' to search far camputers an the netwark that host data sources.

Custom Adapter
-~
Mew Adapter. ..
Auko Discovery
Auko Discovery]
W

Figure 6-25 VVM - New Data Source - Step 2

Insert the values of Table 6-1 as shown in Figure 6-26.

Table 6-1 New Adapter Values

Attributes Value
Name IMS Universal JDBC Driver
Parent Adapter Generic JDBC

Adapter Class Name

com.ibm.ims.jdbc.IMSDriver

Connection URL Pattern

jdbc:ims://<HOST>:<PORT>/<
DATABASE_NAME>

Chapter 6. Scenario 1 - JDBC data access through tooling

143

7856¢ch06.fm Draft Document for Review May 7, 2010 1:20 pm

&= New Adapter Information - Virtual View Manager Studi...

Mame: IM3 Universal JDBC Driver

Parent Adapter: Generic JDBC V
Adapter Location: foonfiadapters/customyims_universal _jdbc_driver
Adapter Class Mame: com.ibm.ims. jdbc, IMSDriver|

Caonnection URL Pattern: | boims: [<HOST = <PORT =/ <DATABASE_MNAME >

[Ok] [Cancel

Figure 6-26 New Adapter values

Click OK and select the new created Driver from the list and click Next. The following window
should appear (see Figure 6-27). Specify your IMS Connect hostname or IP Address, Port
number, the full qualified name of the Database and User ID and Password if security in IMS
is enabled.

3= New Physical Data Source

Pravide the connection infarmation for this IMS Universal JDBC Driver data source.

Dakasource Marne

Marne: AUTPSELL

Conneckion Information

Basic | Advanced

Hoost: wtsce3 itso.ibrm.com|

Part: 5555

Database Mame: class:fisamples.ims, openDb, AUTPSEL 1 DakabaseView

Lagin: IMSR3

Password: ——

Pass-through Login: | Disabled v|
Transaction Isolation: | Read Commitbed v|

<Rack H Mext =] [Cancel

Figure 6-27 VVM - New Data Source Step 3

144 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch06.fm

Switch to the Advanced tab as shown in Figure 6-28.

Basic | Advanced
Connection LIRL Pattern: jdbctims: ff <HOST = <PORT =/ <DATABASE_NAME =

Connection URL Skring:

Connection Properties [IDEC Connection Propetties
Connection Pool Minimum Size: 10

Connection Pool Maximum Size: 100

Connection Pool Idle Timeout (s): 30

Connection Yalidation Query:

Execution Timeouk {s); 0

Execute SELECTs Independently

Figure 6-28 VVM - New Data Source Step 4

Select Execute SELECTs Independently and click on the JDBC Connection Properties
button. Specify the two connection properties of Table 6-2 as shown in Figure 6-29.

Table 6-2 JDBC Connection Properties

Property Value

dpsbOnCommit true

fetchSize 100000

[/ JDBC Connection Properties - Virtual View Manager Studio 8.4

|4 Add JDBC Connection Propetties:

Property Yalue
(=] | dpsbonCammit brue
= | Fetch3ize 100000

QK] [Cancel

Figure 6-29 JDBC Connection Properties

The dpsbOnCommit value helps the IMS Universal JDBC Driver to keep the connection alive
in environments where pooled connections are used without notifying the Driver.

The fetchSize value specifies the number of rows which are collected during one network call.
Increasing this parameter influences performance if you do queries with much results.

Click OK and click Next. In the following panels you can specify which tables you want to
select.

Chapter 6. Scenario 1 - JDBC data access through tooling 145

7856¢ch06.fm

Draft Document for Review May 7, 2010 1:20 pm

Finally you can query some results to test the access to the database by right-clicking on a
table and select Show Contents as shown in Figure 6-30.

= ﬁ' Shared MName
—-fgautesez || ao
=@ eutesetr [e
@ ausizpce]| ar
o-@autotrce] - oLu
«-EJDEAER || e-
e-Eemwro | =Y
2-Fmoee |]| - oL
#EForoert ||| s e:
e poncces I b | ec
: g:::::g [Open Strg+0
+ STOCK| @ Refresh
+éT§IF‘O§BS! A Lock Resource Strg+L
+ﬁ AUTSZPCE @ Publish Strg+F
- EMPLPCE (53 Show Contents
;ﬁj .n.axamp.l_es = show Dependencies

Figure 6-30 VVM - Show Contents of a table

When your connection works you can build an ODBC Connection for Cognos by following the
steps on the web site:

http://publib.boulder.ibm.com/infocenter/c8bi/v8r4m0/index.jsp?topic=/com.ibm.swg.
im.cognos.vvm_installation_guide.8.4.0.doc/vvm_installation_guide id1191AddSystemD
ataSource.html.

6.3 Accessing IMS Data Using the IBM Mashup Center

146

IMS Web 2.0 support of IBM Mashup Center V2.0 enables customers to create RSS, Atom,
or XML feeds from IMS databases by using the IMS Universal DB resource adapter in IMS
Version 11.

With IBM Mashup Center V2.0, you are able to extend IMS data into Web 2.0 solutions
through standard SQL queries. IBM Mashup Center has a graphical user interface for
creating, customizing, and transforming feeds.

IBM Mashup Center also includes a mashup builder to enable Web-savvy business users to
mash information from various sources into a single view of disparate sets of information, and
create a flexible and dynamic application.

If you do not already have the IBM Mashup Center installed, a 60 day trial Windows-based
version, which includes all product features, can be downloaded from

http://www.ibm.com/software/info/mashup-center/
Included with the IBM Mashup Center is IBM WebSphere Application Server, Version 7.0.0.5.

Also required is the IMS Enterprise Suite DLIModel utility plug-in, which is needed to
generate a metadata file that describes the database view.

We are using the Java metadata class file AUTPSB11.jar generated in the IMS Enterprise
Suite DLIModel Utility chapter.

First you need to decide on the database connection approach.

IMS 11: The Open Database

http://publib.boulder.ibm.com/infocenter/c8bi/v8r4m0/index.jsp?topic=/com.ibm.swg.im.cognos.vvm_installation_guide.8.4.0.doc/vvm_installation_guide_id1191AddSystemDataSource.html.
http://www.ibm.com/software/data/ims/soa-integration-suite/enterprise-suite/

Draft Document for Review May 7, 2010 1:20 pm

7856¢ch06.fm

If you plan on using the JNDI (managed) connection type, where WebSphere Application
Server manages the connection to the IMS database:

» Copy the IMS Universal JCA/JDBC resource adapter imsudbJLocal.rar to a location that is
accessible to WebSphere Application Server. To install the IMS Universal DB resource

adapter:

— Select and open the WebSphere Application Server administrative console from the
IBM Mashup Centre v2.0 start menu.

— In the WebSphere Application Server administrative console, click Resources >
Resource Adapters, as shown in Figure 6-31.

ntegrated Solutions Console

Wiew: | All tasks

F

Welcome
Guided Activities
Servers
Applications
Services

E Resources
Schedulers
Object pool managers
aMs
IDBC
E rResource Adaptars
Reszource adapters
J2C connection factaries
12 activation specifications
12C adrinistered abjects
Asynchroneus beans
Cache instances
rail
URL

Resource Envirenment

el

Welcome GB039113

32cC connection factories

J2C connection factories

Use thiz page to create a connection factory
values that define a WebSphera(R) Applicat
rmanager uses these properties as direction:
for each resource adapter,

B Scope: Cell=IBM-EASF4A4EFEdNodenZ(

Scope specfies the level at which -
on what scope is and how it works,

Mode=IBEM-EASF4A4BFE4NodeD:

Prafarences

Mew || Celete |

El=kERIE

Select Marme

Manage state,.,

JMDI name ;| Scope

“fou can administer the following resources

D irmzindi imsjndi Node
EASF:

Figure 6-31 Install RAR

— Click Install RAR. The "Install RAR File" page displays.

— Type the path to the imsudbdJLocal.rar file, or use the Browse button to navigate to and
select this RAR file. The path can be to a local location or to a location on the server.

— Click Next. The configuration page opens.

— Click OK. The IMS Universal DB resource adapter - JDBC Local Transaction resource

adapter is listed.

— In the messages box, click Save

Configure a connection factory and specify a JNDI name in the WebSphere Application

Server.

— In the WebSphere Application Server administrative console, click Resources >

Resource Adapters > J2C connection factories. See Figure 6-32.

Chapter 6. Scenario 1 - JDBC data access through tooling 147

7856¢ch06.fm

Draft Document for Review May 7, 2010 1:20 pm

E Integrated Solutions Console - Microsoft Internet Explorer

Address ﬂ;‘l https: jflocalhost: 9044 ibmjconsoleflogin. do?action=secure

File Edit View Favorites Tools Help

GBack - & Iﬂ IELI .;\i /-:Search ‘:_;:IT'\'E’Favor\tes 6:‘}’ == = - ﬁ ‘i‘&

A

Integrated Solutions Console Welcome GB039113 Help | Logout |
| View: | All tasks (il
Welcome J2C connection factories
Sl G J2C connection factories
Servers Use this page to create a connedion factary for use with the resource adapter, The connection factory is a
- | values that define & WebSphere(R) Application Server connection to your Enterprize Inforrmation Systern (E
Applications manager uses these properties as directions for allocating connections during runtime, You can configure n
for each resource adapter,
5
eruices
B Scope: Cell=IBM-EA8F4A4BFE4NodedzCell, Node=IBM-EASF4A4BF§4Noded2
El Resources
Schedulers Scope zpecifies the level at which the resource definition iz wisible, For detailed information
L on what scope is and how it works, see the scope settings help.
B ms Hode=IEM-EABF4A4BFE4N0deD2 [v]
Eoipec
El Resource Adapters Prefarances
el Mew || Delete | Manage state
J2C connection factaries
12 activation specifications et (4
R [Ty 2 |2 =
J12C administered objects LI e
H asynchronous beans Select Mame 2 JMDI name o | Scope O Provider % | Description o | Connedion facto
Cache instances ou can adrinister the following rescurcas:

Figure 6-32 Selection of J2C connection factories

>

— Click New.

— From the list of providers. select the name of the IMS Universal DB resource adapter
that you configured

— Type a descriptive name for this connection factory.
— Type the JNDI name for this connection factory.

— Click Custom properties under Additional Properties.
— Type the information for the following properties:

e DatastoreName
¢ DatastoreServer (the IMS host system)
¢ MetadataURL

e Password
e PortNumber
e User

— Click Apply.

— In the messages box, click Save to save this configuration information.

Copy the compiled metadata package that you generated into the
<install-dir>\AppServer\profiles\profileName\installedConnectors\imsudbJLocal.rar\
directory.

Stop and restart the WebSphere Application Server.

If you plan on using the Driver Manager (non-managed) connection type:

>

Provide the IMS data store name, IMS Connect port number, username and password for
connecting to the database, and the fully qualified name of the Java metadata file
(metadata URL) that is generated by the IMS Enterprise Suite DLIModel utility plug-in.

Copy the metadata package that you generated into <install-dir>\AppServer\lib directory.
Stop and restart the WebSphere Application Server.

148 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch06.fm

You can now follow the following actions to create an IMS feed:
» Select and start the InfoSphere MashupHub from IBM Mashup Centre v2.0 menu.
» On the Home:Catalog tab, click Create and select New Feed, as shown in Figure 6-33.

[&1 1IBM Mashup Center - Microsoft Internet Explorer E] I

r File Edit Wiew Favorites Tools Help

ek - () @ @ (h pSearch *Favorites & @- {} LR 3 %Links

Address |@ https:/flocalhost: 9444/ mashuphub)client /layout/layaut, Al Go
-~
IBM Mashup Center
Search Scope: All _
| Search |E e Clear Results Shoj Mew Feed e >
: : Mew Data Mashup ctribalt+p |
Browse bv: Sort By: Title | Rating | Author | New Mashup Page ctl+alt-m =
b Top Tags Feed 43 Mew REST Service Cul+al+R | | =
b Categories Type: Feed Rating: Updated: 19/03/2010
0z 40 Author: GBO39113
Tags:
Objects by User Data Mashup
Type: Mashup Rating: Updated: 11/03/2010
0z:12 Authaor: GBO39113
Tags: example data mashup, mashup center objects L
Mumber of objects created for each user grouped by type |J
Y T s ¥ [T | [RRET R bl
PR P ————— e]
a [N ST S TR e | % Local intranet

Figure 6-33 Creating a new Feed

» Select Enterprise database (JDBC) and click Next. See Figure 6-34.

EEUCHEE -l Feed 51 E

' the database connection to use.

Required fields marked with *

*Connection Profile: |New... El

*Connection Profile Mame: |b|:|b><

*Database Type: |IMS IEI

*Connection Type: JNDI (Managed Connection) hd

Driver Manager (Mon-managed Connection
*INDI Mame:

Figure 6-34 Database connection panel

Chapter 6. Scenario 1 - JDBC data access through tooling 149

7856¢ch06.fm

Draft Document for Review May 7, 2010 1:20 pm

In the Select field, select New to create a new database connection profile.
In the Profile Name field, type the new profile name.
In the Database Type field, select IMS.

In the Connection Type field, select whichever of Driver Manager (Non-managed
Connection) or JNDI (Managed Connection) you decided to use and fill in the rest of the
information required. If you are using the JNDI connection the JNDI Name required is the
name of the JNDI name created above.

Click Next. The SQL Query Builder opens. See Figure 6-35.

IBM Mashup Center

l E‘ SQL Query Builder

Required fields marked with *

Check the tables that you want to query Check the columns that you want to include in the result set
[JausizPCE, SINDHE " [#]EmPLPCE.EMPL,* A
[JaUTOLPCE. DEALER [#]EMPLPCR.EMPL. LASTHME
[JauToLPcE. EMPLINFS [¥]EMPLPCE . EMPL. FIRSTHME
[JauToLree. MODEL [¥]EMPLRCE. EMPLEMPHS
[JaUTOLPCE, ORDERL [JEMPLPCE.EMPLINFO, *
[JauToLree. saLEs [[]EMPLPCR.EMPLINFG. DEALER_DLRMO
[JauToLrce, sALESINF | [JEMPLPCE.EMPLINFG, GALESFER_EMPNO]
MauTorpce,salesper ¥ V] EMPLPCE,EMPLINFG,ZIP bt
Order By Sort Max Rows
EMPLPCE. EMPLEMPNO ¥ | Ascending v
I&I I&I

» advanced

Figure 6-35 The SQL query builder panel

In the SQL Query Builder, create the SQL query by selecting the tables and columns to
construct a basic query. If customization or more advanced SQL query is required:

— Use the Generate SQL button to get the query that is associated with your selection of
tables and columns, if you want to further refine the query.

— Click to expand the Advanced field to type or customize your SQL statement.
— You can see the results of your query in a new window by clicking the Preview button.

— See the online help for assistance and guidance information about how to formulate
your SQL statement.

Note: Because IMS data segments are physically stored in a hierarchical database,
you cannot alter, create, or drop any table.

When you are done with the SQL query, click Next. See Figure 6-36.

150 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch06.fm

Required fields marked with *

* Title:
Description:
* Wersion: 1.0
Tags:
Permissions:
@ Public (4l users can view the Feed)
O Private (Feed is invisible ta all other users)
(O Custom {Custom permission settings)
Advanced:

v Categories

» Related entries already in the catalog
+ Technical Documentation

¥ Caching data

» 4ccess Methods

b Active Content Filtering

Figure 6-36 The final feed panel

» Specify the required information to identify this feed. All fields with an asterisk (*) are
required.

» When you are done specifying the information for this feed, click Finish. You are informed
that the information has been saved.

Now you can use the feed in the Mashup Hub for example to combine an IMS feed which
displays the adress of a Car Dealer and combine this feed with Map to display the dealer on
the map when you select him. With this approach it is very easy to generate valuable web
sites by using already available information and combining them.

Chapter 6. Scenario 1 - JDBC data access through tooling 151

7856¢ch06.fm Draft Document for Review May 7, 2010 1:20 pm

152 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch07.fm

7

Scenario 2 - Developing JDBC
applications

This chapter focuses on application development with the IMS Universal JDBC Drivers in
managed and non-managed environments. It explains the steps very detailed by using an
eclipse-based Product. We are using Rational Developer for System z with Java because it
gives us across all three scenarios the most support. The following applications will be
developed:

» Developing a stand alone Java application using the IMS Universal JDBC Driver

» Developing a managed Java application using the IMS Universal Database Resource
Adapter (XA) and DB2 Data Server Drivers (XA)

» Developing an IMS Java Transaction using the IMS Universal JDBC driver

» To set up the transactions, you have to follow the usual steps for a new IMS Java
transaction. The JMP region must be configured correctly for the use with the IMS
Universal Drivers in IMS Java transactions. The region startup procedure contains the
ENVIRON and JVMOPMAS parameter which specifies the members in the IMS
PROCLIB. These configuration files must contain the IMS Universal JDBC Driver jar file in
the class path and also the metadata class file (here this would be the generated
AUTPSB11.jar). If you use type-2 connectivity you also have to specify the location of the
native Drivers for type 2 connectivity.

© Copyright IBM Corp. 2010. All rights reserved. 153

7856¢h07.fm

Draft Document for Review May 7, 2010 1:20 pm

7.1 Developing a stand alone Java application using the IMS
Universal JDBC Driver

This scenario shows you how to develop a Java application step by step for a non-managed
environment accessing the IMS Car Dealer IVP Database using the IMS Universal JDBC
driver.

7.1.1 Prerequisites

As prerequisite to be able to follow this scenario you need the following products:

»

IDE with Java Development Kit 1.5

In this scenario we use IBM Rational Application Developer (RAD) as integrated
development environment (IDE) for Java. Since RAD is an eclipse based product, the
same steps are applicable for any other eclipse based Java development product.

If you want to try Rational Application Developer a Download Trial Version is available from
the IBM web site http://www.ibm.com/developerworks/downloads/r/rad/.

IMS Universal JDBC Driver

You need the IMS Universal driver called imsudb.jar which is the standalone JDBC and
DL/1 Driver for IMS.

Metadata Java class

In our example we use the Metadata for an IMS database which is normally installed as
part of the Installation Verification Procedure (IVP) of IMS. ltis a Car Dealer Database and
uses a PSB called AUTPSB11. The IMS Enterprise Suite DLI Model Utility has generated
a class file out of this PSB. It is exported to Jar File called AUTPSB11.jar. The full
qualification of the metadata class file is:
class://samples.ims.openDb.AUTPSB11DatabaseView

IMS with IMS Connect

IMS and IMS Connect and the Open Database Manager address space should be set-up
correctly for use of the IMS Open Database feature. You need the Hostname or IP address
the Portnumber where IMS Connect is listening for Open Database Connections, as well

as the DataStore Name or the Alias Name (if specified) of the IMS you want to access. If

Security is enabled in IMS Connect you need also a valid User ID and Password.

7.1.2 Creating and configuring a new Java Project

Follow the steps:

» Start the Rational Application Developer and select your workspace.

» Open the Java Perspective by clicking on the switch Perspective icon and selecting Java

as shown in Figure 7-1.

154 IMS 11: The Open Database

http://www.ibm.com/developerworks/downloads/r/rad/

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch07.fm

BEX
& ({3 DatsbaseDe... 3
J 15
s Java Remot | fg My wa| = O
«J== Plug-in Development ble.
[work Items

Other...

Figure 7-1 Switch to Java perspective

» Select File -> New -> Java Project
» Specify a name of the Java Project and leave the default settings as they are and click
Finish.

» Now you have to add the IMS Universal JDBC Driver as well as the Java Metadata Class
File to your Project Build Path that your application will find the referenced Java packages.
Therefore right-click on your Project in the Package Explorer View and select Build Path
-> Configure Build Path as shown in Figure 7-2.

& Package Ex 4 E Hierarchy ,;_'|;| My Wark I:f, Team Artifa :0: Team Centr | — O
=

=S
= =% IMSOpenDBADr
8 s New v
+-m JRESysten o Into
Open in Mew Window
Open Type Hierarchy F4
Show In Alt+shift+w ¥
=| Copy Ctrl+C
B2 Copy Qualified Mame
5 Paste Cirl+v
¥ Delete Delete
Build Path P im Link Source...
Source Alt+5hift+5 ¥ &% New Source Folder...
Refactor Alt+shift+T #
5 Use as Source Folder
“y =
2y Impart... [Add External Archives...
7y
£y Export.... B Add Libraries...
P Refresh F5

% Configure Build Path...

Close Project

Figure 7-2 Configure Build Path

» Click on the Libraries tab and click on Add external JARs and select the imsudb.jar on
your hard disk.

» Repeat the last step and add also the Java Metadata jar file containing the IMS Database
Metadata class file called AUTPSB11.jar to the Build Path libraries.

Note: As an alternative you could also add the Metadata source file to the project in the
right package. But it is better to have it separated. So you don't have to change the
application if you have changes on the database and you just have to replace the
referenced Metadata Jar file containing the new Metadata class in the applications
Classpath.

» The result should look like Figure 7-3, then Click OK.

Chapter 7. Scenario 2 - Developing JDBC applications 155

7856¢h07.fm

Draft Document for Review May 7, 2010 1:20 pm

G Properties for IMSOpenDBApp @
type filter text Java Build Path 7
Resource —
Beanlnfo Path (2 source | (3 Projects | B Libraries | % Order and Export
Builders JARs and class folders on the build path:
Code Cov
=L D. s + @: AUTPSB11.jar - C:\temp Add JARs...
Java Build Path =))
+- Java Code Style &8 imsudb jar - C:\temp 7dd External JAR
v F . 5 Add External JARs...
% Java Compiler +-B, JRE System Library [jdk]
+- Java Editor Add Variable. ..
Javadoc Location
Project References Add Library...
Run,/Debug Settings
Tasl; Tagsg 2 Add Class Folder...
Ll e Add External Class Folder...
#- Validation
@ OK.] [Cancel

Figure 7-3 Java Build Path Properties

Now right-click on your project’s source folder and select New -> Package as shown in
Figure 7-4.

B = IMSOpenDBApP

B s
=i Re[New ¥ (£ Java Project
. e
B Ref Open in Mew Window EJ Project...
Open Type Hierarchy F4 th‘} Package
Show In Alt+Shift+0 ¥ o

Figure 7-4 New Java Package

Type in a name for the package like samples.ims.applications and click Finish.
Right-click on the new created package and select New -> Class as shown in Figure 7-5

& Package Ex &8 'E: Hierarchy ,;_'@ My Work I:é Team Artifa :9: Team Centr | — O
=

Ef=
© 1=} IMSOpenDBApp
= src
4 samples.ims.applicatior - -
= IRE System Library [idk] & H (2% Java Project
B Referenced Libraries Open in New Windaw % Project...
Open Type Hierarchy F4 tt? Package
Show In Alt+shift+w ¥
(= Class

Figure 7-5 New Java Class

Write a name for the Java class like IMSJDBCStandalone and select public static void
main (String[] args) to generate a Java file with some skeleton methods to define that it is
a runnable application. The other values should be automatically filled in like the package
name as shown in Figure 7-6 and Click Finish.

156 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

@ New Java Class

- ojed

Java Class

Create a new Java dass.

Source folder: IMSOpenDBApD,src
Package: samples.ims,applications

[Jendasing type:

Mame: IMSIDBCStandalone

Modifiers: (%) public (O default
[Jabstract []final

Superclass: java.lang.Cbject

Interfaces:

Which method stubs would you like to create?
public static void main{String[] args)
[constructors from superclass
Inherited abstract methods

l\/ T

Browse...

Add...

@ [Fnsh |

[Cancel

Figure 7-6 New Java Class Properties

7.1.3 Writing the application

7856¢ch07.fm

As you have now a Java application file you can start developing your Java application using
the IMS Universal JDBC Driver. The code in Example 7-1 shows a Standalone JDBC Java

Application using the IMS Universal JDBC Driver to do SELECT, INSERT, UPDATE and

DELETE calls.

Example 7-1 Code of IMSJDBCStandalone Application

package samples.ims.applications;
import java.sql.*;
import com.ibm.ims.jdbc.*;

public class IMSJDBCStandalone {
public static Connection conn;
public static IMSDataSource ds;
public static Statement st;

public static void main(String[] args) {
ds = new com.ibm.ims.jdbc.IMSDataSource();

ds.setMetadataURL("class://samples.ims.openDb.AUTPSB11DatabaseView");

ds.setDatastoreName("IMS2");
ds.setDatastoreServer("host.itso.ibm.com");
ds.setPortNumber(5555);

ds.setDriverType(IMSDataSource.DRIVER TYPE 4);

ds.setUser("IMSUSR");

ds.setPassword("myPw");

try {
conn = ds.getConnection();
conn.setAutoCommit (false);
st = conn.createStatement();
displayDealer();

/11

/]2

Chapter 7. Scenario 2 - Developing JDBC applications

157

7856¢ch07.fm Draft Document for Review May 7, 2010 1:20 pm

/19
String sq1="INSERT INTO AUTOLPCB.DEALER (DLRNO,DLRNAME,ZIP,CITY,PHONE) "+
"VALUES('8889', 'Thilo Sample Inc', '71139', 'Ehningen','555-123')";
System.out.printIn("\nSQL Command: "+sql);
int insertCount = st.executeUpdate(sql);
System.out.printin("The Number of Rows Inserted: "+insertCount);
displayDealer();

//10
sql="UPDATE AUTOLPCB.DEALER SET PHONE='555-789'" +
" WHERE DLRNO='8889' or PHONE='555-123'";
System.out.printIn("\nSQL Command: "+sql);
int updateCount = st.executeUpdate(sql);
System.out.printin("The Number of Rows Updated: "+updateCount);
displayDealer();

//11
sq1="DELETE FROM AUTOLPCB.DEALER WHERE DLRNO='8889'";
System.out.printIn("\nSQL Command: "+sql);
int deleteCount = st.executeUpdate(sql);

System.out.printin("The Number of Rows Deleted: "+deleteCount);
displayDealer();

st.close(); //12

conn.rollback();

conn.close();

System.out.printin("\nChanges Successfully commited");

} catch (SQLException e) {

e.printStackTrace();

try { //13
conn.commit();
conn.close();
System.out.printin("Changes rolled back because of an error");

} catch (SQLException el) { //14
System.out.printIn("Error in Connection");
el.printStackTrace();

}

public static void displayDealer() throws SQLException({ //15
String sql="SELECT * FROM AUTOLPCB.DEALER";
System.out.printin("\nSQL Command: "+sql+"\n");
ResultSet rs = st.executeQuery(sql); //16
ResultSetMetaData rsmd = rs.getMetaData(); //17
int numColumns = rsmd.getColumnCount();
for (int i=1; i<=numColumns; i++) {

System.out.print(rsmd.getTableName(i)+"."+rsmd.getColumnName(i)+" | ");
}
System.out.printIn("\n-----------~-mmmmmm - "+
L ||);
while (rs.next()) { //18
for (int i=1; i<=numColumns; i++) {
System.out.print(rs.getString(i) + " | "); //19

}
System.out.printin();

}
rs.close(); //20

Here are the explanations for the commented numbers in the code:

158 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch07.fm

1. These are the two import statements you will need for using JDBC and the IMS Universal
JDBC Driver

2. The application uses a function which needs access to the Connection, IMSDataSource
and the Statement variable. Therefore these variables are globally defined.

3. When the application starts, a new IMSDataSource object is created. The alternative
would be to obtain one from a managed container via JNDI.

4. The IMSDataSource object is populated with the required parameters via it's setter
methods.

5. The Connection is initiated from the IMSDataSource.getConnection() function. This and
some of the following functions can throw SQLExceptions which must be caught and
handled.

6. As the application does several interactions in one connection and to be sure that all are
committed or rollbacked disables this function the autocommit for the connection.

7. This command generates a new Statement object for this specific connection.

8. Because this function is called before and after each change in the database it is
separated in a function which is called.

9. The statements between comment 9 and 10 are inserting some values in the DEALER
segment of the Database. For Insert, Updates and Deletes the
Statement.executeUpdate(sqgl) command is used. The return value of the method is the
number of rows affected.

10.The statements between 10 and 11 are updating the just inserted entry and change the
PHONE entry with the WHERE clause matches whether the specified DLRNO or PHONE.

11.The statements between 11 and 12 are deleting the just inserted entry again.

12.After finishing sending the queries the Statement is closed and the connection is explicitly
committed and closed. You have to ensure to commit the connection before you close it,
otherwise the changes will be rolled back.

13.If any Exception is thrown in the Try{...} construct the catch(){...} construct will rollback the
changes made and close the Connection.

14.1f this also fails there were an error with the connection itself and usually your connection
times out and get rolled back on the IMS side, depending on your settings in IMS.

15.The displayDealer() function can throw an SQLException as it contains methods which
throw this Exception. It is handled in the main program try{...}catch(){...} construct.

16.To issue a SELECT statement the Statement.executeQuery(sql) function is used. It
returns a ResultSet object which pulls the results from IMS depending on the fetchSize
settings of the IMSDataSource object.

17.The statements between 17 and 18 demonstrating how to obtain the table and column
names from the resultsets.

18.The While(){} loop will run until there is no more data in the ResultSet.

19.In the DEALER segment every field is as CHAR defined and can be pulled out as String
with the ResultSet.getString(columnName or columnindex) method.

20.The ResultSet is closed when it is not needed anymore.

Chapter 7. Scenario 2 - Developing JDBC applications 159

7856¢h07.fm

Draft Document for Review May 7, 2010 1:20 pm

7.2 Developing a managed Java application using the IMS
Universal Database Resource Adapter (XA) and DB2 Data
Server Drivers (XA)

This scenario shows the important steps to setup the IMS Universal Resource Adapter in
WebSphere Application Server, and how to develop a managed application that access IMS
and DB2 resources by using the XA in both drivers. This sample also shows that the syntax
for programming against IMS and DB2 is very similar.

7.2.1 Prerequisites

As prerequisite to be able to follow this scenario you need the following products:

1.

Rational Application Developer with Java Development Kit 6

For this scenario we are using IBM Rational Application Developer as integrated
development environment (IDE) for Java, because if offers a good integration with
WebSphere Application Server and offers some capabilities for an easier development of
JEE applications.

If you want to try Rational Application Developer a Download Trial Version is available from
the IBM web site http://www.ibm.com/developerworks/downloads/r/rad/.

WebSphere Application Server 7.0

WebSphere Application Server 7.0 can be used as standalone or can be used as
integrated Test Environment Installation of Rational Application Developer.

You can download a Trial Version of WebSphere Application Server from the IBM web site
at http://www.ibm.com/developerworks/downloads/ws/was/.

IMS Universal Database Resource Adapter

You need the IMS Universal Database Resource Adapter called imsudbJXA.rar which is
the managed JDBC Resource Adapter with XA support.

IMS DB Metadata Java class

In our example we use the Metadata for an IMS database which is normally installed as
part of the Installation Verification Procedure (IVP) of IMS. Itis a Car Dealer Database and
uses a PSB called AUTPSB11. The IMS Enterprise Suite DLI Model Utility has generated
a class file out of this PSB. It is exported to Jar File called AUTPSB11.jar. The full
qualification of the metadata class file is:
class://samples.ims.openDb.AUTPSB11DatabaseView

DB2 Data Server Drivers for JDBC and SQLJ

For accessing DB2 tables you will need the Data Server Drivers for JDBC and SQLJ for
DB2. Note that this driver is also called the JAVA Common Client (JCC) driver and was
formerly known as the IBM DB2 Universal Database™ Driver. Include db2cc.jar for JDBC
3.0 and earlier functions and db2cc4.jar for JDBC 4.0 and later functions

If you are using DB2 on System z you will also need the correct Driver license jar file.To
connect to DB2 z/OS you also need the license file (db2jcc_license_cisuz.jar).

For more information about the DB2 drivers see Appendix A.1, “IBM Data Server Drivers
and Clients” on page 228.

DB2

In this scenario we are also accessing DB2 tables which are stored in DB2 for z/OS, but
for the success of this tutorial it can be a DB2 on any platform.

160 IMS 11: The Open Database

http://www.ibm.com/developerworks/downloads/r/rad/
http://www.ibm.com/developerworks/downloads/ws/was/

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch07.fm

7. IMS with IMS Connect and RRS enabled

IMS and IMS Connect and the Open Database Manager address space should be set-up
correctly for use of the IMS Open Database feature. As we use the XA Drivers, IMS, IMS
Connect and ODBM all need to be configured to use RRS, or you will receive
HWSK2880E RRS COMMAND FAILED ... messages from IMS Connect when running
the application.

You need the Hostname or IP address the port number where IMS Connect is listening for
Open Database connections, as well as the DataStore Name or the Alias Name (if
specified) of the IMS you want to access. If Security is enabled in IMS Connect you need
also a valid User ID and Password.

7.2.2 Installing the products

For the installation steps of the different products see the IBM Information Center for the
corresponding product.

For installing WebSphere Application Server 7.0 see
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.inst
allation.base.doc/info/aes/ae/welc6topinstalling.html

For installing Rational Application Developer see

http://publib.boulder.ibm.com/infocenter/radhelp/v7r5/topic/com.ibm.rad.install.do
c/topics/c_intro_product.html

7.2.3 Creating the Projects in Rational Application Developer

This paragraph explains step by step how to create and setup the necessary files and
Projects which are needed later in Rational Application Developer:

» Start Rational Application Developer.

» Select File->New->Other and select Enterprise Application Project and click Next.
Name it IMSandDB2EAR and select WebSphere Application Server 7.0 as Runtime and
EAR Version 5.0 as shown in Figure 7-7 and click Finish.

Chapter 7. Scenario 2 - Developing JDBC applications 161

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.installation.base.doc/info/aes/ae/welc6topinstalling.html
http://publib.boulder.ibm.com/infocenter/radhelp/v7r5/topic/com.ibm.rad.install.doc/topics/c_intro_product.html

7856¢h07.fm

162

Draft Document for Review May 7, 2010 1:20 pm

5 New EAR Application Project

=X

EAR Application Project

Create a EAR application.

Project name: | IMSandDB2EAR

Contents
Use default

Target Runtime

WebSphere Application Server v7.0

EAR version

5.0

Configuration

Default Configuration for WebSphere Application Server 7.0

A good starting point for working with WebSphere Application Server v7.0 runtime.
Additional facets can later be installed to add new functionality to the project.

B

B

@ [vext> J[_ Finsh

] [Cancel

Figure 7-7 New EAR Project

Select File->New->Other and select EJB Project. Name it IMSandDB2EJB and select
Add Project to an EAR and select the created EAR Project. Make sure you have selected
EJB Module version 3.0 and click Next. Deselect Generate a Client Jar and select
Generate Deployment Descriptor as shown in Figure 7-8 and Click Finish.

@ New EJB Project

=X

EJB Module

Configure ejb module settings.

Source Folder:
ejbModule
Qutput Folder:

buildjclasses

Generate deployment descriptor

[create an EIE Client JAR module to hold the dient interfaces and dasses.

] [Cancel

Figure 7-8 New EJB Project

IMS 11: The Open Database

» Select File->Import and select RAR File and click Next. Select the imsudbJXA.rar on
your hard disk and click Finish

» Select Window->Open Perspective->Other and select Java EE and click OK.

» Right-click the EJB Project and select Build Path->Configure Build Path. Switch to the
Projects tab and add the imported imsudbJXA and click OK.

Draft Document for Review May 7, 2010 1:20 pm

7856¢ch07.fm

» Select File->New->Other and select Session Bean and click Next. Select your created
EJB Project and name the Bean XASessionBean in the Java Package samples.ims as

shown in Figure 7-9 and click Finish

@ Create EJB 3.0 Session Bean

Create EJB 3.0 Session Bean

Specify dass file destination.
EJB project: IMSandDB2EJB

Source folder: | \IMSandDB2EJB\ejbModule

Java package: | samples.ims|
Class name: XASessionBean

Superclass:

State type: Stateless

Create business interface

Browse. ..

Browse. ..

0l &g

Browse. ..

DRemote
Local samples.ims. XASessionBeanLocal
@ [< Back][Mext =] [

Finish] [Cancel

Figure 7-9 New EJB 3.0 Sessionbean

» Select File->New->Other and select Dynamic Web Project and click Next. Name it
IMSandDB2Web and select Add Project to an EAR and select the created EAR Project.
Make sure you have selected Dynamic Web Module version 2.5 and click Finish.

» Right-click the Web Project and select Build Path->Configure Build Path. Switch to the
Projects tab and add the IMSandDB2EJB project and click OK.

» Select File->New->Other and select Servlet and click Next. Select your created Web
Project and name the Serviet XAServlet in the Java Package samples.imsservlet and

click Finish

» Select File->New->Other and select Web page and click Next. Select your created Web
Project and name the web page XATest.jsp and click Finish

7.2.4 Sample code for a managed environment

After setting up the required Projects and Build Paths you can now start to write the
application. This paragraph explains an example coding which allows to issue SQL
commands against IMS and DB2 by using the XA Drivers for both components and the
managed JDBC programming approach. The EAR Project doesn’t need to be changed. You
have to modify the EJB and the EJB Interface in the EJB project and the Servlet and the JSP

Web Site in the Web Project.

XASessionBeanLocal Interface

Example 7-2 shows the sample code for the Java EJB files in the EJB Project.

Example 7-2 XASessionBeanLocal java

package samples.ims;
import javax.ejb.Local;

@Local
public interface XASessionBeanLocal {

Chapter 7. Scenario 2 - Developing JDBC applications 163

7856¢h07.fm

Draft Document for Review May 7, 2010 1:20 pm

String execute(String SQL,String imsusr,String imspw,
String SQL2,String db2usr,String db2pw);

The XASessionBeanLocal is the Interface for the EJB and defines it's functions. In this case
the only function is execute() and expects as parameters the SQL commands, the Userids
and passwords for IMS and DB2.

XASessionBean implementation
Then you have to implement the XASessionBean itself. Example 7-3 shows the sample code.

Example 7-3 XASessionBean.java

package samples.ims;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.Statement;

import javax.annotation.Resource;

import javax.annotation.Resource.AuthenticationType;
import javax.ejb.Stateless;

import javax.sql.DataSource;

@Stateless //1
public class XASessionBean implements XASessionBeanLocal {
public XASessionBean() {}

@Resource(name="imsjndixa",authenticationType=AuthenticationType.APPLICATION,shareable=true
,type=javax.sql.DataSource.class,mappedName="imsjndixa") private DataSource imsDS; //2
@Resource (name="db2jndixa",authenticationType=AuthenticationType.APPLICATION,shareable=true
,type=javax.sql.DataSource.class, mappedName="db2jndixa") private DataSource db2DS;
public String execute(String SQL, String imsusr, String imspw,
String SQL2, String db2usr, String db2pw) {
String result=""; // 3
try{
if(1(SQL.isEmpty())){ //4
Connection conn = imsDS.getConnection(imsusr,imspw); //5
Statement st =conn.createStatement();
result+="<h3>IMS Results</h3>
for "+SQL+"

";
if(st.execute(SQL)){ //6
ResultSet rs = st.getResultSet(); //7
ResultSetMetaData rsmd = rs.getMetaData();
int numColumns = rsmd.getColumnCount();
result+="<table><tr>";
for (int i=1; i<numColumns+1l; i++) {
result += "<td>"+rsmd.getTableName(i)+".";
result += rsmd.getColumnName (i)+"</td>";
}
result+="</tr>";
while (rs.next()) {
result+="<tr>";
for (int i=1; i<numColumns+1l; i++) {
result += "<td>"+rs.getString(i)+"</td>"; //8
}
result+="</tr>";
}
result+="</table>";
rs.close(); //9
telse{

164 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch07.fm

result+=st.getUpdateCount() + "Rows Updated
"; //10
}
st.close(); //11
conn.close();
}
}catch(Exception ex){ //12
ex.printStackTrace();
result+=""+ex.getMessage()+"
";
}
try{
if(1(sqQL2.isEmpty())){ //4
Connection conn2 = db2DS.getConnection(db2usr,db2pw); //5
Statement st2 =conn2.createStatement();
result+="<h3>DB2 Results</h3>
for "+SQL2+"

";
if(st2.execute(SQL2)){ //6
ResultSet rs2 = st2.getResultSet(); //7
ResultSetMetaData rsmd2 = rs2.getMetaData();
int numColumns2 = rsmd2.getColumnCount();
result+="<table><tr>";
for (int i=1; i<numColumns2+1; i++) {
result += "<td>"+rsmd2.getTableName(i)+".";
result += rsmd2.getColumnName(i)+"</td>";
}
result+="</tr>";
while (rs2.next()) {
result+="<tr>";
for (int i=1; i<numColumns2+1; i++) {
result += "<td>"+rs2.getString(i)+"</td>"; //8
}
result+="</tr>";
}
result+="</table>";
rs2.close(); //9
telse{
result+=st2.getUpdateCount()+" Rows Updated"; //10
}
st2.close();
conn2.close(); //11
}
}catch(Exception ex){ //12
ex.printStackTrace();
result+=""+ex.getMessage()+"";
}
result+="
Call Completed";
return result;

1. This is a EJB 3.0 and uses annotations for certain declarations. This annotation defines
this as an Stateless EJB, which means that it doesn’t safe any information in it.

2. These are the two Resource annotations for the IMS DataSource and the DB2
DataSource. Each annotation specifies the JNDI name, if the Connection is shareable and
the authentication type. Here it is AuthenticationType.APPLICATION as the application
specifies the userid and the password. The alternative would be
AuthenticationType.CONTAINER which would use a JAAS alias in WebSphere for
authentication.

3. In this example the return value is a String, which is the result String. Every Output is
appended to the string. This application mixes the business logic layer with the

Chapter 7. Scenario 2 - Developing JDBC applications 165

7856¢h07.fm

Draft Document for Review May 7, 2010 1:20 pm

presentation layer, what you shouldn’t do in reality. The alternative would be to generate
an object which holds the data in it and do the formatting in the presentation layer.

The DB2 code part are very similar to the IMS code part, as it uses also the
javax.sql.DataSource interface and supports the same functions, and is programmed in the
same approach. Therefore the numbers 4-12 appear two times in the code.

4. That you can also use the application if you do not have access to IMS or DB2 this check
verifies if the SQL String is empty. If it is empty it won’t open a connection to the resource.

5. This statement gets a Connection from via JNDI referenced javax.sql.DataSource Object
by specifying the userid and the password for the authentication on the target system.

6. With this command the Statement executes the SQL. The return type indicates if your
SQL is manipulating or just querying data. If it is a query than it the return value is true and
will go in the if branch, otherwise it will go in the else branch.

7. In the query branch you have to get to the ResultSet with the st.getResultSet() function.
After that it will generate the header with the format <tablename.columnname> and put the
results in a HTML table.

8. This scenario assumes that all return types are Strings. If not it will try anyway to cast the
result as String, if this doesn’t work it will fail with an exception.

9. After finishing reading the results, the ResultSet Object can be closed and the data can be
released.

10.In the manipulate data branch, if you do an INSERT,UPDATE or DELETE you will get the
number of the affected rows back as result.

11. After finishing all work the Statement and Connection Objects can be marked as ready for
closing. This doesn’t mean that the Connection is really closed, because in a Global
transaction the Container is deciding when to close the Connection object. Normally this is
done after committing or rolling back all changes in the two phase-commit processing
involved resources.

12.By calling the Connection, several methods can throw Java Exceptions for example if the
user authentication fails. This Exceptions are caught and appended to the result to make
them visible on the result web page.

XAServlet implementation
Example 7-4 shows the sample code for the files in the Web Project.

Example 7-4 XAServiet.java

package samples.imsservlet;

import java.io.IOException;

import javax.ejb.EJB;

import javax.servlet.RequestDispatcher;

import javax.servlet.ServietException;

import javax.servlet.http.HttpServiet;

import javax.servlet.http.HttpServietRequest;
import javax.servlet.http.HttpServietResponse;
import javax.servlet.http.HttpSession;

import samples.ims.*;

public class XAServlet extends HttpServlet {
private static final Tong serialVersionUID = 1L;

public XAServiet() {
super();

}

166 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch07.fm

protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
doPost (request,response);

}

@EJB(beanName="XASessionBean") private XASessionBeanLocal bean;
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
String result=" ";
HttpSession session = request.getSession(true);
String query =request.getParameter("query").trim();
String imsusr=request.getParameter("imsusr").trim();
String imspw =request.getParameter("imspw").trim();
String query2=request.getParameter("query2").trim();
String db2usr=request.getParameter("db2usr").trim();
String db2pw =request.getParameter("db2pw").trim();
result = bean.execute(query,imsusr,imspw,query2,db2usr,db2pw) ;
session.setAttribute("result", result);
RequestDispatcher disp=getServletContext().getRequestDispatcher("/XATest.jsp");
disp.forward(request, response);

The coding of the XAServlet is kept very simple. It uses the usual methods with doGet and
doPost of a HitpServlet. The doGet method forwards the request to the doPost method. It
catches the parameters from the web site form element and passes it to the EJB.execute()
method. The response result is placed in the session object. The RequestDispatcher
forwards the response to the jsp web site again.

XATest JSP Web Site
Example 7-5 shows the source code of the XATest.jsp web site.

Example 7-5 XATest.jsp

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><%@page
language="java" contentType="text/html; charset=IS0-8859-1"
pageEncoding="1S0-8859-1"%>

<html><head>

<title>IMS and DB2 Access via JDBC XA</title>

<meta http-equiv="Content-Type" content="text/html; charset=1S0-8859-1">

</head><body>

<h1>IMS and DB2 Access via JDBC XA DataSource</hl>

<form method="post" action="/IMSandDB2Web/XAServiet">

<table>

<tr><td>IMS</td></tr>

<tr>

<td><input type="text" name="query" value="SELECT * FROM AUTOLPCB.DEALER" size="50"></td>

<td>User</td><td><input type="text" name="imsusr" size="9"></td>

<td>PW</td><td><input type="password" name="imspw" ></td>

</tr>

<tr><td>DB2</td></tr>

<tr>

<td><input type="text" name="query2" value="SELECT * FROM DSN8910.EMP" size="50"></td>

<td>User</td><td><input type="text" name="db2usr" size="9"></td>

<td>PW</td><td><input type="password" name="db2pw"></td>

</tr>

<tr><td><input type="submit" name="sub" value="Execute"></td></tr>

</table>

Chapter 7. Scenario 2 - Developing JDBC applications 167

7856¢h07.fm

Draft Document for Review May 7, 2010 1:20 pm

</form>

<%= (String)session.getAttribute("result") %>
</body>

</html>

The XATest.jsp file contains only usual HTML elements. By pressing the submit button it will
forward the values to the XAServlet, and after getting the result it will read the result String
from the session context.

7.2.5 Exporting the application

Now the application is ready for deployment in WebSphere Application Server. Rational
Application Developer offers you an easy way to publish your application to a WebSphere
Application Server, but very often you have restrictions in accessing the administration port
directly. For this reason, in this this scenario we show the way that should always work to
export the application and install it via the administration web console of the WebSphere
Application Server.

» Right-click on your EAR Project and select Export->EAR file
» Choose a destination like c:\temp\DB2andIMS.ear and click Finish.

The EAR Project automatically contains all referenced Projects like the Web Project and the
EJB Project and are part of the ear file.

7.2.6 Setting up the IMS Universal DB Resource Adapters in WebSphere
Application Server 7.0

You have to install the correct IMS Universal DB Resource Adapter and configure it
afterwards. This is done with the help of the WebSphere Application Server administrative
console. When you have WebSphere Application Server running you can access the
administrative console via opening it in your web browser. The default URL is:

http://Tocalhost:9061/ibm/console

Whether you have Security enabled or not you have to enter your Used ID and Password or
leave it just blank to login.

Installing IMS DB Resource Adapter

When the WebSphere configuration web site is open, then expand Resources -> Resource
Adapters -> Resource Adapters. Select the scope where you want to install the Resource
Adapter, normally you deploy it to the whole node as shown in Figure .

168 IMS 11: The Open Database

http://localhost:9061/ibm/console

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch07.fm

Integrated Solutions Console welcome

View: | All tasks V |
Resource adapters
[l Guided Activities Resource adapters
Connecting to a database Use this page to manage rescurce adapters, which provide the
Routing requests through 2 Web server to zpplications to 2n Enterprise Information m (EIS). The We
T appiicaticn o embedded within the product to provide a = to relationzl da
use this page to install 2 standzlone rescurce adapter archive |
[rescurce adapters for each instzlled RAR file.

& Applications B Scope: Cell=WS500-4061BL5Node01Cell, Node=W500-4061F

Services Scope specifies the level at which the resource definit
detailed information on what scope is and how it work
Bl Resources settings hels.
Schedulers

ZWs500- SH T
Object posl managers |{Node=W500-4081BLSNod=01 iv

& IME -
= Preferences
H Joec
Install RAR | New | Delets Update RAR
| [4
=5
Select | Name 2 Scop
None
Asynchrensus beans
Total 0

Cache instances

31 Mail

Figure 7-10 WAS - Console

Click on Install RAR. Specify the location of the IMS Universal DB Resource Adapter on your
local file system and click Next.

Note: This scenario uses the imsudbJXA.rar Resource Adapter, because the application
uses JDBC and requires Global XA Transaction support.

In the next step you should specify the Class path. The Class path should contain any
additional resources which are needed. In the case of IMS the IMS Universal Resource
Adapters need the Metadata class files to access an IMS database.

Note: The Metadata Class files can be part of the Class path of the IMS Universal DB
Resource Adapter or can be part of the application. To be more flexible it is easier to
specify it in the Class path of the Resource Adapter. So if you change your database
layout, you do not have to rebuild all applications which contain the metadata file.

In this case we are specifying it as part of the Resource Adapter Class path. Therefore refer
the Class path to the jar file with the Metadata class file in it for the Car Dealer IVP Database.
In this example the path points to c:\temp\AUTPSB11.jar as shown in Figure 7-11. If you
specify more than one jar file, then do not use separators but use a new line instead. Click OK
and save the changes to the Master configuration.

Chapter 7. Scenario 2 - Developing JDBC applications 169

7856¢ch07.fm Draft Document for Review May 7, 2010 1:20 pm

Name
S Universal DB Resource Adapter - JDBC XA Transaction

Descripticn
IMS Universal DB Rescurce Adapter - JDBC with Xa
Transaction support.

Archive path
[${conNECTOR_INSTALL_ROOT}

Class path
HtemplAUTPSELL jar
s\temp DFSIVEL jad

Naztive library path

D Isclzate this rescurce provider

oK Reset Cancel
Figure 7-11 WAS Console - Specify Class path

Creating J2C Connection factories

After the installation of the Driver itself, you have to make it usable to the application by
specifying a certain connection to a system. This is done by creating a J2C Connection
factory.

In the administration console click on Resources->Resource Adapters-> J2C connection
factories. Select the same scope as where you have installed the Resource Adapter and
click on New.

Select the installed Resource Adapter from the Provider list and specify the name and JNDI
name as imsjndixa as shown in Figure 7-12 and click Apply.

General Properties
Scope

|:§|I£:'.'.'EII-4IE:E_5'.C:EI: Cellinodes:W300-4061BL5!

Provider

| IMS Universal DB Resource Adapter - JDBC XA Transaction v|

Create New Provider

* Name
|imzjndi><a

JNDI name

|imzjndi><a

Descripticn

IMS Universal JDBEC Resource Adapter with ¥4 and
AUTPSELL in Class path against IMSZ on
myhest.itsc.ibm.com.

Connection factory interface

javax.sgl.DstaSource V

Figure 7-12 WAS Console - New J2C connection factory

After clicking Apply you should be able to click on the custom properties link and edit the
values accordingly to your system settings.

» The SSLConnection parameter indicates if SSL encryption is enabled for the connection
to IMS Connect or not. Set this value to false as this scenario doesn’t use SSL.

170 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch07.fm

» The DatastoreName is the name of the target IMS datastore. If you have specified an
alias name in your ODBM configuration member on the mainframe side, than you have to
use the alias name instead of the IMSID. In this book this value would be IMS2.

» The DatastoreServer is the name or IP address of the target IMS Connect. In this book
the value would be myhost.itso.ibm.com

» The PortNumber specifies the port number of the target IMS Connect. In this book the
value would be 5555.

» The DriverType specifies the connectivity type. In the case of the XA Resource Adapter
this value must be set to 4.

» The LoginTimeout specifies the number of seconds to wait for a TCP/IP response from
IMS Connect. A value of 0 indicates an unlimited wait time. Change this value to 10 that
your application do not wait forever in an error case.

» The MetadataURL is the URL of the database metadata representing the target IMS
database. It is build by the pattern class://package.PSBDatabaseView. In our case the
value is class://samples.ims.openDb.AUTPSB11DatabaseView

» The User and Password specifies the userid and the password for the default user. This
user is used if you do not specify a user explicitly and no JAAS alias is provided to the
Resource Adapter. As we specify this values explicitly in the application by invoking the
connection you do not have to specify them, but you can if you want.

After you have finished editing your settings you can save your changes to the master
configuration.

7.2.7 Setting up DB2 Data Server Drivers in WebSphere Application Server 7.0

The installation of the DB2 Data Server Drivers has a similar pattern as the installation of the
IMS Universal Drivers. The difference is, that we are not using a DB2 Resource Adapter but
using the Drivers directly as JDBC Provider. If you want to know more about the IBM
DataServer Drivers refer to Appendix A.1, “IBM Data Server Drivers and Clients” on

page 228.

JDBC Provider installation

At first you have to specify the Driver location which is made available for using in a specific
scope.

Click on Resources->JDBC->JDBC Providers. Select the Scope for the installation and
click New. Select DB2 as Database type, and select the JCC Driver with the XA data source
implementation as shown in Figure 7-13 and click Next.

Chapter 7. Scenario 2 - Developing JDBC applications 171

7856¢h07.fm

Draft Document for Review May 7, 2010 1:20 pm

Create new JDBC provider

Set the basic configuration values of 2 JDBC provider, which encapsulates the specific vendor JOBC driver
implementation classes that are required to access the datzbase. The wizard fills in the name and the
description fields, but you can type different values.

Scope

|:§|I£:'.'.'EII-4IE:E_5'.C:EI: Cell:nodes:WS00-4061BL5Node0l

4 Datsbase type

Provider type
| DBZ Using IBM JCC Driver hd |

Implementation type
| XA data source e |

Name
[oBZ Using 1BM J1CC Driver (x4)

Description

Two-phase commit DB2 JCC provider that supports |4
JDBC 4.0 using the IEM Data Server Driver for JDBC
and SQL). IEM Datz Server Driver is the next
generation of the DEZ Universal JCC driver. Data
sources created under this provider support the use

of ¥& to perform 2-phase commit processing. Use

of JDBC driver type 2 on WebSphere Application

Server for Z/05 is not supported for data sources i

Figure 7-13 WAS Console - New JDBC Provider

Specify the Class path where your DB2 Data Server Driver jar files are located. For example
c:\temp\db2 means that WebSphere will automatically search for db2jcc4.jar,
db2jcc_license_cu.jar and db2jcc_license_cisuz.jar in that directory. Click Next and
Finish in the Summary page and save the changes to the master configuration.

DataSource setup

Second you have to create a DataSource for a specific Database connection which can be
referenced by applications with its JNDI name.

Click on Resources->JDBC->Data sources. Select the same scope as for the Driver
installation and click New. Specify db2jndixa as name and JNDI name and Click Next.

Select an existing JDBC Provider and choose DB2 Using IBM JCC Driver (XA) and click
Next.

Specify the following attributes:

» Driver type as 4

» Database name as your Sub System ID for your DB2 on System z database (i.e. DB9A)

» Server name which is the host or IP address of the target DB2 (i.e.
myhost.itso.ibm.com)

» Port number (default is 50000)

Click Next and Next again and finally Finish on the Summary page. Save the changes to
the master configuration.

7.2.8 Installing and starting the application

After setting up the required DataSources for IMS and DB2 you are now ready to deploy the
application in WebSphere Application Server.

» Go in the WebSphere Application Server administration console and expand
Applications->New Application. Click New Enterprise Applications.

» Select the exported ear file from your local file system and click Next
» Select the Fast Path option for a quick installation and click Next

172 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch07.fm

» Leave the defaults on the following pages and click Next and Next again until you are
coming to the Map Resource References.

» Click on Browse for each DataSource and select the matching JNDI DataSource as
shown in Figure 7-14.

Set Multiple INDI Names ~ Madify Resource Suthentication Methad... Extended Properties...

Select| Module EIE URI Resource | Target Rescurce JNDI LOgI!’\ .
Reference | Name configuration
Resource
ar,META- imsindixa authorization:
[0 |iMSandDB2EIB| XASessionBean | IMS2NdDB2EIBjan META- |, i o
INF/ejb-jar.xml Browse... Per
application
Resource
; ae dbZjndixa authorization:
[0 |iMSandDB2EIB| XASessionBean| (MS3NdDB2EIBJaR META-| 4o 4 o
INF/ejb-jar.xml Browse... Per
application

Figure 7-14 WAS Console - JNDI Mapping

» Click Next and then Finish and check if the application is installed successfully. Save the
changes to the master configuration.

Now the application is installed but not yet started. To start the application follow these steps:

» Click on Applications->Application Types->WebSphere enterprise applications
» Select your application and click Start. Check that the status icon turns green.

7.2.9 Running the application

Now the application should work. Open a Web Browser and your application should be
reachable by the following link:

http://lTocalhost:9081/IMSandDB2Web/XATest.jsp

The IP address and port number may be different. The IP address is the IP address or
hostname of the server running WebSphere Application Server. The port number can vary on
the settings of the Application Server. To determine which port number to use, from the
WebSphere administrative console, click Servers>Server Types>WebSphere Application
servers. Then click on your server, Ports (under the Communications heading on the
right-hand side, and see what the value is for "WC defaulthost". In this example it is 9081.

The web page you will see is very simple. It contains fields for SQL commands against IMS
and DB2 as well as for the userid and password for each connection. You can now play
around with issuing SQL commands. If you want just use one connection leave the SQL for
the other connection empty.

The result of a query against IMS and DB2 will looks like Figure 7-15.

Chapter 7. Scenario 2 - Developing JDBC applications 173

http://localhost:9081/IMSandDB2Web/XATest.jsp

7856¢h07.fm

Draft Document for Review May 7, 2010 1:20 pm

IMS

SELECT *FROM AUTOLPCB.DEALER
DB2

SELECT * FROM DSNES10.EMP

User

User

IMS Results

for SELECT * FROM AUTOLPCB.DEALER

DEALER DLRNO DEALER. DLRNAME

DB2 Results

for SELECT * FROM DSNE910 EMP

000010 CHRISTINE I HAAS
000020 MICHAEL L THOMPSON
000030 SALLY A KWAN
000050 JOHN B GEYER

IMS and DB2 Access via JDBC XA DataSource

DEALER.CITY DEALER ZIP DEALER PHONE
12345-6789 6667777
§888888888 &888-888

§888888888 &888-888

1235 Cupertino European Autos Cupertino

8892 Thilo Stuttgart

1234 SAN JOSEFORD SAN JOSE 95777
8888 Test1234 Stuttgart

9999 99

EMP EMPNO EMP FIRSTNME EMP MIDINIT EMP.LASTNAME EMP. WORKDEPT EMP.PHONENQ

pw

pw

A00 3978
BO1 3476
Co1 4738
EO1 6789

Figure 7-15 Managed Application Web Site Results

7.3 Developing an IMS Java Transaction using the IMS
Universal JDBC driver

174

IMS offers two types of IMS dependent regions for Java the JMPs and JBPs:

» JMPs are Java Message Processing regions which are capable of running IMS

transactions written in Java.

» JBPs are Java Batch Processing regions which are capable of running IMS batch jobs

written in Java.

To write an application which can receive messages and reply messages you have to write an

application for JMP regions.

Since IMS Version 11 there is a new IMS Java dependent region resource adapter which
provides an enhanced programming API for writing JMP and JBP applications for IMS which

is used in this scenario.

For more information about writing with this adapter see Chapter 37 Programming for IMS
Java dependent regions of IMS Version 11 Application Programming, SC19-2428 and also
IMS Version 11 Application Programming APlIs, SC19-2429

IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch07.fm

This scenario shows you an example code of a IMS Java Transaction which reads the SQL
Code in the input message and replies the result as an output message. The input and output
message classes extents the com.ibm.ims.application.IMSFieldMessage.

The code of the InputMessage is shown in Example 7-6.

Example 7-6 InputMessage.java

package samples.ims.openDb;
import com.ibm.ims.base.*;
import com.ibm.ims.application.IMSFieldMessage;

public class InputMessage extends IMSFieldMessage {

static DLITypeInfo[] fieldInfo = {
new DLITypeInfo("SQL", DLITypeInfo.CHAR, 1, 80),
bs

public InputMessage() {
super(fieldInfo,89, false);
}

The InputMessage defines only one DLIType with the length of 80 Bytes. This is for the SQL
command.

Example 7-7 shows the OutputMessage. It also defines only one field with the length of 220
Bytes for the result of the transaction.

Example 7-7 OutputMessage.java

package samples.ims.openDb;
import com.ibm.ims.base.*;
import com.ibm.ims.application.IMSFieldMessage;

public class OutputMessage extends IMSFieldMessage {

static DLITypeInfo[] fieldInfo = {
new DLITypeInfo("Results",DLITypelInfo.CHAR,1,220),
}s

public OutputMessage() {
super(fieldInfo,220, false);
}

The transaction program with the main method is the CarDealerTrans class. This class uses
the IMS Java dependent region resource adapter. See Example 7-8.

Example 7-8 CarDealerTrans

package samples.ims.openDb;

import com.ibm.ims.d1i.DLIException;

import com.ibm.ims.d1i.tm.Application;

import com.ibm.ims.d1i.tm.ApplicationFactory;
import com.ibm.ims.d1i.tm.IOMessage;

import com.ibm.ims.d1i.tm.MessageQueue;

public class CarDealerTrans {
public static void main(String[] args) throws DLIException {

Chapter 7. Scenario 2 - Developing JDBC applications 175

7856¢ch07.fm Draft Document for Review May 7, 2010 1:20 pm

176

Application app = ApplicationFactory.createApplication();

MessageQueue mq = app.getMessageQueue();

I0Message inMsg = app.getIOMessage("class://samples.ims.openDb.InputMessage");
I0Message outMsg = app.getIOMessage("class://samples.ims.openDb.OutputMessage");

CarDealerDBInteractions dbcalls = new CarDealerDBInteractions();
String host = "myhost.itso.ibm.com";

int port = 5555;

String datastoreName = "IMS2";

String username = "USRID";

String password = "PASS";

while (mq.getUnique(inMsg)) {
String sql = inMsg.getString("SQL");
String output = dbcalls.sqlMethod(sql,4,host,port,
datastoreName,username,password) ;
outMsg.setString("Results", output);

The main application access the message queue and retrieves messages from it, as long as
there are messages for the application on the queue. It defines a CarDealerDBInteractions
object and calls the sqlMethod() by passing the required parameters to it. The application can
be easily switched between a type 2 and type 4 connectivity. This would be helpful if you want
to access another database of the same type in a remote IMS. So you could easily access
two databases across two IMS systems. There are several scenarios possible.

The database calls are separated in an own CarDealerDBInteraction class. This class uses
the IMS Universal JDBC Driver. See Example 7-9.

Example 7-9 CarDealerDBinteraction

package samples.ims.openDb;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import com.ibm.ims.jdbc.IMSDataSource;

public class CarDealerDBInteractions {
public String sqlMethod(String sqlQuery, int driverType, String host,int port,
String datastoreName, String username,String password) {
String result = "";
IMSDataSource ds = new IMSDataSource();
ds.setMetadataURL("class://samples.ims.openDb.AUTPSB11DatabaseView");
ds.setDatastoreName(datastoreName);
ds.setDriverType(driverType);

if(driverType==4){
ds.setDatastoreServer(host);
ds.setPortNumber(port);
ds.setUser(username);
ds.setPassword(password);

}

try {
Connection conn = ds.getConnection();
Statement st = conn.createStatement();
ResultSet rs = st.executeQuery(sqlQuery);
while(rs.next()){

IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch07.fm

for(int i=1; i<=rs.getMetaData().getColumnCount();i++){
result += rs.getString(i) + "\t";
}
result += "\n";
}
if(result == ""){
result += "No records match the provided query";
}
rs.close();
st.close();
conn.commit();
conn.close();
} catch (SQLException e) {
e.printStackTrace();
result = result + e.toString() + "\n";

}

return result;

This class defines an IMSDataSource Object and specifies the required parameters,
depending on a type 2 or type 4 connectivity. Since the application allows only queries against
the database, the sample doesn’t really need a commit on the Connection.

To set up the transactions, you have to follow the usual steps for a new IMS Java transaction.
The JMP region must be configured correctly for the use with the IMS Universal Drivers in
IMS Java transactions. The region startup procedure contains the ENVIRON and
JVMOPMAS parameter which specifies the members in the IMS PROCLIB. These
configuration files must contain the IMS Universal JDBC Driver jar file in the class path and
also the metadata class file (here this would be the generated AUTPSB11.jar). If you use
type-2 connectivity you also have to specify the location of the native Drivers for type 2
connectivity.

Chapter 7. Scenario 2 - Developing JDBC applications 177

7856¢ch07.fm Draft Document for Review May 7, 2010 1:20 pm

178 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch08.fm

8

Scenario 3 - Writing DL/l and
mixed applications

In this chapter we show how you can access your IMS databases using the IMS Universal
DL/l driver and the IMS Universal DB Resource adapter with the CCI programming approach.
This chapter shows how you use the IMS Universal DL/I Driver to write standalone DL/I
applications in Java and if you want using batch methods. It also shows how to use the IMS
Universal DB Resource Adapter with the CCI programming model to write applications using
mixed SQL and DL/l syntax in managed or non-managed environments.

This chapter contains the following:
» Writing applications with the IMS Universal DL/l Driver

» Writing application with the IMS Universal DB Resource Adapter and the CCI
programming approach

© Copyright IBM Corp. 2010. All rights reserved. 179

7856¢ch08.fm Draft Document for Review May 7, 2010 1:20 pm

8.1 Writing applications with the IMS Universal DL/l Driver

You can use the IMS Universal DL/I Driver for writing applications in Java by using the DL/I
syntax to access IMS databases. As with all the IMS Universal drivers they can be used by
remote applications, using the type 4, and local applications, using the type 2. We also show
how you can batch up your accesses where appropriate to improve the performance when
using the IMS Universal DL/1 driver.

8.1.1 Accessing IMS data with the IMS Universal DL/l driver

In order to execute DL/1 calls from your IMS Universal driver application, you must have
connected to an IMS database. This is done by using the PSB interface which is part of the
com.ims.dli package. What needs to be provided to the interface and an example of the code
is shown below.

Connecting to an IMS database

The connection properties are passed using an IMSConnectionSpec instance which is
created by calling the createIMSConnectionSpec method in the IMSConnectionSpecFactory
class. You need to set the following connection properties for the IMSConnectionSpec
instance:

» datastoreName as the name of the datastore to be accessed.

— For type-4(remote) connectivity, the datastore name must either match the that
datastore name defined in the active ODBM CSLDCxxx proclib member or be blank. If
the datastore name is defined using the ALIAS(NAME= parameter, you must use the
name specified as the alias. If the datastore name is left blank or not supplied, IMS
connects to any available ODBM as it assumes that data sharing is enabled among all
datastores defined to ODBM.

— For type-2(local) connectivity, the datastore name is set to the name of the Database
Resource Adapter (DRA) specified when defining the DFSPRP member whose name
is DFSxxxx0, where xxxx is the datastore name.

» metadataURL is the fully qualified name of the JAVA metadata class generated by the
IMS Enterprise Suite DLIModel utility plug-in. The URL must be prefixed with class://, in
the application example below it is defined as
"class://samples.ims.openDb.AUTPSB11DatabaseView"

» portNumber is the Port Number of IMS Connect

— For type-4(remote) connectivity, this is the TCP/IP server port number used to
communicate with IMS Connect. It is defined using the DRDAPORT parameter of the
ODACCESS statement in the integrated IMS Connect configuration proclib member.

— For type-2(local) connectivity do not set this property.
» datastoreServer is the IP address of the IMS Connect host.

— For type-4(remote) connectivity, this is the name or IP address of the datastore server
(IMS Connect). In the sample application below we have specified the name,
wtsc63.itso.ibm.com but we could have used its IP address, 9.12.6.70, instead

— For type-2(local) connectivity, do not set this property.

» driverType is used to specify the type of driver connectivity the application will be using.
— For type-4 connectivity the value must be IMSConnectionSpec.DRIVER_TYPE_4 or 4
— For type-2 connectivity IMSConnectionSpec.DRIVER_TYPE_2 or 2

180 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch08.fm

» sslConnection is an optional property used to indicate if Secure Socket Layer (SSL) is
being used for the connection.

— For type-4(remote) connectivity set it to true to enable SSL or false otherwise.
— For type-2(local) do not set the property.

» loginTimeout is an optional property used to specify the number of seconds the driver will
wait for a response from the server before timing out.

— For type-4 connectivity set the value to a non-negative integer for the number of
seconds. Setting it to O will allow the driver to wait forever.

— For type-2 connectivity, do not set this property.

» user is the username for authentication to IMS Connect. Do not set this property for type-2
connectivity.

» password is the password used for the connection. Do not set this property for type-2
connectivity.

Example 8-1 shows how to specify the values.

Example 8-1 IMSConnectionSpec properties

// establish a database connection

IMSConnectionSpec connSpec

= IMSConnectionSpecFactory.createIMSConnectionSpec();

connSpec.setDatastoreName("IMS2");

connSpec.setDatastoreServer("wtsc63.itso.ibm.com");

connSpec.setPortNumber(5555) ;

connSpec.setMetadataURL (
"class://samples.ims.openDb.AUTPSB11DatabaseView");

connSpec.setUser("IMS2R");

connSpec.setPassword("password");

connSpec.setDriverType(IMSConnectionSpec.DRIVER _TYPE 4);

Having set your connection properties you now need to pass the connection properties to the
PSBFactory class to create a PSB instance. Once the PSB instance is successfully created
you will have a connection to the database. See Example 8-2.

Example 8-2 Creating a PSB instance

psb = PSBFactory.createPSB(connSpec);

8.1.2 Retrieving Data Using the IMS Universal DL/l drivers

In a traditional, that is COBOL, PL/1, Assembler etc, IMS application to delete, insert, replace
or retrieve data would make DL/I calls. Using the IMS Universal DL/I driver to perform those
same functions, you invoke methods.

These methods are defined in the following interfaces:

» You have seen above how the PSB instance is created to connect to the database and that
PSB interface can be used to obtain a handle on any Program Communication Block
(PCB) within the PSB. The PCB handle is used to access the particular IMS database that
is referenced by that PCB.

» The PCB interface represents a cursor position in an IMS database. The PCB interface
supports DL/I call functions, including Get Unique (GU), Get Next (GN), Get Next within
Parent (GNP), Insert (ISRT), Replace (REPL) and Delete (DLET). The PCB interface can
obtain an unqualified list of Segment Search Arguments (SSAs) and perform batch

Chapter 8. Scenario 3 - Writing DL/I and mixed applications 181

7856¢ch08.fm

Draft Document for Review May 7, 2010 1:20 pm

retrieve, update and delete operations. You can also use the PCB interface to return the
Application Interface Block (AIB) associated with the most recent DL/I call.

» The SSAlist interface represents a list of SSAs used to specify which segments to target in
a particular DL/I call. You use the SSAList to construct the SSAs and to set any command
codes and lock classes the segments referenced. You can set an initial qualification
statement and append additional qualifiers based on the values of the segment fields to
restrict which segments will be targeted. Each SSA in the list can be qualified or
unqualified. You are also able to specify which fields from segments are to be returned by
a retrieve call.

» The Path interface represents a database record for the purpose of a retrieval or update
operation. It can be viewed as the concatenation of all of the segment instances in a
specific hierarchic path, starting from the highest level segment that is nearest to the root
segment to the lowest level segment. Use the path interface to set or retrieve the value of
any segment field that is located in the hierarchic path.

» The PathSet interface provides access to a collection of Path objects that are returned by
a batch retrieve operation.

» The AIB interface and the database PCB(DBPCB) interface return useful information
returned by IMS as a result of a DL/I call

» The GSAMPCB interface represents a GSAM PCB and is essentially a cursor position in a
GSAM database. The interface provides data access to GSAM databases with calls
similar to DL/l calls.

» The RSA interface represents a GSAM database record search argument that is the key to
a cursor position in the GSAM database.

Example 8-3 shows how to get a handle on the AUTOLPCB PCB specified in the AUTPSB11
PSB and uses the AUTOLDB database specified in that PCB to show how an unqualified
SSAList can be constructed. The example gets a path instance by using the SSAList and
calling the getPathFor RetrievalReplace method and uses the getUnique method to return a
Path that consists of all fields in the STOCSALE segment.

Example 8-3 Obtaining a PCB handle and specifying SSAs using the SSAList interface

pcb = psb.getPCB("AUTLPCB");

SSAList ssalist = pcb.getSSAList(“DEALER”,”STOCSALE™);
Path path = ssalist.getPathForRetrievalReplace();
pcb.getUnique(path, ssalist,false);

In Example 8-3 the ssalList represents all segments along the hierarchic path from the
topmost segment, DEALER, to the lowest segment, STOCSALE. The ssalList will look like this

DEALERDbbb
MODELbbbb
STOCKbbbb
STOCSALEb

An SSAList can be qualified to filter the segments in the hierarchic path to be retrieved or
updated. Generally the steps to create a qualified SSAList are:

1. Use the getSSAList method to create an unqualified SSAList from the PCB.

2. Use the addinitialQualification method to specify the initial search criteria for a segment in
the SSAList returned by a getSSAList method. You can use one addinitialQualification
statement for each segment represented in the SSAList. If you use more than one
addlinitialQualifaction statement for a segment an exception error will be thrown. The
relational operator parameter in the addinitialQualification method indicates the

182 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch08.fm

conditional criteria that the segment must meet in order to be qualified. The valid operators
are

EQUALS
GREATER_OR_EQUAL
GREATOR_THAN
LESS_OR_EQUAL
LESS_THAN
NOT_EQUAL

3. To add additional search criteria to a segment in the SSAList, you have to use the
appendQualification method. The Boolean Operator (BooleanOp) parameter in the
appendQualification method statement says how this qualification is logically connected to
the previous qualification. The valid BooleanOp values are

AND
OR
INDEPENDENT_AND

4. Segment SSAs in the SSAList can also be qualified by setting DL/ command codes and
lock classes. Supported DLI command codes include

CC_C: The C command code (Concatenated Key). Use the addConcatenatedKey method
to add the concatenated key to the segments SSA in the SSAList.
CC_D: The D command code (path call).

CC_F: The F command code (first occurrence).

CC_L: The L command code (last occurrence).

CC_N: The N command code (path call ignore).

CC_P: The P command code (set parentage).

CC_U: The U command code (maintain position at this level).

CC_V: The V command code (maintain position at this and all higher levels).

The lock class is used to prevent another application from updating a segment until your
program has reached a commit point. Use the addLockClass method to add a lock class to a
segment. The supported lock class letters are “A” to “J”. The behavior of a lock class is the
same as using a Q command code with the lock class letter.

Example 8-4 shows how to specify and use a qualified SSAList with just an initial qualification
statement to retrieve data.

Example 8-4 Qualified SSAList with initial qualification

SSAList ssalist = pcb.getSSAList(“DEALER”,”STOCSALE™);
ssalist.addInitialQualification(“MODEL”,>”MAKE>,SSAList.EQUALS,”FORD”);
ssalist.markFieldForRetrieval (“STOCK”,”COLOR”,true);

Path path = ssalist.getPathForRetieveReplace();

pcb.getUnique(path, ssalist, false);

The ssalList for the above example is:

DEALERDbbb

MODELbbb (MAKEbbbbEQFORDbbbbbb)
STOCKbbb*D

STOCSALEb

The data returned by the above example where MAKE =Ford would be the COLOR field in
the STOCK segment and all the fields of segment STOCSALE as by default IMS returns all
fields of the lowest level segment specified.

Chapter 8. Scenario 3 - Writing DL/I and mixed applications 183

7856¢ch08.fm

Draft Document for Review May 7, 2010 1:20 pm

Example 8-5 shows how we can add an extra qualification to the SSAList for the MODEL SSA
in Example 8-4.

Example 8-5 Qualified SSAList with multiple qualifications for one SSA

SSAList ssalist = pcb.getSSAList(“DEALER”,”STOCSALE™);
ssaList.addInitialQualification(“MODEL”,”MAKE”,SSAList.EQUALS,”FORD”);
ssalList.appendQualification(“MODEL”,SSAList.AND,”YEAR”,SSAList.Greater_than,
2002) ;

ssaList.marFieldForRetrieval (“STOCK”,”COLOR”,true);

Example 8-6 shows how we code a qualified SSAList with the command code CC_P (set
parent). DL/l by default sets parent at the lowest level in the path of segments returned from
the SSAs specified in the SSAList when a GU or GN call is issued.

Example 8-6 Qualified SSA using a command code

SSAList ssalist = pcb.getSSAList(“DEALER”,”STOCSALE™);
ssaList.addInitialQualification(“MODEL”,”MAKE”,SSAList.EQUALS,”FORD”);
ssalList.addCommandCode (“MODEL>,SSAList.CC_P);
ssalist.appendQualification(“MODEL”,SSAList.AND,”YEAR”,SSAList.Greater than,
2002)

ssaList.marFieldForRetrieval (“STOCK”,”COLOR”,true);

The SSAList for our example is:

DEALERbbb
MODELbbb*P (MAKEbbbbEQFORDbbbbbb&YEARbbbbGT2002)
STOCKbbbb
STOCSALEb

The IMS Universal DL/I driver provides support for data retrieval that mirrors DL/l semantics.

You have seen above, how to obtain an SSAList instance from the PCB instance representing
the database, how you can add qualification statements to the SSAList, specify the segment
fields to retrieve and get a Path instance by using the SSAList instance and calling the
getPathForRetrieveReplace method causing all the fields to be retrieved in the resulting Path
object that were marked for retrieval. Mention was also made of the getUnique method and
this and other DL/I retrieve methods are shown in Table 8-1. There is one more thing to say
about marking fields for retrieval, by default all the fields in the lowest level segment specified
in the SSAList are returned. However, if any individual fields in that segment are marked for
retrieval only those will be returned.

Table 8-1 Methods for DL/I retrieve from the PBC interface

JAVA API for DL/I retrieve method Usage

getUnique

Retrieves a specific unique segment. Method provides the same
functionality as a DL/I GU database call. If the isHoldCall parameter
is set to true method behaves as a DL/I GHU database call.

184 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

7856¢ch08.fm

JAVA API for DL/I retrieve method

Usage

getNext

Retrieves the next segment in the path. Method provides the same
functionality as a DL/I GN database call. If the isHoldCall parameter
is set to true, the method behaves as the DL/I GHN database call
does.

getNextWithinParent

Retrieves the next segment within the same parent. Method
provides the same functionality as the DL/ GNP database call. If the
isHoldCall parameter is set to true the method behaves as a DL/I
GHNP database call would.

batchRetrieval

Retrieves multiple segments with a single call.

Methods for retrieving and converting data types

Data can be retrieved and converted from how it is defined in the database metadata to the
type your Java application is expecting by using the Path interface. If the application was
using either the IMS Classic JDBC or IMS Universal JDBC drivers you would be able to use

the ResultSet interface.

Table 8-2 shows the get methods that can be used in the ResultSet interface or the Path
interface for accessing certain data of a certain Java data type.

Table 8-2 The get methods

ResultSet.getXXX or No truncation or Legal without data integrity

Path.getXXXX Method data loss

getByte TINYINT SMALLINT, INTEGER, BIGINT, FLOAT, DOUBLE, BIT,
CHAR, VARCHAR, PACKEDDECIMAL, ZONEDDECIMAL

getShort SMALLINT TINYINT, INTEGER, BIGINT, FLOAT, DOUBLE, BIT,
CHAR, VARCHAR, PACKEDDECIMAL, ZONEDDECIMAL

getint INTEGER TINYINT, SMALLINT, BIGINT, FLOAT, DOUBLE, BIT,
CHAR, VARCHAR, PACKEDDECIMAL, ZONEDDECIMAL

getLong BIGINT TINYINT, SMALLINT, INTEGER, FLOAT, DOUBLE, BIT,
CHAR, VARCHAR, PACKEDDECIMAL, ZONEDDECIMAL

getFloat FLOAT TINYINT, SMALLINT, INTEGER, BIGINT, DOUBLE, BIT,
CHAR, VARCHAR, PACKEDDECIMALT,
ZONEDDECIMALA1

getDouble DOUBLE TINYINT, SMALLINT, INTEGER, BIGINT, FLOAT, BIT,
CHAR, VARCHAR, PACKEDDECIMAL, ZONEDDECIMAL

getBoolean BIT TINYINT, SMALLINT, INTEGER, BIGINT, FLOAT,
DOUBLE, CHAR, VARCHAR, PACKEDDECIMAL,
ZONEDDECIMAL

getString CHAR TINYINT, SMALLINT, INTEGER, BIGINT, FLOAT,

VARCHAR DOUBLE, BIT, PACKEDDECIMAL, ZONEDDECIMAL,

BINARY, DATE, TIME, TIMESTAMP

getBigDecimal PACKEDDECIMAL TINYINT, SMALLINT, INTEGER, BIGINT, FLOAT,

ZONEDDECIMAL DOUBLE, BIT, CHAR, VARCHAR
getClob CLOB all others result in an exception

Chapter 8. Scenario 3 - Writing DL/I and mixed applications 185

7856¢ch08.fm Draft Document for Review May 7, 2010 1:20 pm

ResultSet.getXXX or No truncation or Legal without data integrity

Path.getXXXX Method data loss

getBytes BINARY all others result in an exception

getDate DATE CHAR, VARCHAR, TIMESTAMP

getTime TIME CHAR, VARCHAR, TIMESTAMP

getTimestamp TIMESTAMP CHAR, VARCHAR, DATE, TIME
Notes:

» PACKEDDECIMAL and ZONEDDECIMAL are data type extensions for the IMS Classic
JDBC, IMS Universal JDBC and IMS Universal DL/I drivers All other types are standard
SQL types defined in SQL92, PACKEDDECMAL and ZONEDDECIMAL do not support
the Sign Leading or Sign Separate modes. For these two data types data is always
stored with the Sign Trailing method.

» The CLOB data type is only supported for the storage and retrieval of XML. This is
currently only supported by the IMS Classic JDBC driver.

8.1.3 Inserting data using the IMS Universal DL/I driver

There are two methods, the create and the insert, that can be used in the PCB interface to
add a new segment into the database. Used with the IMS Universal DL/I driver the two
methods provide functionality similar to the DL/l ISRT call. The insert method returns an IMS
status code indicating the result of the operation, while the create method returns a count of
the number of segments inserted (this currently will always return 1). The 2 methods provide
defaults for any DBD search fields that are not explicitly set, as normal character based fields
are set to blanks and numeric based fields are set to zero. Non-DBD fields are set to hex ‘00’.
If a key field is not set an exception is thrown. If a key field is broken down into multiple sub
fields in the DBD you must use the key field to set the value, if just the sub fields are allocated
values an exception will be thrown. You can specify values for both but make sure they line up
identically. If you provide values for both the key field and the sub fields and the values are not
the same the actual value of the key field for the segment inserted into the database will
depend on the order of the path.setString statements in the application, last overrides first.

Example 8-7 shows how to use the create and insert methods to add a new MODEL and two
ORDER segments into the AUTODB where the DLRNO is ‘1234’.

Example 8-7 Create and Insert method

SSAList ssalist = pcb.getSSAList(“DEALER”,”0RDER™);
ssaList.addInitialQualification(“DEALER”,”DLRNO”,SSAList.EQUALS,”1234);
Path path = ssalist.getPathForInsert(“MODEL”);

path.setString(“MODEL”, “MODKEY”, “Lotus Evora 2010™) ;
path.setString (“MODEL™, “MSRP”, “65000™)

path.setString(“ORDER”, “ORDNBR”, “258921”);

path.setString(“ORDER”, “LASTNME”, “Thilo”);

path.setString(“ORDER”, “FIRSTNME™, “LIEDLOFF”);

path.setString(“ORDER”, “DATE”, “04-10-2010");

int i = pcb.create(path, ssalist); // returns i = 1 if successful

SSAList ssalist = pcb.getSSAList(“ORDER™);
path = ssalist.getPathForInsert(“ORDER™);

186 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch08.fm

path.setString (“ORDNBR™, “258930”);

path.setString(“LASTNME®, “Angelique”);

path.setString(“FIRSTNME™, “GREENHAW”);

path.setString(“DATE”, “04-09-2010);

short status = pcb.insert(path,ssalist); // returns an IMS status code

8.1.4 Updating data with the IMS Universal DL/I driver

This section shows how to update data with the IMS Universal DL/I driver.

Note: To persist changes made to the database, your application must call the PSB
commit method prior to deallocating the PSB. Failure to do so will result in changes being
rolled back to the last point commit was called or the start of the application if commit was
never called

The replace method is used to amend data in a segment that exists in the database.
Example 8-8 shows how the ORDER segment that would have been inserted in the previous
example has the LASTNME and FIRSTNME fields corrected as the values were inserted the
wrong way round.

Example 8-8 The replace method

SSAList ssalist = pcb.getSSAList(“DEALER”,”0RDER”);
ssalList.addInitialQualification(“DEALER”,”DLRNO”,SSAList.EQUALS,”6788);
ssalList.addInitialQualification(*“MODEL>,”MODKEY”,
SSAList.EQUALS,”Lotus Evora 2010”);
ssalist.addInitialQualification(“ORDER”,”0ORDNBR”,SSAList.EQUALS,>”258921%);
Path path = ssalist.getPathForRetrieveReplace();
if(pcb.getUnique(path, ssalist,true)) {

path.setString (“LASTNME™, “LIEDLOFF”);

path.setString (“FIRSTNME™, “Thilo”);

pcb.replace(path);

}

8.1.5 Deleting data with the IMS Universal DL/I driver

The delete method is used to remove existing segments from the database. Functionally the
delete method in the IMS Universal DL/I driver is similar to the DL/I DLET call. The delete of a
segment will cause all of its child segments to be deleted as well. The delete call must be
preceded by a HOLD operation. The Hold operation can be done using any one of either a
getUnique, getNext or getNextWithinParent method call. An IMS status code is returned by
the delete method which indicates the result of the DL/I operation. When a Path of segments
has been retrieved by the HOLD operation you can either delete all segments in that path or a
subset of them. To delete them all you would call the delete method with no parameters. To
delete segments from a point on the Path, other than the top, to the bottom, use the delete
method that takes an SSAList argument and pass in an unqualified SSAList for the segment
where you want deletion to begin. If you use a qualified SSAList an exception will be thrown.

Example 8-9 demonstrates how to delete all segments in a PATH. It shows how to use delete
to selectively remove all MODEL segments and its dependent segments STOCK,
STOCSALE, ORDER and SALES where the DLRNO is 222222’, MAKE is ‘FORD’ and the
MODEL is ‘FOCUS'.

Chapter 8. Scenario 3 - Writing DL/I and mixed applications 187

7856¢ch08.fm Draft Document for Review May 7, 2010 1:20 pm

Example 8-9 Deleting all segments in the path

SSAList ssalist = pcb.getSSAList("DEALER","STOCK");
ssalist.addInitialQualification("DEALER","DLRNO",SSAList.EQUALS,"1234");
ssalist.addInitialQualification("MODEL","MAKE",SSAList.EQUALS,"FORD");
ssalist.addCommandCode (“MODEL",SSAList.CC_D);
Path path = ssalist.getPathForRetrieveReplace();
if (pcb.getUnique(path, ssalist, true)) {
if (path.getString("MODEL", "MODEL").equals("FOCUS")) {
pch.delete();
}
}
while (pcb.getNext(path, ssalist, true)) {
if (path.getString("MODEL", "MODEL").equals("FOCUS")) {
pch.delete();
}

Example 8-10 shows how to delete with an unqualified SSAList. The delete will remove all
STOCK segments and its logical child segment STOCSALE where the DLRNO is ‘222222’,
the MAKE is ‘FORD’ and the MODEL is ‘FOCUS’.

Example 8-10 Deleting segments with an unqualified ssalist

SSAList ssalist = pcb.getSSAList("DEALER","STOCK");
ssalist.addInitialQualification("DEALER","DLRNO",SSAList.EQUALS,"1234");
ssalist.addInitialQualification("MODEL","MAKE",SSAList.EQUALS, "FORD");
ssaList.markA11FieldsForRetrieval ("MODEL", true);
Path path = ssalList.getPathForRetrieveReplace();
SSAList stockSSAList = pcb.getSSAList("STOCK");
if (pcb.getUnique(path, ssalist, true)) {

if (path.getString("MODEL", "MODEL").equals("FOCUS")) {

pcb.delete(stockSSAList);
}

}
while (pcb.getNext(path, ssalist, true)) {
if (path.getString("MODEL", "MODEL").equals("FOCUS")) {
pch.delete(stockSSAList);
}

Example 8-11 is a total application showing all the topics previously talked about in this
chapter. This is downloadable from the file IMS Universal DLI Driver sample.zip as described
in Appendix D, “Additional material” on page 249.

Example 8-11 dlitest1 - A Complete DL/I application

package dlitestl;
import com.ibm.ims.d1i.*;
public class DLIprogram f{
public static void main(String[] args) {
PSB psb = null;
PCB pcb = null;
SSAList ssalist = null;
Path path = null;
PathSet pathSet = null;
try {
// establish a database connection
IMSConnectionSpec connSpec
= IMSConnectionSpecFactory.createIMSConnectionSpec();

188 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

connSpec.setDatastoreName("IMSZ");
connSpec.setDatastoreServer("wtsc63.itso.ibm.com");
connSpec.setPortNumber(5555) ;
connSpec.setMetadataURL("class://samples.ims.openDb.AUTPSB11DatabaseView");
connSpec.setUser("userid");

connSpec.setPassword("password");
connSpec.setDriverType(IMSConnectionSpec.DRIVER TYPE 4);

psb = PSBFactory.createPSB(connSpec);

System.out.printIn("**** Created a connection to the IMS database");

pcb = psb.getPCB("AUTOLPCB");

System.out.printin("**** Created PCB object");

// specify the segment search arguments

ssalist = pch.getSSAList("DEALER", "STOCK");

// add the initial qualification

// specify the fields to retrieve

ssalList.markFieldForRetrieval ("DEALER", "DLRNO", true);

ssaList.markFieldForRetrieval ("DEALER", "DLRNAME", true);

ssalist.markFieldForRetrieval ("DEALER", "CITY", true);

ssalList.markFieldForRetrieval ("DEALER", "ZIP", true);

ssaList.markA11FieldsForRetrieval ("MODEL", true);

ssaList.markA11FieldsForRetrieval ("STOCK", true);

ssaList.markFieldForRetrieval ("STOCK", "LOT", false);

System.out.printin("**** Created SSAList object");

// obtain a Path containing the segments

// that match the SSAList criteria

path = ssalist.getPathForRetrieveReplace();

System.out.printIn("**** Created Path object");

// issue a DL/I GU call to retrieve the first segment on the Path

if (pcb.getUnique(path, ssalist, true)) {
System.out.printin("Dealer Number: "+ path.getString("DEALER", "DLRNO"));
System.out.printin("Dealer Name: "+ path.getString("DEALER", "DLRNAME"));
System.out.printIn("City: "+ path.getString("DEALER", "CITY"));
System.out.printin("ZIP: "+ path.getString("DEALER", "ZIP"));
System.out.printin("Type of Model: "+ path.getString("MODEL", "MODTYPE"));
System.out.printin("Manufacturer: "+ path.getString("MODEL", "MAKE"));

System.out.printin("Model: "+ path.getString("MODEL", "MODEL"));
System.out.printin("Year: "+ path.getString("MODEL", "YEAR"));
System.out.printin("MSRP: "+ path.getString("MODEL", "MSRP"));
System.out.printin("# in Stock: "+ path.getString("MODEL", "COUNT1"));
System.out.printIn("VIN Number: "+ path.getString("STOCK", "STKVIN"));
System.out.printin("Colour: "+ path.getString("STOCK", "COLOR"));
System.out.printin("Price: "+ path.getString("STOCK", "PRICE"));
System.out.printin("Warrenty: "+ path.getString("STOCK", "WRNTY"));

}
// issue multiple DL/I GN calls until

// there are no more segments to retrieve

while (pcb.getNext(path, ssalist, true)) {
System.out.printin("Dealer Number: "+ path.getString("DEALER", "DLRNO"));
System.out.printin("Dealer Name: "+ path.getString("DEALER", "DLRNAME"));
System.out.printIn("City: "+ path.getString("DEALER", "CITY"));
System.out.printin("ZIP: "+ path.getString("DEALER", "ZIP"));
System.out.printIn("Type of Model: "+ path.getString("MODEL", "MODTYPE"));
System.out.printin("Manufacturer: "+ path.getString("MODEL", "MAKE"));

System.out.printin("Model: "+ path.getString("MODEL", "MODEL"));
System.out.printin("Year: "+ path.getString("MODEL", "YEAR"));
System.out.print1n("MSRP: "+ path.getString("MODEL", "MSRP"));
System.out.printin("# in Stock: "+ path.getString("MODEL", "COUNT1"));
System.out.printin("VIN Number: "+ path.getString("STOCK", "STKVIN"));
System.out.printin("Colour: "+ path.getString("STOCK", "COLOR"));

Chapter 8. Scenario 3 - Writing DL/l and mixed applications

7856¢ch08.fm

189

7856¢ch08.fm

Draft Document for Review May 7, 2010 1:20 pm

System.out.printin("Price: "+ path.getString("STOCK", "PRICE"));
System.out.printin("Warrenty: "+ path.getString("STOCK", "WRNTY"));

}
// Insert a new DEALER, MODEL & 3 STOCK segments
ssalist = pch.getSSAList("DEALER", "STOCK");
path = ssalist.getPathForInsert("DEALER");
path.setString("DLRNO", "7575");
path.setString("DLRNAME", "IBM Super Systems");
path.setString("CITY", "Portsmouth");
path.setString("ZIP", "P06 3AU");
path.setString("PHONE", "0239256");
path.setString("MODTYPE", "MF");
path.setString("MODKEY", "IBM 710 GT 2010");
path.setString("MSRP", "12500");
path.setString("COUNT1", "3");
path.setString("STKVIN", "VT11234677098557729C");
path.setString("COLOR", "Blue");
path.setString("PRICE", "99999");
path.setString("LOT", "BS12345678");
path.setString("WRNTY", "Y");
short status = pcb.insert(path, ssalist);
if(status == IMSStatusCodes.BLANKS) {

System.out.printin(" Insert of STOCK Segment 1 Successful");
} else {

System.out.printin(" Insert of STOCK Segment 1 FAILED");
}
ssalist = pch.getSSAList("STOCK");
path = ssalist.getPathForInsert("STOCK");
path.setString("STKVIN", "VT11234677098557730C");
path.setString("COLOR", "Deep Blue");
path.setString("PRICE", "99999");
path.setString("LOT", "BS12345679");
path.setString("WRNTY", "Y");
status = pch.insert(path, ssalist);
if(status == IMSStatusCodes.BLANKS) {

System.out.printin(" Insert of STOCK Segment 2 Successful");
} else {

System.out.printIn(" Insert of STOCK Segment 2 FAILED");
}
path.setString("STKVIN", "VT11234677098557731C");
path.setString("COLOR", "Light Blue");
path.setString("PRICE", "99999");
path.setString("LOT", "BS12345680");
path.setString("WRNTY", "Y");
int i = pcb.insert(path, ssalist);
if(i > 0){

System.out.printin(" Insert of STOCK Segment 3 Successful");
} else {

System.out.printin(" Insert of STOCK Segment 3 FAILED");
}
psh.commit();
ssalist = pch.getSSAList("DEALER", "STOCK");
// add the initial qualification
ssaList.addInitialQualification("DEALER", "DLRNO",

SSAList.EQUALS, "7575");

ssaList.addCommandCode ("DEALER",SSAList.CC D);
ssaList.addCommandCode ("MODEL",SSAList.CC_D);
ssalist.addCommandCode ("MODEL",SSAList.CC_P);
// specify the fields to retrieve
ssaList.markAT1FieldsForRetrieval ("DEALER", true);

190 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch08.fm

ssalList.markAl11FieldsForRetrieval ("MODEL", true);

ssaList.markAl11FieldsForRetrieval ("STOCK", true);

System.out.printIn("**** Created SSAList object");

// obtain a Path containing the segments

// that match the SSAList criteria

path = ssalist.getPathForRetrieveReplace();

System.out.printIn("**** Created Path object");

// issue a DL/I GU call to retrieve the

// first segment on the Path

if (pcb.getUnique(path, ssalist, true)) {
System.out.printin("DEALER NUMBER: "+ path.getString("DEALER", "DLRNO"));

System.out.printin("DEALER NAME: "+ path.getString("DEALER", "DLRNAME"));
System.out.printIn("CITY: "+ path.getString("DEALER", "CITY"));
System.out.printin("ZIP: "+ path.getString("DEALER", "ZIP"));
System.out.printin("PHONE NUMBER: "+ path.getString("DEALER", "PHONE"));

System.out.printIn("TYPE of MODEL: "+ path.getString("MODEL", "MODTYPE"));
System.out.print1n("MAKE MODEL YEAR: "+ path.getString("MODEL", "MODKEY"));

System.out.printin("MSRP: "+ path.getString("MODEL", "MSRP"));
System.out.printIn("Number in Stock: "+ path.getString("MODEL", "COUNT1"));
System.out.printin("VIN NUMBER: "+ path.getString("STOCK", "STKVIN"));
System.out.printin("COLOR: "+ path.getString("STOCK", "COLOR"));
System.out.printin("PRICE: "+ path.getString("STOCK", "PRICE"));
System.out.printIn("LOT: "+ path.getString("STOCK", "LOT"));
System.out.printin("WARRENTY?: "+ path.getString("STOCK", "WRNTY"));

}

while (pcb.getNextWithinParent(path, ssalist, true)) {
System.out.printin("VIN NUMBER: "+ path.getString("STOCK", "STKVIN"));
System.out.printin("COLOR: "+ path.getString("STOCK", "COLOR"));
System.out.printin("PRICE: "+ path.getString("STOCK", "PRICE"));
System.out.printIn("LOT: "+ path.getString("STOCK", "LOT"));
System.out.printin("WARRENTY?: "+ path.getString("STOCK", "WRNTY"));

}
ssalist = pch.getSSAList("DEALER", "STOCK");

// add the initial qualification
ssaList.addInitialQualification("DEALER", "DLRNO",SSAList.EQUALS, "7575");
// specify the fields to retrieve
ssalist.markFieldForRetrieval ("DEALER", "DLRNO", true);
ssaList.markAl11FieldsForRetrieval ("MODEL", true);
ssaList.markAl11FieldsForRetrieval ("STOCK", true);
ssalist.addCommandCode ("MODEL",SSAList.CC_P);
// obtain a Path containing the segments
// that match the SSAList criteria
path = ssalist.getPathForRetrieveReplace();
System.out.printIn("**** Get DLRNO 7575 ready for DELETE ****");
String blue = "Blue";
// issue a DL/I GU call to retrieve
if (pcb.getUnique(path, ssalist, true)) {
String color = path.getString("STOCK","COLOR").trim();
System.out.printin("Color is :'"+color+"'");
if (color.equals(blue)) {
System.out.printIn("STKVIN = "+ path.getString("STOCK", "STKVIN"));
System.out.printIn("This one is Blue do not delete");}
else{
SSAList stockSSAList = pcb.getSSAList("STOCK");
status = pcb.delete(stockSSAList);
if(status == IMSStatusCodes.BLANKS) {
System.out.printin(" DELETE of STOCK Segment "
+ path.getString("STOCK", "STKVIN")+" Successful");
} else {
System.out.printIn(" DELETE of STOCK Segment "

Chapter 8. Scenario 3 - Writing DL/I and mixed applications 191

7856¢ch08.fm Draft Document for Review May 7, 2010 1:20 pm

192

+ path.getString("STOCK", "STKVIN")+" FAILED");
}
}
}
while (pcb.getNextWithinParent(path, ssalist, true)) {
String color = path.getString("STOCK","COLOR").trim();
System.out.printin("Color is :'"+color+"'");
if (color.equals(blue)){
System.out.printIn("This one is Blue so do not delete");
} else {
SSAList stockSSAList = pcb.getSSAList("STOCK");
status = pch.delete(stockSSAList);
if(status == IMSStatusCodes.BLANKS) {
System.out.printin(" DELETE of STOCK Segment "
+ path.getString("STOCK", "STKVIN")+" Successful");
} else {
System.out.printIn(" DELETE of STOCK Segment "
+ path.getString("STOCK", "STKVIN")+" FAILED");
}
}
}
System.out.printIn(" A11 STOCK segments not COLOR = BLUE deleted");
ssalist = pch.getSSAList("DEALER");
// add the initial qualification
ssalist.addInitialQualification("DEALER", "DLRNO",
SSAList.EQUALS, "7575");
// specify the fields to retrieve
ssalist.markFieldForRetrieval ("DEALER", "DLRNO", true);
path = ssalist.getPathForRetrieveReplace();
if (pcb.getUnique(path, ssalist, true)==true) {
status = pch.delete();
}
if(status == IMSStatusCodes.BLANKS) {
System.out.printin(" DEALER DLRNO = '7575' and dependents deleted");
} else {
System.out.printin(" DELETE PROBLEM");
}

psb.commit();

// specify the segment search arguments

ssalist = pch.getSSAList("DEALER", "STOCK");

// add the initial qualification

ssalList.addInitialQualification("DEALER", "DLRNO",
SSAList.EQUALS, "1234"),

ssalList.addCommandCode ("MODEL",SSAList.CC_D);

ssaList.addCommandCode ("MODEL",SSAList.CC_P);

// specify the fields to retrieve

ssalList.markFieldForRetrieval ("DEALER", "DLRNO", true);

ssaList.markFieldForRetrieval ("DEALER", "DLRNAME", true);

ssaList.markFieldForRetrieval ("DEALER", "CITY", true);

ssaList.markA11FieldsForRetrieval ("MODEL", true);

ssalist.markFieldForRetrieval ("MODEL", "MAKE", false);

ssalist.markFieldForRetrieval ("MODEL", "YEAR", false);

ssaList.markAl11FieldsForRetrieval ("STOCK", true);

System.out.printIn("**** Created SSAList object");

// obtain a Path containing the segments that match the SSAList criteria

path = ssalist.getPathForRetrieveReplace();

System.out.printIn("**** Created Path object");

// issue a DL/I GU call to retrieve the segments on the Path

if (pcb.getUnique(path, ssalist, true))

IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

7856¢ch08.fm

System.out.printin("DEALER NUMBER: "+ path.getString("DEALER", "DLRNO"));
System.out.printin("DEALER NAME: "+ path.getString("DEALER", "DLRNAME"));
System.out.printIn("CITY: "+ path.getString("DEALER", "CITY"));
System.out.printin("MAKE, MODEL & YEAR: "+ path.getString("MODEL", "MODKEY"));
System.out.printin("MSRP: "+ path.getString("MODEL", "MSRP"));
System.out.printin("VIN NUMBER: "+ path.getString("STOCK", "STKVIN"));
System.out.printin("COLOR: "+ path.getString("STOCK", "COLOR"));

}

// 1f data was retrieved update the values in fields MSRP in the MODEL

// segment and COLOR in the STOCK segment

if (pcb.getUnique(path, ssalist, true))
path.setString("MSRP", "45999");

path.setString("COLOR", "Green");

pch.replace(path);

if (pcb.getUnique(path, ssalist, true))

System.out.printin("DEALER NUMBER: "+ path.getString("DEALER", "DLRNO"));
System.out.printin("DEALER NAME: "+ path.getString("DEALER", "DLRNAME"));
System.out.printIn("CITY: "+ path.getString("DEALER", "CITY"));
System.out.printin("MAKE, MODEL & YEAR: "+ path.getString("MODEL", "MODKEY"));
System.out.printin("MSRP: "+ path.getString("MODEL", "MSRP"));
System.out.printin("VIN NUMBER: "+ path.getString("STOCK", "STKVIN"));
System.out.printin("COLOR: "+ path.getString("STOCK", "COLOR"));

}

// Rollback the

psbh.rollback();

// Get the data from the path for DLRNO 1234 to

// updates have been rolled back.

ssalist = pch.getSSAList("DEALER", "STOCK");

// add the initial qualification

ssalist.addInitialQualification("DEALER", "DLRNO",
SSAList.EQUALS, "1234");

// specify the fields to retrieve

updates

show that the

ssalist.
ssalist.
ssalist.

markFieldForRetrieval ("DEALER",
markFieldForRetrieval ("DEALER",
markFieldForRetrieval ("DEALER",

"DLRNO", true);
"DLRNAME", true);
"CITY", true);

ssaList.markA11FieldsForRetrieval ("MODEL", true);
ssalist.markFieldForRetrieval ("MODEL", "MAKE", false);
ssalList.markFieldForRetrieval ("MODEL", "YEAR", false);
ssaList.markAl11FieldsForRetrieval ("STOCK", true);
System.out.printIn("**** Created SSAList object");

// obtain a Path containing the segments that match the SSAList criteria
path = ssalist.getPathForRetrieveReplace();

// issue a DL/I GU call to retrieve the segments on the Path

if (pcb.getUnique(path, ssalist, true))

System.out.printIin("DEALER NUMBER: "+ path.getString("DEALER", "DLRNO"));
System.out.printin("DEALER NAME: "+ path.getString("DEALER", "DLRNAME"));
System.out.printIn("CITY: "+ path.getString("DEALER", "CITY"));
System.out.printin("MAKE, MODEL & YEAR: "+ path.getString("MODEL", "MODKEY"));
System.out.printin("MSRP: "+ path.getString("MODEL", "MSRP"));
System.out.printin("VIN NUMBER: "+ path.getString("STOCK", "STKVIN"));
System.out.printin("COLOR: "+ path.getString("STOCK", "COLOR"));

}

// rollback the updates to MODEL & STOCK
psb.rollback();

// close the database connection
psh.close();

System.out.printIn("**** Disconnected from IMS database");

} catch (DLIException e){

System.out.printin(e);
System.exit(0);

Chapter 8. Scenario 3 - Writing DL/I and mixed applications 193

7856¢ch08.fm

Draft Document for Review May 7, 2010 1:20 pm

Example 8-12 shows the output of the application in Example 8-11.

Example 8-12 Output from the application

****% Created a connection to the IMS database

***% Created PCB object
***%* Created SSAList object
***%* Created Path object

Dealer Number:
Dealer Name:
City:

ZIP:

Type of Model:
Manufacturer:
ModeT:

Year:

MSRP:

in Stock:
VIN Number:
Colour:

Price:
Warrenty:

1234

SAN JOSE FORD
SAN JOSE
95777-3333

S

FORD

FOCUS

2002

17995

03
V234567890123456789V
LIGHT BLUE
16000

Y

Insert of STOCK Segment 1 Successful
Insert of STOCK Segment 2 Successful
Insert of STOCK Segment 3 Successful
***%* Created SSAList object
**** Created Path object

DEALER NUMBER: 7575

DEALER NAME: IBM Super Systems
CITY: Portsmouth

ZIP: P06 3AU

PHONE NUMBER: 0239256

TYPE of MODEL: MF

MAKE MODEL YEAR: IBM 710 GT
MSRP: 12500

Number in Stock: 3

VIN NUMBER: VT11234677098557729C
COLOR: Blue

PRICE: 99999

LOT: BS12345678
WARRENTY?: Y

VIN NUMBER: VT11234677098557730C
COLOR: Deep Blue

PRICE: 99999

LOT: BS12345679
WARRENTY?: Y

VIN NUMBER: VT11234677098557731C
COLOR: Light Blue

PRICE: 99999

LOT: BS12345680
WARRENTY?: Y

%*% Get DLRNO 7575 ready for DELETE **

Color is :'Blue'

STKVIN = VT11234677098557729C
This one is Blue do not delete
Color is :'Deep Blue'

194 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch08.fm

DELETE of STOCK Segment VT11234677098557730C Successful
Color is :'Light Blue'

DELETE of STOCK Segment VT11234677098557731C Successful
A11 STOCK segments not COLOR = BLUE deleted

DEALER DLRNO = '7575' and dependents deleted

****% Created SSAList object

**** Created Path object

DEALER NUMBER: 1234

DEALER NAME: SAN JOSE FORD

CITY: SAN JOSE

MAKE, MODEL & YEAR: FORD FOCUS 2002
MSRP: 17995

VIN NUMBER: V234567890123456789V
COLOR: LIGHT BLUE

DEALER NUMBER: 1234

DEALER NAME: SAN JOSE FORD

CITY: SAN JOSE

MAKE, MODEL & YEAR: FORD FOCUS 2002
MSRP: 45999

VIN NUMBER: V234567890123456789V
COLOR: Green

***%* Created SSAList object

DEALER NUMBER: 1234

DEALER NAME: SAN JOSE FORD

CITY: SAN JOSE

MAKE, MODEL & YEAR: FORD FOCUS 2002
MSRP: 17995

VIN NUMBER: V234567890123456789V
COLOR: LIGHT BLUE

**** Disconnected from IMS database

8.1.6 Using the Batch Methods with the IMS Universal DL/1 driver

When you hear that there is a “batch method” of using the DL/1 driver, you might immediately
think it would be something you ran in batch using System z Job Control Language (JCL). You
will soon found out that it is wrong!

It is a way of accessing/updating multiple segments with a single call. Instead of the
application having to make multiple getUnique and getNext calls, IMS performs all the calls
and returns the results back to the client in a single batch operation. The number of rows to
be returned for each batch network operation is determined by the fetch size property which
is set for you internally but can be overridden by the pcb.getFetchSize(n); statement where n
is a number you deem acceptable. This is especially relevant for a distributed client in order to
maximise network efficiency. The driver will build a request for the number of rows asked for
to be returned and send it to ODBM (via IMS Connect) who will interact with IMS to retrieve
this number of rows (if available), one network interaction will retrieve multiple rows (or
segments). If the remote client application continues to ask for more rows, the driver will
submit a request for another set of rows to be returned. This facility is available in all the
drivers:-

» Universal DB Resource Adapter — for JDBC, and for CCI SQL or DL/1 access

» Universal JDBC Driver

» Universal DL/1 Driver

Update and delete operations can also make use of the batch method where you have

multiple In a batch update or delete operation, the IMS host will do a GU/GN loop and inside
the loop update or delete each record until there are no more segments matching the SSAList

Chapter 8. Scenario 3 - Writing DL/I and mixed applications 195

7856¢ch08.fm Draft Document for Review May 7, 2010 1:20 pm

196

and return the number of records deleted.segments that match the selection criteria in the
SSAList that are to be updated or deleted.

Example 8-13 shows an application using the batch methods for retrieval, updating and
deleting data.This is downloadable from the file IMS Universal DLI Driver sample.zip as
described in Appendix D, “Additional material” on page 249.

Example 8-13 dlitest2 - Batch methods example

package dlitest2;
import com.ibm.ims.dli.*;
public class DLIprogram? {
public static void main(String[] args) {
PSB psb = null;
PCB pcbhb = null;
SSAList ssalList = null;
Path path = null;
PathSet pathSet = null;
int cnt = 0;
try {
// establish a database connection
IMSConnectionSpec connSpec
= IMSConnectionSpecFactory.createIMSConnectionSpec();
connSpec.setDatastoreName("IMSZ");
connSpec.setDatastoreServer("wtsc63.itso.ibm.com");
connSpec.setPortNumber(5555) ;
connSpec.setMetadataURL (
"class://samples.ims.openDb.AUTPSB11DatabaseView");
connSpec.setUser("IMS2R");
connSpec.setPassword("t0Obyjugs");
connSpec.setDriverType (IMSConnectionSpec.DRIVER_TYPE 4);
psb = PSBFactory.createPSB(connSpec);
System.out.printin(
"x*** Created a connection to the IMS database");
pch = psb.getPCB("AUTOLPCB");
System.out.printIn("**** Created PCB object");
// add the initial qualification
// specify the segment search arguments
ssalist = pcb.getSSAList("DEALER","MODEL");
ssalList.addInitialQualification("DEALER","DLRNAME",
SSAList.NOT_EQUAL,"IBM Bristol Cars ")
ssaList.addInitialQualification("MODEL", "MODEL",
SSAList.EQUALS,"FOCUS");
ssalist.appendQualification("MODEL",SSAList.AND,
"COUNT1",SSAList.GREATER THAN, "02");
// add the initial qualification
// specify the fields to retrieve
ssaList.markFieldForRetrieval ("DEALER", "DLRNO", true);
ssaList.markFieldForRetrieval ("DEALER", "DLRNAME", true);
ssaList.markFieldForRetrieval ("DEALER", "CITY", true);
ssaList.markFieldForRetrieval ("DEALER", "ZIP", true);
ssaList.markA11FieldsForRetrieval ("MODEL", true);
/! ssalList.markAl11FieldsForRetrieval (3, true);
System.out.printIn("**** Created SSAList object");
// obtain a Path containing the segments
// that match the SSAList criteria

IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

/1

System.out.printIn("**** Created Path object");
// issue a DL/I GU call to retrieve the first segment on the Path
pathSet = pch.batchRetrieve(ssalist);
while(pathSet.hasNext()){
path = pathSet.next();
cnt = cnt + 1;
System.out.printIn("Dealer Number:
path.getString("DEALER", "DLRNQO")
+ " Dealer Name: .
path.getString("DEALER", "DLRNAME")
+ " City: "
+ path.getString("DEALER", "CITY")
+ " ZIP: "
+ path.getString("DEALER", "ZIP"));
System.out.printin("Model Type: "
+ path.getString("MODEL", "MODTYPE")
+ " Manufacturer: "
+ path.getString("MODEL", "MAKE")
+ " Model: "
+ path.getString("MODEL", "MODEL")
+ " Year: "
+ path.getString("MODEL", "YEAR")
+ " MSRP: "
+ path.getString("MODEL", "MSRP")
+ " # in Stock: "
+ path.getString("MODEL", "COUNT1"));

+

+

}

System.out.printin("Number of loops = "+ cnt);

cnt = cnt - c¢nt;

ssalist = pcb.getSSAList("DEALER","MODEL");

ssalList.addInitialQualification("DEALER","DLRNAME",
SSAList.NOT_EQUAL,"IBM Bristol Cars ")

ssaList.addInitialQualification("MODEL", "MODEL",
SSAList.EQUALS,"FOCUS");

ssalist.appendQualification("MODEL",SSAList.AND,
"COUNT1",SSAList.GREATER THAN, "02");

path = ssalist.getPathForBatchUpdate("MODEL");

path.setString("MSRP", "15500");

int i = pcb.batchUpdate(path, ssalist);

System.out.printin("Number of Segments Updated = "+ i);

System.out.printin("Updates Done");

pathSet = pch.batchRetrieve(ssalist);

// issue multiple DL/I GN calls until

// there are no more segments to retrieve

ssalist = pcb.getSSAList("DEALER","MODEL");

ssaList.addInitialQualification("DEALER","DLRNAME",
SSAList.NOT_EQUAL,"IBM Bristol Cars ")

ssaList.addInitialQualification("MODEL", "MODEL",
SSAList.EQUALS,"FOCUS");

ssalist.appendQualification("MODEL",SSAList.AND,
"COUNT1",SSAList.GREATER THAN, "02");

ssaList.markFieldForRetrieval ("DEALER", "DLRNO", true);

ssaList.markFieldForRetrieval ("DEALER", "DLRNAME", true);

ssaList.markFieldForRetrieval ("DEALER", "CITY", true);

ssaList.markFieldForRetrieval ("DEALER", "ZIP", true);

Chapter 8. Scenario 3 - Writing DL/l and mixed applications

7856¢ch08.fm

197

7856¢ch08.fm

Draft Document for Review May 7, 2010 1:20 pm

ssaList.markA11FieldsForRetrieval ("MODEL", true);

pathSet = pch.batchRetrieve(ssalist);

while(pathSet.hasNext()){
path = pathSet.next();
cnt = cnt + 1;

System.out.printIn("Dealer Number:

+ path.getString("DEALER", "DLRNO")
+ " Dealer Name: "

+ path.getString("DEALER", "DLRNAME")
+ " City: "

+ path.getString("DEALER", "CITY")
+ " ZIP: "

+ path.getString("DEALER", "ZIP"));

System.out.printin("Model Type: "

+ path.getString("MODEL", "MODTYPE")
+ " Manufacturer: "

+ path.getString("MODEL", "MAKE")
+ " Model: "

+ path.getString("MODEL", "MODEL")
+" Year: "

+ path.getString("MODEL", "YEAR")
+ " MSRP: "

+ path.getString("MODEL", "MSRP")
+ " # in Stock: "

+ path.getString("MODEL", "COUNT1"));

}
System.out.printin("Numer of loops = "+ cnt);

ssalist = pcb.getSSAList("DEALER","MODEL");

ssaList.addInitialQualification("DEALER","DLRNAME",
SSAList.NOT_EQUAL,"IBM Bristol Cars ")

ssaList.addInitialQualification("MODEL", "MODEL",
SSAList.EQUALS,"FOCUS");

ssalist.appendQualification("MODEL",SSAList.AND,
"COUNT1",SSAList.GREATER THAN, "02");

i = pcb.batchDelete(ssalist);

System.out.printin("Number of Segments Deleted = "+ i);
System.out.printin("Deletes Done");
cnt = cnt - c¢nt;
ssalist = pcb.getSSAList("DEALER","MODEL");
ssaList.markFieldForRetrieval ("DEALER", "DLRNO", true);
ssaList.markFieldForRetrieval ("DEALER", "DLRNAME", true);
ssaList.markFieldForRetrieval ("DEALER", "CITY", true);
ssaList.markFieldForRetrieval ("DEALER", "ZIP", true);
ssaList.markA11FieldsForRetrieval ("MODEL", true);
pathSet = pch.batchRetrieve(ssalist);
while(pathSet.hasNext()){
path = pathSet.next();
cnt = cnt + 1;
System.out.printIn("Dealer Number:

198

+ path.
+II
+ path.
+II
+ path.
+II

IMS 11: The Open Database

getString ("DEALER",

Dealer Name:

getString ("DEALER",

City: '

getString ("DEALER",

ZIP: !

"DLRNO")
"DLRNAME")

"CITY")

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch08.fm

+ path.getString("DEALER", "ZIP"));
System.out.printin("Model Type: "
+ path.getString("MODEL", "MODTYPE")
+ " Manufacturer: "
+ path.getString("MODEL", "MAKE")

+ " Model: "

+ path.getString("MODEL", "MODEL")
+ " Year: "

+ path.getString("MODEL", "YEAR")
+ " MSRP: "

+ path.getString("MODEL", "MSRP")
+ " # in Stock: "
+ path.getString("MODEL", "COUNT1"));
}
System.out.printIn("Numer of loops = "+ cnt);
// rollback the updates to MODEL
psb.rollback();
// close the database connection
psb.close();
System.out.printIn("**** Disconnected from IMS database");
} catch (DLIException e){
AIB aib = e.getAib();
if (aib !'= null) {
String sc = aib.getDBPCB().getStatusCodeChars();
String retcode = aib.getReturnCodeHex();
String reascode = aib.getReasonCodeHex();
System.out.printIn("Status code: " + sc + " Return Code:
+ retcode + " Reason Code: " + reascode);

}
System.out.printin(e);
System.exit(0);

}

8.2 Writing application with the IMS Universal DB Resource
Adapter and the CCI programming approach

The IMS Universal DB Resource Adapter offers the capability of writing applications using the
CCI programming model. As JDBC is our recommended approach for accessing IMS data
with the IMS Universal Drivers, it can have advantages to use the CCI programming model.
JDBC doesn’t allow you the granularity of accessing hierarchical data then DL/I does. The
CCI programming model allows you to use SQL and DL/l syntax within one Connection and
application. You could also use the standalone JDBC and standalone DL/I drivers within one
application but you would need two separate connections and you would have to coordinate
the commit or rollbacks by yourself (or with global transaction support).

Note: The IMS Universal DB Resource Adapters are intended to be used in managed JEE
Application Servers, but they also give you the possibility of using them in standalone
non-managed applications.

Chapter 8. Scenario 3 - Writing DL/I and mixed applications 199

7856¢ch08.fm

Draft Document for Review May 7, 2010 1:20 pm

The IMS Universal DB Resource Adapters are RAR files and contain jar files. In order to use
the IMS Universal DB Resource Adapters in standalone applications, it is useful to extract the
jar files by using a extract utility, that is capable of extracting RAR archives. The extracted Jar
files must be (like with all other drivers) be in the Class path of the application.

The example in this paragraphs explains the code of an application using the IMS Universal
DB Resource Adapter and the CCI programming approach in a standalone environment.
For more information about the CCl API see the CCI API in the Information Center under

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims1l.doc.apr
/ims_odbjcasupportforcci.htm

8.2.1 Writing the application step by step

The following steps explain step by step the important steps of writing the application. For a
full reference of the program see Appendix D, “Additional material” on page 249.

1. You will need the import statements listed in Example 8-14 in you application.

Example 8-14 Import Statements of CCI Application

import javax.naming.InitialContext; //only in managed environemnts
import javax.transaction.UserTransaction; //only in manged environments
import javax.resource.cci.*;

import com.ibm.ims.db.cci.*;

Therefore you must have the WebSphere Application Library in you Class path as it
contains the j2ee.jar which contains the used javax.* classes.

2. Inanon managed environment you have to create a new IMSManagedConnectionFactory
object and specify the needed values for the connection. From the
ManagedConnectionFactory you can create a ConnectionFactory which creates the
Connection itself. See Example 8-15.

Example 8-15 Create MCF

IMSManagedConnectionFactory mcf = new IMSManagedConnectionFactory();
mcf.setUser("user");

mcf.setPassword("password");

mcf.setDatastoreName ("IMS2");
mcf.setDatastoreServer("myhost.itso.ibm.com");
mcf.setPortNumber(5555);
mcf.setMetadataURL("class://samples.ims.openDb.AUTPSB11DatabaseView");
mcf.setSSLConnection(false);
mcf.setDriverType(IMSManagedConnectionFactory.DRIVER TYPE 4);
mcf.setLoginTimeout (10);

ConnectionFactory cf = (ConnectionFactory) mcf.createConnectionFactory();
Connection conn = cf.getConnection();

In a managed environment you just have to lookup the JNDI name of the
ConnectionFactory with the help of the InitialContext which is passed to the application
from the container. See Example 8-16.

Example 8-16 Lookup MCF

InitialContext ic = new InitialContext();
ConnectionFactory cf = (ConnectionFactory) ic.lookup("java:comp/env/MyMCF");
Connection conn = cf.getConnection();

200 IMS 11: The Open Database

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims11.doc.apr/ims_odbjcasupportforcci.htm

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch08.fm

3. For transaction handling you can use the code in Example 8-17 in your unmanaged
application.

Example 8-17 Transaction calls

LocalTransaction trans =conn.getlLocalTransaction();
trans.begin();

trans.commit(); // or trans.rollback();

In a managed environment you can get the UserTransaction object from the
SessionContext as shown in 5.3.1, “JCA/Common Client Interface approach” on
page 105.

4. Create an Interaction object and a SQLInteractionspec and a DLIInteractionSpec object
which contains informations about the Interaction itself. See Example 8-18.

Example 8-18 Create Interaction and InteractionSpecs

Interaction ix = conn.createlnteraction();
SQLInteractionSpec sqlSpec = new SQLInteractionSpec();
DLIInteractionSpec dliSpec = new DLIInteractionSpec();

5. Insert 1 DEALER root segment and 3 dependent MODEL segments with the SQL syntax
shown in Example 8-19.

Example 8-19 Insert segments with SQL

sq1Spec.setSQL("INSERT INTO AUTOLPCB.DEALER (DLRNO, ZIP, DLRNAME, CITY, PHONE) " +
"VALUES('7777"', '70565','Thilos A,B and X Model Cars','Stuttgart','555-888')");
ix.execute(sqlSpec, null);
sq1Spec.setSQL("INSERT INTO AUTOLPCB.MODEL " +
"(DEALER_DLRNO,MODTYPE,MAKE,MODEL,YEAR,MSRP,COUNTI)" +
" VALUES ('7777','S','LIDLA','A Normal','2010','20000','05')");
ix.execute(sqlSpec, null);
sq1Spec.setSQL("INSERT INTO AUTOLPCB.MODEL " +
"(DEALER_DLRNO,MODTYPE,MAKE,MODEL,YEAR,MSRP,COUNTl) "+
"VALUES ('7777', 'M','LIDLA','B Plus','2010','40000','03")");
ix.execute(sqlSpec, null);
sq1Spec.setSQL("INSERT INTO AUTOLPCB.MODEL " +
"(DEALER_DLRNO,MODTYPE,MAKE,MODEL,YEAR,MSRP,COUNTI) "+
"VALUES ('7777','L','LIDLA','X Large','2010','60000','01')");
ix.execute(sqlSpec, null);

6. Next we retrieve the information from the database. With the DL/I syntax the code would
look like Example 8-20.

Example 8-20 Retrieve information with DL/

dliSpec.setFunctionName ("RETRIEVE");

d1iSpec.setPCBName ("AUTOLPCB") ;

dliSpec.setSSAList ("DEALER *D (DLRNO = '7777') MODEL ");

ResultSet dlirs = (ResultSet) ix.execute(dliSpec, null);

while (dlirs.next()) {
System.out.print(dlirs.getString("DLRNO")+" ; ");
System.out.print(dlirs.getString("DLRNAME")+" ; ");
System.out.print(dlirs.getString("MODTYPE")+" ; ");
System.out.print(dlirs.getString("MAKE")+" ; ");
System.out.print(dlirs.getString("MODEL")+" ; ");
System.out.print(dlirs.getString("MSRP")+" ; ");
System.out.print(dlirs.getString("COUNT1")+" \n");

Chapter 8. Scenario 3 - Writing DL/I and mixed applications 201

7856¢ch08.fm

Draft Document for Review May 7, 2010 1:20 pm

Here the RETRIEVE function is used by specifying a IMS Path Call in the SSA statement.
The execute function does not need an input object. As output object you will get back a
ResultSet object which can be used as usually.

The same function with SQL syntax would look like Example 8-21.

Example 8-21 Retrieve information with SQL

sql1Spec.setSQL("SELECT * FROM AUTOLPCB.DEALER,AUTOLPCB.MODEL " +
"WHERE DEALER.DLRNO='7777' AND MODEL.DEALER_DLRNO='7777'");

ResultSet sqlrs = (ResultSet) ix.execute(sqlSpec, null);

while (sqlrs.next()) {
System.out.print(sqlrs.getString("DLRNO")+" ; ");
System.out.print(sqlrs.getString("DLRNAME")+" ; ");
System.out.print(sqlrs.getString("MODTYPE")+" ; ");
System.out.print(sqlrs.getString("MAKE")+" ; ");
System.out.print(sqlrs.getString("MODEL")+" ; ");
System.out.print(sqlrs.getString("MSRP")+" ; ");
System.out.print(sqlrs.getString("COUNT1")+" \n");

It uses the WHERE clause to specify which segments should be received and gets also a
ResultSet which can be used in the usual way.

7. One thing that cannot be done with SQL syntax if for example to update the last
dependent segment in the database. For this call we use the DL/l syntax in Example 8-22.

Example 8-22 Update information with DL/

dliSpec.setFunctionName ("UPDATE");

dliSpec.setSSAList ("DEALER *D (DLRNO = '7777') MODEL *L");
RecordFactory rf = cf.getRecordFactory();

MappedRecord input = rf.createMappedRecord("DEALER");
input.put ("DEALER.DLRNAME", "Thilos A and B Model Cars");
input.put ("MODEL.MSRP", "00000");

input.put ("MODEL.COUNT1", "00");

ix.execute(dliSpec, input);

The SSA contains the *L command and uses a path call from DEALER and MODEL by
specifying *D command. In this case you have to create a MappedRecord with DEALER
as parameter, but as it is a path call you can modify any segment in the path that is
specified. This example sets the last occurrence of MODEL in this path to MSRP=00000
and COUNT1=00 to indicate that this model is no longer available. Therefore we change
also the DLRNAME in the parent DEALER segment. If you just want to update the
MODEL segment you do not have to specify a *D path call command and can map the
record to the MODEL segment.

Note: The last occurrence is not necessarily the last inserted. It depends on the key
field of the Segment.

The key field of the Model segment is build from the MAKE,MODEL and YEAR. So the
MODKEY fields would look like Example 8-23 for our three inserts.
Example 8-23 Output of MODKEY retrieve

MODKEY No 1 is “LIDLA A Normal 2010~
MODKEY No 2 is “LIDLA B Plus 20107

202 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch08.fm

MODKEY No 3 is “LIDLA X Large 2010”

The last occurrence would be the last one as the key differentiates the position on A,B or
X.

8. In the end we do a delete of the inserted DEALER segment with the code in
Example 8-24.

Example 8-24 Delete data with SQL

sq1Spec.setSQL("DELETE FROM AUTOLPCB.DEALER WHERE DLRNQO='7777'");
sqlrs = (ResultSet) ix.execute(sqlSpec, null);
if(sqlrs.next()){
System.out.printin("DEALER Rows deleted :"+sqlrs.getInt("UPDATE_COUNT"));
1

With the deletion of the DEALER segment, also all referenced (dependent) segments get
deleted. To get the information if the delete was successful, you can use the ResultSet and
get the generated UPDATE_COUNT field.

8.2.2 Complete Code Example of CCl mixed application

The code in Example 8-25 shows the complete application which is described in 8.2.1,
“Writing the application step by step” on page 200.

Example 8-25 CCIStandaloneDLlandSQL

package samples.ims.applications;
import javax.resource.cci.*;
import com.ibm.ims.db.cci.*;

public class CCIStandaloneDLIandSQL {
public static void main(String[] args) {
System.out.printin("Creating Connection Factory and specifing values");
Connection conn = null;
IMSManagedConnectionFactory mcf = new IMSManagedConnectionFactory();
mcf.setUser("user");
mcf.setPassword("password");
mcf.setDatastoreName("IMS2");
mcf.setDatastoreServer("myhost.itso.ibm.com");
mcf.setPortNumber(5555);
mcf.setMetadataURL("class://samples.ims.openDb.AUTPSB11DatabaseView");
mcf.setSSLConnection(false);
mcf.setDriverType(IMSManagedConnectionFactory.DRIVER TYPE 4);
mcf.setLoginTimeout (10);
try{
ConnectionFactory cf = (ConnectionFactory) mcf.createConnectionFactory();
conn = cf.getConnection();
LocalTransaction trans =conn.getlLocalTransaction();
trans.begin();
Interaction ix = conn.createlnteraction();
System.out.printin("Started Transaction");
SQLInteractionSpec sqlSpec = new SQLInteractionSpec();
System.out.printIn("Insert DEALER segment and 3 MODELs");
sql1Spec.setSQL("INSERT INTO AUTOLPCB.DEALER " +
"(DLRNO, ZIP, DLRNAME, CITY, PHONE) " +
"VALUES('7777"', '70565','Thilos A,B and X Model Cars','Stuttgart','555-888')");
ix.execute(sqlSpec, null);
sql1Spec.setSQL("INSERT INTO AUTOLPCB.MODEL " +

Chapter 8. Scenario 3 - Writing DL/I and mixed applications 203

7856¢ch08.fm Draft Document for Review May 7, 2010 1:20 pm

"(DEALER_DLRNO,MODTYPE,MAKE,MODEL,YEAR,MSRP,COUNTl)" +
" VALUES ('7777','S','LIDLA','A Normal','2010','20000','05')");

ix.execute(sqlSpec, null);

sq1Spec.setSQL("INSERT INTO AUTOLPCB.MODEL " +
" (DEALER_DLRNO,MODTYPE,MAKE ,MODEL, YEAR,MSRP,COUNT1) " +
"VALUES ('7777', 'M','LIDLA','B Plus','2010','40000','03')");

ix.execute(sqlSpec, null);

sq1Spec.setSQL("INSERT INTO AUTOLPCB.MODEL " +
"(DEALER_DLRNO,MODTYPE,MAKE,MODEL,YEAR,MSRP,COUNTl) "+
"VALUES ('7777','L','LIDLA','X Large','2010','60000','01')");

ix.execute(sqlSpec, null);

System.out.printin("Display DEALER and MODEL with DL/I");

DLIInteractionSpec d1iSpec = new DLIInteractionSpec();

dliSpec.setFunctionName("RETRIEVE");

d1iSpec.setPCBName ("AUTOLPCB") ;

dliSpec.setSSAList ("DEALER *D (DLRNO = '7777') MODEL ");

ResultSet dlirs = (ResultSet) ix.execute(dliSpec, null);

while (dlirs.next()) {
System.out.print(dlirs.getString("DLRNO")+" ; ");
System.out.print(dlirs.getString("DLRNAME")+" ; ");
System.out.print(dlirs.getString("MODTYPE")+" ; ");
System.out.print(dlirs.getString("MAKE")+" ; ");
System.out.print(dlirs.getString("MODEL")+" ; ");
System.out.print(dlirs.getString("MSRP")+" ; ");
System.out.print(dlirs.getString("COUNT1")+" \n");

}

System.out.printin("Modify Last Occurence of MODEL of the inserted DEALER");

dliSpec.setFunctionName ("UPDATE");

dliSpec.setSSAList ("DEALER *D (DLRNO = '7777') MODEL *L");

RecordFactory rf = cf.getRecordFactory();

MappedRecord input = rf.createMappedRecord("DEALER");

input.put ("DEALER.DLRNAME", "Thilos A and B Model Cars");

input.put ("MODEL.MSRP", "00000");

input.put ("MODEL.COUNT1", "00");

ix.execute(dliSpec, input);

sql1Spec.setSQL("SELECT * FROM AUTOLPCB.DEALER,AUTOLPCB.MODEL " +
"WHERE DEALER.DLRNO='7777' AND MODEL.DEALER_DLRNO='7777'");

ResultSet sqlrs = (ResultSet) ix.execute(sqlSpec, null);

while (sqlrs.next()) {
System.out.print(sqlrs.getString("DLRNO")+" ; ");
System.out.print(sqlrs.getString("DLRNAME")+" ; ");
System.out.print(sqlrs.getString("MODTYPE")+" ; ");
System.out.print(sqlrs.getString("MAKE")+" ; ");
System.out.print(sqlrs.getString("MODEL")+" ; ");
System.out.print(sqlrs.getString("MSRP")+" ; ");
System.out.print(sqlrs.getString("COUNT1")+" \n");

}

sql1Spec.setSQL("DELETE FROM AUTOLPCB.DEALER WHERE DLRNO='7777'");

sqlrs = (ResultSet) ix.execute(sqlSpec, null);

if(sqlrs.next()){
System.out.printin("DEALER Rows deleted :"+sqlrs.getInt("UPDATE_COUNT"));

}

trans.rollback();

dlirs.close();

sqlrs.close();

ix.close();

conn.close();

System.out.printIn("Transaction rolled back and Connection closed");

} catch (Exception e) {
e.printStackTrace();

204 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

try {
conn.close();
} catch (Exception el) {
el.printStackTrace();
}

7856¢ch08.fm

The output of the application should look like the lines in Example 8-26.

Example 8-26 Output of CCIStandaloneSQLandDLI Java application

Creating Connection Factory and specifing values
Started Transaction

Insert DEALER segment and 3 MODELs

Display DEALER and MODEL with DL/I

7777 ; Thilos A,B and X Model Cars 5 S ;3 LIDLA
7777 3 Thilos A,B and X Model Cars s M ; LIDLA
7777 3 Thilos A,B and X Model Cars s L 3 LIDLA
Modify Last Occurence of MODEL of the inserted DEALER

7777 3 Thilos A and B Model Cars 5 S 3 LIDLA
7777 ; Thilos A and B Model Cars s M 3 LIDLA
7777 ; Thilos A and B Model Cars ; L 3 LIDLA

DEALER Rows deleted :1
Transaction rolled back and Connection closed

B

s
>

s A Normal
;s B Plus
3 X Large

A Normal

s B Plus
3 X Large

; 20000 ;
; 40000 ;
; 60000 ;

20000 ;
; 40000 ;
; 00000 ;

05
03
01

05
03
00

Chapter 8. Scenario 3 - Writing DL/l and mixed applications

205

7856¢ch08.fm Draft Document for Review May 7, 2010 1:20 pm

206 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch09.fm

9

Operational considerations

This chapter is about general recommendations and best practices. It contains information on
the following topics:

» Architectural suggestions

» Enhancing existing applications

» Tracing in problem cases

» Using Tools with IMS Open database
» Additional sample programs

© Copyright IBM Corp. 2010. All rights reserved. 207

7856¢h09.fm

Draft Document for Review May 7, 2010 1:20 pm

9.1 Architectural suggestions

We have put together some information which could help you to find the right solution for your
requirement.

9.1.1 Application middle layer

Sometimes it can make sense to develop a middle layer to prevent accessing IMS databases
directly from application developers. Such cases would be:

>

Usually the application developers for distributed environments do not have a valid userid
and password on z/OS side to access IMS resources directly. To handle the security for all
developers involved in a large application development project can cause much effort.

A technical user id could help in the above case, but in pre-production environments some
databases or parts of it should only be accessible to a certain group. Sometimes this
security is currently implemented by the IMS transaction, but with this solution you would
bypass the transaction. A middle layer which implements this security again could help in
this case. The alternative would be to specify different PSBs for the database with different
access levels.

An application middle layer could also help to prevent heavy database workloads in IMS.
Sometimes unspecific database calls can cause a database scan and causes much 1/O
work on the database which could affect performance for other transactions and users. A
middle layer can help to allow only specific database calls to IMS.

Such a middle layer could be implemented in various ways:

»

One option would be to create Web Services for application developers to do specific calls
against an IMS database. This approach makes it possible to switch easily to different
databases and allows a loosen coupling for a service oriented approach.

Another option could be to implement a persistence layer like Hibernate™ or JPA for your
application. The application developer uses in this case only Java objects in his application
and the database calls are done by the persistence layer under the cover. Since the IMS
Open Database feature uses industry standards, this approach should be easily
implementable with small changes to the current restriction or supported SQL syntax of
the IMS Universal Drivers.

There exist several more options like proxing the request through an EJB bean or a self
written solution.

Note: An alternative to implementing the middle layer would be using the CSL ODBM user
exits to allow/disallow certain incoming statements or manipulating the outcome of the
statements.See “ODBM user exits” on page 53 for more information.

A general recommendation cannot be given as the approach refers to the specific
requirements of the application and company. IMS is opened up with the Open Database
feature to the complete distributed world with all chances and threats which must be taken in
consideration before you use the IMS Open Database feature in production environments.

9.1.2 Sysplex considerations

We did not focus on a sysplex environment in this book to keep the scenarios and the
explanation simple. There are several things you must keep in mind for the IMSPlex itself. If
you have Data Sharing in the IMSPIex in place, it does not matter to which IMS the Open DB

208 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch09.fm

request is routed. You can have each component more often for backup or workload
balancing reasons.

Figure 9-1 shows an example system environment with two IMS systems in a IMSPlex with
enabled Data Sharing. Each LPAR has its own IMS Connect Address space (IMSHWSA and
IMSHWSB) and ODBM dress space (IMSODA and IMSODB). IMS Connect communicates
with ODBM within the LPAR via a local PC call, but IMS Connect is also capable of
communicating across LPAR boundaries via the Structured Call Interface (SCI) which
supports XCF communication. So you would just need one IMS Connect address space
(IMSHWSB) which routes the request depending on the ODBM configuration to IMSODB or
IMSODA. To avoid a single point of failure in the IMS Connect address space is possible to
use the z/OS Sysplex Distributor to route the requests to a different IMS Connect address
space (here IMSHWSA) in case of a failure.

LPAR 1

IMSA
IMS
Universal CF DLI
DB Driver LPAR 2 databases
XCF,

' IMSB

t

IMSHWSB |MSODB
1
P

Figure 9-1 A two member IMSPlex sample environment

You should have one ODBM task per LPAR, which has a control region. One ODBM can
connect to more than one control region of the same IMSplex on the same LPAR.

The IMS PROCLIB member CSLDCxxx can be shared between the ODBMs in a Sysplex.
You can also use for each ODBM its own configuration member. The configuration member
has two parts:

» A global section, which sets values for the IMSplex as a whole

» Alocal section, which defines the various ODBM address spaces and control regions.
This overrides the global section.

The two IMS Connect and each IMS must belong to the same IMSPLEX (CSL group). When
IMS Connect starts up, connection is made to all members of the CSL group, and information
is exchanged, so that IMS Connect acquires knowledge of the real ODBM address spaces
and the database component of the DBCTL and DB/DC systems they are in connection with,
so that they can be addressed for IMS Universal Driver queries.

For a detailed example with configuration members for a IMS Open Database Sysplex
environment see Appendix “B.1 IMS configuration” of IMS Version 11 Technical Overview,
SG24-7807.

9.1.3 Performance considerations

Performance is a tough topic to deal with. The focus in this book wasn’t on performance
aspects. The performance is strong influenced by the design of your queries in combination

Chapter 9. Operational considerations 209

7856¢ch09.fm Draft Document for Review May 7, 2010 1:20 pm

with the database layout. But also configuration parameters and application parameters are
important under performance considerations. We want to highlight the parameters that can
influence performance:

» IMS Universal Drivers related

— When possible use type-2 connectivity instead of type-4, as you can safe the way
across TCP/IP and IMS Connect. When you use WebSphere Application Server for
z/OS on the same LPAR as IMS, you can also use the RRSLocalOption of the IMS
Database Resource Adapter.

— Use Local transaction support instead of using XA transaction support where possible,
because you will safe the expensive two-phase commit processing.

— Return only needed columns in SELECT statements by specifying them instead of
using the star (*) value.

— Compare columns to specific values instead to other columns.

— Use PreparedStatements if you are doing several queries or updates, as the IMS
Universal Drivers doesn’t have to build every time the SSA list for the DL/I call and just
have to put the values in

— Increase the fetchSize() parameter to get more results back with each network call.
This can increase performance for large queries, as you safe several network calls.

— Use secondary indexes and maybe reorganize your database where possible to fit the
requirements of the application, especially for batch using applications.

— Use DL/I for specific requests what JDBC and SQL cannot do, like a get next parent
call.

» IMS Connect and ODBM related performance

— Increase the MAXTHREAD parameter in the CSLDCxxx member to allow more parallel
access to your database

— Distribute your requests to several IMSplex members where possible

— Use PC calls instead of XCF calls, this means when possible have IMS Connect or the
type-2 application and ODBM with IMS on the same LPAR.

» RRS logging performance

— Because of the use of RRS, ODBA performance is related to the RRS logging
performance. RRS uses z/OS logger and five log streams that can be shared by
multiple systems in a sysplex. You have several choices of the z/OS logger
implementation; you must consider that your choice should meet your performance
and recovery requirements. For a description of configuring and defining RRS logging
requirements, see z/OS V1R6.0 MVS Programming: Resource Recovery, SA22-7616.

For database performance use the usually procedures you have for your daily IMS database
maintenance to keep your IMS database healthy like reorganizations or rebuild pointers etc.
There are no special requirements necessary for the IMS Open Database feature.

9.2 Enhancing existing applications

The IMS Open Database feature and the IMS Universal Database Drivers allow you to
enhance your existing environments.

210 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch09.fm

9.2.1 ODBA access through ODBM

The former architecture of the IMS DB Resource Adapter needed WebSphere Application
Server z/OS to be on the same LPAR as IMS. This solution uses ODBA to get to the DL/I
data. You do not require a DRA module to access IMS Open Database through IMS Connect.
But you do not need to redevelop your application as the IMS Universal DB Resource Adapter
is backwards compatible. The ODBA interface from previous versions of IMS can coexist with
IMS 11 without modification, but it is recommended to use the new features to avoid some
issues.

ODBA can make cross address space calls (PC calls) but only within the same logical
partition. The ODBA modules are loaded into the address space of the application, which is
running under its container’s TCB, which poses a potential problem because if WebSphere
Application Server (with ODBA within it) is terminated while an application’s DLI call is in
process, then the IMS control region receives an abend U113 when it detects that the ODBA
TCB is no longer around.

You should add the IMSPLEX= parameter to your existing DRAs and reassemble them. This
information is what provides u113 isolation to ODBA applications because it causes ODBA to
use ODBM instead of connecting directly to IMS. You might also want to add the
ODBMNAME-= parameter if you want to ensure connection to a specific ODBM. Example 9-1
shows a sample DRA.

Example 9-1 Sample DRA for ODBA access through ODBM

//DFSIVP10 EXEC PROC=ASMDRA,MBR=DFSIMSBO
//ASM.SYSIN DD *
DFSIMSBO CSECT

DFSPRP DSECT=NO, X
FUNCLV=2, ODBA FUNCTION LEVEL X
DDNAME=DFSDB2SP, DDNAME FOR DRA RESLIB X
DSNAME=IMS11B.SDFSRESL, DSNAME FOR DRA RESLIB X
DBCTLID=IMSB, DBCTL IDENTIFIER X
USERID=, USER IDENTIFIER X
MINTHRD=1, MINIMUM NUMBER OF THREADS X
MAXTHRD=1, MAXIMUM NUMBER OF THREADS X
TIMER=60, IDENTIFY TIMER VALUE DEFAULT X
FPBUF=, NUMBER OF FP BUFFERS PER THREAD X
FPBOF=, NUMBER OF FP OVERFLOW BUFFERS X
S0D=A, SNAP DATASET OUTPUT CLASS X
TIMEOUT=60, DRATERM TIMEOUT VALUE X
IDRETRY=0, IDENTIFY RETRY COUNT X
CNBA=, TOTAL FP NBA BUFFERS FOR CCTL X
IMSPLEX=PLEXB, IMSPLEX NAME X
ODBMNAME=0DO0B OPTIONAL ODBMNAME

END
/1*

Although the ODBA program connects to IMS through ODBM, connecting to an ODBM is only
possible if it is running on the same LPAR. If your programs have to access an ODBM on
another LPAR, you can choose between implementing your own DRDA solution or using the
ODBM API.

For more information about using the ODBA interface see section “19.1 Accessing IMS

databases through the ODBA” of IMS Connectivity in an On Demand Environment: A
Practical Guide to IMS Connectivity, SG24-6794

Chapter 9. Operational considerations 211

7856¢ch09.fm Draft Document for Review May 7, 2010 1:20 pm

9.2.2 Enabling unsupported Java environments

The IMS Universal JDBC Drivers should normally work in most Java using applications which
supports the standards like JDBC. There are certainly some restrictions as the drivers
currently only support what is possible with IMS. You are currently not possible to create a
database or table via a SQL statement for example.

IMS has currently no catalog where the metadata information is stored which is needed by
the IMS Universal drivers. Therefore you have to use the metadata class file normally
packaged in a Jar file. But some applications support JDBC, but you can select just one Jar
file for the driver. To get the driver operating in such environments you have different
approaches:

» You can pack your generated metadata files in the driver jar file. So you can just reference
to it in the application. The disadvantage of this solution is that you have to edit each time
the driver is there is a new driver version to deploy or you have changed or want to add
any database.

» Another approach is to add the metadata file to the class path of the application. Therefore
you have two options depending on the architecture of the application you want to enable:

— You can specify the class path of the application to contain the Jar files of the IMS
Universal Driver and metadata files. This can be done whether by specifying the
system’s environment variables or adding it otherwise to the class path of the
application, e.g. specifying it with a start parameter if possible.

— The alternative is to put the Jar file in the JRE/lib/ext folder which is used by the Java
application, so that it will be loaded by starting the JVM. Here can also be the driver
deployed, if the application doesn’t give the option to specify a Jar file for the Driver.
This approach is usually not a good programming model, but it can be used if no other
option is available.

Of course you can also ask the application provider to add official support for the IMS
Universal drivers to his product by allowing to select the classpath or Jar files of the IMS
Universal JDBC driver and the metadata file.

9.3 Tracing in problem cases

There are several situations where you might want enable tracing to find the problem cause.

9.3.1 IMS Universal driver tracing

The IMS Universal Drivers have several places where you can set the tracing option
depending on your runtime environment

Tracing in JRE applications
One option is to turn on automatic tracing in the JRE logging.properties file.

You can set the trace level for the IMS Universal drivers loggers in the logging.properties file
of your Java Runtime Environment (JRE). Using this method, the application does not need to
be recompiled. The file is located on the install path of your JRE, under
\jre\lib\logging.properties. To set the trace for all IMS Universal drivers loggers, add the lines
in Example 9-2 to the logging.properties file to send the trace output to a file.

212 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch09.fm

Example 9-2 logging.properties entries for tracing

com.ibm.ims.db.opendb.Tevel = FINEST

java.util.logging.FileHandler.level = FINEST
java.util.logging.FileHandler.pattern = c:/UniversalDriverTrace.txt
java.util.logging.FileHandler.formatter = java.util.logging.SimpleFormatter

Note: Some JREs overwrite these settings and you will find the log file in a different
location. In the case of Rational Developer for System z with enabled logging it will put the
log file as .log file in the .metadata directory of your workspace directory.

Tracing in J2EE environments

Tracing can be turned on from your J2EE application server. In WebSphere Application
Server, this is configured through the administrative console. The IMS Universal DB resource
adapter must be deployed on WebSphere Application Server before tracing can be
configured. To get the most detailed trace from the IMS Universal DB resource adapter, follow
these steps:

» Log on to the WebSphere Application Server administration console and select
Troubleshooting->Logs and Trace.

» Select your application server.

» Select General Properties->Diagnostic Trace.

» Select Additional Properties->Change Log Detail Levels.

» Switch to the Runtime tab.

» Make sure that the Save runtime changes to configuration as well check box is turned ON.
» Select Change Log Details Levels and choose the component com.ibm.ims.db.opendb.*
» In the Message and Trace levels menu select the message level FINEST and click Apply.

To save these changes for the next time the application server is started, click the Save link at
the top of the page. WebSphere Application Server does not need to be restarted.

Tracing in applications
You can also programmatically turn on tracing in your IMS Universal drivers application. This
requires the application to be recompiled.

» Import the java.util.logging package in your application and create a logger by calling the
Logger.getLogger method with the String argument "com.ibm.ims.db.opendb".

» In your application, you can set the level of tracing for the logger by using the
Logger.setLevel method.

The sample code in Example 9-3 shows how programmatic trace is enabled for any IMS
Universal drivers application.

Example 9-3 Application enabled tracing

import java.util.logging;

private static final Logger imslog = Logger.getLogger("com.ibm.ims.db.opendb");
imslog.setLevel (Level .FINEST);

FileHandler fh = new FileHandler("C:/UniversalTrace.txt");

fh.setFormatter(new SimpleFormatter());

fh.setLevel (Level .FINEST);

imslog.addHandler(fh);

Chapter 9. Operational considerations 213

7856¢ch09.fm Draft Document for Review May 7, 2010 1:20 pm

9.3.2 ODBM tracing

ODBM is the layer between IMS Connect and IMS. It is a Common Service Layer (CSL)
address space and offers the usual tracing capabilities of CSL and Base Primitive
Environment Tracing. This type of tracing should be used to determine if it is a component
error or not.

» To start or stop a trace use the following commands:
UPDATE ODBM START(TRACE) DATASTORE (names)
UPDATE ODBM STOP(TRACE) DATASTORE (names)

For more information about CSL and BPE tracing see

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims1ll.doc.sag
/system_intro/ims_tracingbpecomponents.htm
and

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims1l.doc.dgr
/ims_cs1 _service_aids.htm

9.3.3 IMS Tracing

If you receive an unexpected result for a query, it is a good idea to evaluate how your SQL call
is described in the DL/l call format. For this purpose, you can use the tracing facility for DL/I
calls with image captures by using the IMS trace command. To take a DL/I call image capture
(for example, for the PSB AUTPSB11), use the following sequence of events for tracing:

1. Turn on the trace with the following commanad:
/TRACE SET ON PSB AUTPSB11 COMP

2. Run the Java application.

3. Turn off the trace with the following command:
/TRACE SET OFF PSB AUTPSB11

4. Switch the online log data sets (OLDSs):
/SWITCH OLDS

5. Execute the print utility DFSERA10, specifying the latest SLDS as input in SYSUT1 DD.
The DFSERA10 input control statements to retrieve the information from the log look
similar to the statements in Example 9-4.

Example 9-4 DFSERA10 options

OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,0FFSET=25,FLDTYP=C, X
VALUE=AUTPSB11,FLDLEN=7 ,DDNAME=0UTDDN, COND=E

9.4 Using Tools with IMS Open database

IBM IMS tools deliver the reliability and affordability you need to maximize the value of your
IMS environment. Providing on demand access to IMS applications and data, the tools help
optimize data across your enterprise. Information on IMS tools is available at:

214 IMS 11: The Open Database

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims11.doc.sag/system_intro/ims_tracingbpecomponents.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims11.doc.sag/system_intro/ims_tracingbpecomponents.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims11.doc.dgr/ims_csl_service_aids.htm

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch09.fm

http://www.ibm.com/software/data/db2imstools/products/ims-tools.html

Tools are grouped in solution packs for convenience. Of particular interest is the Performance
Solution Pack, which is being extended to offer functionalities in the IMS Open Database
area. The Performance Solution pack is described at:

http://www.ibm.com/software/data/db2imstools/imstools/ims-performance-solution-pack/
IMS Performance Solution Pack (program number: 5655-5S42) provides improved productivity

for problem analysts, more efficient IMS application performance, improved IMS resource
utilization, and higher system availability. It includes:

» IMS Connect Extensions helps improve the availability, reliability, and performance of IMS
Connect.

» IMS Performance Analyzer provides information on IMS system performance for
monitoring, tuning, managing service levels, analyzing trends, and capacity planning.

» IMS Problem Investigator provides services to that can help determine the cause of
problems and trace the flow of events end to end.

We describe functions for Open Database provided by IMS Connect Extensions and IMS
Problem Investigator.

9.4.1 IMS Connect Extensions

We have seen that IMS Connect, an integrated component of IMS since Version 9, provides
TCP/IP access to IMS applications. With the introduction of Open Database, its role has been
extended to also provide the TCP/IP transport for direct access to IMS data. Its role is to
transport and route DDM messages to the appropriate ODBM address space and return
responses to clients via TCP/IP. It is a crucial component for distributed access with DRDA.

IBM IMS Connect Extensions for z/OS (IMS Connect Extensions) is an IMS Tool that provides
event collection and instrumentation for IMS Connect. It collects information about outgoing
and incoming requests that are transported via IMS Connect. This information is then
available for analysis using standard IMS Tools such as IMS Performance Analyzer and IMS
Problem Investigator.

In the context of Open Database, we can divide the information that IMS Connect Extensions
collects into two categories:

» Framing events
» Application-level events

Framing events

These are events that mark significant points in the lifecycle of an Open Database request.
Each such event contains a timestamp that gives you information about the relative timings
and duration of the entire DRDA request. These events include:

» Opening of the TCP/IP socket

» Processing of the DRDA request

» Security authentication and authorization

» Dispatch of request to ODBM address space

» Response received from ODBM address space
» Processing of response

» Dispatching to client

Chapter 9. Operational considerations 215

http://www.ibm.com/software/data/db2imstools/products/ims-tools.html
http://www.ibm.com/software/data/db2imstools/imstools/ims-performance-solution-pack/

7856¢h09.fm

Draft Document for Review May 7, 2010 1:20 pm

» Sync-point processing (if RRS is used)

Such events help you understand the flow of an Open Database request and obtain timings
not only for the overall request but for individual processing steps for the request.

Application-level events

These events provide a record of exactly what request was sent by the client and what
response was received back from IMS. They provide a complete breakdown of individual
DDM objects and data. They help you debug and tune applications as well as audit and
monitor exactly what activity is being performed by clients.

Figure 9-2 summarizes the value of this information.

/Open database access \

Overall request characteristics

AL
¢ N

IMS Connect ODBM

Extensions

Journals

Framing for ODBM performance

Input and output for ODBM

Figure 9-2 IMS Connect Extensions event collection

The information collected by IMS Connect Extensions can be analyzed using IMS Problem
Investigator and IMS Performance Analyzer. Both tools can interpret the data and place it in
the context of other information sources such as the IMS log. IMS Problem Investigator is
focused on giving you detailed insight into the characteristics of individual requests, while IMS
Performance Analyzer is focused on providing you aggregate characteristics of Open
Database activity so that you can study and analyze the performance of certain request
types, server nodes, and so forth.

9.4.2 IMS Problem Investigator

IBM IMS Problem Investigator for z/OS (IMS Problem Investigator) is a tool that allows you to
analyze your IMS environment by interrogating IMS, CQS, and Monitor logs, DB2 logs, SMF
data, information collected by OMEGAMON ATF and TRF, as well as the information
collected in IMS Connect Extensions journals. In the Open Database context, we focus on the
analysis of the IMS Connect Extensions journals.

By allowing you to navigate, format, query, and extract these journals you can better
understand and gain insight into an Open Database request. IMS Problem Investigator can

216 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch09.fm

automatically identify records related to a request sequence from an Open Database client
and display this information tracking related log records.

In the example of Figure 9-3 we are tracking a sequence of Open Database requests. We can
see framing events: the elapsed time between when the message was sent to ODBM and a
response received, as well as information about the actual DDM objects.

File Menu Edit Mode Navigate Filter Time Labels Options Help

BROWSE CEX220.QAUNIT.EVNTLOG (WAS110) Tracking inactive

Command ===> Scroll ===> (CSR
Forwards / Backwards . . 00.00.00.000100 Time of Day . . 16.46.22.845746
Code Description Date 2009-06-29 Monday Time (Elapsed)

2

E A049 READ Socket 09.52.05.464051
A049 READ Socket 0.000095
A05B DRDA 2001 ACCRDB-Access RDB 0.000008
A05D ODBM begin Allocate PSB (APSB) Program=AUTPSB11 0.000020
A061 ODBM Routing Exit called 0.000010
A062 ODBM Routing Exit returned 0.000364
A069 Message sent to ODBM 0.000945
AO6A Message received from ODBM 0.430011
AO5SE ODBM end Allocate PSB (DPSB) Program=AUTPSB11 0.000386
A05C DRDA 2201 ACCRDBRM-Access RDB Reply Message 0.000025
AO4A WRITE Socket 0.000167
A03C Prepare READ Socket 0.864489
A049 READ Socket 0.000122
A05B DRDA 200C OPNQRY-Open Query 0.000009
A049 READ Socket 0.000024
A049 READ Socket 0.000026
A05B DRDA CCO05 DLIFUNC-DL/I function 0.000008

Figure 9-3 Tracking a sequence of Open Database requests

If you are primarily interested in where the request spent its time, you can use this elapsed
time view to identify how the requests are being processed. In the above example, the most
significant time is spent waiting on a response from ODBM and IMS (0.43 seconds) and
between the client’s first request and second request (0.86 seconds). Most other aspects of
the request, such as security authorization and processing within IMS Connect itself, took
milliseconds.

The A05B and AO5C log records contain the most relevant information from an application’s
standpoint. Figure 9-4 shows how IMS Problem Investigator filtering allows you to view just

these record types to give us the “story” of what the application was trying to do and how it

was interacting with IMS itself:

Chapter 9. Operational considerations 217

7856¢ch09.fm Draft Document for Review May 7, 2010 1:20 pm

File Menu Edit Mode Navigate Filter Time Labels Options Help

BROWSE CEX000.QADATA.REDBOOK.DRDAT110.ICON.D1003 Record 00000043 More: < >

Command ===> Scroll ===> (SR
Forwards / Backwards . . 00.00.00.000100 Time of Day . . 16.46.22.845746
Code Description Date 2010-03-31 Wednesday Time (LOCAL)

| mmmm e e e mm e mmmm mmmmmmm e
A049 READ Socket 13.21.47.348142
A05B DRDA CCO4 RTRVFLD-Field client wants to retrieve data 13.21.47.348149
A049 READ Socket 13.21.47.348171
A049 READ Socket 13.21.47.348194
AO5B DRDA CCO6 SSALIST-List of segment search argument 13.21.47.348202
AOAA ODBM Trace: Message sent to ODBM 13.21.47.348617
A069 Message sent to ODBM 13.21.47.348627
AOAA ODBM Trace: Message received from ODBM 13.21.47.350167
AO6A Message received from ODBM 13.21.47.350178
A05C DRDA 2205 OPNQRYRM-Open Query Complete 13.21.47.350322
AO4A WRITE Socket 13.21.47.350496
A048 Trigger Event for ODBMMSG 13.21.47.350526
A03C Prepare READ Socket 13.21.48.120400
A049 READ Socket 13.21.48.120456
A0O5B DRDA 2006 CNTQRY-Continue Query 13.21.48.120464
AOAA ODBM Trace: Message sent to ODBM 13.21.48.120628
A069 Message sent to ODBM 13.21.48.120684

Figure 9-4 Application records filtering

IMS Problem Investigator formats the standard “DDM” code points based on the DRDA
specification as well as the IMS-specific code points. As shown above, we can see the
initiation of the sync-point request, access request, the DL/I call, SSA list, and so forth. We
can select these records to view more detail of what they contain.

In Figure 9-5 we can see the initiation of a request by an Open Database client.

218 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch09.fm

File Menu Format Help

BROWSE CEX000.QADATA.REDBOOK.DRDAT110.ICON.D Record 00000021 Line 00000019
Command ===> Scroll ===> CSR
Form ===> + Use Form in Filter Format ===> FORM
+001D Type....... 01 RQSCRR..... 0001

+0020 Object..... 2001 ACCRDB-Access RDB

+0020 Length..... +60 CPovenan... 2001

+0024 Object..... 2110 RDBNAM-Relational Database Name

+0024 Length..... +17 CPevenen.n. 2110

+0028 Data....... '"AUTPSB11.0DB1'

+0035 Object..... 210F RDBACCCL-RDB Access Manager Class

+0035 Length..... +6 CPoven.... 210F Data....... 2407

+003B Object..... 112E PRDID-Product-specific Identifier

+003B Length..... +20 CPevenen... 112E

+003F Data....... 'IMS OPEN DB V1.0'

+004F Object..... 002F TYPDEFNAM-Data Type Definition Name

+004F Length..... +13 CPovenan.n. 002F

+0053 Data....... 'QTDSQL370"

Figure 9-5 Tracing a request initiation

You can also view segment search arguments (SSA) as shown in Figure 9-6.

File Menu Format Help

BROWSE CEX000.QADATA.REDBOOK.DRDAT110.ICON.D Record 00000047 Line 00000015
Command ===> Scroll ===> (SR
Form ===> + Use Form in Filter Format ===> FORM
+0018 CERE_5B_VAR_CODEPOINT...... CCo6

+001A DSSHDR..... DSS header for DDM command

+001A DSSlen..... +29 DDMID...... DO FormatID... 03

+001D Type....... 03 RQSCRR..... 0001

+0020 Object..... CCO6 SSALIST-List of segment search argument

+0020 Length..... +23 CPevevnnnn. CCo6

+0024 Object..... €905 SSACOUNT-Number of segment search arguments

+0024 Length..... +6 CPevevnnn.. €905 Data....... 0001

+002A Object..... C906 SSA-Segment search argument

+002A Length..... +13 CPevevnnnn. €906

+002E Data....... 'DEALER '

dhkkhkhkkhhkhdhhdhhhdrhhhhhhdhhdhrhdhxd End of data *hkkhkk k% *kkkkkkkk k% *khkkkkhkkhkhkkhhkk

Figure 9-6 Viewing segment search arguments

Importantly, you can also view exactly what the ODBM address space is sending as a
response to the client. This allows you to isolate problems in parsing and interpreting output
from IMS, as shown in the example of Figure 9-7.

Chapter 9. Operational considerations 219

7856¢ch09.fm Draft Document for Review May 7, 2010 1:20 pm

File Menu Format Help
BROWSE CEX000.QADATA.REDBOOK.DRDAT110.ICON.D Record 00000062 Line 00000019
Command ===> Scroll ===> CSR
Form ===> + Use Form in Filter Format ===> FORM
+001D Type....... 03 RQSCRR..... 0001
+0020 Object..... 241B QRYDTA-Query Answer Set Data
+0020 Length..... +113 CPovena.... 241B
+0024 AIB........ aibStream
+0024 AIBflag.... 00 AIBused.... +61 AIBretc.... 00000000
+002D AlIBreas.... 00000000 AIBerrc.... 00000000
+0035 DBPCB...... dbpcbStream
+0035 DBPflag.... 00 DBflag..... 00
+0037 DBname..... '"AUTOLDB ' SL......... 01" SCovivennnn o
+0043 Segment.... 'DEALER ' KFBAflag... 00 KFBAlen.... +4
+0050 KFBA....... '1234"
+0054 IQ0area..... 10 area
+0000 F1F2F3F4 E2C1D540 D1D6E2C5 40C6D6D9 *1234SAN JOSE FOR*
+0010 C4404040 40404040 40404040 40404040 *D *
+0020 4040E2C1 D540D1D6 E2C54040 F9F5F7F7 * SAN JOSE 9577*
+0030 F760F3F3 F3F3F7F7 F7F4F4F4 F4 *7-33337774444 *
kkhkkkkhkhkkkhhkkkhhkkkhkkhhkkhhkkhhkkhhkkkkkhkxkx End of data kkkhkkkkhkkkhhkkkhhkkkhkkkhkkhhkkhhkkhkkhkhkkhkxkx

Figure 9-7 ODBM response tracking

If you need to understand specific flags or fields, you can zoom on them to get more
information, as shown in Figure 9-8.

| File Menu Help |

BROWSE CEX220.QAUNIT.EVNTLOG (WAS110) Line 00000000
Command ===> Scroll ===> CSR
khhkkkhhkhkhkxkx Top of data hhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhkhhhkhhxkx

+0024 AIBflag.... 00 AIB null indicator

On Present.... 00 aibStream data structure is present
Off Null....... FF aibStream data structure contains no data after
the AIB null indicator. The total length of the

aibStream data structure is one byte.
kkkhkkkkhkkkhkkkhkkhhkkhhkkkhhkkkhkkkhkkhkxkx End Of data kkkhkkkkhkkkhkkhkkhhkkhhkkhkkkhhkkkhhkkkkkhkxkx

Figure 9-8 Zooming on specific fields

220 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch09.fm

Other than browsing and drilling down on information specific to particular requests, you can
also use filters to identify requests with particular characteristics. For example, identify
requests arriving from a given server or for a given database.

9.4.3 ldentifying and resolving problems

This topic shows how IMS Tools can be used to identify and resolve common problem with
the sample applications. You can classify Open Database issues into the following categories:

» Session errors: these are conditions that generate distinct error. For example, specifying
the wrong alias name, trying to access a stopped PSB.

» Performance problems: IMS provides an output but processing time is slow.

» Unexpected responses: the client receives information from IMS but it is not the feedback
that the client was expecting.

Previously, we have shown that IMS Problem Investigator can be used to examine the
requests the client sends, how they are processed by IMS, and the replies that are returned,
allowing you to understand the context of unexpected responses. We now discuss session
errors and performance problems.

Session errors

When a session error occurs, IMS Connect Extensions writes an A047 record to the journal.
You can use IMS Problem Investigator’s filtering to identify any session errors in the journal. In
the example of Figure 9-9, it is a simple filter that shows only A047 records in the journal.

File Menu Edit Mode Navigate Filter Time Labels Options Help

BROWSE CEX000.QADATA.REDBOOK.ERRO1.ICON.D100331 Tracking inactive

Command ===> Scroll ===> (SR
Forwards / Backwards . . 00.00.00.000100 Time of Day . . 16.46.22.845746
Code Description Date 2010-03-31 Wednesday Time (LOCAL)

/2
A047 Session Error 11.54.55.710442
A047 Session Error 12.03.02.490039
A047 Session Error 12.32.09.670281

khkkkkhkhkkhhhhhhdhhhhhhhhhhdhhkdrhdkx Bottom of Data """" *kkkkkkkkkhk *khkkkkhkkkkhkkkhhkk

Figure 9-9 Filtering by A047 records

The log record itself often contains enough information to understand the cause of the
problem. For example, as shown in Figure 9-10, if you select the last session error, you can
see the message area, identifying that the client requested RRS when RRS was not
available.

Chapter 9. Operational considerations 221

7856¢h09.fm

222

Draft Document for Review May 7, 2010 1:20 pm

File Menu Format Help

BROWSE CEX000.QADATA.REDBOOK.ERRO1.ICON.D100 Record 00000344 Line 00000010

Command ===> Scroll ===> CSR
Form ===> + Use Form in Filter Format ===> FORM
+000A CERE_47_TASKID..... ID of task recording event

+000A CERE_47 _COL#....... 01 CERE_47_TKS#....... 04

+000C CERE_47 EVKEY...... C5C21834F1A8FC61

+0014 CERE_47 VAR LL..... 009C

+0016 CERE_47_VAR_APAR... 0001

+0018 CERE_47_VAR_FLAG3.......... 80

+001A CERE_47_VAR_MSG.... 134 byte message area
+0000 00640000 C8E6E2D2 F2F8F8F0 C540D9D9 *....HWSK2880E RR*
+0010 E240C3D6 D4D4C1D5 C440C6C1 C9D3C5C4 *S COMMAND FAILED*
+0020 5E40C37E D6C4C2F2 C5FAF2F3 6B40C3D7 *; C=0DB2E423, CP*
+0030 7EE2E8D5 C3C3E3D3 4040406B 40D77EF4 *=SYNCCTL , P=4%*
+0040 F8F8F5F5 40404068 40D97EFO FOFOF46B *8855 , R=0004,*
+0050 40D9E27E DID9EZ2D5 C1E5CID3 6B40D47E * RS=RRSNAVIL, M=*

+0060 D4DIC3E5 00000000 00000000 00000000 *MRCV............ *
+0070 00000000 00000000 00000000 00000000 *................ *
+0080 00000000 0000 X *

+00A0 CERE_47 VAR SESRSN......... '"WRITE

+00A8 CERE_47 VAR TOKEN.......... 0000000000000000

R End Of data R S T T T T T T e

Figure 9-10 Displaying the message area

In some cases you may be interested in examining the complete flow of a request that
generated a session error. In such cases, you can use tracking (TX line action) to reveal all

the event records associated with a particular session error as shown in Figure 9-11.

In this case, you can see the progression of the request leading up to the session error. The
client successfully completes security authentication, but when the Access RDB request is
made, triggering the allocation of the PSB, the request then receives an RDB Not Found

DRDA object. This finally triggers the session error.

IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch09.fm

File Menu Edit Mode Navigate Filter Time Labels Options Help

BROWSE CEX000.QADATA.REDBOOK.ERRO1.ICON.D100331 Record 00000013 More: < >

Command ===> Scroll ===> (SR
Forwards / Backwards . . 00.00.00.000100 Time of Day . . 16.46.22.845746
Code Description Date 2010-03-31 Wednesday Time (Relative)

/2R

TX A049 READ Socket -0.256794
AO5B DRDA 106E SECCHK-Security Check -0.256786
A063 ODBM Security Exit called -0.256755
A064 ODBM Security Exit returned -0.256668
A05C DRDA 1219 SECCHKRM-Security Check Reply Message -0.256594
AO04A WRITE Socket -0.256516
A049 READ Socket -0.000293
A049 READ Socket -0.000223
AO5B DRDA 2001 ACCRDB-Access RDB -0.000216
A05D ODBM begin Allocate PSB (APSB) Program=AUTPSB11 -0.000194
A061 ODBM Routing Exit called -0.000185
A062 ODBM Routing Exit returned -0.000033
AO5C DRDA 2211 RDBNFNRM-RDB Not Found 11.54.55.710366
AO4A WRITE Socket +0.000064
A047 Session Error +0.000075
A0OC Begin CLOSE Socket +0.000108
A0OD End CLOSE Socket +0.000325

Figure 9-11 Tracking the complete flow

Performance problems

Using IMS Problem Investigator, you can map relative timing of an Open Database request
and broadly identify how much time requests spend in various stages of processing. That is:

» Client

» IMS Connect
» ODBM

» IMS

The log records available for IMS (often the area where critical insight is required) are similar

to those available for CICS DBCTL transactions. As such, they provide only limited
information on the timings of the DL/I calls themselves. If the requests are predominantly
queries and not updates, very little information is actually available in the IMS logs.

To mitigate this, you will need to use database trace such as the IMS Monitor. However, the

most detailed trace is available from the OMEGAMON for IMS on z/OS application trace
facility (ATF). ATF allows you to record DL/I call characteristics. IMS Tools allow you to

connect between the DLI call activity and the DRDA requests that are being passed by the

client, as shown in Figure 9-12.

In this example, you can see the Open Database requests and the DLI calls themselves,
including duration of each call and CPU utilization for each call.

Chapter 9. Operational considerations

223

7856¢ch09.fm Draft Document for Review May 7, 2010 1:20 pm

File Menu Edit Mode Navigate Filter Time Labels Options Help

BROWSE CEX000.QADATA.REDBOOK.DRDAT111.ICON.D1003 Record 00000308 More: < >

Command ===> Scroll ===> (SR
Forwards / Backwards . . 00.00.00.000100 Time of Day . . 16.46.22.845746
Code Description Date 2010-03-31 Wednesday Time (LOCAL)

| mmmm e m e m e mmmmmmmmmmmm mmmmmmm e
A049 READ Socket 13.46.47.095038
AO5B DRDA CCO6 SSALIST-List of segment search argument 13.46.47.095045
AOAA ODBM Trace: Message sent to ODBM 13.46.47.095985
A069 Message sent to ODBM 13.46.47.096016
06 OSAM IWAIT start TranCode=0DBA02CD Region=0003 13.46.47.142891
20 Database Open Database=EMPDB2 Region=0003 13.46.47.143647
06 OSAM IWAIT start TranCode=0DBA02CD Region=0003 13.46.47.181506
20 Database Open Database=AUTODB Region=0003 13.46.47.182252
06 OSAM IWAIT start TranCode=0DBA02CD Region=0003 13.46.47.191442
01 DLI GHU Database=EMPLDB2 SC=' ' Elapse=0.095875 13.46.47.096570
B021 DLI Database Trace Database=EMPLDB2 Func=GHU 13.46.47.192378
AOAA ODBM Trace: Message received from ODBM 13.46.47.192881
AO6A Message received from ODBM 13.46.47.192909
AO5C DRDA 2205 OPNQRYRM-Open Query Complete 13.46.47.193186
AO4A WRITE Socket 13.46.47.193515
A048 Trigger Event for ODBMMSG 13.46.47.193554
A03C Prepare READ Socket 13.46.48.120636

Figure 9-12 DRDA and DL/I flow

You can control the amount of information IMS Problem Investigator shows: to view extended
details, scroll right (F11). See Figure 9-13.

File Menu Edit Mode Navigate Filter Time Labels Options Help

BROWSE CEX000.QADATA.REDBOOK.DRDAT111.ICON.D1003 Record 00000316 More: < >

Command ===> Scroll ===> (SR
Forwards / Backwards . . 00.00.00.000100 Time of Day . . 16.46.22.845746
Code Description Date 2010-03-31 Wednesday LSN

/2R
06 OSAM IWAIT start 2-00000000000004

TranCode=0DBA02CD Program=AUTPSB11 Userid=AUTPSB11 Region=0003
IMSID=0DBA02CD RecToken=0DBA02CD/0000000100000000 Elapse=0.000725

01 DLI GHU 2-00000000000005
TranCode=0DBA02CD Program=AUTPSB11 Userid=AUTPSB11 Database=EMPLDB2
Region=0003 IMSID=0DBA02CD RecToken=0DBA02CD/0000000100000000 SC=" '
Elapse=0.095875 CPU=0.002190

B021 DLI Database Trace 3-00000000000105
LTerm=EMPLDB2 Database=EMPLDB2 Region=0003
RecToken=0DBA02CD/0000000100000000 Func=GHU Elapsed=00.095631

AOAA ODBM Trace: Message received from ODBM 1-00000000000359
IMSID=IBDEODOD LogToken=C5C228E17B387162

AO6A Message received from ODBM 1-0000000000035A

Figure 9-13 Displaying detailed information with F11t

224 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856¢ch09.fm

As shown in Figure 9-14, if you select the ATF generated 01 record you can see the IO area
used for the request itself.

File Menu Format Help

BROWSE CEX000.QADATA.REDBOOK.DRDAT111.ICON.D Record 00000317 Line 00000042

Command ===> Scroll ===> CSR
Form ===> + Use Form in Filter Format ===> FORM
+00DC ATRDXEL.... DL/I Trace Element
+00DC ATRDX@E.... 14ABD400 ATRDXTY.... 02 ATRDXF..... 00
+00E2 ATRDX#..... 0008
+00E4 ATRDXV..... Element Data - Key Feedback Area

+0000 F2F2F2F2 F2F2C3C1 *222222CA *

+00EC ATRDXEL.... DL/I Trace Element

+00EC ATRDXGE.... 14AAD2E8 ATRDXTY.... 01 ATRDXF..... 00

+00F2 ATRDX#..... 004C

+00F4 ATRDXV..... Element Data - I/0 Area
+0000 F2F2F2F2 F2F2C299 96A69540 40404040 *222222Brown *
+0010 40404040 40404040 40404040 404040D9 * R*
+0020 96954040 40404040 40404040 40404040 *on *
+0030 40404040 40404040 E2D6DAC5 40E2E3D9 * SOME STR*
+0040 C5C5E340 40404040 40404040 *EET *

+0140 ATRDXEL.... DL/I Trace Element
+0140 ATRDXGE.... 14AAD540 ATRDXTY.... 04 ATRDXF..... 00
+0146 ATRDX#..... 0036

Figure 9-14 Displaying the I/O area

9.5 Additional sample programs

If you need more examples for your understanding of using the IMS Universal DB drivers in
your application you will find several self-explaining samples available for download on the
web.

If you want to use the CSLDMI interface for writing an application you will find a full
description of the CSLDMI interface in section “Writing a CSL ODBM client” of IMS Version 11
System Programming APIs, SC19-2445. An example of using this can be found in section
“C.2 Sample ODBM program” of IMS Version 11 Technical Overview, SG24-7807.

If you want to use a REXX script for accessing IMS Connect with Open Database you will
find an example in section “C.1 Sample DRDA program” of IMS Version 11 Technical
Overview, SG24-7807.

In addition to the examples used in this book, we provide some more samples as additional

material. For information about how to download the samples see Appendix D, “Additional
material” on page 249.

Chapter 9. Operational considerations 225

7856¢ch09.fm Draft Document for Review May 7, 2010 1:20 pm

226 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856ax01.fm

A

IBM DB2 Data Server Drivers and
Clients

This appendix provides an overview of the DB2 Drivers which could be used to access DB2
data from the same client Java application using IMS drivers to use DL/l data.

For more information, refer to DB2 9 for z/OS: Distributed Functions, SG24-6952-01, which is
the base for this appendix.

The IBM DB2 Data Server Driver for JDBC and SQLJ (formerly known as IBM DB2 Driver for
JDBC and SQLJ) is a single application driver to support the most demanding Java
applications. This driver can be used as in type 4 or type 2 mode, includes support for
pureXML®, SQL/XML and XQuery, and it is optimized for DB2 across all platforms (Linux,
UNIX, Windows, z/OS and iSeries®) and Indormix Dynamic Server (IDS).

© Copyright IBM Corp. 2010. All rights reserved. 227

7856ax01.fm

Draft Document for Review May 7, 2010 1:20 pm

A.1 IBM Data Server Drivers and Clients

IBM strategy is to promote the usage of IBM Data Server Drivers or Clients. DB2 Connect™
licenses (in the form of DB2 Connect license files) are still required, but you can replace DB2
Connect modules with the IBM Data Server Drivers or Clients and receive equivalent or
superior function. In addition, you can reduce complexity, improve performance, and deploy
application solutions with smaller footprints for your business users.

With DB2 for LUW Version 9.5 FixPack 3 or FixPack 4 you can implement the DRDA AR
functions for your distributed applications with varied degrees of granularity. Instead of the
current function and large footprint of DB2 Connect, you can choose one of the IBM client
products.

IBM has delivered a variety of client products for application developers and database
administrators to support distributed access to data stored in DB2 for z/OS.

Here is the list of the IBM Data Server Clients and Drivers:

IBM Data Server Client

IBM Data Server Runtime Client

IBM Data Server Driver for ODBC and CLI
IBM Data Server Driver for JDBC and SQLJ
IBM Data Server Driver Package

vyvyvyyvyy

In the IMS scenario in this book, we are using the IBM Data Server Driver for JDBC and SQLJ
but you can use any of the Driver which supports JDBC (see Appendix A.1.6, “Driver and
Client comparison” on page 231). To get the driver you need the Driver itself which you can
download using your IBM ID from the following website:

http://www.ibm.com/support/docview.wss?rs=4020&uid=swg21385217
Additional if you want to connect to DB2 on z/OS you will need the correct license jar file.

In this appendix we briefly describe these drivers and clients and provide a table that
compares the driver and client products. Refer to the IBM DB2 9.7 Information Center at the
following link for more information on these products:

http://publib.boulder.ibm.com/infocenter/db21uw/v9r7/index.jsp?topic=/com.ibm.swg.
im.dbclient.install.doc/doc/c0022612.html

A.1.1 IBM Data Server Driver for JDBC and SQLJ

JDBC is an application programming interface (API) that Java applications use to access
relational databases. SQLJ provides support for embedded static SQL in Java applications. In
general, Java applications use JDBC for dynamic SQL and SQLJ for static SQL.

Note that this driver is also called the JAVA Common Client (JCC) driver and was formerly
known as the IBM DB2 Universal Database Driver. The DB2 JDBC Type 2 driver for LUW,
also called the CLI legacy driver, has been deprecated.

We can refer to these clients as Java-based clients.

See the Java application development for IBM data servers section at the DB2 Version 9.5 for
Linux, UNIX, and Windows Information Center:

http://publib.boulder.ibm.com/infocenter/db21uw/v9r7/topic/com.ibm.db2.Tuw.apdv.ja
va.doc/doc/c0024189.htm1

228 IMS 11: The Open Database

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.swg.im.dbclient.install.doc/doc/c0022612.html

Draft Document for Review May 7, 2010 1:20 pm 7856ax01.fm

DB2 support for JDBC drivers

The IBM Data Server Driver for JDBC and SQLJ provides Type 4 and Type 2 connectivity. To
communicate with remote servers using DRDA, the Type 4 driver is used as a DRDA
Application Requester..

» Driver for JDBC Type 2 connectivity (Type 2 driver)

Type 2 drivers are written partly in the Java programming language and partly in native
code. The drivers use a native client library specific to the data source to which they
connect. Because of the native code, their portability is limited. Use of the Type 2 driver to
connect to DB2 for z/OS is recommended for WebSphere Application Server running on
System z.

» Driver for JDBC Type 4 connectivity (Type 4 driver)

Type 4 drivers are pure Java and implement the network protocol for a specific data
source. The client connects directly to the data source. The JDBC Type 4 driver is
recommended to connect distributed Java applications to DB2 for z/OS data.

IBM ships two versions of the JDBC Type 4 driver with the IBM Data Server Driver for
JDBC and SQLJ V9.5 FP3 product:

— Version 3.5x is JDBC 3.0-compliant. It is packaged as db2jcc.jar and sqlj.zip and
provides JDBC 3.0 and earlier support.

— Version 4.x is JDBC 3.0-compliant and supports some JDBC 4.0 functions. It is
packaged as db2jcc4.jar and sqlj4.zip.

The Type 4 driver provides support for distributed transaction management. This support
implements the Java 2 Platform, Enterprise Edition (J2EE), Java Transaction Service
(JTS), and Java Transaction API (JTA) specifications, which conform to the X/Open
standard for distributed transactions (Distributed Transaction Processing: The XA
Specification, available from:

http://www.opengroup.org

Applications that use the IBM Data Server Driver for JDBC and SQLJ to access DB2 for z/OS
data across a network implement the Type 4 driver. In Figure A-1 an application uses the IBM
Data Server Driver for JDBC and SQLJ to access a standalone DB2.

)

N
s = Windows/UNIX/Linux

System z
IBM Data Server Driver
for IDBC and SQLJ DB2
DRDA DB2 for z/OS
Appl. 1_TCPIIP
pgm JDBC |DRDA |<— | DIST Other DB2
SQLJ |requester| Type4 | DRDA | address
driver server spaces

Figure A-1 IBM Data Server Driver for JODBC and SQLJ connecting directly to DB2 for z/0S

In the remainder of the discussion and examples of the IBM Data Server Driver for JDBC and
SQLJ, we refer to the Type 4 driver support.

Appendix A. IBM DB2 Data Server Drivers and Clients 229

http://www.opengroup.org

7856ax01.fm

Draft Document for Review May 7, 2010 1:20 pm

A.1.2 IBM Data Server Driver for ODBC and CLI (CLI driver)

This product is for applications using ODBC or CLI only and provides a lightweight
deployment solution designed for ISV deployments. This driver, also referred to as ‘CLI
driver’, provides runtime support for applications using the ODBC API or CLI API, without the
need of installing the IBM Data Server Client or the IBM Data Server Runtime Client.

The CLI driver is conceptually similar to the JDBC Type 4 driver. The CLI driver is packaged in
a small footprint, providing the DRDA AR functions necessary to connect to DB2 for z/OS for
those application scenarios where you do not require robust tools, development or
administration functions.

A.1.3 IBM Data Server Driver Package

IBM Data Server Driver Package provides a lightweight deployment solution providing
runtime support for applications using ODBC, CLI, .NET, OLE DB, open source, or Java APIs
without the need of installing Data Server Runtime Client or Data Server Client. This driver
has a small footprint and is designed to be redistributed by independent software vendors
(ISVs), and to be used for application distribution in mass deployment scenarios typical of
large enterprises.

The IBM Data Server Driver Package capabilities include:

»

v

vvyyy

Support for applications that use ODBC, CLI, or open source (PHP or Ruby) to access
databases.

Support for client applications and applets that are written in Java using JDBC, and for
embedded SQL for Java (SQLJ).

IBM Informix Dynamic Server support for .NET, PHP, and Ruby.

Application header files to rebuild the open source drivers.

Support for DB2 Interactive Call Level Interface (db2cli).

On Windows operating systems, IBM Data Server Driver Package also provides support
for applications that use .NET or OLE DB to access databases. In addition, this driver is
available as an installable image, and a merge module is available to allow you to easily
embed the driver in a Windows Installer-based installation.

On Linux and UNIX operating systems, IBM Data Server Driver Package is not available
as an installable image.

A.1.4 IBM Data Server Runtime Client

230

This product allows you to run applications on remote databases. Graphical user interface
(GUI) tools are not included. Capabilities include:

>
>

>
>
>

command line processor (CLP)

base client support for database connections, SQL statements, XQuery statements and
commands

support for common database access interfaces (JDBC, SQLJ, ADO.NET, OLE DB,
ODBC, command line interface (CLI), PHP and Ruby), including drivers and ability to
define data sources

Lightweight Directory Access Protocol (LDAP) exploitation

support for TCP/IP and Named Pipe

support for multiple concurrent copies and various licensing and packaging options

The IBM Data Server Runtime Client (Runtime Client) has a rich set of SQL APIs for
deployment in more complex application environments.

IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856ax01.fm

A.1.5 IBM Data Server Client

This is the full-function product for application development, database administration and
client/server configuration. Capabilities include:

Configuration Assistant

Control Center and other graphical tools

First Steps for new users

Visual Studio tools

IBM Data Studio

Application header files

Precompilers for various programming languages

Bind support

All The functions included in the IBM Data Server Runtime Client

YyVYyVYYVYYVYVYYVYYY

A.1.6 Driver and Client comparison

The highlights of the IBM Data Server products are summarized in Table A-1. Refer to
standard DB2 for LUW product documentation for additional details.

Table A-1 IBM Data Server Drivers and Clients comparison

Product Smallest | JDBC oDBC OLE DB Open CLP DBA,
footprint | and and CLI and .NET | Source Dev, GUI

SQLJ tools

IBM Data Server Driver X X

for JDBC and SQLJ

IBM Data Server Driver X X

for ODBC and CLI

IBM Data Server Driver X X X X

Package

IBM Data Server Runtime X X X X X

Client

IBM Data Server Client X X X X X X

For the correct version of the driver see
http://www.ibm.com/support/docview.wss?rs=71&uid=swg21363866

A.2 Support for JDBC and SQLJ

In order to develop a Java application from your client you need the appropriate level of IBM
Software Development Kit (SDK) for Java or DB2 for Linux, UNIX, and Windows. This is true
for to use Java-based tools and to create and run Java applications, including stored
procedures and user-defined functions.

If the IBM SDK for Java is required by a component being installed and the SDK for Java is
not already installed in that path, the SDK for Java is installed if you use either the DB2 Setup
wizard or a response file to install the product.

Refer to the Application Development with DB2 Web site for details:

Appendix A. IBM DB2 Data Server Drivers and Clients 231

7856ax01.fm

Draft Document for Review May 7, 2010 1:20 pm

http://www.ibm.com/software/data/db2/ad/java.htm]

If you need to provide support for JDBC and SQLJ requesters for the first time, there are
several steps you must complete. Most of these steps are for DB2 for z/OS as the DRDA AS,
but some relate to the requesters. The steps to install support for JDBC and SQLJ are:

1. Allocate and load IBM Data Server Driver for JDBC and SQLJ libraries. You perform this
step on the client(s).

2. On DB2 for z/OS, set the DESCSTAT parameter to YES (DESCRIBE FOR STATIC on the
DSNTIPF installation panel). This is necessary for SQLJ support.

3. In z/OS USS, edit the .profile file to customize environment variable settings.

4. Optional: customize IBM Data Server Driver for JDBC and SQLJ configuration properties.
This refers to the properties on the clients.

5. On DB2 for z/OS, enable the DB2-supplied stored procedures and define the tables that
are used by the IBM Data Server Driver for JDBC and SQLJ.

6. In z/0OS UNIX System Services, run the DB2Binder utility to bind the packages for the IBM
Data Server Driver for JDBC and SQLJ.

7. Install z/OS Application Connectivity to DB2 for z/OS feature. This applies if you have a
JDBC or SQLJ application on z/OS in an LPAR where you do not have a DB2 for z/OS
subsystem. This feature is effectively the Type 4 driver for z/OS and provides the DRDA
AR function without a local DB2 (and DDF) to communicate with a DB2 for z/OS server
elsewhere in the network.

Refer to DB2 Version 9.1 for z/OS Installation Guide, GC18-9846 for more information on
these steps.

A.3 Using the IBM Data Server Driver for JDBC and SQLJ

We focus on the Type 4 driver in this section since it can be used to connect to a DB2 for z/OS
server via DRDA. The Type 4 driver is now delivered in the jcc3 and jcc4 streams. The jcc4
stream requires JDK 1.6 to be installed.

You also need to customize and run the DSNITJMS job that creates stored procedures and
tables required by the Type 4 driver. Refer to the following links for complete information:

http://publib.boulder.ibm.com/infocenter/db21uw/v9r5/topic/com.ibm.db2.Tuw.apdv.ja
va.doc/doc/t0024156.htm]

http://publib.boulder.ibm.com/infocenter/db2Tuw/v9r5/topic/com.ibm.db2.Tuw.apdv.ja
va.doc/doc/c0052041.html

To know which version of the driver you are using, use the command in Example A-1 when
your driver is in your Windows class path

Example A-1 Determining the driver version

C:\DDF\test>java com.ibm.db2.jcc.DB2Jcc -version
IBM Data Server Driver for JDBC and SQLJ 4.8.23

Connecting to a DB2 for z/OS server using the Type 4 driver

You can use either the DriverManager or the DataSource interface to obtain a connection to
the database server. Here is an example using the DriverManager.getConnection() interface

232 IMS 11: The Open Database

http://www-01.ibm.com/software/data/db2/ad/java.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.apdv.java.doc/doc/t0024156.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.apdv.java.doc/doc/c0052041.html

Draft Document for Review May 7, 2010 1:20 pm 7856ax01.fm

where the connection properties are embedded in the application program. Example A-2
shows the usage of the getConnection() interface to obtain a connection to the DB2 for z/OS
server.

Example A-2 Using the getConnection()

String url = "jdbc:db2://wtsc63.itso.ibm.com:12347/DB9A
java.util.Properties prop = new java.util.Properties();
prop.put("user", user);

prop.put("password", password);

prop.put("driverType", "4");

connl = DriverManager.getConnection(url,prop);

It is possible to create and use a DataSource object in the same application similar to the
DriverManager interface, this method does not provide portability. The recommended way to
use a DataSource object is for your system administrator to create and manage it separately,
using WebSphere Application Server or some other tool. It is then possible for your system
administrator to modify the data source attributes and you do not need to change your
application program. Example A-3 shows the use of the DataSource interface to obtain a
connection to the DB2 for z/OS server.

Example A-3 Connecting to DB2 for z/OS via the DataSource interface

DB2SimpleDataSource dataSource = new com.ibm.db2.jcc.DB2SimpleDataSource();
dataSource.setServerName (servername);

dataSource.setPortNumber (Integer.parselnt(port));
dataSource.setDatabaseName (databasename);

dataSource.setUser (user);

dataSource.setPassword (password);

dataSource.setDriverType (4);

connl = dataSource.getConnection();

For details on connections using the DriverManager or DataSource interfaces, refer to:

http://publib.boulder.ibm.com/infocenter/db21uw/v9r7/topic/com.ibm.db2.Tuw.apdv.ja
va.doc/doc/cjvidcon.html

To learn more about using WebSphere to deploy DataSource objects, use the link:
http://www.ibm.com/software/webservers/appserv/

In general, the default properties enabled for the Type 4 driver are designed for maximize
distributed performance. If you want to change either the configuration properties that have
driver-wide scope, or Connection/Datasource properties that are application-specific, refer to
the following link.

http://publib.boulder.ibm.com/infocenter/db2Tuw/v9r7/topic/com.ibm.db2.Tuw.apdv.ja
va.doc/doc/rjvdsprp.html

Appendix A. IBM DB2 Data Server Drivers and Clients 233

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.apdv.java.doc/doc/cjvjdcon.html
http://www.ibm.com/software/webservers/appserv/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.apdv.java.doc/doc/rjvdsprp.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.apdv.java.doc/doc/rjvdsprp.html

7856ax01.fm Draft Document for Review May 7, 2010 1:20 pm

234 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856ax02.fm

Car Dealer IVP Database

The Car Dealer database is used in most of the examples in this book. This database is part
of the Installation Verification Procedure (IVP) of IMS. It should be readily available in your
IMS environments, usually in test environments rather than production environments.

© Copyright IBM Corp. 2010. All rights reserved. 235

7856ax02.fm Draft Document for Review May 7, 2010 1:20 pm

B.1 Car Dealer database overview

The Car Dealer database uses mainly two physical databases (autos and employees) and
two indexes. The database builds a logical database across these two databases. We do not
use the indexes in our example so we skipped them in the following sources and overviews.

B.1.1 AUTOLPCB overview diagram

Figure B-1 provides an overview diagram of the AUTOLPCB.

f1 DEALER
Total length: 61
-5 DLRNO (€]
G DLRNAME [E]
dgcrmy [e]
i €]
g PHONE (€]
Y
|
I |
1 MODEL 'l SALESPER
Total length: 37 Total length: 62
f§MODTYPE [e] 05 EMPNO [e]
fsMODKEY [E fgemriol [E
5 MAKE (€] g LASTHME [e]
g MODEL (] g FIRSTHME [e]
f3 YEAR [=
g MSRP (€]
fgcountt [
rY
|
1 ORDER1 1 sALES 1 sToCK F1 SALESINF F] EMPLINFO
Total length: 74 Total length: 131 Total length: 46 Tatal length: 15 Total length: 61
dsorpuER [El| |d@sAlEnum (el | STKVIN [E] 5 QUOTA O T5ADDRESS [
faLasTuME [E]| |dgsalDaTE [E| |dG@COLOR &l 5 SALESYTD [E] FgSTREET [&
fgrRsTHME [8]| | dgLasTuMe [El| | d@PRICE &l fg cOMSSION [e] dgcmy e
0 DATE | |dgsTKVIN El| |faLoT [e] = doSTATE [e]
g TIME [el| |ddCoLor | |F@wrNTY [E fgzP Ol
= g PRICE [e] = -
fgLoT [e]
g WRNTY [l| [FTSTOCSALE
— Total length: 113
I DLRNO [€]
&g MODKEY [e]
FgSALENUM [E]
0§ SALDATE [g]
dGLASTHME [€]
Y

Figure B-1 AUTOLPCB Overview diagram
B.1.2 EMPLPCB overview diagram
Figure B-2 provides an overview diagram of the EMPLPCB.

236 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856ax02.fm

F EMPL
Total length: 56
5 EMPNO (]

G LASTHME [e]
TG FIRSTHME [€]

.

] DEALER] EMPLINFO
Total length: 61 Total length: 61
g DLRNO [g] fgADDRESS [2]
TG DLRNAME [e] 0§ STREET (=]
dgcImy (=] dgcmy [e]
fgZIF (] dOSTATE (]
g PHONE [e] g ZIF (8]
e rFY
] SALESINF
Total length: 11
dg QUOTA (e]
dGSALESYTD [e]
Y

Figure B-2 EMPLPCB Overview diagram

B.1.3 Metadata description

Example B-1 shows the used segments and field of the database unmodified as CHAR fields:

Example B-1 DLIModel IMS Java Report

Class: AUTPSBllDatabaseView 1in package: samples.ims.openDb generated for PSB: AUTPSB11

Segment: DEALER
Field: DLRNO Type=CHARLength=4++ Primary Key Field ++
Field: DLRNAME Type=CHARLength=30 (Search Field)
Field: CITY Type=CHARLength=10 (Search Field)
Field: ZIP Type=CHARLength=10 (Search Field)
Field: PHONE Type=CHARLength=7 (Search Field)

Segment: MODEL
Field: MODTYPE Type=CHARLength=2 (Search Field)
Field: MODKEY Type=CHARLength=24++ Primary Key Field ++

Field: MAKE Type=CHARLength=10 (Search Field)
Field: MODEL Type=CHARLength=10 (Search Field)
Field: YEAR Type=CHARLength=4 (Search Field)
Field: MSRP Type=CHARLength=5 (Search Field)

Field: COUNT1 Type=CHARLength=2 (Search Field)

Segment: ORDER1
Field: ORDNBR Type=CHARLength=6++ Primary Key Field ++
Field: LASTNME Type=CHARLength=25 (Search Field)
Field: FIRSTNME Type=CHARLength=25 (Search Field)
Field: DATE Type=CHARLength=10 (Search Field)

Appendix B. Car Dealer IVP Database = 237

7856ax02.fm Draft Document for Review May 7, 2010 1:20 pm

Field: TIME Type=CHARLength=8 (Search Field)

Segment: SALES
Field: SALENUM Type=CHARLength=4++ Primary Key Field ++
Field: SALDATE Type=CHARLength=8 (Search Field)
Field: LASTNME Type=CHARLength=25 (Search Field)
Field: STKVIN Type=CHARLength=20 (Search Field)
Field: COLOR Type=CHARLength=10 (Search Field)
Field: PRICE Type=CHARLength=5 (Search Field)
Field: LOT Type=CHARLength=10 (Search Field)
Field: WRNTY Type=CHARLength=1 (Search Field)

Segment: STOCK
Field: STKVIN Type=CHARLength=20++ Primary Key Field ++
Field: COLOR Type=CHARLength=10 (Search Field)
Field: PRICE Type=CHARLength=5 (Search Field)
Field: LOT Type=CHARLength=10 (Search Field)
Field: WRNTY Type=CHARLength=1 (Search Field)

Segment: STOCSALE
Field: DLRNO Type=CHARLength=4++ Primary Key Field ++
Field: MODKEY Type=CHARLength=24 (Search Field)
Field: SALENUM Type=CHARLength=4++ Primary Key Field ++
Field: SALDATE Type=CHARLength=8 (Search Field)
Field: LASTNME Type=CHARLength=25 (Search Field)

Segment: SALESPER
Field: EMPNO Type=CHARLength=6++ Primary Key Field ++
Field: EMPNO1 Type=CHARLength=6 (Search Field)
Field: LASTNME Type=CHARLength=25 (Search Field)
Field: FIRSTNME Type=CHARLength=25 (Search Field)

Segment: SALESINF
Field: QUOTA Type=CHARLength=5 (Search Field)
Field: SALESYTD Type=CHARLength=5 (Search Field)
Field: COMSSION Type=CHARLength=5 (Search Field)

Segment: EMPLINFO
Field: ADDRESS Type=CHARLength=61 (Search Field)
Field: STREET Type=CHARLength=25 (Search Field)

Field: CITY Type=CHARLength=25 (Search Field)
Field: STATE Type=CHARLength=2++ Primary Key Field ++
Field: ZIP Type=CHARLength=9 (Search Field)

Segment: EMPL
Field: EMPNO Type=CHARLength=6++ Primary Key Field ++
Field: LASTNME Type=CHARLength=25 (Search Field)
Field: FIRSTNME Type=CHARLength=25 (Search Field)

Segment: DEALER
Field: DLRNO Type=CHARLength=4 (Search Field)
Field: DLRNAME Type=CHARLength=30 (Search Field)
Field: CITY Type=CHARLength=10 (Search Field)
Field: ZIP Type=CHARLength=10 (Search Field)
Field: PHONE Type=CHARLength=7 (Search Field)

Segment: SALESINF
Field: QUOTA Type=CHARLength=5 (Search Field)

238 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

Field: SALESYTD Type=CHARLength=5 (Search Field)

Segment: EMPLINFO
Field: ADDRESS Type=CHARLength=61 (Search Field)
Field: STREET Type=CHARLength=25 (Search Field)

Field: CITY Type=CHARLength=25 (Search Field)
Field: STATE Type=CHARLength=2++ Primary Key Field ++
Field: ZIP Type=CHARLength=9 (Search Field)

7856ax02.fm

B.2 Car Dealer database source files

This section contains the source files of the Car Dealer IVP database for your reference.

B.2.1 AUTPSB11.psb

The source of of the PSB, AUTPSB11, that we used in our scenarios is listed in Example B-2.

Example B-2 AUTPSB11 PSB source

AUTOLPCB PCB TYPE=DB,DBDNAME=AUTOLDB, PROCOPT=AP, KEYLEN=100
SENSEG NAME=DEALER,PARENT=0
SENSEG NAME=MODEL,PARENT=DEALER
SENSEG NAME=ORDER, PARENT=MODEL
SENSEG NAME=SALES,PARENT=MODEL
SENSEG NAME=STOCK,PARENT=MODEL
SENSEG NAME=STOCSALE,PARENT=STOCK
SENSEG NAME=SALESPER,PARENT=DEALER
SENSEG NAME=SALESINF,PARENT=SALESPER
SENSEG NAME=EMPLINFO,PARENT=SALESPER
AUTS1PCB PCB TYPE=DB,DBDNAME=AUTOLDB,PROCOPT=GRP,KEYLEN=100,
PROCSEQ=SINDEX11
SENSEG NAME=ORDER,PARENT=0
SENSEG NAME=MODEL, PARENT=ORDER
SENSEG NAME=DEALER,PARENT=MODEL
SENSEG NAME=STOCK, PARENT=MODEL
*
AUTS2PCB PCB TYPE=DB,DBDNAME=AUTOLDB, PROCOPT=GRP, KEYLEN=64,
PROCSEQ=SINDEX22
SENSEG NAME=DEALER,PARENT=0
SENSEG NAME=MODEL,PARENT=DEALER
SENSEG NAME=STOCK, PARENT=MODEL
*
AUSI2PCB PCB TYPE=DB,DBDNAME=SINDEX22,PROCOPT=GRDP,KEYLEN=28
SENSEG NAME=SINDXB,PARENT=0

EMPLPCB PCB TYPE=DB,DBDNAME=EMPLDB2,PROCOPT=AP,KEYLEN=10
SENSEG NAME=EMPL,PARENT=0
SENSEG NAME=DEALER,PARENT=EMPL
SENSEG NAME=SALESINF,PARENT=DEALER
SENFLD NAME=QUOTA,START=1
SENFLD NAME=SALESYTD,START=7
SENSEG NAME=EMPLINFO,PARENT=EMPL
PSBGEN PSBNAME=AUTPSB11,LANG=JAVA

Appendix B. Car Dealer IVP Database = 239

7856ax02.fm Draft Document for Review May 7, 2010 1:20 pm

END

B.2.2 AUTODB.dbd

The source of the physical DBD, AUTODB, that is needed for use with PSB AUTPSB11, is
listed in Example B-3.

Example B-3 AUTODB DBD source

DBD NAME=AUTODB,ACCESS=(HDAM,QSAM), X
RMNAME=(DFSHDC40,1,5,200)
DATASET DD1=DFSDLR
SEGM NAME=DEALER,PARENT=0,BYTES=61
FIELD NAME=(DLRNO,SEQ,U),BYTES=4,START=1,TYPE=C
FIELD NAME=DLRNAME,BYTES=30,START=5,TYPE=C
FIELD NAME=CITY,BYTES=10,START=35,TYPE=C
FIELD NAME=ZIP,BYTES=10,START=45,TYPE=C
FIELD NAME=PHONE,BYTES=7,START=55,TYPE=C
LCHILD NAME=(SINDXB,SINDEX22),POINTER=INDX

XDFLD NAME=XFLDZ2,SEGMENT=MODEL, X
SRCH= (MAKE ,MODEL), X
SUBSEQ=(YEAR, /SX1), X

DDATA=COUNT

SEGM NAME=MODEL,PARENT=DEALER,BYTES=37

FIELD NAME=(MODKEY,SEQ,U),BYTES=24,START=3, X
TYPE=C

FIELD NAME=MODTYPE,BYTES=2,START=1,TYPE=C

FIELD NAME=MAKE,BYTES=10,START=3,TYPE=C

FIELD NAME=MODEL,BYTES=10,START=13,TYPE=C

FIELD NAME=YEAR,BYTES=4,START=23,TYPE=C

FIELD NAME=MSRP,BYTES=5,START=27,TYPE=P

FIELD NAME=COUNT,BYTES=2,START=32,TYPE=P

FIELD NAME=/SX1

SEGM NAME=ORDER,PARENT=MODEL,BYTES=74

FIELD NAME=(ORDNBR,SEQ,U),BYTES=6,START=1,TYPE=C

FIELD NAME=LASTNME,BYTES=25,START=7,TYPE=C

FIELD NAME=FIRSTNME,BYTES=25,START=32,TYPE=C

FIELD NAME=DATE,BYTES=10,START=57,TYPE=C

FIELD NAME=TIME,BYTES=8,START=67,TYPE=C

LCHILD NAME=(SINDXA,SINDEX11),POINTER=INDX

XDFLD NAME=XFLD1,SRCH=(LASTNME,FIRSTNME,ORDNBR), X
DDATA=DATE

SEGM NAME=SALES,PARENT=((MODEL,), (STOCK,PHYSICAL,AUTODB)), X
BYTES=85, X
POINTER=(LPARNT,LTWINBWD, TWINBWD) , X

RULES=(VVV)
FIELD NAME=(SALENUM,SEQ,U),BYTES=4,START=49,TYPE=C
FIELD NAME=SALDATE,BYTES=8,START=53,TYPE=C
FIELD NAME=LASTNME,BYTES=25,START=61,TYPE=C
SEGM NAME=STOCK,PARENT=MODEL,BYTES=46
LCHILD NAME=(SALES,AUTODB),PAIR=STOCSALE,PTR=DBLE
FIELD NAME=(STKVIN,SEQ,U),BYTES=20,START=1,TYPE=C
FIELD NAME=COLOR,BYTES=10,START=21,TYPE=C
FIELD NAME=PRICE,BYTES=5,START=31,TYPE=C
FIELD NAME=LOT,BYTES=10,START=36,TYPE=C

240 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856ax02.fm

FIELD NAME=WRNTY,BYTES=1,START=46,TYPE=X

SEGM NAME=STOCSALE,PARENT=STOCK, PTR=PAIRED, X
SOURCE= ((SALES,DATA,AUTODB))

FIELD NAME=(SALENUM,SEQ,U),BYTES=4,START=29,TYPE=C

FIELD NAME=(DLRNO,SEQ,U),BYTES=4,START=1,TYPE=C

FIELD NAME=MODKEY,BYTES=24,START=5,TYPE=C

FIELD NAME=SALDATE,BYTES=8,START=33,TYPE=C

FIELD NAME=LASTNME,BYTES=25,START=41,TYPE=C

SEGM NAME=SALESPER,
PARENT=((DEALER,), (EMPL,PHYSICAL,EMPDB2)),
BYTES=6,
POINTER=(LPARNT,LTWINBWD, TWINBWD) ,
RULES=(VVV)

FIELD NAME=(EMPNO,SEQ,U),BYTES=6,START=1,TYPE=C

SEGM NAME=SALESINF,PARENT=SALESPER,BYTES=15

FIELD NAME=QUOTA,BYTES=5,START=1,TYPE=C

FIELD NAME=SALESYTD,BYTES=5,START=6,TYPE=C

FIELD NAME=COMSSION,BYTES=5,START=11,TYPE=C

DBDGEN

>< X< X< X

B.2.3 EMPDB2.dbd

The source of the physical DBD, EMPDB2, that is needed for PSB AUTPSB11, is listed in
Example B-4.

Example B-4 EMPDB2 DBD source

DBD NAME=EMPDB2 ,ACCESS=(HDAM, 0SAM) , X
RMNAME=(DFSHDC40,1,5,200)

DATASET DD1=DFSEMPL

SEGM NAME=EMPL,PARENT=0,BYTES=56

LCHILD NAME=(SALESPER,AUTODB) ,PAIR=EMPSAL,POINTER=DBLE
FIELD NAME=(EMPNO,SEQ,U),BYTES=6,START=1,TYPE=C

FIELD NAME=LASTNME,BYTES=25,START=7,TYPE=C

FIELD NAME=FIRSTNME,BYTES=25,START=32,TYPE=C

SEGM NAME=EMPSAL,PARENT=EMPL,PTR=PAIRED, X

SOURCE=((SALESPER,DATA,AUTODB))

FIELD NAME=(DLRNO,SEQ,U),BYTES=4,START=1,TYPE=C

SEGM NAME=EMPLINFO,PARENT=EMPL,BYTES=61

FIELD NAME=(STATE,SEQ,M),BYTES=2,START=51,TYPE=C

FIELD NAME=ADDRESS,BYTES=61,START=1,TYPE=C

FIELD NAME=STREET,BYTES=25,START=1,TYPE=C

FIELD NAME=CITY,BYTES=25,START=26,TYPE=C

FIELD NAME=ZIP,BYTES=9,START=53,TYPE=C
DBDGEN

FINISH

END

B.2.4 SINDEX11.dbd

Example B-5 lists the source of the secondary index DBD, SINDEX11, that is needed for both
DBD AUTODB and PSB AUTPSB11. It is sourced and targeted on the segment ORDER.

Appendix B. Car Dealer IVP Database 241

7856ax02.fm Draft Document for Review May 7, 2010 1:20 pm

Example B-5 SINDEX11 DBD source

DBD NAME=SINDEX11,ACCESS=(INDEX,VSAM)
DATASET DD1=SINDX1P
SEGM NAME=SINDXA,PARENT=0,BYTES=66
FIELD NAME=(XFLDA,SEQ,U),BYTES=56,START=1,TYPE=C
FIELD NAME=DATE,BYTES=10,START=57,TYPE=C
LCHILD NAME=(ORDER,AUTODB) , INDEX=XFLD1
DBDGEN
FINISH
END

B.2.5 SINDEX22.dbd

Example B-6 lists the source of the secondary index DBD, SINDEX22, that is needed for both
DBD AUTODB and PSB AUTPSB11. It is sourced on segment MODEL and targeted on the
root segment DEALER.

Example B-6 SINDEX22 DBD source

DBD NAME=SINDEX22,ACCESS=(INDEX, VSAM)
DATASET DD1=SINDX2P
SEGM NAME=SINDXB,PARENT=0,BYTES=34
FIELD NAME=(XFLDB,SEQ,U),BYTES=28,START=1,TYPE=C
FIELD NAME=COUNT,BYTES=2,START=25,TYPE=C
FIELD NAME=ENQUIRS,BYTES=4,START=25,TYPE=P
LCHILD NAME=(DEALER,AUTODB),INDEX=XFLD2
DBDGEN
FINISH
END

B.2.6 AUTOLDB.dbd

Example B-7 lists the source of the logical DBD, AUTLDB, that is needed for PSB
AUTPSB11. It is based on the the physical DBD AUTODB and uses its two internal logical
relationships and its logical relationship withthe physical DBD EMPDB2.

Example B-7 AUTOLDB DBD source

DBD NAME=AUTOLDB,ACCESS=LOGICAL

DATASET LOGICAL

SEGM NAME=DEALER,PARENT=0,SOURCE=((DEALER, ,AUTODB))

SEGM NAME=MODEL ,PARENT=DEALER,SOURCE=((MODEL, ,AUTODB))

SEGM NAME=0ORDER, PARENT=MODEL , SOURCE=((ORDER, ,AUTODB))

SEGM NAME=SALES,PARENT=MODEL, X
SOURCE= ((SALES,DATA,AUTODB) , (STOCK,DATA,AUTODB))

SEGM NAME=STOCK, PARENT=MODEL , SOURCE=((STOCK, ,AUTODB))

SEGM NAME=STOCSALE,PARENT=STOCK, X
SOURCE=((STOCSALE ,DATA,AUTODB) , (MODEL,KEY,AUTODB))

SEGM NAME=SALESPER,PARENT=DEALER, X
SOURCE= ((SALESPER,DATA,AUTODB) , (EMPL,DATA,EMPDB2))

SEGM NAME=SALESINF,PARENT=SALESPER, X
SOURCE= ((SALESINF, ,AUTODB))

SEGM NAME=EMPLINFO,PARENT=SALESPER, X

SOURCE=((EMPLINFO, ,EMPDB2))

242 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856ax02.fm

DBDGEN
FINISH
END

B.2.7 EMPLDB2.dbd

Example B-8 lists the source of the logical DBD, EMPLDB, that is needed for PSB
AUTPSB11. It is based on the the physical DBD EMPDB2 and uses its logical relationship
with the physical DBD AUTODB.

Example B-8 EMPLDB DBD source

DBD NAME=EMPLDB2,ACCESS=LOGICAL
DATASET LOGICAL
SEGM NAME=EMPL ,PARENT=0, SOURCE= ((EMPL, ,EMPDB2))

SEGM NAME=DEALER, PARENT=EMPL, X
SOURCE= ((EMPSAL,KEY,EMPDB2) , (DEALER,DATA,AUTODB))

SEGM NAME=SALESINF,PARENT=DEALER, X
SOURCE= ((SALESINF, ,AUTODB))

SEGM NAME=EMPLINFO,PARENT=EMPL, X
SOURCE=((EMPLINFO, ,EMPDB2))

DBDGEN

FINISH

END

Appendix B. Car Dealer IVP Database 243

7856ax02.fm Draft Document for Review May 7, 2010 1:20 pm

244 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856ax03.fm

C

The environment for our
scenarios

This appendix gives information about the configuration that we used and the versions of the
programs used for the Open Database scenarios. which are avaiable as source as described
in Appendix D, “Additional material” on page 249.

Topics in this appendix include:

» Used system configuration

» Used application versions

» Required APAR numbers

© Copyright IBM Corp. 2010. All rights reserved. 245

7856ax03.fm

C.1 Used system configuration

Draft Document for Review May 7, 2010 1:20 pm

Our IMS system is an IMS Version 11 and is located on an LPAR called WTSC63. The DB2
for System z which is used in one of the scenarios is also located on the LPAR WTSC63.

The IMS has been enhanced with an ODBM and a IMS Connect address spaces as shown in
Figure C-1. We have omitted all the other address spaces in the picture for clarity. Notice that
the SCI connection from IMS Connect to ODBM is by program call (PC) if they are within the
same LPAR, or through XCF if they are on a different LPAR. This is the normal behavior of
SCI. If XA is used in a managed environment the application server will keep track of the
transactionallity. On the z/OS side, this would involve RRS, which was therefore enabled in all

used components.

JEE Server WTSC63

IMS
Universal
DB
Drivers

=

DB2 JCC

IMSBBHWS | SCI

R -

DLI
databases

IMSBBOPD IMSB P

Driver

- —B o~

- —B o ~

databases

Figure C-1 The system configuration used for this book

For more informations about the used configuration see Chapter 3, “System environment” on

page 41.

C.2 Used application versions

Table C-1 lists the versions of the products used in this book.

Table C-1 Products and versions

Product

Version

IBM Cognos® Virtual View Manager

V8.4.1

IBM Data Studio

vV 2.2.0.1 (2.2.0.20091124_1634)

IBM Rational Application Developer for
WebSphere Software

V 7.5.5 (7.5.5.20091203_0703)

IBM Rational Developer for System z

V 7.6.0.1 (7.6.0.20091216_1622)

WebSphere Application Server Version 7.0

V 7.0.0.7 (2.0.1.20091203_0240)

IMS Enterprise Suite DLIModel Utility Plug-in

V 2.0.3.20091102_1145 with DLIModel Utility Fix
V (2.0.3.20100209_1546)

IBM Installation Manager

V134

246 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

7856ax03.fm

Product

Version

IBM Mashup Center

V2.0

IMS Universal Drivers

see required APARs

Java Development Kit (JDK)

IBM J9 VM (build 2.4, JRE 1.6.0 IBM J9 2.4

Windows XP x86-32
jvmwi3260sr6-20091001_43491

DB2 JCC Driver

V3.57/V47

C.3 Required APAR numbers

Table C-2 lists the APARs that we applied in our environment in order to have working

samples.

Author Comment: To be completed as necessary before publishing

Table C-2 Products and APARs

Product/function

APARs

PTF

IMS 11 IVP problem (missing
DFSODSCR in the GA tape)

PM01374

OPEN

IMS V11 Generic JDBC
support (for Cognos and Data
Source Explorer integration.)

PM12893

OPEN

IMS Problem Investigator.
New function to track and
format CEX event records for
ODBA transactions.

PM09535

UK56453

IMS Connect Extensions.
Improved use of OMEGAMON
to capture the event buffers.

PM04643

UK55059

Appendix C. The environment for our scenarios 247

7856ax03.fm Draft Document for Review May 7, 2010 1:20 pm

248 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856addm.fm

D

Additional material

This book refers to additional material that can be downloaded from the Internet as described
below.

Locating the Web material

The Web material associated with this book is available in softcopy on the Internet from the
IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247856

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redbooks form number, SG247856.

Using the Web material

The additional Web material that accompanies this book includes the following files:

File name Description

AUTPSB11.jar It contains the necessary AUTPSB11DatabaseView Java class in the
package samples.ims.openDb generated by the IMS Enterprise Suite
DLIModel Utility, as well as all other generated artefacts like the XML
schemas.

AUTPSB11Modified.jar
It contains the same as the AUTPSB11 .jar, but the DatabaseView is
modified to match the PSB and DBD special Datatypes. To use this
class you have to delete the contents of the IVP CarDealer Database
and insert data with the corresponding representation (Packeddecimal
and Hexadecimal)

© Copyright IBM Corp. 2010. All rights reserved. 249

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

7856addm.fm

Draft Document for Review May 7, 2010 1:20 pm

CarDealer_DBDandPSBSources.zip

IMSandDB2.ear

It is a zip file and contains the DBDs and the PSB of the Car Dealer
IVP Database which are used for this example.

It is the Enterprise Archive file for the deployment to a WebSphere
Application Server Version 7. When you import this file to your Eclipse,
you have to add the required libraries to your Java Build path
(imsudbJXA.rar contents, JDK, WAS 7 runtime and AUTPSB11.jar).
For installing it in WebSphere Application Server you have to install the
IMS Universal JDBC XA resource adapter and the IBM DB2 Data
Server Driver as described in the scenario.

IMSOpenDBTransaction.zip

IMSOpenDBApp.zip

It is the project interchange file for the IMS Transaction example. When
you import this file to your Eclipse, you have to add the required
libraries to your Java Build path (imsudb.jar, imsutm.jar, JDK and
AUTPSB11.jar)

It is the project interchange file for the IMS Standalone examples as
well as some more self explaining Standalone examples. When you
import this file to your Eclipse, you have to add the required libraries to
your Java Build path (imsudb.jar, JDK and AUTPSB11 jar)

IMSOpenDBSource.zip

dlitest1

dlitest2

It is the project interchange file for the IMS Managed environment
examples as well as some used code fragments in the book. When
you import this file to your Eclipse, you have to add the required
libraries to your Java Build path (imsudbJXA.rar contents, JDK, WAS 7
runtime and AUTPSB11 jar)

It is an example of using the IMS Universal DLI driver to retrieve,
update and delete rows in the IMS sample DB AUTODB database and
the PCB that references it in the PSB AUTPSB11.

It is an example of using the batch method feature of the IMS
Universal DLI driver to retrieve, update and delete rows in the IMS
sample DB AUTODB database and the PCB that references it in the
PSB AUTPSB11. Over 8000 segments have been added to the
sample data supplied with the IMS product for this test.

System requirements for downloading the Web material

The following system configuration is recommended:

Hard disk space:
Operating System:
Processor:
Memory:

2 MB minimum

Windows XP or alternatively Linux
x86 architecture

256 MB minimum

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the Web
material zip file into this folder if you want to view the code.

250 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856addm.fm

Tip: Jar files are also packed archives and can be extracted by renaming the file extension
to .zip.

The Project Interchange™ files can be imported in eclipse by using the File->Import and
select Project Interchange file. The necessary build path has to be configured that the
reference errors disappear.

Therefore you need additionally the IMS Universal DB Drivers and other resources like the
WebSphere Application Server Runtime and Java Development Kit.

Appendix D. Additional material 251

7856addm.fm Draft Document for Review May 7, 2010 1:20 pm

252 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

Abbreviations and acronyms

ACEE

AGN
AIB
AOI
APF
API
APPC

APSB
ARM
ASN
BMP
BPE
CBM
CCF
CcCl
CDE
CaGl
Cl
cics

CLI
CLP
CLS
CSL
CSM
CTG
DB2
DBCTL
DBD
DBMS
DBPCB
DBRA
DBRC
DDM
DEDB
DLET
DMB
DRA

access control environment
element

Application Group Name
Application Interface Block
Automated Operator Interface
authorized program facility
application programming interface

Advanced Program-to-Program
Communication

Allocate PSB

Automatic Restart Manager
Abend Search and Notification
batch messaging program
Base Primitive Environment
Component Business Modeling
Common Connector Framework
Common Client Interface
contents directory entry
Common Gateway Interface
Control Interval

Customer Information Control
System

command line interface
command line processor
Common Service Layer
Common Service Layer
Complete Status Message
CICS Transaction Gateway
Database 2

Database Control

database description
database management system
database PCB

Database Resource Adapter
Database Recovery Control
Distributed Data Management
data entry database

Delete

data management block
Database Resource Adapter

© Copyright IBM Corp. 2010. All rights reserved.

DRDA

DSN
DTP
EAB
EAI
ECB
EIS
EISS
EISs
EJB
EJBs
EMF
ETO
EWLM
GEF
GN
GNP
GU
GUI
HALDB
HTML
HTTP
IBM

IDE

IDS
ILDS
IMS
IPCS
IPL
IRLM
IRM
ISC
ISPF

ISRT
ISVs
ITSO

7856abrv.fm

Distributed Relational Database
Architecture

Data Source Name

distributed transaction processing
Enterprise Access Builder
enterprise application integration
Event Control Block

enterprise information systems
Enterprise Information Systems
Enterprise Information Systems
Enterprise JavaBean

Enterprise JavaBeans

Eclipse Modeling Framework
Extended Terminal Option
Enterprise Workload Manager™
Graphical Editor Framework

Get Next

Get Next within Parent

Get Unique

graphical user interface

High Availability Large Data Bases
Hypertext Markup Language
Hypertext Transfer Protocol

International Business Machines
Corporation

Integrated Development
Environment

Indormix Dynamic Server

indirect list data set

Information Management System
Interactive Problem Control System
initial program load

internal resource lock manager
IMS request message

intersystem communication

Interactive Systems Productivity
Facility

Insert
independent software vendors

International Technical Support
Organization

253

7856abrv.fm

IVP
IVPEX
J2c
J2EE
JBP
JCA
JccC
JCL
JDBC
JDK
JMP
JMS
JNDI

JRE
JSP
JTA
JTS
JVM
Java EE
KBLA
LAN
LDAP

LPAR
LSQA
LTERM
LU
LU2
MCI
MDB
MFS
MOD
MPP
MSC
Mvs
ODBA
oDBC
ODBM
OLDS
OLDSs
OLR
oM
(o]0

Installation Verification Procedure
IVP Export Utility

Java EE Connector Architecture
Java 2 Platform, Enterprise Edition
Java Batch Program

Java Connector Architecture
JAVA Common Client

job control language

Java Database Connectivity

Java Development Kit

Java Message Program

Java Message Server

Java Naming and Directory
Interface

Java Runtime Environment
JavaServer Pages

Java Transaction API

Java Transaction Service

Java Virtual Machine

Java Platform Enterprise Edition
Knowledge-Based Log Analysis
local area network

Lightweight Directory Access
Protocol

logical partition

local system queue area
logical terminal

logical unit

logical unit 2

Message Control Information
message-driven bean
Message Format Service
message output descriptor
message processing program
Multiple Systems Coupling
Multiple Virtual System
Open Database Access
Open DataBase Connectivity
Open Database Manager
online log data set

online log data sets

Online Reorganization
Operations Manager
object-oriented

254 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

OTMA C/I
OTMA
PC
PCB
PCBs
PDU
PPT
PRA
PSB
PSBs
RACF
RAD
RAR
RAS
RDDS
RECON
REPL
RM
RMM
RRS
RRS/MVS
RSM
RYO
SAF
SCI
SDK
SGML

SLSB
SMP/E

SMU
SNA
SOA
SOMA

SPE
SPOC
SQLJ
SSAs
SSL
SSPM

STE
STSN

OTMA Callable Interface

Open Transaction Manager Access
program call

program communication block
Program Control Blocks

Partition Definition Utility
program properties table

Parallel RECON Access
program specification block
program specification blocks
Resource Access Control Facility
Rational Application Developer
resource adapter archive
Resource Access Security
Resource Definition Data Set
Recovery Control

Replace

resource manager

Request MOD Message
Resource Recovery Services
Resource Recovery Services/MVS
request status message
Roll-Your-Own

System Authorization Facility
Structured Call Interface
Software Development Kit

Standard Generalized Markup
Language

stateless session bean

System Modification
Program/Extended

Security Maintenance Utility
Systems Network Architecture
service-oriented architecture

Service Oriented Modeling and
Architecture

small programming enhancement
single point of control

SQL for Java

segment search arguments
Secure Socket Layer

Sysplex serialized program
management

storage tracking element
set and test sequence numbers

Draft Document for Review May 7, 2010 1:20 pm

SVL
TCO
TCP/IP

THREAD
TMRA

TPIPE
TRACE
Thilo
UOR
VIPA
VVM
w3cC
WAN
WAS
WID
WLM
WPS
WSDL
www
XCF
XMI
XML
db2cli

Silicon Valley Laboratories
Time-Controlled Operations

Transmission Control
Protocol/Internet Protocol

TYPE

Transaction Manager Resource
Adapter

transaction pipe

TYPE

through tooling

Unit of Recovery

Virtual IP Addressing

Virtual View Manager

World Wide Web Consortium

wide area network

WebSphere Application Server
WebSphere Integration Developer
workload manager

WebSphere Process Server

Web Service Description Language
World Wide Web

cross-system coupling facility

XML Metadata Interchange
Extensible Markup Language

DB2 Interactive Call Level Interface

7856abrv.fm

Abbreviations and acronyms

255

7856abrv.fm Draft Document for Review May 7, 2010 1:20 pm

256 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm 7856bibl.fm

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 258.
Note that some of the documents referenced here may be available in softcopy only.

>

>

»

IMS Version 11 Technical Overview, SG24-7807

DB2 9 for z/OS: Distributed Functions, SG24-6952-01

Powering SOA Solutions with IMS, SG24-7662

Powering SOA with IBM Data Servers, SG24-7259

IMS Performance and Tuning Guide, SG24-7324

IMS V10 Implementation Guide: A Technical Overview, SG24-7526

IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity,
SG24-6794

Publishing IMS and DB2 Data Using WebSphere Information Integrator: Configuration and
Monitoring Guide, SG24-7132

IMS V9 Implementation Guide: A Technical Overview, SG24-6398
IMS V8 Implementation Guide: A Technical Introduction of the New Features, SG24-6594

Reorganizing Databases Using IMS Tools: A Detailed Look at the IBM IMS High
Performance Tools, SG24-6074

IMS Installation and Maintenance Processes, SG24-6574

Using IMS Data Management Tools for Fast Path Databases, SG24-6866

IMS in the Parallel Sysplex Volume I: Reviewing the IMSplex Technology, SG24-6908
IMS in the Parallel Sysplex Volume II: Planning the IMSplex, SG24-6928

Other publications

These publications are also relevant as further information sources:

>

>

>

IMS Version 11 Application Programming, SC19-2428

IMS Version 11 Application Programming APls, SC19-2429

IMS Version 11 Commands, Volume 1: IMS Commands, SC19-2430
IMS Version 11 Commands, Volume 2: IMS Commands N-V, SC19-2431

IMS Version 11 Commands, Volume 3: IMS Component and z/0OS Commands,
SC19-2432

IMS Version 11 Communications and Connections, SC19-2433
IMS Version 11 Database Administration, SC19-2434

© Copyright IBM Corp. 2010. All rights reserved. 257

7856bibl.fm Draft Document for Review May 7, 2010 1:20 pm

» IMS Version 11 Database Ultilities, SC19-2435

» IMS Version 11 Diagnosis, GC19-2436

» IMS Version 11 Exit Routines, SC19-2437

» IMS Version 11 Installation, GC19-2438

» IMS Version 11 Master Index and Glossary, SC19-2440

» IMS Messages and Codes, Volume 1: DFS Messages, GC18-9712

» IMS Messages and Codes, Volume 2: Non-DFS Messages, GC18-9713
» IMS Messages and Codes, Volume 3: IMS Abend Codes, GC18-9714

» IMS Messages and Codes, Volume 4: IMS Component Codes, GC18-9715
» IMS Version 11 Operations and Automation, SC19-2441

» IMS Version 11 Release Planning, GC19-2442

» IMS Version 11 System Administration, SC19-2443

» IMS Version 11 System Definition, GC19-2444

» IMS Version 11 System Programming APIs , SC19-2445

» IMS Version 11 System Utilities, SC19-2446

» IMS and SOA Executive Overview, GC19-2516

» IMS TM Resource Adapter User's Guide and Reference, SC19-1211

» Program Directory for Information Management System Transaction and Database
Servers V11.0, GI10-8788

» |RLM Messages and Codes, GC19-2666

Online resources

These Web sites are also relevant as further information sources:

» IMS products and tools
http://www.ibm.com/ims

» IMS Information Center
http://publib.boulder.ibm.com/infocenter/imzic

» The IMS Enterprise Suite set of topics
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.ims.es.doc/ies_home.htm

» System z hardware
http://www.ibm.com/systems/z/hardware/

» | MS tools :
http://www.ibm.com/software/data/db2imstools/products/ims-tools.html

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks publications, at this Web site:

ibm.com/redbooks

258 IMS 11: The Open Database

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/ims
http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.ims.es.doc/ies_home.htm
http://www.ibm.com/systems/z/hardware/

Draft Document for Review May 7, 2010 1:20 pm 7856bibl.fm

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

Related publications 259

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

7856bibl.fm Draft Document for Review May 7, 2010 1:20 pm

260 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

Index

A
ACBLIB 97
ACEE 28

Address space 209, 211

address space xvii, 4, 11, 14, 18, 20-21, 4244, 154,
161, 209, 211

ADO 230

AERTDLI 34

aggregate functions 120

AIB 53, 182

API 2,18,27,29,47,53,75,96, 139, 174, 184, 200, 211,
228-229

APIs 5, 11, 39, 103, 113, 174, 225, 230

application program 27, 32-33, 50, 52, 72, 96, 112, 114,
233

APSB security 27, 72-73

ARMRST 45-46

AT-TLS 32

B
Base Primitive Environment
See BPE
BPE 32,43, 214
exit list 69, 72
BPECFG 43-44, 46
business process 2
business value 6

C
CLI 228
client application 7, 14-15, 25, 27, 29, 61, 71, 99
COBOL 4-6,9, 15, 76, 90-91, 120, 181
COBOL copybook 4, 94

additional field information 9
command line

interface 230

processor 230
Composite Information Server 138
configuration 25,41,76,97, 141,147,168, 180, 209, 231
configuration member 32-33, 43, 171, 209
Connection Factory 105-106, 203
connection pooling 13, 37, 99, 104
ConnectionFactory 105-106, 200
Control Center 61, 231
Coupling Facility 21
CSL 14, 22-23, 25, 42, 208, 214

address space 23, 25, 43
CSLDCxxx 27, 50, 59, 180, 209
CSLDIxxx 49, 59
CSLOIxxx 47
CSLSIxxx 45-46
CSSLIB 53, 62
cursor 70, 181-182

© Copyright IBM Corp. 2010. All rights reserved.

7856IX.fm

D
data sharing 180
data source 99, 138, 171, 229
data store 32, 110, 148
data transformation 113, 122
database xvii, 2-3, 5,9, 18, 42, 46, 48, 50, 75-76, 96-97,
126, 134, 139, 154-155, 159-160, 180—-181, 208, 228,
230-231, 235
DataPower 9
DataSource 105, 108, 137, 164, 232-233
datastore 33, 51, 171, 180
datastore name 52, 180
DATASTORE statement 61
DB/DC 67, 209
DB2 xvii, 5-6, 14, 18-19, 36, 38, 50, 74, 99, 101, 126,
137, 160, 227
DB2 for z/OS server 232
DB2Binder utility 232
DBCTL 3, 25, 29, 34, 209, 211
DCCTL 3
DEDB 52
DELETE 114, 116, 118, 157—-158, 166, 191
Demand Environment 60-61, 211
dependent region 5, 28, 174-175
DESC 47,114
destination name 86
DFSDDLTO 91
DFSERA10 214
DFSPBxxx 27,72-73
DFSRAS00 28,73
DL/l xvii, 2, 13, 18, 25, 27, 29, 96, 101, 179-181,
210-211, 214, 227
DL/I call 181-182, 214
DLIModel 5-6, 8, 39-40, 42, 75-76, 87, 114—115, 129,
148
DLIModel Utility 9, 11, 75, 81, 84, 88, 146
business goal 9
DLIModel utility 8-9, 39, 42, 75-76, 146, 180
DRA 3,5, 19, 26, 34, 36, 38, 50, 66, 100-101, 180, 211
DSN 46, 48, 53, 140-141
dynamic SQL 109, 228

E
ECSA 10
EJB 20, 36, 104—105, 162, 208
Enterprise Edition (EE) 4
enterprise information system (EIS) 8
exit 10, 27-28, 30-31, 47, 53, 86, 193
calls 32
routine 28, 30, 32, 53, 72
user 53
exit routine 28, 53, 71-72

261

78561X.fm

F

Fast Path 10, 52, 172
feed 149

FMID 96

FOR 43,211,232
full-function product 231

G
GSAM 182
GSAM database 182

H

HALDB 64

HDAM 240
HOSTNAME 60-61
HTML 4, 166-167
HTTP 6-7

HWS 45
HWSCFGxx 29, 61-62, 71
HWSJAVAQ 32
HWSRCORD 62
HWSSMPLO 32
HWSSMPL1 32

|
IBM Data Server Client 228, 230-231
IBM IMS 14, 94
IMS xvii—xviii, 1-2, 7, 18, 41, 75, 95-96, 125-126,
153-154, 179, 208, 211, 227-228, 235, 246
IMS application 3, 5-9, 90, 97, 181
development 9
IMS Application Menu 64, 67
IMS asset 2
IMS command 47
IMS Connect xvii, 2, 4-5, 18, 22-24, 41-42, 75, 96, 99,
144,148, 154, 180, 209, 211, 246
IMS Connect BPE 60
IMS Connect Extensions 5
IMS Connect security 30, 71
IMS Connectivity xviii, 60-61, 211
IMS Connector for Java 7
IMS Control Center 61
IMS data xvii, 2, 6, 10—11, 34, 36, 40-42, 50, 52, 76, 96,
125, 137, 146, 180, 199
IMS database 5,9, 11, 18, 34, 36, 46, 48, 50, 75-76, 97,
99, 102, 147, 160, 169, 171, 180-181, 189, 208, 210
store XML data 9
IMS database resource
adapter 36
distribution 11
IMSDB 5, 18,67, 113, 141-142, 160, 168, 211
IMS Enterprise Suite xvii, 2, 14, 39, 42, 75, 83, 97,
114-115, 126, 129, 146, 154, 160, 180
IMS host
information 34
IMS Java 14-15, 19, 38, 76, 79, 98, 101, 120, 174-175,
237
IMS Open Database 5, 11,13, 18, 24, 29, 41-42, 81, 96,

262 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

102, 154, 161, 208, 211
Access 36
support 13, 29
IMS security 71
IMS service 3,7
IMS SOA 2,6-7, 80
Integration 6
Integration Suite 6-7
IMS SOAP Gateway 6-7
server 6-7
solution 7
Web Services 6
IMS SOAP gateway 4
Web services 7
IMS subsystem 11, 35, 37-38, 100
IMS system 3, 8, 28, 32, 45, 63-64, 75, 246
IMSTM 3-4, 7-8, 18, 28, 32
IMS TM Resource Adapter 4-8
IMS transaction 3-4, 6, 8, 18, 208
IMS Transaction Manager 10, 28, 61
IMS Universal DL/l driver 25, 29, 36, 38, 101, 103, 181,
184-186
IMS Universal Drivers 35, 38, 42, 96, 126, 129-130, 171,
177, 199, 208, 210, 212
IMS Universal drivers 5, 12, 29, 96, 180, 212
IMS Universal JDBC driver 25, 29, 36, 38, 96, 101, 174,
212
IMS Version
10 xviii
11 xviii, 11-12, 46, 96, 103, 126, 137, 146, 174, 209
9 5
IMSConnectionSpec 112, 180
IMSID 52, 171
IMSPLEX 43, 45, 47, 209, 211
IMSplex 11, 18, 25, 42-43, 45, 101, 209-210, 246
IMSPLEX statement 61
Information 19, 105, 127, 161, 200, 228
Informix 139, 230
InfoSphere MashupHub 149
input message 16, 61,71, 175
input/output message
definition 4
installing xvii, 94, 126, 161, 230
integrated IMS 180
Internet 8, 12, 23, 249
IP address 37-38, 99, 154, 161, 171-172, 180
IPCS 64
ISIS 27-28,73
ISPF 68
IVP 86-87, 97, 105-106, 154, 160, 169, 235

J

J2C 8,147-148, 170

J2EE 4-5,7, 19, 29, 35, 98, 104, 213, 229

J2EE application 104

J2EE Connector architecture 104

J2EE Connector Architecture (J2C) 8

Java 2,4-6, 19, 36, 41-42, 75-76, 87, 89, 95-96, 126,
139, 141, 153—-154, 179, 208, 212, 214, 227-229, 237
Java 2 Platform, Enterprise Edition 229

Draft Document for Review May 7, 2010 1:20 pm

Java application 8-9, 15, 39-40, 42, 76, 98, 154, 157,
185, 212, 228, 231
static SQL 228
Java applications 5, 8, 12, 36, 102—-103, 227-229, 231
Java classes 8, 105
JAVA Common Client 160, 228
Java development 15, 42, 154
Java Virtual Machine 5, 37, 99
java.io 166
JBP 5,38, 174
JCA 4-5,12,18, 23, 36, 96, 98, 102, 147
JCC 160, 171, 228
JCL 43, 46, 48, 52, 59, 195
JDBC xvii, 5, 11, 13, 18-19, 35, 78, 96, 101, 125, 129,
153-154, 185, 210, 212, 227-228, 231-232
JDBC driver xvii, 15, 25, 29, 36, 38, 96, 101-102, 147,
174,186, 212
JMP 5, 38,174,177
JVM 5, 37, 85, 99, 212

L
LANG 43-44, 239
Linux 8, 14, 80, 126, 227-228, 230-231, 250
local DB2
subsystem 232
logical relationships 79, 242
LPAR 11,18, 20, 45, 49, 63, 96, 100-101, 209, 211, 232,
246
LUW Version
9.5 FixPack 3 228

M

mashup 146

Message Format Service (MFS) 6
metadata 5, 8-9, 15, 18, 39, 75, 92-94, 96-97, 125, 139,
146, 154, 160, 169, 171, 180, 185, 212-213
MFS 4,66

middleware 7

migration 23

mode 20, 64, 86, 97, 227

MPP 5

MSDB 79, 90

MVS 47,210

(o)
ODBA 5, 17-23, 49-50, 74, 100-101, 210-211
ODBA interface 25, 27, 34, 211
ODBC 139, 228
client 141
driver 140, 230
ODBM 11, 14, 23-25, 42, 99, 101, 161, 171, 180, 208,
211, 246
OLDS 214
OM 23, 25, 28, 42
OMEGAMON 5
ondemand 2
Open Database xvii, 2,5, 17-18, 41, 75, 81, 95-96, 125,
154, 208, 211

7856IX.fm

enhancement 18
Manager 11, 14, 25, 28, 42, 48, 154, 161
Open Database Manager 14, 25, 37, 41-42, 48, 99, 161
Open Transaction Manager Access 28, 61
Operations 25, 41-42, 46
operations 39, 46, 112, 118, 182, 195
Operations Manager 28, 42
OTMA 28, 45, 61
output message 4, 16, 175

P
PCB 9, 39, 76, 78, 97-98, 112, 181, 237
performance xvii, 2, 10, 15, 28, 32, 109, 119, 138-139,
145, 180, 208-209, 228, 233
PL/I 4,6,15,76,78
PM01374 247
PM04643 247
PM09535 247
PM12893 247
port 34,38,61,71,99, 110,148, 161,168,171, 173, 180,
233
Practical Guide 60-61, 211
PROCLIB 27, 30, 43, 45-46, 59, 177, 209
PROCOPT 15, 78-79, 239
Program Call (PC) 211
program communication
block 112
program specification block (PSB) 9
programming model 6-7, 14, 23, 102, 179, 212
project xviii—xix, 87, 90, 92, 135, 155—-156, 163, 208
PSBGEN 239

Q

QUERY 46, 53-54

R
RACF 14, 27-28, 47, 60, 101
RAD 4, 154
RAR 147,162, 169, 200
Rational Application Developer 4, 8, 15, 76, 79-80, 91,
126, 154, 160
Rational Developer 8, 15, 76, 80, 91, 126, 153, 213
Rational Developer for System z 79, 86, 94, 126
Rational Software
Architect 8
RDz 6
Recovery Resource Services 37, 99
Redbooks Web site 249, 258
Contact us xix
RESLIB 72, 211
Resource 3-4, 19, 23, 50, 61, 99, 147, 160, 179-180,
210-211
resource xvii, 4-5, 8, 11-12, 25, 27-28, 42, 50, 96, 98,
140, 146147, 166, 174-175, 200, 213
access 28,50, 71, 98
adapter 8, 12, 15, 29, 36, 50, 96, 98, 146147, 174,
213
name 40, 148

Index 263

78561X.fm

Resource Adapter 4-6, 19, 23, 26, 103, 160, 179, 211
response message 61

RM 66

RRS 19, 26-27, 50, 99, 105, 161, 210

S
SAF 71
SCEERUN 62
SCI 20, 22, 25, 28, 42, 209
SDFSRESL 46, 48, 53, 62, 211
security xvii, 8-9, 12—13, 27-28, 47, 61, 104, 144, 208
SECURITY macro 28
servlet 166
SETRACF 32, 71
SLDS 214
SMP/E 14,75, 81, 96
SMU 73
SOA environment 6-7
IMS cababilities 6
SOAP 4,6-7,75,139
SOAP Gateway 6-7
SOAP message 6
sockets 29
SPOC 47, 54-55
SQL xvii, 2, 5, 19, 36, 39, 96, 98, 102, 126, 135,
163-164, 179, 208, 210, 212, 214, 227-228
SQLJ 126, 160, 227, 231-232
storage 10, 43, 45, 186
stored procedure 74
Structured Call Interface xvii, 25, 41-42, 209
sync point 19, 2627, 50
synchronous callout 15
Syntax Checker 64, 67
Sysplex 3, 209
sysplex 208
system definition 28
Systemz 8, 14, 18, 76, 79-80, 126, 153, 160, 172, 195,
213, 229
Rational Developer 8
WebSphere Developer 8

T
TCP 5-6, 11, 14, 23-24, 28-29, 42, 45, 59, 61, 63, 67,
96, 99, 171, 180, 210, 230
TCP/IP 4-5,10, 12, 14, 24, 28-29, 34, 45, 60-61, 96,
99-100
client 37,99
port 37
TCP/IP clients 5
TIMEOUT 211
timeout 29, 71, 110-111
TM Resource Adapter 4-7
TMEMBER 60-61
TMRA 4,8
Transaction Manager (TM) 3,6
TRCLEV 43
triggers 138
TSO 54,86
tuning 5

264 IMS 11: The Open Database

Draft Document for Review May 7, 2010 1:20 pm

two-phase commit 11, 29, 37, 39, 50, 98-99, 210

U

UK55059 247

UK56453 247

UML 76

Universal Driver 97, 129, 154, 209, 212
UNIX System Services 79, 232

UOR 50

UPDATE 46, 53, 58-59, 79, 114, 116, 118, 157—158,
166, 202, 214

URL 110-111, 130-131, 168, 171, 180
user exit 30-32, 53, 72

user exits 53, 62, 208

user message exit 32

\')

V9.5 FP3 229
VIEWDS 29
VIEWHWS 29
VIEWPORT 29
VSAM 242

w
Web 2.0 6, 146
Web browser 249
Web page 163
Web Service 10
Web Services 3-4, 7-8, 126, 208

Description Language 7
Web Services (WS) 7
WebSphere 4, 7-8, 20, 36, 38-39, 50, 74, 76, 79,
100-101, 146-147, 160-161, 200, 210-211, 213, 229,
233
WebSphere Application Server 5-6, 8, 13, 35-36,
38-39, 101, 103, 147, 160-161, 168, 211, 213
WebSphere Application Server for zZOS 14, 38
WebSphere Integration Developer 8
WebSphere Integration Developer (WID) 4
WebSphere Process Server 8

WID 4

workload balancing 209
WSDL 6-7

X

XCF 21, 45, 63, 209
XIB 60

XIBAREA 60

XMI descriptions 76

XML 6,9, 76, 113, 126, 134, 146, 186, 227
XML data 9, 76

XML schema 9, 87

XQuery 5, 135, 227, 230

y4
z/OS 4-5, 8, 11-12, 18, 20, 27, 45, 47, 76, 79, 96-97,
160, 208-209, 211, 227-228

Draft Document for Review May 7, 2010 1:20 pm 78561X.fm

z/OS server 232
z/OS subsystem 232

Index 265

78561X.fm Draft Document for Review May 7, 2010 1:20 pm

266 IMS 11: The Open Database

To determine the spine width of a book, you divide the paper PPI into the number of pages in the book. An example is a 250 page book using Plainfield opaque 50# smooth which has a PPI of 526. Divided
250 by 526 which equals a spine width of .4752". In this case, you would use the .5” spine. Now select the Spine width for the book and hide the others: Special>Conditional

Text>Show/Hide>SpineSize(-->Hide:)>Set . Move the changed Conditional text settings to all files in your book by opening the book file with the spine.fm still open and File>Import>Formats the
Conditional Text Settings (ONLY!) to the book files.

Draft Document for Review May 7, 2010 1:20 pm 7856spine.fm 267

IMS 11: The Open Database

Redbooks

(0.5” spine)
0.475"<->0.873”
250 <-> 459 pages

To determine the spine width of a book, you divide the paper PPI into the number of pages in the book. An example is a 250 page book using Plainfield opaque 50# smooth which has a PPI of 526. Divided
250 by 526 which equals a spine width of .4752". In this case, you would use the .5” spine. Now select the Spine width for the book and hide the others: Special>Conditional

Text>Show/Hide>SpineSize(-->Hide:)>Set . Move the changed Conditional text settings to all files in your book by opening the book file with the spine.fm still open and File>Import>Formats the
Conditional Text Settings (ONLY!) to the book files.

Draft Document for Review May 7, 2010 1:20 pm 7856spine.fm 268

Draft Document for Review May 7, 2010 1:26 pm

IMS 11 Open
Database

Install IMS Open
Database and its
prerequisites

Implement Java client
access to IMS and
DB2 data

Integrate Mash up
Center with IMS Open
Database

IIMS Version 11 continue to provide the leadership in performance,
reliability and security expected from the product of choice for critical
online operational applications. IMS 11 also offers new functions to
help you keep pace with the evolving IT industry.

The introduction of the new IMS Enterprise Suite allows application
developers with minimal knowledge of IMS Connect to start developing
client applications to communicate with IMS..

With Open Database, IMS 11 also provides direct SQL access to IMS
data from programs running on any distributed platform unlocking DL/I
data to the world of SQL application programmers.

This IBM® Redpaper Redbooks® publication documents the steps for
installing the new IMS components and their prerequisites and shows
scenarios of how your client applications can take advantage of SQL to
access IMS data.

We describe the installation of prerequisites such as IMS™ Connect
and the Structured Call Interface component of Common Service Layer
address space and document the set up of the new IMS 3 drivers:

» Universal DB resource adapter
» Universal JDBC driver
» Universal DLI driver

Our scenarios use the JDBC driver for type 4 access from Windows®
to a remote DL/I database as well as DB2® tables and extend it to use
IBM Mashup Center to provide an effective Web interface and integrate
with Open Database.

SG24-7856-00 ISBN

W
@

Redhooks.

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you

implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Acknowledgments

	Now you can become a published author, too!
	Comments welcome

	Chapter 1. Introduction
	1.1 IMS is open
	1.2 IMS 10 and SOA
	1.2.1 The value of including existing IMS assets into SOA
	1.2.2 IMS Connect and IMS Connect Extensions
	1.2.3 The IMS SOA Integration Suite
	1.2.4 DataPower and IMS

	1.3 IMS 11 and Open Database
	1.4 The IMS Enterprise Suite

	Chapter 2. Open Database architecture
	2.1 Why IMS Open Database
	2.2 Accessing IMS DB in Versions 9 and 10
	2.3 Evolution in IMS 11
	2.4 IMS 11 Architecture
	2.5 Open Database functions
	2.5.1 IMS Open Database uses DRDA
	2.5.2 Open DataBase Manager
	2.5.3 IMS Connect
	2.5.4 Distributed sync pointing
	2.5.5 Distributed Data Management

	2.6 IMS 11 Universal Drivers

	Chapter 3. System environment
	3.1 Required environment setup for IMS Open Database
	3.2 Common Service Layer components
	3.2.1 Base Primitive Environment configuration
	3.2.2 Structured Call Interface
	3.2.3 Operations Manager
	3.2.4 Open Database Manager

	3.3 IMS Connect
	3.3.1 First-time implementation: setup and configuration
	3.3.2 Modifying existing IMS Connect definitions for IMS Open DB support

	3.4 Using IMS applications to help set up CSL and IMS Connect
	3.4.1 Installation Verification Program
	3.4.2 IMS Syntax Checker

	3.5 Security considerations

	Chapter 4. Generating IMS metadata class with IMS Enterprise Suite DLIModel Utility
	4.1 Introduction
	4.2 Overview of IMS Enterprise Suite DLIModel utility
	4.2.1 Requirements
	4.2.2 Restrictions
	4.2.3 History

	4.3 Download and installation
	4.3.1 Installing the IBM Installation Manager
	4.3.2 Installing the IMS Enterprise Suite DLIModel utility

	4.4 Setup for sample scenarios included in this book
	4.4.1 Downloading the Car Dealer IVP database source

	4.5 Using the IMS Enterprise Suite DLIModel utility
	4.5.1 Generating metadata for Car Dealer database
	4.5.2 Editing the AUTPSB11 Project
	4.5.3 Export the metadata as Jar file

	4.6 Additional considerations for the IMS Enterprise Suite DLI Model Utility
	4.6.1 Ensuring consistency between generated class files and other JRE files
	4.6.2 Track changes of IMS database reorganizations
	4.6.3 Integrate the DLIModel Utility with other Eclipse products
	4.6.4 Data type conversion table

	Chapter 5. IMS Open Database for application developers
	5.1 Overview of IMS Open Database on the application side
	5.1.1 IMS Universal DB drivers
	5.1.2 IMS database metadata
	5.1.3 Java version requirements

	5.2 Architectural considerations
	5.2.1 Transactional support
	5.2.2 Access types
	5.2.3 Programming approach
	5.2.4 Comparison of the IMS Universal drivers

	5.3 IMS Universal Database resource adapter
	5.3.1 JCA/Common Client Interface approach
	5.3.2 JCA/JDBC approach

	5.4 IMS Universal JDBC driver (Stand Alone)
	5.4.1 Connecting to an IMS database using the JDBC DataSource interface
	5.4.2 Connecting to an IMS database using the JDBC DriverManager interface

	5.5 IMS Universal DL/I driver
	5.5.1 Basic steps in writing a IMS Universal DL/I driver application
	5.5.2 Example code using IMS Universal DL/I driver

	5.6 SQL syntax for the IMS Universal drivers
	5.6.1 SQL keywords
	5.6.2 Primary key and virtual foreign key handling
	5.6.3 Usage of SELECT statement
	5.6.4 Usage of INSERT statement
	5.6.5 Usage of UPDATE statement
	5.6.6 Usage of DELETE statement
	5.6.7 Usage of the WHERE statement
	5.6.8 Usage of AGGREGATE functions

	5.7 Data transformation support
	5.7.1 JDBC data types to Java data types mapping
	5.7.2 Compatible data transformation functions

	Chapter 6. Scenario 1 - JDBC data access through tooling
	6.1 IBM Data Perspective in Data Studio and Rational products
	6.1.1 Download and Install IBM Data Studio or Rational products
	6.1.2 Configuring IBM Data Studio for use with the IMS Universal JDBC Driver
	6.1.3 Using the Data Perspective with the IMS Universal Drivers

	6.2 Accessing IMS Data in Cognos
	6.2.1 IBM Cognos 8 Virtual View Manager
	6.2.2 Configuring Virtual View Manager for IMS Data access

	6.3 Accessing IMS Data Using the IBM Mashup Center

	Chapter 7. Scenario 2 - Developing JDBC applications
	7.1 Developing a stand alone Java application using the IMS Universal JDBC Driver
	7.1.1 Prerequisites
	7.1.2 Creating and configuring a new Java Project
	7.1.3 Writing the application

	7.2 Developing a managed Java application using the IMS Universal Database Resource Adapter (XA) and DB2 Data Server Drivers (XA)
	7.2.1 Prerequisites
	7.2.2 Installing the products
	7.2.3 Creating the Projects in Rational Application Developer
	7.2.4 Sample code for a managed environment
	7.2.5 Exporting the application
	7.2.6 Setting up the IMS Universal DB Resource Adapters in WebSphere Application Server 7.0
	7.2.7 Setting up DB2 Data Server Drivers in WebSphere Application Server 7.0
	7.2.8 Installing and starting the application
	7.2.9 Running the application

	7.3 Developing an IMS Java Transaction using the IMS Universal JDBC driver

	Chapter 8. Scenario 3 - Writing DL/I and mixed applications
	8.1 Writing applications with the IMS Universal DL/I Driver
	8.1.1 Accessing IMS data with the IMS Universal DL/I driver
	8.1.2 Retrieving Data Using the IMS Universal DL/I drivers
	8.1.3 Inserting data using the IMS Universal DL/I driver
	8.1.4 Updating data with the IMS Universal DL/I driver
	8.1.5 Deleting data with the IMS Universal DL/I driver
	8.1.6 Using the Batch Methods with the IMS Universal DL/1 driver

	8.2 Writing application with the IMS Universal DB Resource Adapter and the CCI programming approach
	8.2.1 Writing the application step by step
	8.2.2 Complete Code Example of CCI mixed application

	Chapter 9. Operational considerations
	9.1 Architectural suggestions
	9.1.1 Application middle layer
	9.1.2 Sysplex considerations
	9.1.3 Performance considerations

	9.2 Enhancing existing applications
	9.2.1 ODBA access through ODBM
	9.2.2 Enabling unsupported Java environments

	9.3 Tracing in problem cases
	9.3.1 IMS Universal driver tracing
	9.3.2 ODBM tracing
	9.3.3 IMS Tracing

	9.4 Using Tools with IMS Open database
	9.4.1 IMS Connect Extensions
	9.4.2 IMS Problem Investigator
	9.4.3 Identifying and resolving problems

	9.5 Additional sample programs

	Appendix A. IBM DB2 Data Server Drivers and Clients
	A.1 IBM Data Server Drivers and Clients
	A.1.1 IBM Data Server Driver for JDBC and SQLJ
	A.1.2 IBM Data Server Driver for ODBC and CLI (CLI driver)
	A.1.3 IBM Data Server Driver Package
	A.1.4 IBM Data Server Runtime Client
	A.1.5 IBM Data Server Client
	A.1.6 Driver and Client comparison

	A.2 Support for JDBC and SQLJ
	A.3 Using the IBM Data Server Driver for JDBC and SQLJ

	Appendix B. Car Dealer IVP Database
	B.1 Car Dealer database overview
	B.1.1 AUTOLPCB overview diagram
	B.1.2 EMPLPCB overview diagram
	B.1.3 Metadata description

	B.2 Car Dealer database source files
	B.2.1 AUTPSB11.psb
	B.2.2 AUTODB.dbd
	B.2.3 EMPDB2.dbd
	B.2.4 SINDEX11.dbd
	B.2.5 SINDEX22.dbd
	B.2.6 AUTOLDB.dbd
	B.2.7 EMPLDB2.dbd

	Appendix C. The environment for our scenarios
	C.1 Used system configuration
	C.2 Used application versions
	C.3 Required APAR numbers

	Appendix D. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

