
IMS
Version 14

Application Programming

SC19-4208-00

IBM

IMS
Version 14

Application Programming

SC19-4208-00

IBM

Note
Before you use this information and the product it supports, read the information in “Notices” on page 767.

This edition applies to IMS 14 (program number 5635-A05), IMS Database Value Unit Edition, V14.01.00 (program
number 5655-DSE), IMS Transaction Manager Value Unit Edition, V14.01.00 (program number 5655-TM3), and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1974, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information xi
Prerequisite knowledge xi
How new and changed information is identified .. xi
How to read syntax diagrams xii
Accessibility features for IMS 14 xiii
How to send your comments xiv

Part 1. Application programming
design 1

Chapter 1. Designing an application:
Introductory concepts. 3
Storing and processing information in a database .. 3

Database hierarchy examples 5
Your program's view of the data 10
Processing a database record 12

Tasks for developing an application 13

Chapter 2. Designing an application:
Data and local views. 15
An overview of application design 15
Identifying application data 17

Listing data elements 17
Naming data elements. 19
Documenting application data 20

Designing a local view 22
Analyzing data relationships 22
Local view examples 29

Chapter 3. Analyzing IMS application
processing requirements 35
Defining IMS application requirements 35
Accessing databases with your IMS application
program 36
Accessing data: the types of programs you can write
for your IMS application 38

DB batch processing 39
TM batch processing 40
Processing messages: Message Processing
Programs 40
Processing messages: IMS Fast Path Programs .. 41
Batch message processing: BMPs 42
Java message processing: JMPs 45
Java batch processing: JBPs 45

IMS programming integrity and recovery
considerations 46

How IMS protects data integrity: commit points 46
Planning for program recovery: checkpoint and
restart 49
Data availability considerations. 53
Use of STAE or ESTAE and SPIE in IMS
programs 55

Dynamic allocation for IMS databases 56

Chapter 4. Analyzing CICS application
processing requirements 57
Defining CICS application requirements 57
Accessing databases with your CICS application
program 58
Writing a CICS program to access IMS databases .. 60

Writing a CICS online program 60
Using data sharing for your CICS program 61
Scheduling and terminating a PSB (CICS online
programs only) 62
Linking and passing control to other programs
(CICS online programs only) 62
How CICS distributed transactions access IMS .. 63
Maximizing the performance of your CICS system 63
Programming integrity and database recovery
considerations for your CICS program 64

How IMS protects data integrity for CICS online
programs 64
Recovering databases accessed by batch and BMP
programs 64

Data availability considerations for your CICS
program 69

Unavailability of a database 69
Unavailability of some data in a database . .. 70
The SETS or SETU and ROLS functions 70

Use of STAE or ESTAE and SPIE in IMS batch
programs 71
Dynamic allocation for IMS databases 71

Chapter 5. Gathering requirements for
database options 73
Analyzing data access 73

Direct access 74
Sequential access 78
Accessing z/OS files through IMS: GSAM . .. 80
Accessing IMS data through z/OS: SHSAM and
SHISAM 80

Understanding how data structure conflicts are
resolved 81

Using different fields: field-level sensitivity . .. 81
Resolving processing conflicts in a hierarchy:
secondary indexing 82
Creating a new hierarchy: logical relationships . 86

Providing data security 91
Keeping a program from accessing the data: data
sensitivity 91
Preventing a program from updating data:
processing options 93

Read without integrity. 95

Chapter 6. Gathering requirements for
message processing options 99
Identifying online security requirements 99
Analyzing screen and message formats 101

© Copyright IBM Corp. 1974, 2015 iii

An overview of MFS 102
An overview of basic edit 102
Editing considerations in your application. .. 102

Gathering requirements for conversational
processing 103

What happens in a conversation 104
Designing a conversation 104
Important points about the scratchpad area
(SPA) 105
Recovery considerations in conversations . .. 105

Identifying output message destinations 106
The originating terminal. 107
To other programs and terminals 107

Chapter 7. Designing an application
for APPC 111
Overview of APPC and LU 6.2 111
Application program types 111
Application objectives 113
Conversation type 114
Conversation state 115
Synchronization level 115
Introduction to resource recovery 116
Summary of z/OS Resource Recovery Services
support 119
Distributed sync point 120
Application programming interface for LU type 6.2 121
LU 6.2 partner program design 122

LU 6.2 flow diagrams 122
Integrity tables 142
DFSAPPC message switch 144

Chapter 8. Testing an IMS application
program 147
Recommendations for testing an IMS program .. 147
Testing DL/I call sequences (DFSDDLT0) before
testing your IMS program 147
Using BTS to test your IMS program 148
Tracing DL/I calls with image capture for your
IMS program 148

Using image capture with DFSDDLT0 149
Restrictions on using image capture output .. 149
Running image capture online. 149
Running image capture as a batch job 150
Retrieving image capture data from the log data
set 150

Requests for monitoring and debugging your IMS
program 151

Retrieving database statistics: the STAT call .. 151
Writing Information to the system log: the LOG
request 165

What to do when your IMS program terminates
abnormally 165

Chapter 9. Testing a CICS application
program 169
Recommendations for testing a CICS program .. 169
Testing your CICS program. 169

Tracing DL/I calls with image capture 170

Requests for monitoring and debugging your CICS
program 174
What to do when your CICS program terminates
abnormally 174

Chapter 10. Documenting your
application program 177
Documentation for other programmers 177
Documentation for end users 177

Part 2. Application programming
for IMS DB 179

Chapter 11. Writing your application
programs for IMS DB 181
Programming guidelines 181
Segment search arguments (SSAs) 182

SSA guidelines 185
Multiple qualification statements 186
SSAs and command codes 189

Considerations for coding DL/I calls and data
areas 191
Preparing to run your CICS DL/I call program .. 192
Examples of how to code DL/I calls and data areas 192

Coding a batch program in assembler language 192
Coding a CICS online program in assembler
language 194
Coding a batch program in C language. . .. 196
Coding a batch program in COBOL 199
Coding a CICS online program in COBOL. .. 202
Coding a program in Java 206
Coding a batch program in Pascal 206
Coding a batch program in PL/I 208
Coding a CICS online program in PL/I. . .. 210

Chapter 12. Defining application
program elements for IMS DB 213
Formatting DL/I calls for language interfaces .. 213
Assembler language application programming .. 213
C language application programming 215
COBOL application programming 218
Java application programming for IMS 221
Pascal application programming 221
Application programming for PL/I 224
Specifying the I/O PCB mask 226
Specifying the DB PCB mask 230
Specifying the AIB mask 232
Specifying the AIB mask for ODBA applications 234
Specifying the UIB (CICS online programs only) 237
Specifying the I/O areas. 240
Formatting segment search arguments (SSAs) .. 240

SSA coding rules 240
SSA coding formats 242

Data areas in GSAM databases 245
AIBTDLI interface 245
Language specific entry points 246
Program communication block (PCB) lists 249
The AERTDLI interface 251
Language environments 251

iv Application Programming

Special DL/I situations for IMS DB programming 252
Application programming with the IMS catalog 254

Chapter 13. Database versioning and
application programming 257

Chapter 14. Establishing a DL/I
interface from COBOL or PL/I 259

Chapter 15. Current position in the
database after each call 261
Current position after successful calls 261

Position after retrieval calls 263
Position after DLET 263
Position after REPL 265
Position after ISRT. 265

Current position after unsuccessful calls 267
Multiple processing 271

Advantages of using multiple positioning . .. 274
Multiple DB PCBs 277

Chapter 16. Using IMS application
program sync points 279
Commit process 279
Two-phase commit in the synchronization process 280

Unit of recovery 282
DBCTL single-phase commit 283

Sync-point log records 283
Sync points with a data-propagation manager .. 284

Chapter 17. Recovering databases
and maintaining database integrity .. 287
Issuing checkpoints 287
Restarting your program from the latest checkpoint 288
Maintaining database integrity (IMS batch, BMP,
and IMS online regions) 288

Backing out to a prior commit point: ROLL,
ROLB, and ROLS 288
Backing out to an intermediate backout point:
SETS, SETU, and ROLS 292

Reserving segments for the exclusive use of your
program 295

Chapter 18. Secondary indexing and
logical relationships 297
How secondary indexing affects your program .. 297

SSAs with secondary indexes 297
Multiple qualification statements with
secondary indexes 298
DL/I returns with secondary indexes 300
Status codes for secondary indexes 301

Processing segments in logical relationships . .. 301
How logical relationships affect your
programming 303
Status codes for logical relationships 303

Chapter 19. HALDB selective partition
processing 305

Chapter 20. Processing GSAM
databases 309
Accessing GSAM databases. 309

PCB masks for GSAM databases 309
Retrieving and inserting GSAM records . .. 312
Explicit open and close calls to GSAM 313

GSAM record formats 314
GSAM I/O areas 315
GSAM status codes 315
Symbolic CHKP and XRST with GSAM 316
GSAM coding considerations 316
Origin of GSAM data set characteristics 317

DD statement DISP parameter for GSAM data
sets. 318
Extended checkpoint restart for GSAM data sets 319
Concatenated data sets used by GSAM 320
Specifying GSAM data set attributes. 320
DLI, DBB, and BMP region types and GSAM 321

Chapter 21. Processing Fast Path
databases 323
Fast Path database calls 324
Main storage databases (MSDBs) 325

Restrictions on using calls for MSDBs 325
Data entry databases (DEDBs) 326
Updating segments: REPL, DLET, ISRT, and FLD 326

Checking the contents of a field: FLD/VERIFY 327
Changing the contents of a field:
FLD/CHANGE. 329
Example of using FLD/VERIFY and
FLD/CHANGE. 330
Commit-point processing in MSDBs and DEDBs 331

Processing DEDBs (IMS and CICS with DBCTL) 332
Processing Fast Path DEDBs with subset pointer
command codes 332
Processing DEDBs with a secondary index .. 337
Retrieving location with the POS call (for DEDB
only) 347
Commit-point processing in a DEDB 350
P processing option 350
H processing option 350

Calls with dependent segments for DEDBs . .. 351
DEDB DL/I calls to extract DEDB information .. 352

AL_LEN Call 356
DI_LEN Call 357
DS_LEN Call 357
AREALIST Call. 357
DEDBINFO Call 358
DEDSTR Call 359

Fast Path coding considerations 359

Chapter 22. Writing ODBA application
programs 361
General application program flow of ODBA
application programs 361
Server program structure 364

Contents v

DB2 for z/OS stored procedures use of ODBA 365
Testing an ODBA application program 366

Tracing DL/I calls with image capture to test
your ODBA program 367
Using image capture with DFSDDLT0 to test
your ODBA program 368
Running image capture online. 368
Retrieving image capture data from the log data
set 369
Requests for monitoring and debugging your
ODBA program. 369
What to do when your ODBA program
terminates abnormally 370

Chapter 23. Programming with the
IMS support for DRDA 373
DDM commands for data operations with the IMS
support for DRDA 374

Part 3. Application programming
for IMS TM 377

Chapter 24. Defining application
program elements for IMS TM 379
Formatting DL/I calls for language interfaces .. 379
Application programming for assembler language 379
Application programming for C language 382
Application programming for COBOL 384
Java application programming for IMS 387
Application programming for Pascal 387
Application programming for PL/I 390
Relationship of calls to PCB types 392
Specifying the I/O PCB mask 393
Specifying the alternate PCB mask 397
Specifying the AIB mask 397
Specifying the I/O areas. 399
AIBTDLI interface 400
Specifying language-specific entry points 401
Program communication block (PCB) lists 403
Language environments 404
Special DL/I situations for IMS TM programming 405

Chapter 25. Message processing with
IMS TM 407
How your program processes messages 407

Message types 407
When a message is processed 410
Results of a message: I/O PCB 412

How IMS TM edits messages 412
Printing output messages 413
Using Basic Edit 413
Using Intersystem Communication Edit . .. 414
Using Message Format Service 414
Using LU 6.2 User Edit exit routine (optional) 421

Message processing considerations for DB2 . .. 421
Sending messages to other terminals and programs 422

Sending messages to other terminals 423
Sending messages to other IMS application
programs 425

How the VTAM I/O facility affects your VTAM
terminal 427

Communicating with other IMS TM systems using
Multiple Systems Coupling 427

Implications of MSC for program coding . .. 427
Receiving messages from other IMS TM systems 428
Sending messages to alternate destinations in
other IMS TM systems 429

IMS conversational processing. 430
A conversational example 431
Conversational structure. 432
Replying to the terminal. 436
Conversational processing using ROLB, ROLL,
and ROLS 436
Passing the conversation to another
conversational program 437
Message switching in APPC conversations .. 439

Processing conversations with APPC 441
Ending the APPC conversation 441
Coding a conversational program 442
Standard IMS application programs 442
Modified IMS application programs 443
CPI-C driven application programs 443

Processing conversations with OTMA 444
Backing out to a prior commit point: ROLL, ROLB,
and ROLS calls 445

Comparison of ROLB, ROLL, and ROLS . .. 445
ROLL 446
ROLB 446
ROLS 448

Backing out to an intermediate backout point:
SETS/SETU and ROLS 448
Writing message-driven programs 451
Coding DC calls and data areas 452

Before coding your program 452
MPP code examples 453
Message processing considerations for DB2 .. 459

Chapter 26. IMS Spool API 461
Managing the IMS Spool API overall design . .. 461

IMS Spool API design 461
Sending data to the JES spool data sets 462
IMS Spool API performance considerations .. 462
IMS Spool API application coding
considerations 463

Understanding parsing errors 466
Diagnosis examples 467

Understanding allocation errors 470
Understanding dynamic output for print data sets 470
Sample programs using the Spool API 471

Chapter 27. IMS Message Format
Service 475
Advantages of using MFS 475
MFS control blocks 476

MFS examples 477
Relationship between MFS control blocks and
screen format 481

Overview of MFS components. 482
Devices and logical units that operate with MFS 484

vi Application Programming

Using distributed presentation management (DPM) 486

Chapter 28. Callout requests for
services or data 487
Callout request approaches 488
Resume tpipe protocol 491
Implementing the synchronous callout function 491
Control data in synchronous callout requests . .. 494
Implementing the asynchronous callout function 495

Part 4. Application programming
for EXEC DLI 497

Chapter 29. Writing your application
programs for EXEC DLI 499
Programming guidelines 499

Coding a program in assembler language . .. 500
Coding a program in COBOL 504
Coding a program in PL/I 507
Coding a program in C 511

Preparing your EXEC DLI program for execution 517
Translator, compiler, and binder options
required for EXEC DLI 517

Chapter 30. Defining application
program elements 519
Specifying an application interface block (AIB) .. 519
Specifying the DL/I interface block (DIB) 519
Defining a key feedback area 523
Defining I/O areas 523

Chapter 31. EXEC DLI commands for
an application program 525
PCBs and PSB 525

Chapter 32. Recovering databases
and maintaining database integrity .. 529
Issuing checkpoints in a batch or BMP program 529
Restarting your program and checking for position 530
Backing out database updates dynamically: the
ROLL and ROLB commands 530
Using intermediate backout points: the SETS and
ROLS commands 530

Chapter 33. Processing Fast Path
databases 533
Processing Fast Path DEDBs with subset pointer
options 533

Preparing to use subset pointers 535
Designating subset pointers 536
Subset pointer options 536
Subset pointer status codes 543

The POS command 544
Locating a specific sequential dependent
segment 544
Locating the last inserted sequential dependent
segment 545

Identifying free space with the POS command 545
The P processing option 546

Chapter 34. Comparing
command-level and call-level
programs 547
DL/I calls for IMS and CICS 547
Comparing EXEC DLI commands and DL/I calls 547
Comparing command codes and options 549

Chapter 35. Data availability
enhancements 551

Part 5. Application programming
for SQL 553

Chapter 36. SQL considerations and
restrictions for COBOL 555

Chapter 37. Writing application
programs for SQL 557
Coding SQL statements in application programs:
General information 557

Defining the items that your program can use to
check whether an SQL statement executed
successfully 557
Defining SQL descriptor areas 558
Declaring host variables and indicator variables 558
Using SQL statements in your application . .. 559
Checking the execution of SQL statements. .. 570

Coding SQL statements in COBOL application
programs 572

Defining the SQL communications area in
COBOL 573
Defining SQL descriptor areas in COBOL . .. 573
Declaring host variables and indicator variables
in COBOL 573
Equivalent SQL and COBOL data types . .. 580
SQL statements in COBOL programs 581
SQL aggregate functions supported for COBOL 584

Adding and modifying data 587
Inserting rows 587
Updating segment data 588
Deleting data from segments 589

Accessing data 590
Retrieving data by using the SELECT statement 590
Retrieving a set of rows by using a cursor . .. 595

Commit or roll back data 598
Preparing an application to run on IMS 598

Processing SQL statements 599

Part 6. Java application
development for IMS 601

Contents vii

||

||

Chapter 38. IMS solutions for Java
development overview 603

Chapter 39. Comparison of
hierarchical and relational databases . 605

Chapter 40. Programming with the IMS
Universal drivers 611
IMS Universal drivers overview 611

Distributed and local connectivity with the IMS
Universal drivers 612
Comparison of IMS Universal drivers
programming approaches for accessing IMS .. 615
Support for variable-length database segments
with the IMS Universal drivers 617
Support for flattening complex structures . .. 618
Generating the runtime Java metadata class .. 620
Hospital database example 620

Programming using the IMS Universal Database
resource adapter 623

Overview of the IMS Universal Database
resource adapter 624
Transaction types and programming interfaces
supported by the IMS Universal Database
resource adapter 624
Connecting to IMS with the IMS Universal
Database resource adapter 625
Sample EJB application using the IMS Universal
Database resource adapter CCI programming
interface 636
Accessing IMS data with the DLIInteractionSpec
class 637
Accessing IMS data with the
SQLInteractionSpec class 642
Accessing IMS data with the IMS Universal
JCA/JDBC driver 645

Programming with the IMS Universal JDBC driver 647
Supported drivers for JDBC 648
Connecting to IMS using the IMS Universal
JDBC driver 648
Sample application for the IMS Universal JDBC
driver 660
Writing SQL queries to access an IMS database
with the IMS Universal JDBC driver. 661
Writing DL/I calls to access an IMS database
with the IMS Universal JDBC driver. 676
IMS Universal JDBC driver support for XML 679
Data transformation support for JDBC 683

Programming with the IMS Universal DL/I driver 689
Basic steps in writing a IMS Universal DL/I
driver application 689
Java packages for IMS Universal DL/I driver
support 690
Connecting to an IMS database by using the
IMS Universal DL/I driver 690
IMS Universal DL/I driver interfaces for
executing DL/I operations 693
Inspecting the PCB status code and related
information using the com.ibm.ims.dli.AIB
interface 709

Committing or rolling back DL/I transactions 710
Configuring the IMS Universal drivers for SSL
support 712

Configuring the IMS Universal Database
resource adapter for SSL support in a
container-managed environment 713
Configuring IMS Universal drivers for SSL
support in a stand-alone environment 713

Tracing IMS Universal drivers applications . .. 714

Chapter 41. Programming Java
dependent regions 717
Overview of the IMS Java dependent regions. .. 717
Programming with the IMS Java dependent region
resource adapter 718

Developing JMP applications with the IMS Java
dependent region resource adapter 719
Developing JBP applications with the IMS Java
dependent region resource adapter 728
Issuing synchronous callout requests from a
Java dependent region 736
IMS Java dependent region resource adapter
support for ICAL callout with control data .. 738
Program switching in JMP and JBP applications 740

IBM Enterprise COBOL for z/OS interoperability
with JMP and JBP applications 748

IBM Enterprise COBOL for z/OS backend
applications in a JMP or JBP region 749
IBM Enterprise COBOL for z/OS frontend
applications in a JMP or JBP region 750

Accessing DB2 for z/OS databases from JMP or
JBP applications 750

Part 7. PL/I top-down development
for IMS Enterprise Suite SOAP
Gateway web services 753

Chapter 42. WSDL-to-PL/I
segmentation APIs for adding
business logic in generated PL/I
templates 755

Chapter 43. Sample of a generated
PL/I application template 759

Chapter 44. Trace output for
WSDL-to-PL/I segmentation APIs . .. 761

Chapter 45. Limitations and
restrictions of the segmentation APIs . 763

Part 8. Appendixes 765

Notices 767
Programming interface information 769
Trademarks 769

viii Application Programming

|
||

Terms and conditions for product documentation 770
IBM Online Privacy Statement. 770

Bibliography. 773

Index 775

Contents ix

x Application Programming

About this information

These topics provide guidance information for writing application programs that
access IMS™ databases or IMS transactions. The topics describe how to gather and
analyze program requirements, and how to develop and debug IMS application
programs. They also describe how to use different programming languages to issue
DL/I calls, and include information about the IMS solutions for SQL and Java™

development. They also describe how to use different programming languages to
issue EXEC DL/I calls. Application programming interface (API) information is in
IMS Version 14 Application Programming APIs.

This information is available in IBM® Knowledge Center at www.ibm.com/
support/knowledgecenter.

Prerequisite knowledge
This information is a guide to IMS application programming for any of the
following environments:
v IMS Database Manager (IMS DB), including IMS Database Control (DBCTL)
v IMS Transaction Manager (IMS TM)
v CICS® EXEC DLI
v WebSphere® Application Server for z/OS®

v WebSphere Application Server for distributed platforms
v Java dependent regions (JMP and JBP)
v Any environment for stand-alone Java application development

This book provides guidance information for writing application programs that
access IMS databases or process IMS messages. It also describes how to use
different programming languages to make DL/I, EXEC DLI, or JDBC calls that
interact with IMS. API (application programming interface) information is in IMS
Version 14 Application Programming APIs.

You can learn more about z/OS by visiting the “z/OS basic skills” topics in IBM
Knowledge Center.

You can gain an understanding of basic IMS concepts by reading An Introduction to
IMS, an IBM Press publication. An excerpt from this publication is available in the
IBM Knowledge Center.

IBM offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list of courses available, go to the IMS home page at
ibm.com/ims and link to the Training and Certification page.

How new and changed information is identified
New and changed information in most IMS library PDF publications is denoted by
a character (revision marker) in the left margin. The first edition (-00) of Release
Planning, as well as the Program Directory and Licensed Program Specifications, do not
include revision markers.

Revision markers follow these general conventions:

© Copyright IBM Corp. 1974, 2015 xi

http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome
http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.imsintro.doc.intro/Intro.html
http://www.ibm.com/software/data/ims/

v Only technical changes are marked; style and grammatical changes are not
marked.

v If part of an element, such as a paragraph, syntax diagram, list item, task step,
or figure is changed, the entire element is marked with revision markers, even
though only part of the element might have changed.

v If a topic is changed by more than 50%, the entire topic is marked with revision
markers (so it might seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the
information because deleted text and graphics cannot be marked with revision
markers.

How to read syntax diagrams
The following rules apply to the syntax diagrams that are used in this information:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line. The following conventions are used:
– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next

line.
– The >--- symbol indicates that a syntax diagram is continued from the

previous line.
– The --->< symbol indicates the end of a syntax diagram.

v Required items appear on the horizontal line (the main path).

►► required_item ►◄

v Optional items appear below the main path.

►► required_item
optional_item

►◄

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

►►
optional_item

required_item ►◄

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

►► required_item required_choice1
required_choice2

►◄

If choosing one of the items is optional, the entire stack appears below the main
path.

►► required_item
optional_choice1
optional_choice2

►◄

xii Application Programming

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

►► required_item
default_choice

optional_choice
optional_choice

►◄

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

►► required_item ▼ repeatable_item ►◄

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

►► required_item ▼

,

repeatable_item ►◄

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

►► required_item fragment-name ►◄

fragment-name:

required_item
optional_item

v In IMS, a b symbol indicates one blank position.
v Keywords, and their minimum abbreviations if applicable, appear in uppercase.

They must be spelled exactly as shown. Variables appear in all lowercase italic
letters (for example, column-name). They represent user-supplied names or
values.

v Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 14
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

About this information xiii

Accessibility features

The following list includes the major accessibility features in z/OS products,
including IMS 14. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size.

Keyboard navigation

You can access IMS 14 ISPF panel functions by using a keyboard or keyboard
shortcut keys.

For information about navigating the IMS 14 ISPF panels using TSO/E or ISPF,
refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF
User's Guide Volume 1. These guides describe how to navigate each interface,
including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their
functions.

Related accessibility information

Online documentation for IMS 14 is available in IBM Knowledge Center.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more
information about the commitment that IBM has to accessibility.

How to send your comments
Your feedback is important in helping us provide the most accurate and highest
quality information. If you have any comments about this or any other IMS
information, you can take one of the following actions:
v Click the Feedback link at the bottom of any IBM Knowledge Center topic.
v Send an email to imspubs@us.ibm.com. Be sure to include the book title and the

publication number.

xiv Application Programming

http://www.ibm.com/able
http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

Part 1. Application programming design

To design an application program for IMS, you need to identify the application
data and analyze requirements for application processing. You may also need to
perform other tasks, such as gathering requirements for database and message
processing options, and testing an application program.

© Copyright IBM Corp. 1974, 2015 1

2 Application Programming

Chapter 1. Designing an application: Introductory concepts

This section provides an introduction to designing application programs. It
explains some basic concepts about processing a database, and gives an overview
of the tasks covered in this information.

Storing and processing information in a database
The advantages of storing and processing data in a database are that all of the data
needs to appear only once and that each program must process only the data that
it needs.

One way to understand this is to compare three ways of storing data: in separate
files, in a combined file, and in a database.

Storing data in separate files

If you keep separate files of data for each part of your organization, you can
ensure that each program uses only the data it needs, but you must store a lot of
data in multiple places simultaneously. Problems with keeping separate files are:
v Redundant data takes up space that could be put to better use
v Maintaining separate files can be difficult and complex

For example, suppose that a medical clinic keeps separate files for each of its
departments, such as the clinic department, the accounting department, and the
ophthalmology department:
v The clinic department keeps data about each patient who visits the clinic, such

as:
Identification number
Name
Address
Illnesses
Date of each illness
Date patient came to clinic for treatment
Treatment given for each illness
Doctor that prescribed treatment
Charge for treatment

v The accounting department also keeps information about each patient. The
information that the accounting department might keep for each patient is:

Identification number
Name
Address
Charge for treatment
Amount of payments

v The information that the ophthalmology department might keep for each patient
is:

Identification number

© Copyright IBM Corp. 1974, 2015 3

Name
Address
Illnesses relating to ophthalmology
Date of each illness
Names of members in patient's household
Relationship between patient and each household member

If each of these departments keeps separate files, each department uses only the
data that it needs, but much of the data is redundant. For example, every
department in the clinic uses at least the patient's number, name, and address.
Updating the data is also a problem, because if a department changes a piece of
data, the same data must be updated in each separate file. Therefore, it is difficult
to keep the data in each department's files current. Current data might exist in one
file while defunct data remains in another file.

Storing data in a combined file

Another way to store data is to combine all the files into one file for all
departments to use. In the medical example, the patient record that would be used
by each department would contain these fields:

Identification number
Name
Address
Illnesses
Date of each illness
Date patient came to clinic for treatment
Treatment given for each illness
Doctor that prescribed treatment
Charge for treatment
Amount of payments
Names of members in patient's household
Relationship between patient and each household member

Using a combined file solves the updating problem, because all the data is in one
place, but it creates a new problem: the programs that process this data must
access the entire file record to get to the part that they need. For example, to
process only the patient's number, charges, and payments, an accounting program
must access all of the other fields also. In addition, changing the format of any of
the fields within the patient's record affects all the application programs, not just
the programs that use that field.

Using combined files can also involve security risks, because all of the programs
have access to all of the fields in a record.

Storing data in a database

Storing data in a database gives you the advantages of both separate files and
combined files: all the data appears only once, and each program has access to the
data that it needs. This means that:
v When you update a field, you do it in one place only.

4 Application Programming

v Because you store each piece of information only in one place, you cannot have
an updated version of the information in one place and an out-of-date version in
another place.

v Each program accesses only the data it needs.
v You can prevent programs from accessing private or secured information.

In addition, storing data in a database has two advantages that neither of the other
ways has:
v If you change the format of part of a database record, the change does not affect

the programs that do not use the changed information.
v Programs are not affected by how the data is stored.

Because the program is independent of the physical data, a database can store all
the data only once and yet make it possible for each program to use only the data
that it needs. In a database, what the data looks like when it is stored is different
from what it looks like to an application program.

Database hierarchy examples
In an IMS DB, a record is stored and accessed in a hierarchy. A hierarchy shows
how each piece of data in a record relates to other pieces of data in the record.

IMS connects the pieces of information in a database record by defining the
relationships between the pieces of information that relate to the same subject. The
result is a database hierarchy.

Medical hierarchy example

The medical database shown in following figure contains information that a
medical clinic keeps about its patients. The hierarchies used in the medical
hierarchy example are used with full-function databases and Fast Path data entry
databases (DEDBs).

Each piece of data represented in the figure above is called a segment in the
hierarchy. Each segment contains one or more fields of information. The PATIENT
segment, for example, contains all the information that relates strictly to the
patient: the patient's identification number, name, and address.

Definitions: A segment is the smallest unit of data that an application program can
retrieve from the database. A field is the smallest unit of a segment.

The PATIENT segment in the medical database is the root segment. The segments
below the root segment are the dependents, or children, of the root. For example,

Figure 1. Medical hierarchy

Chapter 1. Designing an application: Introductory concepts 5

ILLNESS, BILLING, and HOUSHOLD are all children of PATIENT. ILLNESS,
BILLING, and HOUSHOLD are called direct dependents of PATIENT; TREATMNT
and PAYMENT are also dependents of PATIENT, but they are not direct
dependents, because they are at a lower level in the hierarchy.

A database record is a single root segment (root segment occurrence) and all of its
dependents. In the medical example, a database record is all of the information
about one patient.

Definitions: A root segment is the highest-level segment. A dependent is a segment
below a root segment. A root segment occurrence is a database record and all of its
dependents.

Each database record has only one root segment occurrence, but it might have
several occurrences at lower levels. For example, the database record for a patient
contains only one occurrence of the PATIENT segment type, but it might contain
several ILLNESS and TREATMNT segment occurrences for that patient.

The tables that follow show the layouts of each segment in the hierarchy.

The segment’s field names are in the first row of each table. The number below
each field name is the length in bytes that has been defined for that field.
v PATIENT Segment

The following table shows the PATIENT segment.
It has three fields:
– The patient’s number (PATNO)
– The patient’s name (NAME)
– The patient's address (ADDR)
PATIENT has a unique key field: PATNO. PATIENT segments are stored in
ascending order based on the patient number. The lowest patient number in the
database is 00001 and the highest is 10500.

Table 1. PATIENT segment

Field name Field length

PATNO 10

NAME 5

ADDR 30

v ILLNESS Segment

The following figure shows the ILLNESS segment.
It has two fields:
– The date when the patient came to the clinic with the illness (ILLDATE)
– The name of the illness (ILLNAME)
The key field is ILLDATE. Because it is possible for a patient to come to the
clinic with more than one illness on the same date, this key field is non-unique,
that is, there may be more than one ILLNESS segment with the same (an equal)
key field value.
Usually during installation, the database administrator (DBA) decides the order
in which to place the database segments with equal or no keys. The DBA can
use the RULES keyword of the SEGM statement of the DBD to specify the order
of the segments.

6 Application Programming

For segments with equal keys or no keys, RULES determines where the segment
is inserted. Where RULES=LAST, ILLNESS segments that have equal keys are
stored on a first-in-first-out basis among those with equal keys. ILLNESS
segments with unique keys are stored in ascending order on the date field,
regardless of RULES. ILLDATE is specified in the format YYYYMMDD.

Table 2. ILLNESS segment

Field name Field length

ILLDATE 8

ILLNAME 10

v TREATMNT Segment

The following table shows the TREATMNT segment.
It contains four fields:
– The date of the treatment (DATE)
– The medicine that was given to the patient (MEDICINE)
– The quantity of the medicine that the patient received (QUANTITY)
– The name of the doctor who prescribed the treatment (DOCTOR)
The TREATMNT segment’s key field is DATE. Because a patient may receive
more than one treatment on the same date, DATE is a non-unique key field.
TREATMNT, like ILLNESS, has been specified as having RULES=LAST.
TREATMNT segments are also stored on a first-in-first-out basis. DATE is
specified in the same format as ILLDATE—YYYYMMDD.

Table 3. TREATMNT segment

Field name Field length

DATE 8

MEDICINE 10

QUANTITY 4

DOCTOR 10

v BILLING Segment

The following table shows the BILLING segment. It has only one field: the
amount of the current bill. BILLING has no key field.

Table 4. BILLING segment

Field name Field length

BILLING 6

v PAYMENT Segment

The following table shows the PAYMENT segment. It has only one field: the
amount of payments for the month. The PAYMENT segment has no key field.

Table 5. PAYMENT segment

Field name Field length

PAYMENT 6

v HOUSHOLD Segment

The following table shows the HOUSHOLD segment.
It contains two fields:

Chapter 1. Designing an application: Introductory concepts 7

– The names of the members of the patient's household (RELNAME)
– How each member of the household is related to the patient (RELATN)
The HOUSHOLD segment’s key field is RELNAME.

Table 6. HOUSHOLD segment

Field name Field length

RELNAME 10

RELATN 8

Bank account hierarchy example

The bank account hierarchy is an example of an application program that is used
with main storage databases (MSDBs). In the medical hierarchy example, the
database record for a particular patient comprises the PATIENT segment and all of
the segments underneath the PATIENT segment. In an MSDB, such as the one in
the bank account example, the segment is the whole database record. The database
record contains only the fields that the segment contains.

The two types of MSDBs are related and nonrelated. In related MSDBs, each segment
is “owned” by one logical terminal. The "owned" segment can only be updated by
the terminal that owns it. In nonrelated MSDBs, the segments are not owned by
logical terminals. The following examples of a related MSDB and a nonrelated
MSDB illustrate the differences between the two types of databases.

Related MSDBs

Related MSDBs can be fixed or dynamic. In a fixed related MSDB, you can store
summary data about a particular teller at a bank. For example, you can have an
identification code for the teller's terminal. Then you can keep a count of that
teller's transactions and balance for the day. This type of application requires a
segment with three fields:

TELLERID
A two-character code that identifies the teller

TRANCNT
The number of transactions the teller has processed

TELLBAL
The balance for the teller

The following table shows what the segment for this type of application program
looks like.

Table 7. Teller segment in a fixed related MSDB

TELLERID TRANCNT TELLBAL

Some of the characteristics of fixed related MSDBs include:
v You can only read and replace segments. You cannot delete or insert segments.

In the bank teller example, the teller can change the number of transactions
processed, but you cannot add or delete any segments. You never need to add or
delete segments.

v Each segment is assigned to one logical terminal. Only the owning terminal can
change a segment, but other terminals can read the segment. In the bank teller

8 Application Programming

example, you do not want tellers to update the information about other tellers,
but you allow the tellers to view each other’s information. Tellers are responsible
for their own transactions.

v The name of the logical terminal that owns the segment is the segment's key.
Unlike non-MSDB segments, the MSDB key is not a field of the segment. It is
used as a means of storing and accessing segments.

v A logical terminal can only own one segment in any one MSDB.

In a dynamic related MSDB, you can store data summarizing the activity of all
bank tellers at a single branch. For example, this segment contains:

BRANCHNO
The identification number for the branch

TOTAL
The bank branch's current balance

TRANCNT
The number of transactions for the branch on that day

DEPBAL
The deposit balance, giving the total dollar amount of deposits for the
branch

WTHBAL
The withdrawal balance, giving the dollar amount of the withdrawals for
the branch

The following table shows what the branch summary segment looks like in a
dynamic related MSDB.

Table 8. Branch summary segment in a dynamic related MSDB

BRANCHNO TOTAL TRANCNT DEPBAL WTHBAL

How dynamic related MSDBs differ from fixed related MSDBs:
v The owning logical terminal can delete and insert segments in a dynamic related

MSDB.
v The MSDB can have a pool of unassigned segments. This kind of segment is

assigned to a logical terminal when the logical terminal inserts it, and is
returned to the pool when the logical terminal deletes it.

Nonrelated MSDBs

A nonrelated MSDB is used to store data that is updated by several terminals
during the same time period. For example, you might store data about an
individuals' bank accounts in a nonrelated MSDB segment, so that the information
can be updated by a teller at any terminal. Your program might need to access the
data in the following segment fields:

ACCNTNO
The account number

BRANCH
The name of the branch where the account is

TRANCNT
The number of transactions for this account this month

Chapter 1. Designing an application: Introductory concepts 9

BALANCE
The current balance

The following table shows what the account segment in a nonrelated MSDB
application program looks like.

Table 9. Account segment in a nonrelated MSDB

ACCNTNO BRANCH TRANCNT BALANCE

The characteristics of nonrelated MSDBs include:
v Segments are not owned by terminals as they are in related MSDBs. Therefore,

IMS programs and Fast Path programs can update these segments. Updating
segments is not restricted to the owning logical terminal.

v Your program cannot delete or insert segments.
v Segment keys can be the name of a logical terminal. A nonrelated MSDB exists

with terminal-related keys. The segments are not owned by the logical terminals,
and the logical terminal name is used to identify the segment.

v If the key is not the name of a logical terminal, it can be any value, and it is in
the first field of the segment. Segments are loaded in key sequence.

Your program's view of the data
IMS uses two kinds of control blocks to enable application programs to be
independent of your method of storing data in the database, the database
description (DBD), and the database program communication block (DB PCB).

Database Description (DBD)

A database description (DBD) is physical structure of the database. The DBD also
defines the appearance and contents, or fields, that make up each of the segment
types in the database.

For example, the DBD for the medical database hierarchy shown in “Medical
hierarchy example” describes the physical structure of the hierarchy and each of
the six segment types in the hierarchy: PATIENT, ILLNESS, TREATMNT, BILLING,
PAYMENT, and HOUSHOLD.

Related Reading: For more information on generating DBDs, see IMS Version 14
Database Utilities.

Database Program Communication Block (DB PCB)

A database program communication block (DB PCB) is a control block that defines an
application program's view of the database. An application program often needs to
process only some of the segments in a database. A PCB defines which of the
segments in the database the program is allowed to access—which segments the
program is sensitive to.

The data structures that are available to the program contain only segments that
the program is sensitive to. The PCB also defines how the application program is
allowed to process the segments in the data structure: whether the program can
only read the segments, or whether it can also update them.

10 Application Programming

To obtain the highest level of data availability, your PCBs should request the
fewest number of sensitive segments and the least capability needed to complete
the task.

All the DB PCBs for a single application program are contained in a program
specification block (PSB). A program might use only one DB PCB (if it processes only
one data structure) or it might use several DB PCBs, one for each data structure.

Related Reading: For more information on generating PSBs, see IMS Version 14
Database Utilities.

The following figure illustrates the concept of defining a view for an application
program. An accounting program that calculates and prints bills for the clinic's
patients would need only the PATIENT, BILLING, and PAYMENT segments. You
could define the data structure shown in the following figure in a DB PCB for this
program.

A program that updates the database with information on patients' illnesses and
treatments, in contrast, would need to process the PATIENT, ILLNESS, and
TREATMNT segments. You could define the data structure shown in the following
figure in a DB PCB for this program.

Figure 2. Accounting program's view of the database

Chapter 1. Designing an application: Introductory concepts 11

Sometimes a program needs to process all of the segments in the database. When
this is true, the program's view of the database as defined in the DB PCB is the
same as the database hierarchy that is defined in the DBD.

An application program processes only the segments in a database that it requires;
therefore, if you change the format of a segment that is not processed, you do not
change the program. A program is affected only by the segments that it accesses. In
addition to being sensitive to only certain segments in a database, a program can
also be sensitive to only certain fields within a segment. If you change a segment
or field that the program is not sensitive to, it does not affect the program. You
define segment and field-level sensitivity during PSBGEN.

Definition: Field-level sensitivity is when a program is sensitive to only certain
fields within a segment.

Related Reading: For more information, see IMS Version 14 Database Administration.

Processing a database record
To process the information in the database, your application program
communicates with IMS in three ways: by passing control, by communicating
processing requests, and by exchanging information using DL/I calls.
v Passing control—IMS passes control to your application program through an

entry statement in your program. Your program returns control to IMS when it
has finished its processing.
When you are running a CICS online program, CICS passes control to your
application program, and your program schedules a PSB to make IMS requests.
Your program returns control to CICS. If you are running a batch or BMP
program, IMS passes control to your program with an existing PSB scheduled.

v Communicating processing requests—You communicate processing requests to
IMS in one of two ways:
– In IMS, you issue DL/I calls to process the database.
– In CICS, you can issue either DL/I calls or EXEC DLI commands. EXEC DLI

commands more closely resemble a higher-level language than do DL/I calls.

PATIENT

TREATMNT

ILLNESS

Figure 3. Patient illness program's view of the database

12 Application Programming

v Exchanging information using DL/I calls—Your program exchanges information
in two areas:
– A DL/I call reports the results of your request in a control block and the AIB

communication block when using one of the AIB interfaces. For programs
written using DL/I calls, this control block is the DB PCB. For programs
written using EXEC DLI commands, this control block is the DLI interface
block (DIB). The contents of the DIB reflect the status of the last DL/I
command executed in the program. Your program includes a mask of the
appropriate control block and uses this mask to check the results of the
request.

– When you request a segment from the database, IMS returns the segment to
your I/O area. When you want to update a segment in the database, you
place the new value of the segment in the I/O area.

An application program can read and update a database. When you update a
database, you can replace, delete, or add segments. In IMS, you indicate in the
DL/I call the segment you want to process, and whether you want to read or
update it. In CICS, you can indicate what you want using either a DL/I call or an
EXEC DLI command.

Tasks for developing an application
The following tasks are involved in developing an IMS application, and the
programs that are part of the application.

Designing the application

Application program design varies from place to place, and from one application
to another.

Therefore, this information does not try to cover the early tasks that are part of
designing an application program. Instead, it covers only the tasks that you are
concerned with after the early specifications for the application have been
developed. The tasks for designing the application are:
v Analyzing Application Data Requirements

Two important parts of application design are defining the data that each of the
business processes in the application requires and designing a local view for
each of the business processes.

v Analyzing Application Processing Requirements

When you understand the business processes that are part of the application,
you can analyze the requirements of each business process in terms of the
processing that is available with different types of application programs.

v Gathering Requirements for Database Options

You then need to look at the database options that can most efficiently meet the
requirements, and gather information about your application's data requirements
that relates to each of the options.

v Gathering Requirements for Message Processing Options

If your application communicates with terminals and other application
programs, look at the message processing options and the requirements they
satisfy.

For more information about designing a CICS application, see CICS Transaction
Server for z/OS CICS Application Programming Guide.

Chapter 1. Designing an application: Introductory concepts 13

Developing specifications

Developing specifications involves defining what your application will do, and
how it will be done. The task of developing specifications is not described in this
information because it depends entirely on the specific application and your
standards.

Implementing the design

When the specifications for each of the programs in the application are developed,
you can structure and code the programs according to those specifications. The
tasks of implementing the design are:
v Writing the Database Processing Part of the Program

When the program design is complete, you can structure and code your requests
and data areas based on the programming specifications that have been
developed.

v Writing the Message Processing Part of the Program

If you are writing a program that communicates with terminals and other
programs, you need to structure and code the message processing part of the
program.

v Analyzing APPC/IMS Requirements

The LU 6.2 feature of IMS TM enables your application to be distributed
throughout the network.

v Testing an Application Program

When you finish coding your program, test it by itself and then as part of a
system.

v Documenting an Application Program

Documenting a program continues throughout the project and is most effective
when done incrementally. When the program is completely tested, information
must be suppled to those who use and maintain your program.

14 Application Programming

Chapter 2. Designing an application: Data and local views

Designing an application that meets the requirements of end users involves a
variety of tasks and, usually, people from several departments. Application design
begins when a department or business area communicates a need for some type of
processing. Application design ends when each of the parts of the application
system—for example, the programs, the databases, the display screens, and the
message formats—have been designed.

An overview of application design
The application design process varies from place to place and from application to
application. The overview that is given in this section and the suggestions about
documenting application design and converting existing applications are not the
only way that these tasks are performed.

The purpose of this overview is to give you a frame of reference so that you can
understand where the techniques and guidelines explained in this section fit into
the process. The order in which you perform the tasks described here, and the
importance you give to each one, depend on your settings. Also, the individuals
involved in each task, and their titles, might differ depending on the site. The tasks
are as follows:
v Establish your standards

Throughout the design process, be aware of your established standards. Some of
the areas that standards are usually established for are:
– Naming conventions (for example, for databases and terminals)
– Formats for screens and messages
– Control of and access to the database
– Programming and conventions (for common routines and macros)

Setting up standards in these areas is usually an ongoing task that is the
responsibility of database and system administrators.

v Follow your security standards
Security protects your resources from unauthorized access and use. As with
defining standards, designing an adequate security system is often an ongoing
task. As an application is modified or expanded, often the security must be
changed in some way also. Security is an important consideration in the initial
stages of application design.
Establishing security standards and requirements is usually the responsibility of
system administration. These standards are based on the requirements of your
applications.
Some security concerns are:
– Access to and use of the databases
– Access to terminals
– Distribution of application output
– Control of program modification
– Transaction and command entry

v Define application data

© Copyright IBM Corp. 1974, 2015 15

Identifying the data that an application requires is a major part of application
design. One of the tasks of data definition is learning from end users what
information will be required to perform the required processing.

v Provide input for database design
To design a database that meets the requirements of all the applications that will
process it, the database administrator (DBA) needs information about the data
requirements of each application. One way to gather and supply this
information is to design a local view for each of the business processes in your
application. A local view is a description of the data that a particular business
process requires.

v Design application programs
When the overall application flow and system externals have been defined, you
define the programs that will perform the required processing. Some of the most
important considerations involved in this task are: standards, security
requirements, privacy requirements, and performance requirements. The
specifications you develop for the programs should include:
– Security requirements
– Input and output data formats and volumes
– Data verification and validation requirements
– Logic specifications
– Performance requirements
– Recovery requirements
– Linkage requirements and conventions
– Data availability considerations
In addition, you might be asked to provide some information about your
application to the people responsible for network and user interface design.

v Document the application design process
Recording information about the application design process is valuable to others
who work with the application now and in the future. One kind of information
that is helpful is information about why you designed the application the way
you did. This information can be helpful to people who are responsible for the
database, your IMS system, and the programs in the application—especially if
any part of the application must be changed in the future. Documenting
application design is done most thoroughly when it is done during the design
process, instead of at the end of it.

v Convert an existing application
One of the main aspects in converting an existing application to IMS is to know
what already exists. Before starting to convert the existing system, find out
everything you can about the way it works currently. For example, the following
information can be of help to you when you begin the conversion:
– Record layouts of all records used by the application
– Number of data element occurrences for each data element
– Structure of any existing related databases

Related concepts:
“Providing data security” on page 91
“Identifying online security requirements” on page 99
“Identifying application data” on page 17
“Designing a local view” on page 22

16 Application Programming

Identifying application data
Two important aspects of application design are identifying the application data
and describing the data that a particular business process requires.

One of the steps of identifying application data is to thoroughly understand the
processing the user wants performed. You need to understand the input data and
the required output data in order to define the data requirements of the
application. You also need to understand the business processes that are involved
in the user's processing needs. Three of the tasks involved in identifying
application data are:
v Listing the data required by the business process
v Naming the data
v Documenting the data

When analyzing the required application data, you can categorize the data as
either an entity or a data element.

Definitions: An entity is anything about which information can be stored. A data
element is the smallest named unit of data pertaining to an entity. It is information
that describes the entity.

Example: In an education application, “students” and “courses” are both entities;
these are two subjects about which you collect and process data. The following
table shows some data elements that relate to the student and course entities. The
entity is listed with its related data elements.

Table 10. Entities and data elements.

Entity Data elements

Student Student Name

Student Number

Course Course Name

Course Number

Course Length

When you store this data in an IMS database, groups of data elements are potential
segments in the hierarchy. Each data element is a potential field in that segment.
Related concepts:
“An overview of application design” on page 15

Listing data elements
To identify application data, you list its data elements.

For example, to identify application data, consider a company that provides
technical education to its customers. The education company has one headquarters
office, called Headquarters, and several local education centers, called Ed Centers.

A class is a single offering of a course on a specific date at a particular Ed Center.
One course might have several offerings at different Ed Centers; each of these is a
separate class. Headquarters is responsible for developing all the courses that will
be offered, and each Ed Center is responsible for scheduling classes and enrolling
students for its classes.

Chapter 2. Designing an application: Data and local views 17

Suppose that one of the education company's requirements is for each Ed Center to
print weekly current rosters for all classes at the Ed Center. The current roster is to
give information about the class and the students enrolled in the class.
Headquarters wants the current rosters to be in the format shown in the following
figure.

To list the data elements for a particular business process, look at the required
output. The current roster shown in the previous figure is the roster for the class,
“Transistor Theory” to be given in the Chicago Ed Center, starting on January 14,
2004, for ten days. Each course has a course code associated with it—in this case,
41837. The code for a particular course is always the same. For example, if
Transistor Theory is also offered in New York, the course code is still 41837. The
roster also gives the names of the instructors who are teaching the course.
Although the example only shows one instructor, a course might require more than
one instructor.

For each student, the roster keeps the following information: a sequence number
for each student, the student's name, the student's company (CUST), the company's
location, the student's status in the class, and the student's absences and grade. All
the above information on the course and the students is input information.

The current date (the date that the roster is printed) is displayed in the upper right
corner (01/04/04). The current date is an example of data that is output only data;
it is generated by the operating system and is not stored in the database.

The bottom-left corner gives a summary of the class status. This data is not
included in the input data. These values are determined by the program during
processing.

When you list the data elements, abbreviating them is helpful, because you will be
referring to them frequently when you design the local view.

The data elements list for current roster is:

EDCNTR
Name of Ed Center giving class

DATE Date class starts

CHICAGO 01/04/04

TRANSISTOR THEORY 41837
10 DAYS
INSTRUCTOR(S): BENSON, R.J. DATE: 01/14/04

STUDENT CUST LOCATION STATUS ABSENT GRADE
1.ADAMS, J.W. XYZ SOUTH BEND, IND CONF
2.BAKER, R.T. ACME BENTON HARBOR, MICH WAIT
3.DRAKE, R.A. XYZ SOUTH BEND, IND CANC

.

.

.
33.WILLIAMS, L.R. BEST CHICAGO, ILL CONF

CONFIRMED = 30
WAIT—LISTED = 1
CANCELED = 2

Figure 4. Current roster for technical education example

18 Application Programming

CRSNAME
Name of course

CRSCODE
Course code

LENGTH
Length of course

INSTRS
Names of instructors teaching class

STUSEQ#
Student's sequence number

STUNAME
Student's name

CUST Name of student's company

LOCTN
Location of student's company

STATUS
Student's status in class—confirmed, wait list, or cancelled

ABSENCE
Number of days student was absent

GRADE
Student's grade for the course

After you have listed the data elements, choose the major entity that these
elements describe. In this case, the major entity is class. Although a lot of
information exists about each student and some information exists about the
course in general, together all this information relates to a specific class. If the
information about each student (for example, status, absence, and grade) is not
related to a particular class, the information is meaningless. This holds true for the
data elements at the top of the list as well: The Ed Center, the date the class starts,
and the instructor mean nothing unless you know what class they describe.

Naming data elements
Some of the data elements your application uses might already exist and be
named. After you have listed the data elements, find out if any of them exist by
checking with your database administrator (DBA).

Before you begin naming data elements, be aware of the naming standards that
you are subject to. When you name data elements, use the most descriptive names
possible. Remember that, because other applications probably use at least some of
the same data, the names should mean the same thing to everyone. Try not to limit
the name's meaning only to your application.

Recommendation: Use global names rather than local names. A global name is a
name whose meaning is clear outside of any particular application. A local name is
a name that, to be understood, must be seen in the context of a particular
application.

One of the problems with using local names is that you can develop synonyms,
two names for the same data element.

Chapter 2. Designing an application: Data and local views 19

For example, in the current roster example, suppose the student's company was
referred to simply as “company” instead of “customer”. But suppose the
accounting department for the education company used the same piece of data in
a billing application—the name of the student's company—and referred to it as
“customer”. This would mean that two business processes were using two different
names for the same piece of data. At worst, this could lead to redundant data if no
one realized that “customer” and “company” contained the same data. To solve
this, use a global name that is recognized by both departments using this data
element. In this case, “customer” is more easily recognized and the better choice.
This name uniquely identifies the data element and has a specific meaning within
the education company.

When you choose data element names, use qualifiers so that each name can mean
only one thing.

For example, suppose Headquarters, for each course that is taught, assigns a
number to the course as it is developed and calls this number the “sequence
number”. The Ed Centers, as they receive student enrollments for a particular
class, assign a number to each student as a means of identification within the class.
The Ed Centers call this number the “sequence number”. Thus Headquarters and
the Ed Centers are using the same name for two separate data elements. This is
called a homonym. You can solve the homonym problem by qualifying the names.
The number that Headquarters assigns to each course can be called “course code”
(CRSCODE), and the number that the Ed Centers assign to their students can be
called “student sequence number” (STUSEQ#).

Homonym
One word for two different things.

Choose data element names that identify the element and describe it precisely.
Make your data element names:

Unique
The name is clearly distinguishable from other names.

Self-explanatory
The name is easily understood and recognized.

Concise
The name is descriptive in a few words.

Universal
The name means the same thing to everyone.

Documenting application data
After you have determined what data elements a business process requires, record
as much information about each of the data elements as possible.

This information is useful to the DBA. Be aware of any standards that you are
subject to regarding data documentation. Many places have standards concerning
what information should be recorded about data and how and where that
information should be recorded. The amount and type of this information varies
from place to place. The following list is the type of information that is often
recorded.

20 Application Programming

The descriptive name of the data element
Data element names should be precise, yet they should be meaningful to
people who are familiar and also to those who are unfamiliar with the
application.

The length of the data element
The length of the data element determines segment size and segment
format.

The character format
The programmer needs to know if the data is alphanumeric, hexadecimal,
packed decimal, or binary.

The range of possible values for the element
The range of possible values for the element is important for validity
checking.

The default value
The programmer also needs the default value.

The number of data element occurrences
The number of data element occurrences helps the DBA to determine the
required space for this data, and it affects performance considerations.

How the business process affects the data element
Whether the data element is read or updated determines the processing
option that is coded in the PSB for the application program.

You should also record control information about the data. Such information
should address the following questions:
v What action should the program take when the data it attempts to access is not

available?
v If the format of a particular data element changes, which business processes

does that affect? For example, if an education database has as one of its data
elements a five-digit code for each course, and the code is changed to six digits,
which business processes does this affect?

v Where is the data now? Know the sources of the data elements required by the
application.

v Which business processes make changes to a particular data element?
v Are there security requirements about the data in your application? For example,

you would not want information such as employees' salaries available to
everyone?

v Which department owns and controls the data?

One way to gather and record this information is to use a form similar to the one
shown in the following table. The amount and type of data that you record
depends on the standards that you are subject to. For example, the following table
lists the ID number, data element name, length, the character format, the allowed,
null, default values, and the number of occurrences.

Chapter 2. Designing an application: Data and local views 21

Table 11. Example of data elements information form

ID #

Data
element
name Length

Char.
format Allowed values

Null
values

Default
value Number of occurrences

5 Course
Code

5 bytes Hexa-
decimal

0010090000 00000 N/A There are 200 courses in
the curriculum. An
average of 10 are new or
revised per year. An
average of 5 are dropped
per year.

25 Status 4 bytes Alpha-
numeric

CONF WAIT
CANC

blanks WAIT 1 per student

36 Student
Name

20 bytes Alpha-
numeric

Alpha only blanks N/A There are 3 to 100
students per class with
an average of 40 per
class.

A data dictionary is a good place to record the facts about the application's data.
When you are analyzing data, a dictionary can help you find out whether a
particular data element already exists, and if it does, its characteristics. With the
IBM OS/VS DB/DC Data Dictionary, you can determine online what segments
exist in a particular database and what fields those segments contain. You can use
either tool to create reports involving the same information.

Designing a local view
A local view is a description of the data that an individual business process
requires.

It includes the following:
v A list of the data elements
v A conceptual data structure that shows how you have grouped data elements by

the entities that they describe
v The relationships between each of the groups of data elements

Definitions: A data aggregate is a group of data elements. When you have grouped
data elements by the entity they describe, you can determine the relationships
between the data aggregates. These relationships are called mappings. Based on the
mappings, you can design a conceptual data structure for the business process. You
should document this process as well.
Related concepts:
“An overview of application design” on page 15

Analyzing data relationships
When you analyze data relationships, you are developing conceptual data
structures for the business processes in your application.

This process, called data structuring, is a way to analyze the relationships among
the data elements a business process requires, not a way to design a database. The
decisions about segment formats and contents belong to the DBA. The information
you develop is input for designing a database.

Data structuring can be done in many different ways.

22 Application Programming

Grouping data elements into hierarchies
The data elements that describe a data aggregate, the student, might be
represented by the descriptive names STUSEQ#, STUNAME, CUST, LOCTN,
STATUS, ABSENCE, and GRADE. We call this group of data elements the student
data aggregate.

Data elements have values and names. In the student data elements example, the
values are a particular student's sequence number, the student's name, company,
company location, the student's status in the class, the student's absences, and
grade. The names of the data aggregate are not unique—they describe all the
students in the class in the same terms. The combined values, however, of a data
aggregate occurrence are unique. No two students can have the same values in
each of these fields.

As you group data elements into data aggregates and data structures, look at the
data elements that make up each group and choose one or more data elements that
uniquely identify that group. This is the data aggregate's controlling key, which is
the data element or group of data elements in the aggregate that uniquely
identifies the aggregate. Sometimes you must use more than one data element for
the key in order to uniquely identify the aggregate.

By following the three steps explained in this section, you can develop a
conceptual data structure for a business process's data. However, you are not
developing the logical data structure for the program that performs the business
process. The three steps are:
1. Separate repeating data elements in a single occurrence of the data aggregate.
2. Separate duplicate values in multiple occurrences of the data aggregate.
3. Group each data element with its controlling keys.

Step 1. separating repeating data elements

Look at a single occurrence of the data aggregate. The following table shows what
this looks like for the class aggregate; the data element is listed with the class
aggregate occurrence.

Table 12. Single occurrence of class aggregate

Data element Class aggregate occurrence

EDCNTR CHICAGO

DATE(START) 1/14/96

CRSNAME TRANSISTOR THEORY

CRS CODE 41837

LENGTH 10 DAYS

INSTRS multiple

STUSEQ# multiple

STUNAME multiple

CUST multiple

LOCTN multiple

STATUS multiple

ABSENCE multiple

GRADE multiple

Chapter 2. Designing an application: Data and local views 23

The data elements defined as multiple are the elements that repeat. Separate the
repeating data elements by shifting them to a lower level. Keep data elements with
their controlling keys.

The data elements that repeat for a single class are: STUSEQ#, STUNAME, CUST,
LOCTN, STATUS, ABSENCE, and GRADE. INSTRS is also a repeating data
element, because some classes require two instructors, although this class requires
only one.

When you separate repeating data elements into groups, you have the structure
shown in the following figure.

In the following figure, the data elements in each box form an aggregate. The
entire figure depicts a data structure. The data elements include the Course
aggregate, the Student aggregate, and the Instructor aggregate.

The following figure shows these aggregates with the keys indicated with leading
asterisks (*).

The keys for the data aggregates are shown in the following table.

Table 13. Data aggregates and keys for current roster after step 1

Data aggregate Keys

Course aggregate EDCNTR, DATE, CRSCODE

Student aggregate EDCNTR, DATE, CRSCODE, STUSEQ#

Instructor aggregate EDCNTR, DATE, CRSCODE, INSTRS

Instructor
aggregate

Student
aggregate

Course aggregate

*EDCNTR
*DATE
CRSNAME

*CRSCODE
LENGTH

INSTRS STUSEQ#
STUNAME
CUST
LOCTN
ABSENCE
GRADE
STATUS

Figure 5. Current roster after step 1

24 Application Programming

The asterisks in the previous figure identify the key data elements. For the Class
aggregate, it takes multiple data elements to identify the course, so you need
multiple data elements to make up the key. The data elements that comprise the
Class aggregate are:
v Controlling key element, STUSEQ#
v STUNAME
v CUST
v LOCTN
v STATUS
v ABSENCE
v GRADE

The data elements that comprise the Instructor aggregate are:
v Key element, INSTRS

The Course aggregate and the Instructor aggregate inherit the following keys from
the root segment, Course aggregate:
v EDCNTR
v DATE
v CRSCODE

After you have shifted repeating data elements, make sure that each element is in
the same group as its controlling key. INSTRS is separated from the group of data
elements describing a student because the information about instructors is
unrelated to the information about the students. The student sequence number
does not control who the instructor is.

In the example shown in the previous figure, the Student aggregate and Instructor
aggregate are both dependents of the Course aggregate. A dependent aggregate's
key includes the concatenated keys of all the aggregates above the dependent
aggregate. This is because a dependent's controlling key does not mean anything if
you do not know the keys of the higher aggregates. For example, if you knew that
a student's sequence number was 4, you would be able to find out all the
information about the student associated with that number. This number would be
meaningless, however, if it were not associated with a particular course. But,
because the key for the Student aggregate is made up of Ed Center, date, and
course code, you can deduce which class the student is in.

Step 2. isolating duplicate aggregate values

Look at multiple occurrences of the aggregate—in this case, the values you might
have for two classes. The following table shows multiple occurrences (2) of the
same data elements. As you look at this table, check for duplicate values.
Remember that both occurrences describe one course.

Table 14. Multiple occurrences of class aggregate

Data element list Occurrence 1 Occurrence 2

EDCNTR CHICAGO NEW YORK

DATE(START) 1/14/96 3/10/96

CRSNAME TRANS THEORY TRANS THEORY

CRSCODE 41837 41837

Chapter 2. Designing an application: Data and local views 25

Table 14. Multiple occurrences of class aggregate (continued)

Data element list Occurrence 1 Occurrence 2

LENGTH 10 DAYS 10 DAYS

INSTRS multiple multiple

STUSEQ# multiple multiple

STUNAME multiple multiple

CUST multiple multiple

LOCTN multiple multiple

STATUS multiple multiple

ABSENCE multiple multiple

GRADE multiple multiple

The data elements defined as multiple are the data elements that repeat. The
values in these elements are not the same. The aggregate is always unique for a
particular class.

In this step, compare the two occurrences and shift the fields with duplicate values
(TRANS THEORY and so on) to a higher level. If you need to, choose a controlling
key for aggregates that do not yet have keys.

In the previous table, CRSNAME, CRSCODE, and LENGTH are the fields that
have duplicate values. Much of this process is intuitive. Student status and grade,
although they can have duplicate values, should not be separated because they are
not meaningful values by themselves. These values would not be used to identify a
particular student. This becomes clear when you remember to keep data elements
with their controlling keys. When you separate duplicate values, you have the
structure shown in the following figure.

26 Application Programming

Step 3. grouping data elements with their controlling keys

This step is often a check on the first two steps. (Sometimes the first two steps
have already done what this step instructs you to do.)

At this stage, make sure that each data element is in the group that contains its
controlling key. The data element should depend on the full key. If the data
element depends only on part of the key, separate the data element along with the
partial (controlling) key on which it depends.

In this example, CUST and LOCTN do not depend on the STUSEQ#. They are
related to the student, but they do not depend on the student. They identify the
company and company address of the student.

CUST and LOCTN are not dependent on the course, the Ed Center, or the date,
either. They are separate from all of these things. Because a student is only
associated with one CUST and LOCTN, but a CUST and LOCTN can have many
students attending classes, the CUST and LOCTN aggregate should be above the
student aggregate.

The following figure shows these aggregates and keys indicated with leading
asterisks (*) and shows what the structure looks like when you separate CUST and
LOCTN.

Instructor
aggregate

Student
aggregate

Course aggregate

Class aggregate

*CRSCODE
CRSNAME
LENGTH

* STUSEQ#
STUNAME
CUST
LOCTN
ABSENCE
GRADE
STATUS

*INSTRS

*EDCNTR
*DATE

Figure 6. Current roster after step 2

Chapter 2. Designing an application: Data and local views 27

The keys for the data aggregates are shown in the following table.

Table 15. Data aggregates and keys for current roster after step 3

Data aggregate Keys

Course aggregate CRSCODE

Class aggregate CRSCODE, EDCNTR, DATE

Customer aggregate CUST, LOCTN

Student aggregate (when viewed from the customer aggregate in
“Current roster after step 3”instead of from the
course aggregate, in “Current roster after step 2”)
CUST, LOCTN, STUSEQ, CRSCODE, EDCNTR,
DATE

Instructor aggregate CRSCODE, EDCNTR, DATE, INSTRS

Deciding on the arrangement of the customer and location information is part of
designing a database. Data structuring should separate any inconsistent data
elements from the rest of the data elements.

Determining mappings
When you have arranged the data aggregates into a conceptual data structure, you
can examine the relationships between the data aggregates. A mapping between
two data aggregates is the quantitative relationship between the two.

The reason you record mappings is that they reflect relationships between
segments in the data structure that you have developed. If you store this
information in an IMS database, the DBA can construct a database hierarchy that

Figure 7. Current roster after step 3

28 Application Programming

satisfies all the local views, based on the mappings. In determining mappings, it is
easier to refer to the data aggregates by their keys, rather than by their collected
data elements.

The two possible relationships between any two data aggregates are:
v One-to-many

For each segment A, one or more occurrences of segment B exist. For example,
each class maps to one or more students.
Mapping notation shows this in the following way:

Class ◄────────►► Student

v Many-to-many
Segment B has many A segments associated with it and segment A has many B
segments associated with it. In a hierarchic data structure, a parent can have one
or more children, but each child can be associated with only one parent. The
many-to-many association does not fit into a hierarchy, because in a
many-to-many association each child can be associated with more than one
parent.
Related Reading: For more information about analyzing data requirements, see
IMS Version 14 Database Administration.
Many-to-many relationships occur between segments in two business processes.
A many-to-many relationship indicates a conflict in the way that two business
processes need to process those data aggregates. If you use the IMS full-function
database, you can solve this kind of processing conflict by using secondary
indexing or logical relationships.

The mappings for the current roster are:
v Course ◄────────►► Class

For each course, there might be several classes scheduled, but a class is
associated with only one course.

v Class ◄────────►► Student

A class has many students enrolled in it, but a student might be in only one
class offering of this course.

v Class ◄────────►► Instructor

A class might have more than one instructor, but an instructor only teaches one
class at a time.

v Customer/location ◄────────►► Student

A customer might have several students attending a particular class, but each
student is only associated with one customer and location.

Related concepts:
“Understanding how data structure conflicts are resolved” on page 81

Local view examples
The following examples show how to design local views including the schedule of
courses, the instructor skills report, and the instructor schedules.

Each example shows the following parts of designing a local view:
1. Gather the data. For each example, the data elements are listed and two

occurrences of the data aggregate are shown. Two occurrences are shown
because you need to look at both occurrences when you look for repeating
fields and duplicate values.

Chapter 2. Designing an application: Data and local views 29

2. Analyze the data relationships. First, group the data elements into a conceptual
data structure using these three steps:
a. Separate repeating data elements in a single occurrence of the data

aggregate by shifting them to a lower level. Keep data elements with their
keys.

b. Separate duplicating values in two occurrences of the data aggregate by
shifting those data elements to a higher level. Again, keep data elements
with their keys.

c. Group data elements with their keys. Make sure that all the data elements
within one aggregate have the same key. Separate any that do not.

3. Determine the mappings between the data aggregates in the data structure you
have developed.

Example 1: schedule of courses

Headquarters keeps a schedule of all the courses given each quarter and
distributes it monthly. Headquarters wants the schedule to be sorted by course
code and printed in the format shown in the following figure.

1. Gather the data. The following table lists the data elements and two
occurrences of the data aggregate.

Table 16. Course schedule data elements

Data elements Occurrence 1 Occurrence 2

CRSNAME TRANS THEORY MICRO PROG

CRSCODE 41837 41840

LENGTH 10 DAYS 5 DAYS

PRICE $280 $150

DATE multiple multiple

EDCNTR multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual
data structure.
a. Separate repeating data elements in one occurrence of the data aggregate by

shifting them to a lower level, as shown in the following table

COURSE SCHEDULE

COURSE: TRANSISTOR THEORY COURSE CODE: 418737
LENGTH: 10 DAYS PRICE: $280

DATE LOCATION

APRIL 14 BOSTON
APIRL 21 CHICAGO
.
.
.
NOVEMBER 18 LOS ANGELES

Figure 8. Schedule of courses

30 Application Programming

b. Next, separate duplicate values in two occurrences of the data aggregate by
shifting the data elements to a higher level.
This data aggregate does not contain duplicate values.

c. Group data elements with their controlling keys.
Data elements are grouped with their keys in the present structure. No
changes are necessary for this step.
The keys for the data aggregates are shown in the following table.

Table 17. Data aggregates and keys for course schedule after step 1

Data aggregate Keys

Course aggregate CRSCODE

Class aggregate CRSCODE, EDCNTR, DATE

3. When you have developed a conceptual data structure, determine the
mappings for the data aggregates.
The mapping for this local view is: Course ◄────────►► Class

Example 2: instructor skills report

Each Ed Center needs to print a report showing the courses that its instructors are
qualified to teach. The report format is shown in the following figure.

*CRSCODE

CRSNAME

LENGTH

PRICE

*EDCNTR

*DATE

Class aggregate

Course aggregate

Figure 9. Course schedule after step 1

Chapter 2. Designing an application: Data and local views 31

1. Gather the data. The following table lists the data elements and two
occurrences of the data aggregate.

Table 18. Instructor skills data elements

Data elements Occurrence 1 Occurrence 2

INSTR REYNOLDS, P.W. MORRIS, S. R.

CRSCODE multiple multiple

CRSNAME multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual
data structure.
a. Separate repeating data elements in one occurrence of the data aggregate by

shifting to a higher level as shown in the following figure.

b. Separate any duplicate values in the two occurrences of the data aggregate.
No duplicate values exist in this data aggregate.

c. Group data elements with their keys.
All data elements are grouped with their keys in the current data structure.
There are no changes to this data structure.

3. Determine the mappings for the data aggregates.
The mapping for this local view is: Instructor ◄────────►► Course

INSTRUCTOR SKILLS REPORT

INSTRUCTOR COURSE CODE COURSE NAME

BENSON, R. J. 41837 TRANS THEORY
MORRIS, S. R. 41837 TRANS THEORY

41850 CIRCUIT DESIGN
41852 LOGIC THEORY

.

.

.
REYNOLDS, P. W. 41840 MICRO PROG

41850 CIRCUIT DESIGN

Figure 10. Instructor skills report

*CRSCODE

CRSNAME

*INSTR

Instructor aggregate

Course aggregate

Figure 11. Instructor skills after step 1

32 Application Programming

Example 3: instructor schedules

Headquarters wants to produce a report showing the schedules for all the
instructors. The following figure shows the report format.

1. Gather the data. The following table lists the data elements and two
occurrences of the data aggregate.

Table 19. Instructor schedules data elements

Data elements Occurrence 1 Occurrence 2

INSTR BENSON, R. J. MORRIS, S. R.

CRSNAME multiple multiple

CRSCODE multiple multiple

EDCNTR multiple multiple

DATE(START) multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual
data structure.
a. Separate repeating data elements in one occurrence of the data aggregate by

shifting data elements to a lower level as shown in the following figure.

b. Separate duplicate values in two occurrences of the data aggregate by
shifting data elements to a higher level as shown in the following figure.
In this example, CRSNAME and CRSCODE can be duplicated for one
instructor or for many instructors, for example, 41837 for Benson and 41850
for Morris and Reynolds.

INSTRUCTOR SCHEDULES

INSTRUCTOR COURSE CODE ED CENTER DATE

BENSON, R. J. TRANS THEORY 41837 CHICAGO 1/14/96
MORRIS, S. R. TRANS THEORY 41837 NEW YORK 3/10/96

LOGIC THEORY 41852 BOSTON 3/27/96
CIRCUIT DES 41840 CHICAGO 4/21/96

REYNOLDS, B. H. MICRO PROG 41850 NEW YORK 2/25/96
CIRCUIT DES 41850 LOS ANGELES 3/10.96

Figure 12. Instructor schedules

CRSNAME
*CRSCODE
*EDCNTR
*DATE

*INSTR

Course aggregate

Instructor aggregate

Figure 13. Instructor schedules step 1

Chapter 2. Designing an application: Data and local views 33

c. Group data elements with their keys.
All data elements are grouped with their controlling keys in the current
data structure. No changes to the current data structure are required.

3. Determine the mappings for the data aggregates.
The mappings for this local view are: Instructor ◄────────►► Course Course
◄────────►► Class

An analysis of data requirements is necessary to combine the requirements of
the three examples presented in this section and to design a hierarchic structure
for the database based on these requirements.
Related Reading: For more information on analyzing data requirements, see
IMS Version 14 Database Administration.

*CRSCODE

CRSNAME

*EDCNTR

*DATE

*INSTR

Instructor aggregate

Class aggregate

Course aggregate

Figure 14. Instructor schedules step 2

34 Application Programming

Chapter 3. Analyzing IMS application processing requirements

Use the following information to plan for writing application programs for IMS
environments.

Defining IMS application requirements
One of the steps of application design is to decide how the business processes, or
tasks, that the end user wants performed can be best grouped into a set of
programs that efficiently performs the required processing.

To analyze processing requirements, consider:
v When the task must be performed

– Will the task be scheduled unpredictably (for example, on terminal demand)
or periodically (for example, weekly)?

v How the program that performs the task is executed

– Will the program be executed online, where response time is crucial, or by
batch job submission, where a slower response time is acceptable?

v The consistency of the processing components

– Does the action the program is to perform involve more than one type of
program logic? For example, does it involve mostly retrievals and only one or
two updates? If so, you should consider separating the updates into a
separate program.

– Does this action involve several large groups of data? If it does, it might be
more efficient to separate the programs by the data they access.

v Any special requirements about the data or processing

Security
Should access to the program be restricted?

Recovery
Are there special recovery considerations in the program's processing?

Availability
Does your application require high data availability?

Integrity
Do other departments use the same data?

Answers to questions like these can help you decide on the number of application
programs that the processing will require, and on the types of programs that
perform the processing most efficiently. Although rules dealing with how many
programs can most efficiently do the required processing do not exist, here are
some suggestions:
v As you look at each programming task, examine the data and processing that

each task involves. If a task requires different types of processing and has
different time limitations (for example, daily as opposed to different times
throughout the month), that task might be more efficiently performed by several
programs.

v As you define each program, it is a good idea for maintenance and recovery
reasons to keep it as simple as possible. The simpler a program is—the less it
does—the easier it is to maintain, and to restart after a program or system

© Copyright IBM Corp. 1974, 2015 35

failure. The same is true with data availability—the less data that is accessed, the
more likely the data is to be available. The more limited the access requested,
the more likely the data is to be available.
Similarly, if the data that the application requires is physically in one place, it
might be more efficient to have one program do more of the processing than
usual. These are considerations that depend upon the processing and the data of
each application.

v Documenting each of the user tasks is helpful during the design process, and in
the future when others will work with your application. Be sure you are aware
of standards in this area. The kind of information that is typically kept is when
the action is to be executed, a functional description, and requirements for
maintenance, security, and recovery.
For example, for the current roster process described previously, you might
record the information shown in the following form. How frequently the
program is run is determined by the number of classes (20) needed by the
Education Center each week.

Documenting user task descriptions: current roster example
USER TASK DESCRIPTION

NAME: Current Roster
ENVIRONMENT: Batch FREQUENCY: 20 per week

INVOKING EVENT OR DOCUMENT: Time period (one week)

REQUIRED RESPONSE TIME: 24 hours

FUNCTION DESCRIPTION: Print weekly, a current student roster, in student
number sequence for each class offered at the Education Center.

MAINTENANCE:Included in Education DB maintenance.

SECURITY: None.

RECOVERY:After a failure, the ability to start printing a particular
class roster starting from a particular sequential student number.

Accessing databases with your IMS application program
When designing your program, consider the type of database it must access. The
type of database depends on the operating environment.

The program types you can run and the different types of databases you can access
in a DB batch, TM batch, DB/DC, DBCTL, or DCCTL environment are shown in
the following table.

36 Application Programming

Table 20. Program and database options in IMS environments

Environment
Type of program you
can run Type of database that can be accessed

DB/DC BMP DB2® for z/OS

DEDB and MSDB

Full function

z/OS files

IFP DB2 for z/OS

DEDB

Full function

JBP DB2 for z/OS

DEDB

Full function

JMP DB2 for z/OS

DEDB

Full function

MPP DB2 for z/OS

DEDB and MSDB

Full function

DB Batch DB Batch DB2 for z/OS

Full function

GSAM

z/OS files

DBCTL BMP (Batch-oriented) DB2 for z/OS

DEDB

Full function

GSAM

z/OS files

JBP DB2 for z/OS

DEDB

Full function

DCCTL BMP DB2 for z/OS

GSAM

z/OS files

IFP DB2 for z/OS

JMP DB2 for z/OS

MPP DB2 for z/OS

TM Batch TM Batch DB2 for z/OS

GSAM

z/OS files

The types of databases that can be accessed are:
v IMS Databases

Chapter 3. Analyzing IMS application processing requirements 37

There are two types of IMS databases: full-function and Fast Path.
– Full-function databases

Full-function databases are hierarchic databases that are accessed through
Data Language I (DL/I) call interface and can be processed by these types of
application programs: IFP, JMP, JBP, MPP, BMP, and DB batch. DL/I calls
make it possible for IMS application programs to retrieve, replace, delete, and
add segments to full-function databases.
JMP and JBP applications use JDBC to access full-function databases in
addition to DL/I.
If you use data sharing, online programs and batch programs can access the
same full-function database concurrently.
Full-function database types include: HDAM, HIDAM, HSAM, HISAM,
PHDAM, PHIDAM, SHSAM, and SHISAM.

– Fast Path databases

Fast Path databases are of two types: MSDBs and DEDBs.
- Main storage databases (MSDBs) are root-segment-only databases that

reside in virtual storage during execution.
- Data entry databases (DEDBs) are hierarchic databases that provide a high

level of availability for, and efficient access to, large volumes of detailed
data.

MPP, BMP, and IFP programs can access Fast Path databases. In the DBCTL
environment, BMP programs can access DEDBs but not MSDBs. JMP and JBP
programs can access DEDBs but not MSDBs.

v DB2 for z/OS databases

DB2 for z/OS databases are relational databases that can be processed by IMS
batch, BMP, IFP, JBP, JMP, and MPP programs. An IMS application program
might access only DL/I databases, both DL/I and DB2 for z/OS databases, or
only DB2 for z/OS databases. Relational databases are represented to application
programs and users as tables, and are processed using a relational data language
called Structured Query Language (SQL).

Note: JMP and JBP programs cannot access DB2 for z/OS databases.
Related Reading: For information on processing DB2 for z/OS databases, see
DB2 for z/OS Application Programming and SQL Guide.

v z/OS Files

BMPs (in DB/DC, DBCTL, and DCCTL environments) are the only type of
online application program that can access z/OS files for their input or output.
Batch programs can also access z/OS files.

v GSAM Databases (Generalized Sequential Access Method)
Generalized Sequential Access Method (GSAM) is an access method that makes
it possible for BMPs and batch programs to access a sequential z/OS data set as
a simple database. A GSAM database can be accessed by z/OS or by IMS.

Accessing data: the types of programs you can write for your IMS
application

You must decide what type of program to use: batch programs, message
processing programs (MPPs), IMS Fast Path (IFP) applications, batch message
processing (BMP) applications, Java Message Processing (JMP) applications, or Java
Batch Processing (JBP) applications. The types of programs you can use depend on
whether you are running in the batch, DB/DC, or DBCTL environment.

38 Application Programming

DB batch processing
These topics describe DB batch processing and can help you decide if this batch
program is appropriate for your application.

Data that a DB batch program can access

A DB batch program can access full-function databases, DB2 for z/OS databases,
GSAM databases, and z/OS files. A DB batch program cannot access DEDBs or
MSDBs.

Using DB batch processing

Batch programs are typically longer-running programs than online programs. You
use a batch program when you have a large number of database updates to do or
a report to print. Because a batch program runs by itself—it does not compete with
any other programs for resources like databases—it can run independently of the
control region. If you use data sharing, DB batch programs and online programs
can access full-function databases concurrently. Batch programs:
v Typically produce a large amount of output, such as reports.
v Are not executed by another program or user. They are usually scheduled at

specific time intervals (for example, weekly) and are started with JCL.
v Produce output that is not needed right away. The turnaround time for batch

output is not crucial, as it usually is for online programs.

Recovering a DB batch program

Include checkpoints in your batch program to restart it in case of failure.

Issuing checkpoints

Issue checkpoints in a batch program to commit database changes and provide
places from which to restart your program. Issuing checkpoints in a batch program
is important, because commit points do not occur automatically, as they do in
MPPs, transaction-oriented BMPs, and IFPs.

Issuing checkpoints is particularly important in a batch program that participates
in data sharing with your online system. Checkpoints free up resources for use by
online programs. You should initially include checkpoints in all batch programs
that you write. Even though the checkpoint support might not be needed then, it is
easier to incorporate checkpoints initially than to try to fit them in later. And it is
possible that you might want to convert your batch program to a BMP or
participate in data sharing.

To issue checkpoints (or other system service calls), you must specify an I/O PCB
for your program. To obtain an I/O PCB, use the compatibility option by
specifying CMPAT=YES in the PSBGEN statement in your program's PSB.

Recommendation: For PSBs used by DB batch programs, always specify
CMPAT=YES.

Backing out database changes

The type of storage medium for the system log determines what happens when a
DB batch program terminates abnormally. You can specify that the system log be
stored on either DASD (direct access storage device) or tape.

Chapter 3. Analyzing IMS application processing requirements 39

System log on DASD

If the system log is stored on DASD, using the BKO execution parameter you can
specify that IMS is to dynamically back out the changes that the program has
made to the database since its last commit point.

Related Reading: For information on using the BKO execution parameter, see IMS
Version 14 System Definition.

Dynamically backing out database changes has the following advantages:
v Data accessed by the program that failed is available to other programs

immediately. If batch backout is used, other programs cannot access the data
until the IMS Batch Backout utility has been run to back out the database
changes.

v If data sharing is being used and two programs are deadlocked, one of the
programs can continue processing. Otherwise, if batch backout is used, both
programs fail.

IMS performs dynamic backout for a batch program when an IMS-detected failure
occurs, for example, when a deadlock is detected. Logging to DASD makes it
possible for batch programs to issue the SETS, ROLB, and ROLS system service calls.
These calls cause IMS to dynamically back out changes that the program has made.

Related Reading: For information on the SETS, ROLB, and ROLS calls, see the
information about recovering databases and maintaining database integrity in IMS
Version 14 Database Administration.

System log on tape

If a batch application program terminates abnormally and the batch system log is
stored on tape, you must use the IMS Batch Backout utility to back out the
program's changes to the database.
Related concepts:
“When to use checkpoint calls” on page 50

TM batch processing
A TM batch program acts like a DB batch program with the following differences.
v It cannot access full-function databases, but it can access DB2 for z/OS

databases, GSAM databases, and z/OS files.
v To issue checkpoints for recovery, you need not specify CMPAT=YES in your

program's PSB. (The CMPAT parameter is ignored in TM batch.) The I/O PCB is
always the first PCB in the list.

v You cannot dynamically back out a database because IMS does not own the
databases.

The IEFRDER log DD statement is required in order to enable log synchronization
with other external subsystems, such as DB2 for z/OS.

Processing messages: Message Processing Programs
A Message Processing Program (MPP) is an online program that can access
full-function databases, DEDBs, MSDBs, and DB2 for z/OS databases. Unlike
BMPs and batch programs, MPPs cannot access GSAM databases. MPPs can only
run in DB/DC and DCCTL environments.

40 Application Programming

Using an MPP

The primary purpose of an MPP is to process requests from users at terminals and
from other application programs. Ideally, MPPs are very small, and the processing
they perform is tailored to respond to requests quickly. They process messages as
their input, and send messages as responses.

Message
Data that is transmitted between any two terminals, application programs,
or IMS systems. Each message has one or more segments.

MPPs are executed through transaction codes. When you define an MPP, you
associate it with one or more transaction codes. Each transaction code represents a
transaction the MPP is to process. To process a transaction, a user at a terminal
enters a code for that transaction. IMS then schedules the MPP associated with that
code, and the MPP processes the transaction. The MPP might need to access the
database to do this. Generally, an MPP goes through these five steps to process a
transaction:
1. Retrieve a message from IMS.
2. Process the message and access the database as necessary.
3. Respond to the message.
4. Repeat the process until no messages are forthcoming.
5. Terminate.

When an MPP is defined, a system administrator makes decisions about the
program's scheduling and processing. For each MPP, a system administrator
specifies:
v The transaction's priority
v The number of messages for a particular transaction code that the MPP can

process in a single scheduling
v The amount of time (in seconds) in which the MPP is allowed to process a single

transaction

Defining priorities and processing limits gives system administration some control
over load balancing and processing.

Although the primary purpose of an MPP is to process and reply to messages
quickly, it is flexible in how it processes a transaction and where it can send output
messages. For example, an MPP can send output messages to other terminals and
application programs.
Related concepts:
Chapter 5, “Gathering requirements for database options,” on page 73

Processing messages: IMS Fast Path Programs
An IMS Fast Path Program (IFP) is similar to an MPP: Its main purpose is to
quickly process and reply to messages from terminals. Like an MPP, an IFP can
access full-function databases, DEDBs, MSDBs, and DB2 for z/OS databases. IFPs
can only be run in DB/DC and DCCTL environments.

Using an IFP

You should use an IFP if you need quick processing and can accept the
characteristics and constraints associated with IFPs.

Chapter 3. Analyzing IMS application processing requirements 41

The main differences between IFPs and MPPs are as follows:
v Messages processed by IFPs must consist of only one segment. Messages that are

processed by MPPs can consist of several segments.
v IFPs bypass IMS queuing, allowing for more efficient processing. Transactions

that are processed by Fast Path's EMH (expedited message handler) are on a
first-in, first-out basis.

IFPs also have the following characteristics:
v They run in transaction response mode. This means that they must respond to

the terminal that sent the message before the terminal can enter any more
requests.

v They process only wait-for-input transactions. When you define a program as
processing wait-for-input transactions, the program remains in virtual storage,
even when no additional messages are available for it to process.

Restrictions:

v An IMS program cannot send messages to an IFP transaction unless it is in
another IMS system that is connected using Intersystem Communication (ISC).

v MPPs cannot pass conversations to an IFP transaction.

Recovering an IFP

IFPs must be defined as single mode. This means that a commit point occurs each
time the program retrieves a message. Because of this, you do not need to issue
checkpoint calls.

Batch message processing: BMPs
BMPs are application programs that can perform batch-type processing online and
access the IMS message queues for their input and output. Because of this and
because of the data available to them, BMPs are the most flexible of the IMS
application programs. The two types of BMPs are: batch-oriented and
transaction-oriented.

Batch processing online: batch-oriented BMPs
A batch-oriented BMP performs batch-type processing in any online environment.
When run in the DB/DC or DCCTL environment, a batch-oriented BMP can send
its output to the IMS message queue to be processed later by another application
program. Unlike a transaction-oriented BMP, a batch-oriented BMP cannot access
the IMS message queue for input.

Data a batch-oriented BMP can access

In the DBCTL environment, a batch-oriented BMP can access full-function
databases, DB2 for z/OS databases, DEDBs, z/OS files, and GSAM databases. In
the DB/DC environment, a batch-oriented BMP can access all of these types of
databases, as well as Fast Path MSDBs. In the DCCTL environment, this program
can access DB2 for z/OS databases, z/OS files, and GSAM databases.

Using a batch-oriented BMP

A batch-oriented BMP can be simply a batch program that runs online. (Online
requests are processed by the IMS DB/DC, DBCTL, or DCCTL system rather than
by a batch system.) You can even run the same program as a BMP or as a batch
program.

42 Application Programming

Recommendation: If the program performs a large number of database updates
without issuing checkpoints, consider running it as a batch program so that it does
not degrade the performance of the online system.

To use batch-oriented BMPs most efficiently, avoid a large amount of batch-type
processing online. If you have a BMP that performs time-consuming processing
such as report writing and database scanning, schedule it during non-peak hours
of processing. This will prevent it from degrading the response time of MPPs.

Because BMPs can degrade response times, your response time requirements
should be the main consideration in deciding the extent to which you will use
batch message processing. Therefore, use BMPs accordingly.

Recovering a batch-oriented BMP

Issuing checkpoint calls is an important part of batch-oriented BMP processing,
because commit points do not occur automatically, as they do in MPPs,
transaction-oriented BMPs, and IFPs. Unlike most batch programs, a BMP shares
resources with MPPs. In addition to committing database changes and providing
places from which to restart (as for a batch program), checkpoints release resources
that are locked for the program.

If a batch-oriented BMP fails, IMS and DB2 for z/OS back out the database
updates the program has made since the last commit point. You then restart the
program with JCL. If the BMP processes z/OS files, you must provide your own
method of taking checkpoints and restarting.

Converting a batch program to a batch-oriented BMP

If you have IMS TM or are running in the DBCTL environment, you can convert a
batch program to a batch-oriented BMP.
v If you have IMS TM, you might want to convert your programs for these

reasons:
– BMPs can send output to the message queues.
– BMPs can access DEDBs and MSDBs.
– BMPs simplify program recovery because logging goes to a single system log.

If you use DASD for the system log in batch, you can specify that you want
dynamic backout for the program. In that case, batch recovery is similar to
BMP recovery, except, of course, with batch you need to manage multiple
logs.

– Restart can be done automatically from the last checkpoint without changing
the JCL.

v If you are using DBCTL, you might want to convert your programs for these
reasons:
– BMPs can access DEDBs.
– BMPs simplify program recovery because logging goes to a single system log.

If you use DASD for the system log in batch, you can specify that you want
dynamic backout for the program. In that case, batch recovery is similar to
BMP recovery, except, of course, with batch you need to manage multiple
logs.

v If you are running sysplex data sharing and you either have IMS TM or are
using DBCTL, you might want to convert your program. This is because using
batch-oriented BMPs helps you stay within the sysplex data-sharing limit of 32
connections for each OSAM or VSAM structure.

Chapter 3. Analyzing IMS application processing requirements 43

If you use data sharing, you can run batch programs concurrently with online
programs. If you do not use data sharing, converting a batch program to a BMP
makes it possible to run the program with BMPs and other online programs.
Also, if you plan to run your batch programs offline, converting them to BMPs
enables you to run them with the online system, instead of waiting until the
online system is not running. Running a batch program as a BMP can also keep
the data more current.

v If you have IMS TM or are using DBCTL, you can have a program that runs as
either a batch program or a BMP.

Recommendation: Code your checkpoints in a way that makes them easy to
modify. Converting a batch program to a BMP or converting a batch program to
use data sharing requires more frequent checkpoints. Also, if a program fails
while running in a batch region, you must restart it in a batch region. If a
program fails in a BMP region, you must restart it in a BMP region.

The requirements for converting a batch program to a BMP are:
v The program must have an I/O PCB. You can obtain an I/O PCB in batch by

specifying the compatibility (CMPAT) option in the program specification block
(PSB) for the program.
Related Reading: For more information on the CMPAT option in the PSB, see
IMS Version 14 System Utilities.

v BMPs must issue checkpoint calls more frequently than batch programs.
Related concepts:
“When to use checkpoint calls” on page 50

Batch message processing: transaction-oriented BMPs
Transaction-oriented BMPs can access z/OS files, GSAM databases, DB2 for z/OS
databases, full-function databases, DEDBs, and MSDBs.

Data a transaction-oriented BMP can access

Unlike a batch-oriented BMP, a transaction-oriented BMP can access the IMS
message queue for input and output, and it can only run in the DB/DC and
DCCTL environments.

Using a transaction-oriented BMP

Unlike MPPs, transaction-oriented BMPs are not scheduled by IMS. You schedule
them as needed and start them with JCL. For example, an MPP, as it processes
each message, might send an output message giving details of the transaction to
the message queue. A transaction-oriented BMP could then access the message
queue to produce a daily activity report.

Typically, you use a transaction-oriented BMP to simulate direct update online:
Instead of updating the database while processing its transactions, an MPP sends
its updates to the message queue. A transaction-oriented BMP then performs the
updates for the MPP. You can run the BMP as needed, depending on the number
of updates. This improves response time for the MPP, and it keeps the data
current. This can be more efficient than having the MPP process its transactions if
the response time of the MPP is very important. One disadvantage in doing this,
however, is that it splits the transaction into two parts which is not necessary.

44 Application Programming

If you have a BMP perform an update for an MPP, design the BMP so that, if the
BMP terminates abnormally, you can reenter the last message as input for the BMP
when you restart it. For example, suppose an MPP gathers database updates for
three BMPs to process, and one of the BMPs terminates abnormally. You would
need to reenter the message that the terminating BMP was processing to one of the
other BMPs for reprocessing.

BMPs can process transactions defined as wait-for-input (WFI). This means that
IMS allows the BMP to remain in virtual storage after it has processed the
available input messages. IMS returns a QC status code, indicating that the
program should terminate when one of the following occurs:
v The program reaches its time limit.
v The master terminal operator enters a command to stop processing.
v IMS is terminated with a checkpoint shutdown.

You specify WFI for a transaction on the WFI parameter of the TRANSACT macro
during IMS system definition.

A batch message processing region (BMP) scheduled against WFI transactions
returns a QC status code (no more messages) only for the following commands:
/PSTOP REGION, /DBD, /DBR, or /STA.

Like MPPs, BMPs can send output messages to several destinations, including
other application programs.

Recovering a transaction-oriented BMP

Like MPPs, with transaction-oriented BMPs, you can choose where commit points
occur in the program. You can specify that a transaction-oriented BMP be single or
multiple mode, just as you can with an MPP. If the BMP is single mode, issuing
checkpoint calls is not as critical as in a multiple mode BMP. In a single mode
BMP, a commit point occurs each time the program retrieves a message.
Related concepts:
“Identifying output message destinations” on page 106
“When to use checkpoint calls” on page 50

Java message processing: JMPs
A JMP application program is similar to an MPP application program, except that
JMP applications must be written in Java or object-oriented COBOL. Like an MPP
application, a JMP application is started when there is a message in the message
queue for the JMP application and IMS schedules the message for processing.

JMP applications can access IMS data or DB2 for z/OS data using JDBC. JMP
applications run in JMP regions which have JVMs (Java Virtual Machines).
Related concepts:
“Overview of the IMS Java dependent regions” on page 717

Java batch processing: JBPs
A JBP application program is similar to a non-message-driven BMP application
program, except that JBP applications must be written in Java, object-oriented
COBOL, or object-oriented PL/I.

Chapter 3. Analyzing IMS application processing requirements 45

JBP applications can access IMS data or DB2 for z/OS data using JDBC. JBP
applications run in JBP regions which have JVMs.
Related concepts:
“Overview of the IMS Java dependent regions” on page 717

IMS programming integrity and recovery considerations
IMS provides support for protecting data integrity for application programs.

How IMS protects data integrity: commit points
When an online program accesses the database, it is not necessarily the only
program doing so. IMS and DB2 for z/OS make it possible for more than one
application program to access the data concurrently without endangering the
integrity of the data.

To access data concurrently while protecting data integrity, IMS and DB2 for z/OS
prevent other application programs from accessing segments that your program
deletes, replaces, or inserts, until your program reaches a commit point. A commit
point is the place in the program's processing at which it completes a unit of work.
When a unit of work is completed, IMS and DB2 for z/OS commit the changes
that your program made to the database. Those changes are now permanent and
the changed data is now available to other application programs.

What happens at a commit point

When an application program finishes processing one distinct unit of work, IMS
and DB2 for z/OS consider that processing to be valid, even if the program later
encounters problems. For example, an application program that is retrieving,
processing, and responding to a message from a terminal constitutes a unit of work.
If the program encounters problems while processing the next input message, the
processing it has done on the first input message is not affected. These input
messages are separate pieces of processing.

A commit point indicates to IMS that a program has finished a unit of work, and
that the processing it has done is accurate. At that time:
v IMS releases segments it has locked for the program since the last commit point.

Those segments are then available to other application programs.
v IMS and DB2 for z/OS make the program's changes to the database permanent.
v The current position in all databases except GSAM is reset to the start of the

database.

If the program terminates abnormally before reaching the commit point:
v IMS and DB2 for z/OS back out all of the changes the program has made to the

database since the last commit point. (This does not apply to batch programs
that write their log to tape.)

v IMS discards any output messages that the program has produced since the last
commit point.
Until the program reaches a commit point, IMS holds the program's output
messages so that, if the program terminates abnormally, users at terminals and
other application programs do not receive inaccurate information from the
abnormally terminating application program.
If the program is processing an input message and terminates abnormally, the
input message is not discarded if both of the following conditions exist:

46 Application Programming

1. You are not using the Non-Discardable Messages (NDM) exit routine.
2. IMS terminates the program with one of the following abend codes: U0777,

U2478, U2479, U3303. The input message is saved and processed later.
Exception: The input message is discarded if it is not terminated by one of
the abend codes previously referenced. When the program is restarted, IMS
gives the program the next message.

If the program is processing an input message when it terminates abnormally,
and you use the NDM exit routine, the input message might be discarded from
the system regardless of the abend. Whether the input message is discarded
from the system depends on how you have written the NDM exit routine.
Related Reading: For more information about the NDM exit routine, see IMS
Version 14 Exit Routines.

v IMS notifies the MTO that the program terminated abnormally.
v IMS and DB2 for z/OS release any locks that the program has held on data it

has updated since the last commit point. This makes the data available to other
application programs and users.

Where commit points occur

A commit point can occur in a program for any of the following reasons:
v The program terminates normally. Except for a program that accesses Fast Path

resources, normal program termination is always a commit point. A program
that accesses Fast Path resources must reach a commit point before terminating.

v The program issues a checkpoint call. Checkpoint calls are a program's means of
explicitly indicating to IMS that it has reached a commit point in its processing.

v If a program processes messages as its input, a commit point might occur when
the program retrieves a new message. IMS considers this commit point the start
of a new unit of work in the program. Retrieving a new message is not always a
commit point. This depends on whether the program has been defined as single
mode or multiple mode.
– If you specify single mode, a commit point occurs each time the program

issues a call to retrieve a new message. Specifying single mode can simplify
recovery, because you can restart the program from the most recent call for a
new message if the program terminates abnormally. When IMS restarts the
program, the program begins by processing the next message.

– If you specify multiple mode, a commit point occurs when the program issues
a checkpoint call or when it terminates normally. At those times, IMS sends
the program's output messages to their destinations. Because multiple-mode
programs contain fewer commit points than do single mode programs,
multiple mode programs might offer slightly better performance than
single-mode programs. When a multiple mode program terminates
abnormally, IMS can only restart it from a checkpoint. Instead of reprocessing
only the most recent message, a program might have several messages to
reprocess, depending on when the program issued the last checkpoint call.

The following table lists the modes in which the programs can run. Because
processing mode is not applicable to batch programs and batch-oriented BMPs,
they are not listed in the table. The program type is listed, and the table indicates
which mode is supported.

Chapter 3. Analyzing IMS application processing requirements 47

Table 21. Processing modes

Program type Single mode only
Multiple mode
only Either mode

MPP X

IFP X

Transaction-oriented BMP X

You specify single or multiple mode on the MODE parameter of the TRANSACT
macro.

Related Reading: For information on the TRANSACT macro, see IMS Version 14
System Definition.

See the following figure for an illustration of the difference between single-mode
and multiple-mode programs. A single-mode program gets and processes
messages, sends output, looks for more messages, and terminates if there are no
more. A multiple-mode program gets and processes messages, sends output, but
has a checkpoint before looking for more messages and terminating. For a
single-mode program, the commit points are when the message is obtained and the
program terminates. For multiple-mode, the commit point is at the checkpoint and
when the program terminates.

DB2 for z/OS does some processing with multiple- and single-mode programs that
IMS does not. When a multiple-mode program issues a call to retrieve a new
message, DB2 for z/OS performs an authorization check. If the authorization check
is successful, DB2 for z/OS closes any SQL cursors that are open. This affects the
design of your program.

The DB2 for z/OS SQL COMMIT statement causes DB2 for z/OS to make permanent
changes to the database. However, this statement is valid only in TSO application
programs. If an IMS application program issues this statement, it receives a
negative SQL return code.

Single-mode program

Commit
points

Multiple-mode program

Get a message

Process message

Send output message

More messages?

Terminate

Get a message

Process message

Send output message

Checkpoint

More messages?

Terminate

Figure 15. Single mode and multiple mode

48 Application Programming

Planning for program recovery: checkpoint and restart
Recovery in an IMS application program that accesses DB2 for z/OS data is
handled by both IMS and DB2 for z/OS. IMS coordinates the process, and DB2 for
z/OS handles recovery of DB2 for z/OS data.
Related concepts:
“Introducing checkpoint calls”
“When to use checkpoint calls” on page 50
“Specifying checkpoint frequency” on page 52

Introducing checkpoint calls
Checkpoint calls indicate to IMS that the program has reached a commit point.
They also establish places in the program from which the program can be
restarted. IMS has symbolic checkpoint calls and basic checkpoint calls.

A program might issue only one type of checkpoint call.
v MPPs and IFPs must use basic checkpoint calls.
v BMP, JMP, and batch programs can use either symbolic checkpoint calls or basic

checkpoint calls.

Programs that issue symbolic checkpoint calls can specify as many as seven data
areas in the program to be checkpointed. When IMS restarts the program, the
Restart call restores these areas to the condition they were in when the program
issued the symbolic checkpoint call. Because symbolic checkpoint calls do not
support z/OS files, if your program accesses z/OS files, you must supply your
own method of establishing checkpoints.

You can use symbolic checkpoint for either Normal Start or Extended Restart
(XRST).

For example, typical calls for a Normal start would be as follows:
v XRST (I/O area is blank)
v CHKP (I/O area has checkpoint ID)
v Database Calls (including checkpoints)
v CHKP (final checkpoint)

For example, typical calls for an Extended Restart (XRST) would be as follows:
v XRST (I/O area has checkpoint ID)
v CHKP (I/O area has new checkpoint ID)
v Database Calls (including checkpoints)
v CHKP (final checkpoint)

The restart call, which you must use with symbolic checkpoint calls, provides a
way of restarting a program after an abnormal termination. It restores the
program's data areas to the way they were when the program issued the symbolic
checkpoint call. It also restarts the program from the last checkpoint the program
established before terminating abnormally.

All programs can use basic checkpoint calls. Because you cannot use the restart call
with the basic checkpoint call, you must provide program restart. Basic checkpoint
calls do not support either z/OS or GSAM files. IMS programs cannot use z/OS
checkpoint and restart. If you access z/OS files, you must supply your own
method of establishing checkpoints and restarting.

Chapter 3. Analyzing IMS application processing requirements 49

In addition to the actions that occur at a commit point, issuing a checkpoint call
causes IMS to:
v Inform DB2 for z/OS that the changes your program has made to the database

can be made permanent. DB2 for z/OS makes the changes to DB2 for z/OS data
permanent, and IMS makes the changes to IMS data permanent.

v Write a log record containing the checkpoint identification given in the call to
the system log, but only if the PSB contains a DB PCB. You can print checkpoint
log records by using the IMS File Select and Formatting Print program
(DFSERA10). With this utility, you can select and print log records based on
their type, the data they contain, or their sequential positions in the data set.
Checkpoint records are X'18' log records.
Related Reading: For more information about the DFSERA10 program, see IMS
Version 14 System Utilities.

v Send a message containing the checkpoint identification that was given in the
call to the system console operator and to the IMS master terminal operator.

v Return the next input message to the program's I/O area, if the program
processes input messages. In MPPs and transaction-oriented BMPs, a checkpoint
call acts like a call for a new message.

Restriction: Do not specify CHKPT=EOV on any DD statement in order to take an
IMS checkpoint because of unpredictable results.
Related concepts:
“Planning for program recovery: checkpoint and restart” on page 49

When to use checkpoint calls
Issuing Checkpoint calls is most important in programs that do not have built-in
commit points.

The decision about whether your program should issue checkpoints, and if so, how
often, depends on your program. Generally, these programs should issue
checkpoint calls:
v Multiple-mode programs
v Batch-oriented BMPs (which can issue either SYNC or CHKP calls)
v Most batch programs
v Programs that run in a data sharing environment
v JMP applications

You do not need to issue checkpoint calls in:
v Single-mode BMP or MPP programs
v Database load programs
v Programs that access the database in read-only mode, as defined with the

PROCOPT=GO option (during a PSBGEN), and are short enough to restart from
the beginning

v Programs that have exclusive use of the database

Checkpoints in MPPs and transaction-oriented BMPs

The mode type of the program is specified on the MODE keyword of the
TRANSACT macro during IMS system generation. The modes are single and
multiple.
v In single-mode programs

50 Application Programming

In single mode programs (MODE=SNGL was specified on the TRANSACT
macro during IMS system definition), a Get Unique to the message queue causes
an implicit commit to be performed.

v In multiple-mode programs

In multiple-mode BMPs and MPPs, the only commit points are those that result
from the checkpoint calls that the program issues and from normal program
termination. If the program terminates abnormally and it has not issued
checkpoint calls, IMS backs out the program's database updates and cancels the
messages it created since the beginning of the program. If the program has
issued checkpoint calls, IMS backs out the program's changes and cancels the
output messages it has created since the most recent checkpoint.
Consider the following when issuing checkpoint calls in multiple-mode
programs:
– How long it would take to back out and recover that unit of processing. The

program should issue checkpoints frequently enough to make the program
easy to back out and recover.

– How you want the output messages grouped. checkpoint calls establish how
a multiple-mode program's output messages are grouped. Programs should
issue checkpoint calls frequently enough to avoid building up too many
output messages.

Depending on the database organization, issuing a checkpoint call might reset
your position in the database.
Related Reading: For more information about losing your position when a
checkpoint is issued, see IMS Version 14 Database Administration.

Checkpoints in batch-oriented BMPs

Issuing checkpoint calls in a batch-oriented BMP is important for several reasons:
v In addition to committing changes to the database and establishing places from

which the program can be restarted, checkpoint calls release resources that IMS
has locked for the program.

v A batch-oriented BMP that uses DEDBs or MSDBs might terminate with abend
U1008 if a SYNC or CHKP call is not issued before the application program
terminates.

v If a batch-oriented BMP does not issue checkpoints frequently enough, it can be
abnormally terminated, or it can cause another application program to be
abnormally terminated by IMS for any of these reasons:
– If a BMP retrieves and updates many database records between checkpoint

calls, it can tie up large portions of the databases and cause long waits for
other programs needing those segments.
Exception: For a BMP with a processing option of GO or exclusive, IMS does
not lock segments for programs. Issuing checkpoint calls releases the
segments that the BMP has locked and makes them available to other
programs.

– The space needed to maintain lock information about the segments that the
program has read and updated exceeds what has been defined for the IMS
system. If a BMP locks too many segments, the amount of storage needed for
the locked segments can exceed the amount of available storage. If this
happens, IMS terminates the program abnormally. You must increase the
program's checkpoint frequency before rerunning the program. The available
storage is specified during IMS system definition.

Chapter 3. Analyzing IMS application processing requirements 51

Related Reading: For more information on specifying storage, see IMS Version
14 System Definition.
You can limit the number of locks for the BMP by using the LOCKMAX=n
parameter on the PSBGEN statement. For example, a specification of
LOCKMAX=5 means the application cannot obtain more than 5000 locks at
any time. The value of n must be between 0 and 255. When a maximum lock
limit does not exist, 0 is the default. If the BMP tries to acquire more than the
specified number of locks, IMS terminates the application with abend U3301.
Related Reading: For more information about this abend, see IMS Version 14
Messages and Codes, Volume 3: IMS Abend Codes.

Checkpoints in batch programs

Batch programs that update databases should issue checkpoint calls. The main
consideration in deciding how often to take checkpoints in a batch program is the
time required to back out and reprocess the program after a failure. A general
recommendation is to issue one checkpoint call every 10 or 15 minutes.

If you might need to back out the entire batch program, the program should issue
the checkpoint call at the beginning of the program. IMS backs out the program to
the checkpoint you specify, or to the most recent checkpoint, if you do not specify
a checkpoint. If the database is updated after the beginning of the program and
before the first checkpoint, IMS is not able to back out these database updates.

For a batch program to issue checkpoint calls, it must specify the compatibility
option in its PSB (CMPAT=YES). This generates an I/O PCB for the program,
which IMS uses as an I/O PCB in the checkpoint call.

Another important reason for issuing checkpoint calls in batch programs is that,
although they may currently run in an IMS batch region, they might later need to
access online databases. This would require converting them to BMPs. Issuing
checkpoint calls in a BMP is important for reasons other than recovery—for
example, to release database resources for other programs. So, you should initially
include checkpoints in all batch programs that you write. Although the checkpoint
support might not be needed then, it is easier to incorporate checkpoint calls
initially than to try to fit them in later.

To free database resources for other programs, batch programs that run in a
data-sharing environment should issue checkpoint calls more frequently than those
that do not run in a data-sharing environment.
Related concepts:
“DB batch processing” on page 39
“Batch processing online: batch-oriented BMPs” on page 42
“Batch message processing: transaction-oriented BMPs” on page 44
“Planning for program recovery: checkpoint and restart” on page 49

Specifying checkpoint frequency
You should specify checkpoint frequency in your program so that you can easily
modify it when the frequency needs to be adjusted.

You can do this by:
v Using a counter in your program to keep track of elapsed time, and issuing a

checkpoint call after a certain time interval.

52 Application Programming

v Using a counter to keep track of the number of root segments your program
accesses, and issuing a checkpoint call after a certain number of root segments.

v Using a counter to keep track of the number of updates your program performs,
and issuing a checkpoint call after a certain number of updates.

Related concepts:
“Planning for program recovery: checkpoint and restart” on page 49

Data availability considerations
The following information describes the conditions that could cause data to
become unavailable in a full-function database and the program calls that allow
your program to manage data under these conditions.

Dealing with unavailable data

The conditions that make the database unavailable for both read and update are:
v The /LOCK command for a database was issued.
v The /STOP command for a database was issued.
v The /DBRECOVERY command was issued.
v Authorization for a database failed.

The conditions that make the database available only for read and not for update
are:
v The /DBDUMP command has been issued.
v Database ACCESS value is RD (read).

In addition to unavailability of an entire database, other situations involving
unavailability of a limited amount of data can also inhibit program access. One
such example would be a failure situation involving data sharing. The active IMS
system knows which locks were held by a sharing IMS system at the time the
sharing IMS system failed. Although the active IMS system continues to use the
database, it must reject access to the data which the failed IMS system locked upon
failure. This situation occurs for both full-function and DEDB databases.

The two situations where the program might encounter unavailable data are:
v The program makes a call requiring access to a database that was unavailable at

the time the program was scheduled.
v The database was available when the program was scheduled, but limited

amounts of data are unavailable. The current call has attempted to access the
unavailable data.

Regardless of the condition causing the data to be unavailable, the program has
two possible approaches when dealing with unavailable data. The program can be
insensitive or sensitive to data unavailability.
v When the program is insensitive, IMS takes appropriate action when the

program attempts to access unavailable data.
v When the program is sensitive, IMS informs the program that the data it is

attempting to access is not available.

If the program is insensitive to data unavailability, and attempts to access
unavailable data, IMS aborts the program (3303 pseudo-abend), and backs out any
updates the program has made. The input message that the program was
processing is suspended, and the program is scheduled to process the input

Chapter 3. Analyzing IMS application processing requirements 53

message when the data becomes available. However, if the database is unavailable
because dynamic allocation failed, a call results in an AI (unable to open) status
code.

If the program is sensitive to data unavailability and attempts to access unavailable
data, IMS returns a status code indicating that it could not process the call. The
program then takes the appropriate action. A facility exists for the program to
initiate the same action that IMS would have taken if the program had been
insensitive to unavailable data.

IMS does not schedule batch programs if the data that the program can access is
unavailable. If the batch program is using block-level data sharing, it might
encounter unavailable data if the sharing system fails and the batch system
attempts to access data that was updated but not committed by the failed system.

The following conditions alone do not cause a batch program to fail during
initialization:
v A PCB refers to a HALDB.
v The use of DBRC is suppressed.

However, without DBRC, a database call using a PCB for a HALDB is not allowed.
If the program is sensitive to unavailable data, such a call results in the status code
BA; otherwise, such a call results in message DFS3303I, followed by ABENDU3303.

Scheduling and accessing unavailable databases

By using the INIT, INQY, SETS, SETU, and ROLS calls, the program can manage a data
environment where the program is scheduled with unavailable databases.

The INIT call informs IMS that the program is sensitive to unavailable data and
can accept the status codes that are issued when the program attempts to access
such data. The INIT call can also be used to determine the data availability for
each PCB.

The INQY call is operable in both batch and online IMS environments. IMS
application programs can use the INQY call to request information regarding output
destination, session status, the current execution environment, the availability of
databases, and the PCB address based on the PCBNAME. The INQY call is only
supported by way of the AIB interface (AIBTDLI or CEETDLI using the AIB rather
than the PCB address).

The SETS, SETU, and ROLS calls enable the application to define multiple points at
which to preserve the state of full-function (except HSAM) databases and message
activity. The application can then return to these points at a later time. By issuing a
SETS or SETU call before initiating a set of DL/I calls to perform a function, the
program can later issue the ROLS call if it cannot complete a function due to data
unavailability.

The ROLS call allows the program to roll back its IMS full-function database activity
to the state that it was in prior to a SETS or SETU call being issued. If the PSB
contains an MSDB or a DEDB, the SETS and ROLS (with token) calls are invalid. Use
the SETU call instead of the SETS call if the PSB contains a DEDB, MSDB, or GSAM
PCB.

54 Application Programming

The ROLS call can also be used to undo all update activity (database and messages)
since the last commit point and to place the current input message on the suspend
queue for later processing. This action is initiated by issuing the ROLS call without
a token or I/O area.

Restriction: With DB2 for z/OS, you cannot use ROLS (with a token) or SETS.
Related information:

3303 (Messages and Codes)

Use of STAE or ESTAE and SPIE in IMS programs
IMS uses STAE or ESTAE routines in the control region, the dependent (MPP, IFP,
BMP) regions, and the batch regions. In the control region, STAE or ESTAE
routines ensure that database logging and various resource cleanup functions are
complete.

In the dependent region, STAE or ESTAE routines are used to notify the control
region of any abnormal termination of the application program or the dependent
region itself. If the control region is not notified of the dependent region
termination, resources are not properly released and normal checkpoint shutdown
might be prevented.

In the batch region, STAE or ESTAE routines ensure that database logging and
various resource cleanup functions are complete. If the batch region is not notified
of the application program termination, resources might not be properly released.

Two important aspects of the STAE or ESTAE facility are that:
v IMS relies on its STAE or ESTAE facility to ensure database integrity and

resource control.
v The STAE or ESTAE facility is also available to the application program.

Because of these two factors, be sure you clearly understand the relationship
between the program and the STAE or ESTAE facility.

Generally, do not use the STAE or ESTAE facility in your application program.
However, if you believe that the STAE or ESTAE facility is required, you must
observe the following basic rules:
v When the environment supports STAE or ESTAE processing, the application

program STAE or ESTAE routines always get control before the IMS STAE or
ESTAE routines. Therefore, you must ensure that the IMS STAE or ESTAE exit
routines receive control by observing the following procedures in your
application program:
– Establish the STAE or ESTAE routine only once and always before the first

DL/I call.
– When using the STAE or ESTAE facility, the application program should not

alter the IMS abend code.
– Do not use the RETRY option when exiting from the STAE or ESTAE routine.

Instead, return a CONTINUE-WITH-TERMINATION indicator at the end of
the STAE or ESTAE processing. If your application program specifies the
RETRY option, be aware that IMS STAE or ESTAE exit routines will not get
control to perform cleanup. Therefore, system and database integrity might be
compromised.

v The application program STAE or ESTAE exit routine must not issue DL/I calls
(DB or TM) because the original abend might have been caused by a problem

Chapter 3. Analyzing IMS application processing requirements 55

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/msgs/3303.htm#imsabend3303

between the application and IMS. A problem between the application and IMS
could result in recursive entry to STAE or ESTAE with potential loss of database
integrity, or in problems taking a checkpoint. This also could result in a hang
condition or an ABENDU0069 during termination.

Related concepts:
“What to do when your IMS program terminates abnormally” on page 165

Dynamic allocation for IMS databases
Use the dynamic allocation function to specify the JCL information for IMS
databases in a library instead of in the JCL of each batch or online job.

If you use dynamic allocation, do not include JCL DD statements for any database
data sets that have been defined for dynamic allocation. Check with the DBA or
comparable specialist to determine which databases have been defined for dynamic
allocation.

Related Reading: For additional information on the definitions for dynamic
allocation, see the description of the DFSMDA macro in IMS Version 14 System
Definition.

56 Application Programming

Chapter 4. Analyzing CICS application processing
requirements

IMS supports application programs running in a CICS environment

Defining CICS application requirements
One of the steps of application design is to decide how the business processes, or
tasks can be best grouped into a set of programs that will efficiently perform the
required processing.

Some of the considerations in analyzing processing requirements are:
v When the task must be performed

– Will it be scheduled unpredictably (for example on terminal demand) or
periodically (for example, weekly)?

v How the program that performs the task is executed

– Will it be executed online, where response time is more important, or by
batch job submission, where a slower response time is acceptable?

v The consistency of the processing components

– Does this action the program is to perform involve more than one type of
program logic? For example, does it involve mostly retrievals, and only one
or two updates? If so, you should consider separating the updates into a
separate program.

– Does this action involve several large groups of data? If it does, it might be
more efficient to separate the programs by the data they access.

v Any special requirements about the data or processing

Security
Should access to the program be restricted?

Recovery
Are there special recovery considerations in the program's processing?

Integrity
Do other departments use the same data?

Answers to questions like these can help you decide on the number of application
programs that the processing will require, and on the types of programs that
perform the processing most efficiently. Although rules dealing with how many
programs can most efficiently do the required processing do not exist, here are
some suggestions:
v As you look at each programming task, examine the data and processing that

each task involves. If a task requires different types of processing and has
different time limitations (for example, weekly as opposed to monthly), that task
may be more efficiently performed by several programs.

v As you define each program, it is a good idea for maintenance and recovery
reasons to keep programs as simple as possible. The simpler a program is—the
less it does—the easier it is to maintain, and to restart after a program or system
failure. The same is true with data availability—the less data that is accessed, the
more likely the data is to be available; the more limited the data accessed, the
more likely the data is to be available.

© Copyright IBM Corp. 1974, 2015 57

Similarly, if the data that the application requires is physically in one place, it
might be more efficient to have one program do more of the processing than
usual. These are considerations that depend on the processing and the data of
each application.

v Documenting each of the user tasks is helpful during the design process, and in
the future when others will work with your application. Be sure you are aware
of the standards in this area. The kind of information that is typically kept is
when the task is to be executed, a functional description, and requirements for
maintenance, security, and recovery.
For example, for the Current Roster process described previously, you might
record the information shown in the following form. How frequently the
program is run is determined by the number of classes (20) for which the Ed
Center will print current rosters each week.

Example: Current roster task description
USER TASK DESCRIPTION

NAME: Current Roster
ENVIRONMENT: Batch FREQUENCY: 20 per week

INVOKING EVENT OR DOCUMENT: Time period (one week)

REQUIRED RESPONSE TIME: 24 hours

FUNCTION DESCRIPTION: Print weekly, a current student roster, in student
number sequence for each class offered at the Education Center.

MAINTENANCE: Included in Education DB maintenance.

SECURITY: None.

RECOVERY: After a failure, the ability to start printing a particular
class roster starting from a particular sequential student number.

Accessing databases with your CICS application program
When designing your program, consider the type of data it must access. The type
of data depends on the operating environment.

The data from IMS and DB2 for z/OS databases, and z/OS files, that is available
to CICS online and IMS batch programs is shown in the following table.

Table 22. The data that your CICS program can access

Type of program IMS databases
DB2 for z/OS
databases z/OS files

CICS online Yes1 Yes2 Yes3

DB batch Yes Yes3 Yes

Notes:

1. Except for Generalized Sequential Access Method (GSAM) databases. GSAM enables
batch programs to access a sequential z/OS data set as a simple database.

2. IMS does not participate in the call process.

3. Access through CICS file control or transient data services.

Also, consider the type of database your program must access. As shown in the
following table, the type of program you can write and database that can be
accessed depends on the operating environment.

58 Application Programming

Table 23. Program and database options in the CICS environments

Environment1
Type of program
you can write Type of database that can be accessed

DB batch DB batch DB2 for z/OS2

DL/I Full-function

GSAM

z/OS files

DBCTL BMP DB2 for z/OS

DEDBs

Full-function

GSAM

z/OS files

CICS online DB2 for z/OS2

DEDBs

Full-function

z/OS files (access through CICS file
control or transient data services)

Notes:

1. A CICS environment, or CICS remote DL/I environment also exists and is also referred
to as function shipping. In this environment, a CICS system supports applications that
issue DL/I calls but the CICS system does not service the requests itself. The CICS
environment “function ships” the DL/I calls to another CICS system that is using
DBCTL. For more information on remote DL/I, see CICS Transaction Server for z/OS IMS
Database Control Guide.

2. IMS does not participate in the call process.

The types of databases that can be accessed are:
v Full-Function Databases

Full-function databases are hierarchic databases that are accessed through Data
Language I (DL/I). DL/I calls enable application programs to retrieve, replace,
delete, and add segments to full-function databases. CICS online and BMP
programs can access the same database concurrently (if participating in IMS data
sharing); an IMS batch program must have exclusive access to the database (if
not participating in IMS data sharing).
All types of programs (batch, BMPs, and online) can access full-function
databases.

v Fast Path DEDBs

Data entry databases (DEDBs) are hierarchic databases for, and efficient access
to, large volumes of detailed data. In the DBCTL environment, CICS online and
BMP programs can access DEDBs.

v DB2 for z/OS Databases

DB2 for z/OS databases are relational databases. Relational databases are
represented to application programs and users as tables and are processed using
a relational data language called Structured Query Language (SQL). DB2 for
z/OS databases can be processed by CICS online transactions, and by IMS batch
and BMP programs.
Related Reading: For information on processing DB2 for z/OS databases, see
DB2 for z/OS Application Programming and SQL Guide.

v GSAM Databases

Chapter 4. Analyzing CICS application processing requirements 59

Generalized Sequential Access Method (GSAM) is an access method that enables
BMPs and batch programs to access a “flat” sequential z/OS data set as a simple
database. A GSAM database can be accessed by z/OS or CICS.

v z/OS Files

CICS online and IMS batch programs can access z/OS files for their input,
processing, or output. Batch programs can access z/OS files directly; online
programs must access them through CICS file control or transient data services.

Related concepts:
“Using data sharing for your CICS program” on page 61

Writing a CICS program to access IMS databases
The types of programs you can use depend on whether you are running in the
DBCTL environment. Within the different environments, the type of program you
write depends on the processing your application requires. Each type of program
answers different application requirements.
Related concepts:
Chapter 38, “IMS solutions for Java development overview,” on page 603

Writing a CICS online program
Use the following information to decide if an online program is appropriate for
your application.

Data that a CICS online program can access

CICS online programs run in the DBCTL environment and can access IMS
full-function databases, Fast Path DEDBs, DB2 for z/OS databases, and z/OS files.

Online programs that access IMS databases are executed in the same way as other
CICS programs.

Using a CICS online program

An online program runs under the control of CICS, and it accesses resources
concurrently with other online programs. Some of the application requirements
online programs can answer are:
v Information in the database must be available to many users.
v Program needs to communicate with terminals and other programs.
v Programs must be available to users at remote terminals.
v Response time is important.

The structure of an online program, and the way it receives status information,
depend on whether it is a call- or command-level program. However, both
command- and call-level online programs:
v Schedule a PSB (for CICS online programs). A PSB is automatically scheduled

for batch or BMP programs.
v Issue either commands or calls to access the database. Online programs cannot

mix commands and calls in one logical unit of work (LUW).
v Optionally, terminate a PSB for CICS online programs.

60 Application Programming

v Issue an EXEC CICS RETURN statement when they have finished their processing.
This statement returns control to the linking program. When the highest-level
program issues the RETURN statement, CICS regains control and terminates the
PSB if it has not yet been terminated.

Because an online application program can be used concurrently by several tasks,
it must be quasi-reentrant.

An online program in the DBCTL environment can use many IMS system service
requests.

DL/I database or system service requests must refer to one of the program
communication blocks (PCBs) from the list of PCBs passed to your program by
IMS. The PCB that must be used for making system service requests is called the
I/O PCB. When present, it is the first PCB in the list of PCBs.

For an online program in the DBCTL environment, the I/O PCB is optional. To use
the I/O PCB, you must indicate this in the application program when it schedules
the PSB.

Before you run your program, the program specification blocks (PSBs) and
database descriptions (DBDs) the program uses must be converted to internal
control block format using the IMS ACBGEN utility. PSBs specify the
characteristics of an application program. DBDs specify the physical and logical
characteristics of IMS databases.

Related Reading: For more information on performing an ACBGEN and a
PSBGEN, see IMS Version 14 System Utilities.

Because an online program shares a database with other online programs, it may
affect the performance of your online system.
Related concepts:
“Maximizing the performance of your CICS system” on page 63
“Distributed and local connectivity with the IMS Universal drivers” on page 612

Using data sharing for your CICS program
If you use data sharing, your programs can participate in IMS data sharing. Under
data sharing, CICS online and BMP programs can access the same DL/I database
concurrently.

Batch programs in a data-sharing environment can access databases used by other
batch programs, and by CICS and IMS online programs. With data sharing, you
can share data directly and your program's requests need not go through a mirror
transaction.

Related Reading: For more information on sharing a database with an IMS system,
see IMS Version 14 System Administration.
Related concepts:
“Accessing databases with your CICS application program” on page 58

Chapter 4. Analyzing CICS application processing requirements 61

Scheduling and terminating a PSB (CICS online programs only)
Before your online program issues any DL/I calls, it must indicate to IMS its intent
to use a particular PSB by issuing either a PCB call or a SCHD command. In addition
to indicating which PSB your program will use, the PCB call obtains the address of
the PCBs in the PSB. When you no longer need a PSB, you can terminate it using
the TERM request.

In a CICS online program, you use a PCB call or SCHD command (for
command-level programs) to obtain the PSB for your program. Because CICS
releases the PSB your program uses when the transaction ends, your program need
not explicitly terminate the PSB. Only use a terminate request if you want to:
v Use a different PSB
v Commit all the database updates and establish a logical unit of work for backing

out updates
v Free IMS resources for use by other CICS tasks

A terminate request causes a CICS sync point, and a CICS sync point terminates
the PSB. For more information about CICS recovery concepts, see the appropriate
CICS publication.

Do not use terminate requests for other reasons because:
v A terminate request forces a CICS sync point. This sync point releases all

recoverable resources and IMS database resources that were enqueued for this
task.
If the program continues to update other CICS resources after the terminate
request and then terminates abnormally, only those resources that were updated
after the terminate request are backed out. Any IMS changes made by the
program are not backed out.

v IMS lock management detects deadlocks that occur if two transactions are
waiting for segments held by the other.
When a deadlock is detected, one transaction is abnormally terminated.
Database changes are backed out to the last TERM request. If a TERM request or
CICS sync point was issued prior to the deadlock, CICS does not restart the
transaction.
Related Reading: For a complete description of transaction restart
considerations, see CICS Transaction Server for z/OS Recovery and Restart Guide.

v Issuing a terminate request causes additional logging.
v If the terminal output requests are issued after a terminate request and the

transaction fails at this point, the terminal operator does not receive the
message.
The terminal operator may assume that the entire transaction failed, and reenter
the input, thus repeating the updates that were made before the terminate
request. These updates were not backed out.

Linking and passing control to other programs (CICS online programs
only)

Use CICS to link your program to other programs without losing access to the
facilities acquired in the linking program.

For example:

62 Application Programming

v You could schedule a PSB and then link to another program using a LINK
command. On return from that program, the PSB is still scheduled.

v Similarly, you could pass control to another program using the XCTL command,
and the PSB remains scheduled until that program issues an EXEC CICS
RETURN statement. However, when you pass control to another program using
XCTL, the working storage of the program passing control is lost. If you want to
retain the working storage for use by the program being linked to, you must
pass the information in the COMMAREA.

Recommendation: To simplify your work, instead of linking to another program,
you can issue all DL/I requests from one program module. This helps to keep the
programming simple and easy to maintain.

Terminating a PSB or issuing a sync point affects the linking program. For
example, a terminate request or sync point that is issued in the program that was
linked causes the release of CICS resources enqueued in the linking program.

How CICS distributed transactions access IMS
CICS can divide a single, logical unit of work into separate CICS transactions and
coordinate the sync point globally. If such CICS transactions access DBCTL, locking
and buffer management issues might occur.

To IMS, the transactions are separate units of work, on different DBCTL threads,
and they do not share locks or buffers. For example, if a global transaction runs,
obtains a database lock, and reaches the commit point, CICS does not process the
synchronization point until the other transactions in the CICS unit of recovery
(UOR) are ready to commit. If a second transaction in the same CICS UOR
requests the same lock as that held by the first transaction, the second transaction
is held in a lock wait state. The first transaction cannot complete the sync point
and release the lock until the second transaction also reaches the commit point, but
this cannot happen because the second transaction is in a lock wait state. You must
ensure that this type of collision does not occur with CICS distributed transactions
that access IMS.

Maximizing the performance of your CICS system
When you write programs that share data with other programs (for example, a
program that will participate in IMS data sharing or a BMP), be aware of how
your program affects the performance of the online system.

A BMP program, in particular, can affect the performance of the CICS online
transactions. This is because BMP programs usually make a larger number of
database updates than CICS online transactions, and a BMP program is more likely
to hold segments that CICS online programs need. Limit the number of segments
held by a BMP program, so CICS online programs need not wait to acquire them.

One way to limit the number of segments held by a BMP or batch program that
participates in IMS data sharing is to issue checkpoint requests in your program to
commit database changes and release segments held by the program. When
deciding how often to issue checkpoint requests, you can use one or more of the
following techniques:
v Divide the program into small logical units of work, and issue a checkpoint call

at the end of each unit.

Chapter 4. Analyzing CICS application processing requirements 63

v Issue a checkpoint call after a certain number of DL/I requests have been issued,
or after a certain number of transactions are processed.

In CICS online programs, release segments for use by other transactions to
maximize the performance of your online system. (Ordinarily, database changes are
committed and segments are released only when control is returned to CICS.) To
more quickly free resources for use by other transactions, you can issue a TERM
request to terminate the PSB. However, less processing overhead generally occurs
if the PSB is terminated when control is returned to CICS.
Related concepts:
“Writing a CICS online program” on page 60
“Taking checkpoints in batch and BMP programs” on page 65

Programming integrity and database recovery considerations for your
CICS program

IMS provides support for protecting data integrity for CICS online programs

How IMS protects data integrity for CICS online programs
IMS can protect the data integrity for CICS online programs.

IMS protects the integrity of the database for programs that share data by:
v Preventing other application programs with update capability from accessing

any segments in the database record your program is processing, until your
program finishes with that record and moves to a new database record in the
same database.

v Preventing other application programs from accessing segments that your
program deletes, replaces, or inserts, until your program reaches a sync point.
When your program reaches a sync point, the changes your program has made
to the database become permanent, and the changed data becomes available to
other application programs.
Exception: If PROCOPT=GO has been defined during PSBGEN for your
program, your program can access segments that have been updated but not
committed by another program.

v Backing out database updates made by an application program that terminates
abnormally.

You may also want to protect the data your program accesses by retaining
segments for the sole use of your program until your program reaches a sync
point—even if you do not update the segments. (Ordinarily, if you do not update
the segments, IMS releases them when your program moves to a new database
record.) You can use the Q command code to reserve segments for the exclusive
use of your program. You should use this option only when necessary because it
makes data unavailable to other programs and can have an impact on
performance.

Recovering databases accessed by batch and BMP programs
You can plan for recovering databases accessed by batch or BMP programs.

CICS recovers databases accessed by CICS online programs in the same way it
handles other recoverable CICS resources. For example, if an IMS transaction
terminates abnormally, CICS and IMS back out all database updates to the last
sync point.

64 Application Programming

For batch or BMP programs, do the following:
v Take checkpoints in your program to commit database changes and provide

places from which your program can be restarted.
v Provide the code for or issue a request to restart your program.

You may also want to back out the database changes that have been made by a
batch program that has not yet committed these changes.

To perform these tasks, you use system service calls, described in more detail in
the appropriate application programming information for your environment.

Requesting an I/O PCB in batch programs

For your program to successfully issue any system service request, an I/O PCB
must have been previously requested.
Related concepts:
“Developing JBP applications with the IMS Java dependent region resource
adapter” on page 728

Taking checkpoints in batch and BMP programs
You can take checkpoints in batch and BMP programs. Checkpoints are important
for recovery and for integrity.

Taking checkpoints in batch and BMP programs is important for two reasons:
v Recovery: Checkpoints establish places in your program from which your

program could be restarted, in the event of a program or system failure. If your
program abnormally terminates after issuing a checkpoint request, database
changes will be backed out to the point at which the checkpoint request was
issued.

v Integrity: Checkpoints also commit the changes that your program has made to
the database.

In addition to providing places from which to restart your program and
committing database changes, issuing checkpoint calls in a BMP program or in a
program participating in IMS data sharing releases database segments for use by
other programs.

When a batch or BMP program issues a checkpoint request, IMS writes a record
containing a checkpoint ID to the IMS system log.

When your application program reaches a point during its execution where you
want to make sure that all changes made to that point have been physically
entered in the database, issue a checkpoint request. If some condition causes your
program to fail before its execution is complete, the database must be restored to
its original state. The changes made to the database must be backed out so that the
database is not left in a partially updated condition for access by other application
programs.

If your program runs a long time, you can reduce the number of changes that
must be backed out by taking checkpoints in your program. Then, if your program
terminates abnormally, only the database updates that occurred after the
checkpoint must be backed out. You can also restart the program from the point at
which you issued the checkpoint request, instead of having to restart it from the
beginning.

Chapter 4. Analyzing CICS application processing requirements 65

Issuing a checkpoint call cancels your position in the database.

Issue a checkpoint call just before issuing a Get Unique call, which reestablishes
your position in the database record after the checkpoint is taken.

Types of checkpoints

The two types of checkpoint calls are basic and symbolic. Both types commit your
program's changes to the database and establish places from which your program
can be restarted:

Batch and BMP programs can issue basic checkpoint calls using the CHKP call.
When you use basic checkpoint calls, you must provide the code for restarting the
program after an abnormal termination.

Batch and BMP programs can also issue symbolic checkpoint calls. You can issue a
symbolic checkpoint call by using the CHKP call. Like the basic checkpoint call, the
symbolic checkpoint call commits changes to the database and establishes places
from which the program can be restarted. In addition, the symbolic checkpoint call:
v Works with the Extended Restart call to simplify program restart and recovery.
v Lets you specify as many as seven data areas in the program to be checkpointed.

When you restart the program, the restart call restores these areas to the way
they were when the program terminated abnormally.

Specifying a checkpoint ID

Each checkpoint call your program issues must have an identification, or ID.
Checkpoint IDs must be 8 bytes in length and contain printable EBCDIC
characters.

When you want to restart your program, you can supply the ID of the checkpoint
from which you want the program to be started. This ID is important because
when your program is restarted, IMS searches for checkpoint information with an
ID matching the one you have supplied. The first matching ID that IMS finds
becomes the restart point for your program. This means that checkpoint IDs must
be unique both within each application program and among application programs.
If checkpoint IDs are not unique, you cannot be sure that IMS will restart your
program from the checkpoint you specified.

One way to make sure that checkpoint IDs are unique within and among programs
is to construct IDs in the following order:
v Three bytes of information that uniquely identifies your program.
v Five bytes of information that serves as the ID within the program, for example,

a value that is increased by 1 for each checkpoint command or call, or a portion
of the system time obtained at program start by issuing the TIME macro.

Specifying checkpoint frequency

To determine the frequency of checkpoint requests, you must consider the type of
program and its performance characteristics.

In batch programs

When deciding how often to issue checkpoint requests in a batch program, you
should consider the time required to back out and reprocess the program after a

66 Application Programming

failure. For example, if you anticipate that the processing your program performs
will take a long time to back out, you should establish checkpoints more
frequently.

If you might back out of the entire program, issue the checkpoint request at the
very beginning of the program. IMS backs out the database updates to the
checkpoint you specify. If the database is updated after the beginning of the
program and before the first checkpoint, IMS is not able to back out these database
updates.

In a data-sharing environment, also consider the impact of sharing resources with
other programs on your online system. You should issue checkpoint calls more
frequently in a batch program that shares data with online programs, to minimize
resource contention.

It is a good idea to design all batch programs with checkpoint and restart in mind.
Although the checkpoint support may not be needed initially, it is easier to
incorporate checkpoint calls initially than to try to fit them in later. If the
checkpoint calls are incorporated, it is easier to convert batch programs to BMP
programs or to batch programs that use data sharing.

In BMP programs

When deciding how often to issue checkpoint requests in a BMP program, consider
the performance of your CICS online system. Because these programs share
resources with CICS online transactions, issue checkpoint requests to release
segments so CICS online programs need not wait to acquire them.

Printing checkpoint log records

You can print checkpoint log records by using the IMS File Select and Formatting
Print Program (DFSERA10). With this utility, you can select and print log records
based on their type, the data they contain, or their sequential positions in the data
set. Checkpoint records are type 18 log records. IMS Version 14 System Utilities
describes this program.
Related concepts:
“Maximizing the performance of your CICS system” on page 63

Backing out database changes
If your program terminates abnormally, the database must be restored to its
previous state and uncommitted changes must be backed out. Changes made by a
BMP or CICS online program are automatically backed out. Database changes
made by a batch program might or might not be backed out, depending on
whether your system log is on DASD.

For a batch program

What happens when a batch program terminates abnormally and how you recover
the database depend on the storage medium for the system log. You can specify
that the system log is to be stored on either DASD or on tape.
v When the system log is on DASD

You can specify that IMS is to dynamically back out the changes that a batch
program has made to the database since its last commit point by coding BKO=Y

Chapter 4. Analyzing CICS application processing requirements 67

in the JCL. IMS performs dynamic backout for a batch program when an
IMS-detected failure occurs, such as when a deadlock is detected (for batch
programs that share data).
DASD logging also makes it possible for batch programs to issue the rollback
(ROLB) system service request, in addition to ROLL. The ROLB request causes IMS
to dynamically back out the changes the program has made to the database
since its last commit point, and then to return control to the application
program.
Dynamically backing out database changes has the following advantages:
– Data accessed by the program that failed is immediately available to other

programs. Otherwise, if batch backout is not used, data is not available to
other programs until the IMS Batch Backout utility has been run to back out
the database changes.

– If two programs are deadlocked, one of the programs can continue
processing. Otherwise, if batch backout is not used, both programs will fail.
(This applies only to batch programs that share data.)

Instead of using dynamic backout, you can run the IMS Batch Backout utility to
back out changes.

v When the system log is on tape

If a batch application program terminates abnormally and the system log is
stored on tape, you must use the IMS Batch Backout utility to back out the
program's changes to the database.

Related Reading: For more information, see IMS Version 14 Database Utilities.

For BMP programs

If your program terminates abnormally, the changes the program has made since
the last commit point are backed out. If a system failure occurs, or if the CICS
control region or DBCTL terminates abnormally, DBCTL emergency restart backs
out all changes made by the program since the last commit point. You need not
use the IMS Batch Backout utility because DBCTL backs out the changes. If you
need to back out all changes, you can use the ROLL system service call to
dynamically back out database changes.

Restarting your program
If you issue symbolic checkpoint calls (for batch and BMP programs), you can use
the Extended Restart system service request (XRST) to restart your program after an
abnormal termination.

The XRST call restores the program's data areas to the way they were when the
program terminated abnormally, and it restarts the program from the last
checkpoint request the program issued before terminating abnormally.

If you use basic checkpoint calls (for batch and BMP programs), you must provide
the necessary code to restart the program from the latest checkpoint in the event
that it terminates abnormally.

One way to restart the program from the latest checkpoint is to store repositioning
data in an HDAM database. Your program writes a database record containing
repositioning information to the HDAM database. It updates this record at
intervals. When the program terminates, the database record is deleted. At the
completion of the XRST call, the I/O area always contains a checkpoint ID used by
the restart. Normally, XRST will return the 8-byte symbolic checkpoint ID, followed

68 Application Programming

by 4 blanks. If the 8-byte ID consists of all blanks, then XRST will return the 14-byte
time-stamp ID. Also, check the status code in the PCB. The only successful status
code for an XRST call is a row of blanks.
Related concepts:
“Developing JBP applications with the IMS Java dependent region resource
adapter” on page 728

Data availability considerations for your CICS program
The data that a program needs to access may sometimes be unavailable. Use the
following functions when data is not available.

Unavailability of a database
The conditions that make an entire database unavailable for both read and update
are the following.
v A STOP command has been issued for the database.
v A DBRECOVERY (DBR) command has been issued for the database.
v DBRC authorization for the database has failed.

The conditions that make a database available for read but not for update are:
v A DBDUMP command has been issued for the database.
v The database access value is RD (read).

In a data-sharing environment, the command or error that created any of these
conditions may have originated on the other system which is sharing data.

Whether a program is scheduled or whether an executing program can schedule a
PSB when the database is unavailable depends on the type of program and the
environment:
v A batch program

IMS does not schedule a batch program when one of the databases that the
program can access is not available.
In a non-data sharing environment, DBRC authorization for a database may fail
because the database is currently authorized to a DB/DC environment. In a
data-sharing environment, a CICS or a DBCTL master terminal global command
to recover a database or to dump a database may make the database unavailable
to a batch program.
The following conditions alone do not cause a batch program to fail during
initialization:
– A PCB refers to a HALDB.
– The use of DBRC is suppressed.

However, without DBRC, a database call using a PCB for a HALDB is not
allowed. If the program is sensitive to unavailable data, such a call results in the
status code BA; otherwise, such a call results in message DFS3303I, followed by
ABENDU3303.

v An online or BMP program in the DBCTL environment.
When a program executing in this environment attempts to schedule with a PSB
containing one or more full-function databases that are unavailable, the
scheduling is allowed. If the program does not attempt to access the unavailable

Chapter 4. Analyzing CICS application processing requirements 69

database, it can function normally. If it does attempt to access the database, the
result is the same as when the database is available but some of the data in it is
not available.

Unavailability of some data in a database
In addition to the situation where the entire database is unavailable, there are other
situations where a limited amount of data is unavailable. One example is a failure
situation involving data sharing where the IMS system knows which locks were
held by a sharing IMS at the time the sharing IMS system failed. This IMS system
continues to use the database but rejects access to the data that the failed IMS
system held locked at the time of failure.

A batch program, an online program, or a BMP program can be operating in the
DBCTL environment. If so, the online or BMP programs may have been scheduled
when an entire database was not available. The following options apply to these
programs when they attempt to access data and either the entire database is
unavailable or only some of the data in the database is unavailable.

Programs executing in these environments have an option of being sensitive or
insensitive to data unavailability.
v When the program is insensitive to data unavailability and attempts to access

unavailable data, the program fails with a 3303 abend. For online programs, this
is a pseudo-abend. For batch programs, it is a real abend. However, if the
database is unavailable because dynamic allocation failed, a call results in an AI
(unable to open) status code.

v When the program is sensitive to data unavailability and attempts to access
unavailable data, IMS returns a status code indicating that it could not process
the request. The program can then take the appropriate action. A facility exists
for the program to then initiate the same action that IMS would have taken if
the program had been insensitive to unavailable data.

The program issues the INIT call or ACCEPT STATUS GROUP A command to inform
IMS that it is sensitive to unavailable data and can accept the status codes issued
when the program attempts to access such data. The INIT request can also be used
to determine data availability for each PCB in the PSB.

The SETS or SETU and ROLS functions
The SETS or SETU and ROLS requests allow an application to define multiple points
at which to preserve the state of full-function databases.

The application can then return to these points at a later time. By issuing a SETS or
SETU request before initiating a set of DL/I requests to perform a function, the
program can later issue the ROLS request if it cannot complete the function due
possibly to data unavailability.

ROLS allows the program to roll back its IMS activity to the state prior to the SETS
or SETU call.

Restriction: SETS or SETU and ROLS only roll back the IMS updates. They do not
roll back the updates made using CICS file control or transient data.

Additionally, you can use the ROLS call or command to undo all database update
activity since the last checkpoint.

70 Application Programming

Use of STAE or ESTAE and SPIE in IMS batch programs
IMS uses STAE or ESTAE routines in the IMS batch regions to ensure that database
logging and various resource cleanup functions are completed.

Two important aspects of the STAE or ESTAE facility are that:
v IMS relies on its STAE or ESTAE facility to ensure database integrity and

resource control.
v The STAE or ESTAE facility is also available to the application program.

Because of these two factors, be sure you clearly understand the relationship
between the program and the STAE or ESTAE facility.

Generally, do not use the STAE or ESTAE facility in your batch application
program. However, if you believe that the STAE or ESTAE facility is required, you
must observe the following basic rules:
v When the environment supports STAE or ESTAE processing, the application

program STAE or ESTAE routines always get control before the IMS STAE or
ESTAE routines. Therefore, you must ensure that the IMS STAE or ESTAE exit
routines receive control by observing the following procedures in your
application program:
– Establish the STAE or ESTAE routine only once and always before the first

DL/I call.
– When using the STAE or ESTAE facility, the application program must not

alter the IMS abend code.
– Do not use the RETRY option when exiting from the STAE or ESTAE routine.

Instead, return a CONTINUE-WITH-TERMINATION indicator at the end of
the STAE or ESTAE processing. If your application program does specify the
RETRY option, be aware that IMS STAE or ESTAE exit routines will not get
control to perform cleanup. Therefore, system and database integrity may be
compromised.

v The application program STAE/ESTAE exit routine must not issue DL/I calls
because the original abend may have been caused by a problem between the
application and IMS. This would result in recursive entry to STAE/ESTAE with
potential loss of database integrity or in problems taking a checkpoint.

Dynamic allocation for IMS databases
Use the dynamic allocation function to specify the JCL information for IMS
databases in a library instead of in the JCL of each batch job or in the JCL for
DBCTL.

If you use dynamic allocation, do not include JCL DD statements for any database
data sets that have been defined for dynamic allocation. Check with the database
administrator (DBA) or comparable specialist at to determine which databases
have been defined for dynamic allocation.

Related Reading: For more information on the definitions for dynamic allocation,
see the DFSMDA macro in IMS Version 14 System Definition.

Chapter 4. Analyzing CICS application processing requirements 71

72 Application Programming

Chapter 5. Gathering requirements for database options

After designing hierarchies for the databases that your application will access, the
DBA evaluates database options in terms of which options will best meet
application requirements. Whether these options are used depends on the collected
requirements of the applications. To design an efficient database, the DBA needs
information about the individual applications.
Related concepts:
“Processing messages: Message Processing Programs” on page 40

Analyzing data access
The DBA chooses a type of database, based on how the majority of programs that
use the database will access the data.

IMS databases are categorized according to the access method used. The following
is a list of the types of databases that can be defined:

HDAM (Hierarchical Direct Access Method)
PHDAM (Partitioned Hierarchical Direct Access Method)
HIDAM (Hierarchical Indexed Direct Access Method)
PHIDAM (Partitioned Hierarchical Indexed Direct Access Method)
MSDB (Main Storage Database)
DEDB (Data Entry Database)
HSAM (Hierarchical Sequential Access Method)
HISAM (Hierarchical Indexed Sequential Access Method)
GSAM (Generalized Sequential Access Method)
SHSAM (Simple Hierarchical Sequential Access Method)
SHISAM (Simple Hierarchical Indexed Sequential Access Method)

Important: PHDAM and PHIDAM are the partitioned versions of the HDAM and
HIDAM database types, respectively. The corresponding descriptions of the HDAM
and HIDAM database types therefore apply to PHDAM and PHIDAM.

Some of the information that you can gather to help the DBA with this decision
answers questions like the following:
v To access a database record, a program must first access the root of the record.

How will each program access root segments?
Directly
Sequentially
Both

v The segments within the database record are the dependents of the root
segment. How will each program access the segments within each database
record?

Directly
Sequentially
Both

© Copyright IBM Corp. 1974, 2015 73

It is important to note the distinction between accessing a database record and
accessing segments within the record. A program could access database records
sequentially, but after the program is within a record, the program might access
the segments directly. These are different, and can influence the choice of access
method.

v To what extent will the program update the database?
By adding new database records?
By adding new segments to existing database records?
By deleting segments or database records?

Again, note the difference between updating a database record and updating a
segment within the database record.

Direct access
The advantage of direct access processing is that you can get good results for both
direct and sequential processing. Direct access means that by using a randomizing
routine or an index, IMS can find any database record that you want, regardless of
the sequence of database records in the database.

IMS full function has four direct access methods.
v HDAM and PHDAM process data directly by using a randomizing routine to

store and locate root segments.
v HIDAM and PHIDAM use an index to help them provide direct processing of

root segments.

The direct access methods use pointers to maintain the hierarchic relationships
between segments of a database record. By following pointers, IMS can access a
path of segments without passing through all the segments in the preceding paths.

Some of the requirements that direct access satisfies are:
v Fast direct processing of roots using an index or a randomizing routine
v Sequential processing of database records with HIDAM and PHIDAM using the

index
v Fast access to a path of segments using pointers

In addition, when you delete data from a direct-access database, the new space is
available almost immediately. This gives you efficient space utilization; therefore,
reorganization of the database is often unnecessary. Direct access methods
internally maintain their own pointers and addresses.

A disadvantage of direct access is that you have a larger IMS overhead because of
the pointers. But if direct access fulfills your data access requirements, it is more
efficient than using a sequential access method.

Primarily direct processing: HDAM
HDAM is efficient for a database that is usually accessed directly but sometimes
sequentially. HDAM uses a randomizing routine to locate its root segments and
then chains dependent segments together according to the pointer options chosen.
The z/OS access methods that HDAM can use are Virtual Storage Access Method
(VSAM) and Overflow Storage Access Method (OSAM).

74 Application Programming

Important: PHDAM is the partitioned version of the HDAM database type. The
corresponding descriptions of the HDAM database type therefore apply to
PHDAM.

The requirements that HDAM satisfies are:
v Direct access of roots by root keys because HDAM uses a randomizing routine

to locate root segments
v Direct access of paths of dependents
v Adding new database records and new segments because the new data goes into

the nearest available space
v Deleting database records and segments because the space created by a deletion

can be used by any new segment

HDAM characteristics

An HDAM database:
v Can store root segments anywhere. Root segments do not need to be in sequence

because the randomizing routine locates them.
v Uses a randomizing routine to locate the relative block number and root anchor

point (RAP) within the block that points to the root segment.
v Accesses the RAPs from which the roots are chained in physical sequence. Then

the root segments that are chained from the root anchors are returned. Therefore,
sequential retrieval of root segments from HDAM is not based on the results of
the randomizing routine and is not in key sequence unless the randomizing
routine put them into key sequence.

v May not give the desired result for some calls unless the randomizing module
causes the physical sequence of root segments to be in the key sequence. For
example, a GU call for a root segment that is qualified as less than or equal to a
root key value would scan in physical sequence for the first RAP of the first
block. This may result in a not-found condition, even though segments meeting
the qualification do exist.

For dependent segments, an HDAM database:
v Can store them anywhere
v Chains all segments of one database record together with pointers

An Overview of how HDAM works

This topic contains Diagnosis, Modification, and Tuning information.

When a database record is stored in an HDAM database, HDAM keeps one or
more RAPs at the beginning of each physical block. The RAP points to a root
segment. HDAM also keeps a pointer at the beginning of each physical block that
points to any free space in the block. When you insert a segment, HDAM uses this
pointer to locate free space in the physical block. To locate a root segment in an
HDAM database, you give HDAM the root key. The randomizing routine gives it
the relative physical block number and the RAP that points to the root segment.
The specified RAP number gives HDAM the location of the root within a physical
block.

Although HDAM can place roots and dependents anywhere in the database, it is
better to choose HDAM options that keep roots and dependents close together.

Chapter 5. Gathering requirements for database options 75

HDAM performance depends largely on the randomizing routine you use.
Performance can be very good, but it also depends on other factors such as:
v The block size you use
v The number of RAPs per block
v The pattern for chaining together different segments. You can chain segments of

a database record in two ways:
– In hierarchic sequence, starting with the root
– In parent-to-dependent sequence, with parents having pointers to each of

their paths of dependents

To use HDAM for sequential access of database records by root key, you need to
use a secondary index or a randomizing routine that stores roots in physical key
sequence.

Direct and sequential processing: HIDAM
HIDAM is the access method that is most efficient for an approximately equal
amount of direct and sequential processing.

Important: PHIDAM is the partitioned version of the HIDAM database type. The
corresponding descriptions of the HIDAM database type therefore apply to
PHIDAM.

The z/OS access methods it can use are VSAM and OSAM. The specific
requirements that HIDAM satisfies are:
v Direct and sequential access of records by their root keys
v Direct access of paths of dependents
v Adding new database records and new segments because the new data goes into

the nearest available space
v Deleting database records and segments because the space created by a deletion

can be used by any new segment

HIDAM can satisfy most processing requirements that involve an even mixture of
direct and sequential processing. However, HIDAM is not very efficient with
sequential access of dependents.

HIDAM characteristics

For root segments, a HIDAM database:
v Initially loads them in key sequence
v Can store new root segments wherever space is available
v Uses an index to locate a root that you request and identify by supplying the

root's key value

For dependent segments, a HIDAM database:
v Can store segments anywhere, preferably fairly close together
v Chains all segments of a database record together with pointers

An overview of how HIDAM works

This topic contains Diagnosis, Modification, and Tuning information.

76 Application Programming

HIDAM uses two databases. The primary database holds the data. An index
database contains entries for all of the root segments in order by their key fields.
For each key entry, the index database contains the address of that root segment in
the primary database.

When you access a root, you supply the key to the root. HIDAM looks up the key
in the index to find the address of the root and then goes to the primary database
to find the root.

HIDAM chains dependent segments together so that when you access a dependent
segment, HIDAM uses the pointer in one segment to locate the next segment in the
hierarchy.

When you process database records directly, HIDAM locates the root through the
index and then locates the segments from the root. HIDAM locates dependents
through pointers.

If you plan to process database records sequentially, you can specify special
pointers in the DBD for the database so that IMS does not need to go to the index
to locate the next root segment. These pointers chain the roots together. If you do
not chain roots together, HIDAM always goes to the index to locate a root
segment. When you process database records sequentially, HIDAM accesses roots
in key sequence in the index. This only applies to sequential processing; if you
want to access a root segment directly, HIDAM uses the index, and not pointers in
other root segments, to find the root segment you have requested.

Main storage database: MSDB
Use MSDBs to store the most frequently-accessed data. MSDBs are suitable for
applications such as general ledger applications in the banking industry.

Recommendation: Use DEDBs instead of MSDBs when you develop new Fast
Path databases. Terminal-related MSDBs and non-terminal-related MSDBs with
terminal-related keys are no longer supported. Although non-terminal-related
MSDBs with non-terminal-related-keys are still supported, you should consider
converting any existing MSDBs to DEDBs. You can use the MSDB-to-DEDB
Conversion utility.

MSDB characteristics

MSDBs reside in virtual storage, enabling application programs to avoid the I/O
activity that is required to access them. The two kinds of MSDBs are
terminal-related and non-terminal-related.

In a terminal-related MSDB, each segment is owned by one terminal, and each
terminal owns only one segment. One use for this type of MSDB is an application
in which each segment contains data associated with a logical terminal. In this type
of application, the program can read the data (perhaps for reporting purposes), but
cannot update it. A non-terminal-related MSDB stores data that is needed by many
users during the same time period. It can be updated and read from all terminals
(for example, a real time inventory control application, where reduction of
inventory can be noted from many cash registers).

An overview of how MSDBs work

This topic contains Diagnosis, Modification, and Tuning information.

Chapter 5. Gathering requirements for database options 77

MSDB segments are stored as root segments only. Only one type of pointer, the
forward chain pointer, is used. This pointer connects the segment records in the
database.

Data entry database: DEDB
DEDBs are designed to provide access to and efficient storage for large volumes of
data. The primary requirement a DEDB satisfies is a high level of data availability.

DEDB characteristics

DEDBs are hierarchic databases that can have as many as 15 hierarchic levels, and
as many as 127 segment types. They can contain both direct and sequential
dependent segments. Because the sequential dependent segments are stored in
chronological order as they are committed to the database, they are useful in
journaling applications.

DEDBs support a subset of functions and options that are available for a HIDAM
or HDAM database. For example, a DEDB does not support logically related
segments or access with primary indexes. Access with secondary indexes is
supported.

An overview of how DEDBs work

This topic contains Diagnosis, Modification, and Tuning information.

A DEDB can be partitioned into multiple areas, with each area containing a
different collection of database records. The data in a DEDB area is stored in a
VSAM data set. Root segments are stored in the root-addressable part of an area,
with direct dependents stored close to the roots for fast access. Direct dependents
that cannot be stored close to their roots are stored in the independent overflow
portion of the area. Sequential dependents are stored in the sequential dependent
portion at the end of the area so that they can be quickly inserted. Each area data
set can have up to seven copies, making the data easily available to application
programs.

Sequential access
When you use a sequential access method, the segments in the database are stored
in hierarchic sequence, one after another, with no pointers.

IMS full-function has two sequential access methods. Like the direct access
methods, one has an index and the other does not:
v HSAM only processes root segments and dependent segments sequentially.
v HISAM processes data sequentially but has an index so that you can access

records directly. HISAM is primarily for sequentially processing dependents, and
directly processing database records.

Some of the general requirements that sequential access satisfies are:
v Fast sequential processing
v Direct processing of database records with HISAM
v Small IMS overhead on storage because sequential access methods relate

segments by adjacency rather than with pointers

The three disadvantages of using sequential access methods are:

78 Application Programming

v Sequential access methods give slower access to the right-most segments in the
hierarchy, because HSAM and HISAM must read through all other segments to
get to them.

v HISAM requires frequent reorganization to reclaim space from deleted segments
and to keep the logical records of a database record physically adjoined.

v You cannot update HSAM databases. You must create a new database to change
any of the data.

Sequential processing only: HSAM
HSAM is a hierarchic access method that can handle only sequential processing.
You can retrieve data from HSAM databases, but you cannot update any of the
data. The z/OS access methods that HSAM can use are QSAM and BSAM.

HSAM is ideal for the following situations:
v You are using the database to collect (but not update) data or statistics.
v You only plan to process the data sequentially.

HSAM characteristics

HSAM stores database records in the sequence in which you submit them. You can
only process records and dependent segments sequentially, which means the order
in which you have loaded them. HSAM stores dependent segments in hierarchic
sequence.

An overview of how HSAM works

This topic contains Diagnosis, Modification, and Tuning information.

HSAM databases are very simple databases. The data is stored in hierarchic
sequence, one segment after the other, and no pointers or indexes are used.

Primarily sequential processing: HISAM
HISAM is an access method that stores segments in hierarchic sequence with an
index to locate root segments. It also has an overflow data set. Store segments in a
logical record until you reach the end of the logical record. When you run out of
space on the logical record, but you still have more segments belonging to the
database record, you store the remaining segments in an overflow data set. The
access methods that HISAM can use are VSAM and OSAM.

HISAM is well-suited for:
v Direct access of record by root keys
v Sequential access of records
v Sequential access of dependent segments

The situations in which your processing has some of these characteristics but
where HISAM is not necessarily a good choice, occur when:
v You must access dependents directly.
v You have a high number of inserts and deletes.
v Many of the database records exceed average size and must use the overflow

data set. The segments that overflow into the overflow data set require
additional I/O.

Chapter 5. Gathering requirements for database options 79

HISAM characteristics

For database records, HISAM databases:
v Store records in key sequence
v Can locate a particular record with a key value by using the index

For dependent segments, HISAM databases:
v Start each HISAM database record in a new logical record in the primary data

set
v Store the remaining segments in one or more logical records in the overflow

data set if the database record does not fit in the primary data set

An overview of how HISAM works

This topic contains Diagnosis, Modification, and Tuning information.

HISAM does not immediately reuse space. When you insert a new segment,
HISAM databases shift data to make room for the new segment, and this leaves
unused space after deletions. HISAM space is reclaimed when you reorganize a
HISAM database.

Accessing z/OS files through IMS: GSAM
GSAM enables IMS batch application programs and BMPs to access a sequential
z/OS data set as a simple database. The z/OS access methods that GSAM can use
are BSAM and VSAM. A GSAM database is a z/OS data set record that is defined
as a database record. The record is handled as one unit; it contains no segments or
fields and the structure is not hierarchic. GSAM databases can be accessed by
z/OS, IMS, and CICS.

In a CICS environment, an application program can access a GSAM database from
either a Call DL/I (or EXEC DLI) batch or batch-oriented BMP program. A CICS
application cannot, however, use EXEC DLI to process GSAM databases; it must
use IMS calls.

You commonly use GSAM to send input to and receive output from batch-oriented
BMPs or batch programs. To process a GSAM database, an application program
issues calls similar to the ones it issues to process a full-function database. The
program can read data sequentially from a GSAM database, and it can send output
to a GSAM database.

GSAM is a sequential access method. You can only add records to an output
database sequentially.

Accessing IMS data through z/OS: SHSAM and SHISAM
Two database access methods give you simple hierarchic databases that z/OS can
use as data sets, SHSAM and SHISAM.

These access methods can be particularly helpful when you are converting data
from z/OS files to an IMS database. SHISAM is indexed and SHSAM is not.

When you use these access methods, you define an entire database record as one
segment. The segment does not contain any IMS control information or pointers;
the data format is the same as it is in z/OS data sets. The z/OS access methods
that SHSAM can use are BSAM and QSAM. SHISAM uses VSAM.

80 Application Programming

SHSAM and SHISAM databases can be accessed by z/OS access methods without
IMS, which is useful during transitions.

Understanding how data structure conflicts are resolved
The order in which application programs need to process fields and segments
within hierarchies is frequently not the same for each application. When the DBA
finds a conflict in the way that two or more programs need to access the data,
three options are available to solve these problems. Each of the following options
solves a different kind of conflict.
v When an application program does not need access to all the fields in a segment,

or if the program needs to access them in a different order, the DBA can use
field level sensitivity for that program. Field-level sensitivity makes it possible for
an application program to access only a subset of the fields that a segment
contains, or for an application program to process a segment's fields in an order
that is different from their order in the segment.

v When an application program needs to access a particular segment by a field
other than the segment's key field, the DBA can use a secondary index for that
database.

v When the application program needs to relate segments from different
hierarchies, the DBA can use logical relationships. Using logical relationships
can give the application program a logical hierarchy that includes segments from
several hierarchies.

Related concepts:
“Determining mappings” on page 28

Using different fields: field-level sensitivity
Field-level sensitivity applies the same kind of security for fields within a segment
that segment sensitivity does for segments within a hierarchy: An application
program can access only those fields within a segment, and those segments within
a hierarchy to which it is sensitive.

Field-level sensitivity also makes it possible for an application program to use a
subset of the fields that make up a segment, or to use all the fields in the segment
but in a different order. If a segment contains fields that the application program
does not need to process, using field-level sensitivity enables the program not to
process them.

Example of field-level sensitivity

Suppose that a segment containing data about an employee contains the fields
shown in the following table. These fields are:
v Employee number: EMPNO
v Employee name: EMPNAME
v Birthdate: BIRTHDAY
v Salary: SALARY
v Address: ADDRESS

Table 24. Physical employee segment

EMPNO EMPNAME BIRTHDAY SALARY ADDRESS

Chapter 5. Gathering requirements for database options 81

A program that printed mailing labels for employees' checks each week would not
need all the data in the segment. If the DBA decided to use field-level sensitivity
for that application, the program would receive only the fields it needed in its I/O
area. The I/O area would contain the EMPNAME and ADDRESS fields. The
following table shows what the program's I/O area would contain.

Table 25. Employee segment with field-level sensitivity

EMPNAME ADDRESS

Field-level sensitivity makes it possible for a program to receive a subset of the
fields that make up a segment, the same fields but in a different order, or both.

Another situation in which field-level sensitivity is very useful is when new uses
of the database involve adding new fields of data to an existing segment. In this
situation, you want to avoid re-coding programs that use the current segment. By
using field-level sensitivity, the old programs can see only the fields that were in
the original segment. The new program can see both the old and the new fields.

Specifying field-level sensitivity

You specify field-level sensitivity in the PSB for the application program by using a
sensitive field (SENFLD) statement for each field to which you want the
application program to be sensitive.
Related reference:

SENFLD statement (System Utilities)

Resolving processing conflicts in a hierarchy: secondary
indexing

Sometimes a database hierarchy does not meet all the processing requirements of
the application programs that will process it.

Secondary indexing can be used to solve two kinds of processing conflicts:
v When an application program needs to retrieve a segment in a sequence other

than the one that has been defined by the segment's key field
v When an application program needs to retrieve a segment based on a condition

that is found in a dependent of that segment

To understand these conflicts and how secondary indexing can resolve them,
consider the examples of two application programs that process the patient
hierarchy, shown in the following figure. Three segment types in this hierarchy are:
v PATIENT contains three fields: the patient's identification number, name, and

address. The patient number field is the key field.
v ILLNESS contains two fields: the date of the illness and the name of the illness.

The date of the illness is the key field.
v TREATMNT contains four fields: the date the medication was given; the name of

the medication; the quantity of the medication that was given; and the name of
the doctor who prescribed the medication. The date that the medication was
given is the key field.

82 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_psbgensenfldstmt.htm#ims_psbgensenfldstmt

Retrieving segments based on a different key
When an application program retrieves a segment from the database, the program
identifies the segment by the segment's key field. But sometimes an application
program needs to retrieve a segment in a sequence other than the one that has
been defined by the segment's key field. Secondary indexing makes this possible.

Note: A new database type, the Partitioned Secondary Index (PSINDEX), is
supported by the High Availability Large Database (HALDB). PSINDEX is the
partitioned version of the secondary index database type. The corresponding
descriptions of the secondary index database type therefore apply to PSINDEX.

For example, suppose you have an online application program that processes
requests about whether an individual has ever been to the clinic. If you are not
sure whether the person has ever been to the clinic, you will not be able to supply
the identification number for the person. But the key field of the PATIENT segment
is the patient's identification number.

Segment occurrences of a segment type (for example, the segments for each of the
patients) are stored in a database in order of their keys (in this case, by their
patient identification numbers). If you issue a request for a PATIENT segment and
identify the segment you want by the patient's name instead of the patient's
identification number, IMS must search through all of the PATIENT segments to
find the PATIENT segment you have requested. IMS does not know where a
particular PATIENT segment is just by having the patient's name.

To make it possible for this application program to retrieve PATIENT segments in
the sequence of patients' names (rather than in the sequence of patients'
identification numbers), you can index the PATIENT segment on the patient name
field and store the index entries in a separate database. The separate database is
called a secondary index database.

Then, if you indicate to IMS that it is to process the PATIENT segments in the
patient hierarchy in the sequence of the index entries in the secondary index

PATIENT

TREATMNT

ILLNESS

Figure 16. Patient hierarchy

Chapter 5. Gathering requirements for database options 83

database, IMS can locate a PATIENT segment if you supply the patient's name.
IMS goes directly to the secondary index and locates the PATIENT index entry
with the name you have supplied; the PATIENT index entries are in alphabetical
order of the patient names. The index entry is a pointer to the PATIENT segment
in the patient hierarchy. IMS can determine whether a PATIENT segment for the
name you have supplied exists, and then it can return the segment to the
application program if the segment exists. If the requested segment does not exist,
IMS indicates this to the application program by returning a not-found status code.

Related reading: For more information on HALDB, see IMS Version 14 Database
Administration.

Three terms involved in secondary indexing are:

Pointer segment
The index entry in the secondary index database that IMS uses to find the
segment you have requested. In the previous example, the pointer segment
is the index entry in the secondary index database that points to the
PATIENT segment in the patient hierarchy.

Source segment
The segment that contains the field that you are indexing. In the previous
example, the source segment is the PATIENT segment in the patient
hierarchy, because you are indexing on the name field in the PATIENT
segment.

Target segment
The segment in the database that you are processing to which the
secondary index points; it is the segment that you want to retrieve.

In the previous example, the target segment and the source segment are the same
segment—the PATIENT segment in the patient hierarchy. When the source segment
and the target segment are different segments, secondary indexing solves the
processing conflict.

The PATIENT segment that IMS returns to the application program's I/O area
looks the same as it would if secondary indexing had not been used.

The key feedback area is different. When IMS retrieves a segment without using a
secondary index, IMS places the concatenated key of the retrieved segment in the
key feedback area. The concatenated key contains all the keys of the segment's
parents, in order of their positions in the hierarchy. The key of the root segment is
first, followed by the key of the segment on the second level in the hierarchy, then
the third, and so on—with the key of the retrieved segment last.

But when you retrieve a segment from an indexed database, the contents of the
key feedback area after the request are a little different. Instead of placing the key
of the root segment in the left-most bytes of the key feedback area, DL/I places the
key of the pointer segment there. Note that the term “key of the pointer segment,”
as used here, refers to the key as perceived by the application program—that is,
the key does not include subsequence fields.

For example, suppose index segment A shown in the following figure is indexed
on a field in segment C. Segment A is the target segment, and segment C is the
source segment.

84 Application Programming

When you use the secondary index to retrieve one of the segments in this
hierarchy, the key feedback area contains one of the following:
v If you retrieve segment A, the key feedback area contains the key of the pointer

segment from the secondary index.
v If you retrieve segment B, the key feedback area contains the key of the pointer

segment, concatenated with the key of segment B.
v If you retrieve segment C, the key of the pointer segment, the key of segment B,

and the key of segment C are concatenated in the key feedback area.

Although this example creates a secondary index for the root segment, you can
index dependent segments as well. If you do this, you create an inverted structure:
the segment you index becomes the root segment, and its parent becomes a
dependent.

For example, suppose you index segment B on a field in segment C. In this case,
segment B is the target segment, and segment C is the source field. The following
figure shows the physical database structure and the structure that is created by
the secondary index.

When you retrieve the segments in the secondary index data structure on the right,
IMS returns the following to the key feedback area:

A Target segment

Source segment

B

C

Figure 17. Indexing a root segment

Target segment

Source segment

A

B

C

B

A C

Figure 18. Indexing a dependent segment

Chapter 5. Gathering requirements for database options 85

v If you retrieve segment B, the key feedback area contains the key of the pointer
segment in the secondary index database.

v If you retrieve segment A, the key feedback area contains the key of the pointer
segment, concatenated with the key of segment A.

v If you retrieve segment C, the key feedback area contains the key of the pointer
segment, concatenated with the key of segment C.

Retrieving segments based on the qualification of a dependent
segment
Sometimes an application program needs to retrieve a segment, but only if one of
the dependents of the segment meet certain qualifications.

For example, suppose that the medical clinic wants to print a monthly report of the
patients who have visited the clinic during that month. If the application program
that processes this request does not use a secondary index, the program has to
retrieve each PATIENT segment, and then retrieve the ILLNESS segment for each
PATIENT segment. The program tests the date in the ILLNESS segment to
determine whether the patient has visited the clinic during the current month, and
prints the patient's name if the answer is yes. The program continues retrieving
PATIENT segments and ILLNESS segments until it has retrieved all the PATIENT
segments.

But with a secondary index, you can make the processing of the program simpler.
To do this, you index the PATIENT segment on the date field in the ILLNESS
segment. When you define the PATIENT segment in the DBD, you give IMS the
name of the field on which you are indexing the PATIENT segment, and the name
of the segment that contains the index field. The application program can then
request a PATIENT segment and qualify the request with the date in the ILLNESS
segment. The PATIENT segment that is returned to the application program looks
just as it would if you were not using a secondary index.

In this example, the PATIENT segment is the target segment; it is the segment that
you want to retrieve. The ILLNESS segment is the source segment; it contains the
information that you want to use to qualify your request for PATIENT segments.
The index segment in the secondary database is the pointer segment. It points to
the PATIENT segments.

Creating a new hierarchy: logical relationships
When an application program needs to associate segments from different
hierarchies, logical relationships can make that possible.

Logical relationships can solve the following conflicts:
v When two application programs need to process the same segment, but they

need to access the segment through different hierarchies
v When a segment's parent in one application program's hierarchy acts as that

segment's child in another application program

Accessing a segment through different paths
Sometimes an application program needs to process the data in a different order
than the way it is arranged in the hierarchy.

For example, an application program that processes data in a purchasing database
also requires access to a segment in a patient database:

86 Application Programming

v Program A processes information in the patient database about the patients at a
medical clinic: the patients' illnesses and their treatments.

v Program B is an inventory program that processes information in the purchasing
database about the medications that the clinic uses: the item, the vendor,
information about each shipment, and information about when and under what
circumstances each medication is given.

The following figure shows the hierarchies that Program A and Program B require
for their processing. Their processing requirements conflict: they both need to have
access to the information that is contained in the TREATMNT segment in the
patient database. This information is:
v The date that a particular medication was given
v The name of the medication
v The quantity of the medication given
v The doctor that prescribed the medication

To Program B this is not information about a patient's treatment; it is information
about the disbursement of a medication. To the purchasing database, this is the
disbursement segment (DISBURSE).

The following figure shows the hierarchies for Program A and Program B. Program
A needs the PATIENT segment, the ILLNESS segment, and the TREATMNT
segment. Program B needs the ITEM segment, the VENDOR segment, the
SHIPMENT segment, and the DISBURSE segment. The TREATMNT segment and
the DISBURSE segment contain the same information.

Chapter 5. Gathering requirements for database options 87

Instead of storing this information in both hierarchies, you can use a logical
relationship. A logical relationship solves the problem by storing a pointer from
where the segment is needed in one hierarchy to where the segment exists in the
other hierarchy. In this case, you can have a pointer in the DISBURSE segment to
the TREATMNT segment in the medical database. When IMS receives a request for
information in a DISBURSE segment in the purchasing database, IMS goes to the
TREATMNT segment in the medical database that is pointed to by the DISBURSE
segment. The following figure shows the physical hierarchy that Program A would
process and the logical hierarchy that Program B would process. DISBURSE is a
pointer segment to the TREATMNT segment in Program A's hierarchy.

ILLNESS VENDOR

Program A Program B

TREATMNT SHIPMENT

DISBURSE

PATIENT ITEM

Figure 19. Patient and inventory hierarchies

88 Application Programming

To define a logical relationship between segments in different hierarchies, you use
a logical DBD. A logical DBD defines a hierarchy that does not exist in storage, but
can be processed as though it does. Program B would use the logical structure
shown in the previous figure as though it were a physical structure.

Inverting a parent-child relationship
Another type of conflict that logical relationships can resolve occurs when a
segment's parent in one application program acts as that segment's child in another
application program.
v The inventory program, Program B, needs to process information about

medications using the medication as the root segment.
v A purchasing application program, Program C, processes information about

which vendors have sold which medications. Program C needs to process this
information using the vendor as the root segment.

The following figure shows the hierarchies for each of these application programs.

ILLNESS VENDOR

Program A Program B

TREATMNT SHIPMENT

DISBURSE

PATIENT ITEM

Figure 20. Logical relationships example

Chapter 5. Gathering requirements for database options 89

Logical relationships can solve this problem by using pointers. Using pointers in
this example would mean that the ITEM segment in the purchasing database
would contain a pointer to the actual data stored in the ITEM segment in the
supplies database. The VENDOR segment, however, would actually be stored in
the purchasing database. The VENDOR segment in the supplies database would
point to the VENDOR segment that is stored in the purchasing database.

The following figure shows the hierarchies of these two programs.

If you did not use logical relationships in this situation, you would:
v Keep the same data in both paths, which means that you would be keeping

redundant data.
v Have the same disadvantages as separate files of data:

– You would need to update multiple segments each time one piece of data
changed.

– You would need more storage.

VENDOR

VENDOR

Program B
supplies database

Program C
purchasing database

ITEM

ITEM

Figure 21. Supplies and purchasing hierarchies

VENDOR

VENDOR

Program B
supplies database

Program C
purchasing database

ITEM

ITEM

Figure 22. Program B and program C hierarchies

90 Application Programming

Providing data security
You can control the security of data accessed by your IMS application programs
through data sensitivity and processing options.

Data sensitivity
Controls what data a particular program can access.

Processing options
Controls how a particular program can process data that it can access.

Providing data availability

Specifying segment sensitivity and processing options also affects data availability.
You should set the specifications so that the PCBs request the fewest SENSEGS and
limit the possible processing options. With data availability, a program can
continue to access and update segments in the database successfully, even though
some parts of the database are unavailable.

The SENSEG statement defines a segment type in the database to which the
application program is sensitive. A separate SENSEG statement must exist for each
segment type. The segments can physically exist in one database or they can be
derived from several physical databases. If an application program is sensitive to a
segment that is below the root segment, it must also be sensitive to all segments in
the path from the root segment to the sensitive segment.

Related Reading: For more information on using field-level sensitivity for data
security and using the SENSEG statement to limit the scope of the PCBs, see IMS
Version 14 Database Administration.
Related concepts:
“An overview of application design” on page 15

Keeping a program from accessing the data: data sensitivity
An IMS program can only access data to which it is sensitive.

You can control the data to which your program is sensitive on three levels:
v Segment sensitivity can prevent an application program from accessing all the

segments in a particular hierarchy. Segment sensitivity tells IMS which segments
in a hierarchy the program is allowed to access.

v Field-level sensitivity can keep a program from accessing all the fields that
make up a particular segment. Field-level sensitivity tells IMS which fields
within a particular segment a program is allowed to access.

v Key sensitivity means that the program can access segments below a particular
segment, but it cannot access the particular segment. IMS returns only the key of
this type of segment to the program.

You define each of these levels of sensitivity in the PSB for the application
program. Key sensitivity is defined in the processing option for the segment.
Processing options indicate to IMS exactly what a particular program may or may
not do to the data. You specify a processing option for each hierarchy that the
application program processes; you do this in the DB PCB that represents each
hierarchy. You can specify one processing option for all the segments in the
hierarchy, or you can specify different processing options for different segments
within the hierarchy.

Chapter 5. Gathering requirements for database options 91

Segment sensitivity and field-level sensitivity are defined using special statements
in the PSB.

Segment sensitivity

You define what segments an application program is sensitive to in the DB PCB for
the hierarchy that contains those segments.

For example, suppose that the patient hierarchy shown in the following figures.
The patient hierarchy is like a subset of the medical database.

PATIENT is the root segment and the parent of the three segments below it:
ILLNESS, BILLING, and HOUSHOLD. Below ILLNESS is TREATMNT. Below
BILLING is PAYMENT.

To make it possible for an application program to view only the segments
PATIENT, ILLNESS, and TREATMNT from the medical database, you specify in
the DB PCB that the hierarchy you are defining has these three segment types, and
that they are from the medical database. You define the database hierarchy in the
DBD; you define the application program's view of the database hierarchy in the
DB PCB.

Field-level sensitivity

In addition to providing data independence for an application program, field-level
sensitivity can also act as a security mechanism for the data that the program uses.

If a program needs to access some of the fields in a segment, but one or two of the
fields that the program does not need to access are confidential, you can use
field-level sensitivity. If you define that segment for the application program as
containing only the fields that are not confidential, you prevent the program from
accessing the confidential fields. Field-level sensitivity acts as a mask for the fields
to which you want to restrict access.

Key sensitivity

To access a segment, an application program must be sensitive to all segments at a
higher level in the segment's path. In other words, in the following figure, a
program must be sensitive to segment B in order to access segment C.

For example, suppose that an application program needs segment C to do its
processing. But if segment B contains confidential information (such as an
employee's salary), the program is not able to access that segment. Using key

Figure 23. Medical database hierarchy

92 Application Programming

sensitivity lets you withhold segment B from the application program while giving
the program access to the dependents of segment B.

When a sensitive segment statement has a processing option of K specified for it,
the program cannot access that segment, but the program can pass beyond that
segment to access the segment's dependents. When the program does access the
segment's dependents, IMS does not return that segment; IMS returns only the
segment's key with the keys of the other segments that are accessed.

Preventing a program from updating data: processing options
During PCB generation, you can use five options of the PROCOPT parameter (in
the DATABASE macro) to indicate to IMS whether your program can read
segments in the hierarchy, or whether it can also update segments.

From most restrictive to least restrictive, these options are:

G Your program can read segments.

R Your program can read and replace segments.

I Your program can insert segments.

D Your program can read and delete segments.

A Your program can perform all the processing options. It is equivalent to
specifying G, R, I, and D.

Related Reading: For a thorough description of the processing options see, IMS
Version 14 System Utilities.

Processing options provide data security because they limit what a program can do
to the hierarchy or to a particular segment. Specifying only the processing options
the program requires ensures that the program cannot update any data it is not
supposed to. For example, if a program does not need to delete segments from a
database, the D option need not be specified.

Figure 24. Sample hierarchy for key sensitivity example

Chapter 5. Gathering requirements for database options 93

When an application program retrieves a segment and has any of the
just-described processing options, IMS locks the database record for that
application. If PROCOPT=G is specified, other programs with the option can
concurrently access the database record. If an update processing option (R, I, D, or
A) is specified, no other program can concurrently access the same database
record. If no updates are performed, the lock is released when the application
moves to another database record or, in the case of HDAM, to another anchor
point.

The following locking protocol allows IMS to make this determination. If the root
segment is updated, the root lock is held at update level until commit. If a
dependent segment is updated, it is locked at update level. When exiting the
database record, the root segment is demoted to read level. When a program enters
the database record and obtains the lock at either read or update level, the lock
manager provides feedback indicating whether or not another program has the
lock at read level. This determines if dependent segments will be locked when they
are accessed. For HISAM, the primary logical record is treated as the root, and the
overflow logical records are treated as dependent segments.

When using block-level or database-level data sharing for online and batch
programs, you can use additional processing options.

Related Reading:
v For a special case involving HISAM delete byte with parameter ERASE=YES see,

IMS Version 14 Database Administration.
v For more information on database and block-level data sharing, see IMS Version

14 System Administration.

E option

With the E option, your program has exclusive access to the hierarchy or to the
segment you use it with. The E option is used in conjunction with the options G, I,
D, R, and A. While the E program is running, other programs cannot access that
data, but may be able to access segments that are not in the E program's PCB. No
dynamic enqueue by program isolation is done, but dynamic logging of database
updates will be done.

GO option

When your program retrieves a segment with the GO option, IMS does not lock
the segment. While the read without integrity program reads the segment, it
remains available to other programs. This is because your program can only read
the data (termed read-only); it is not allowed to update the database. No dynamic
enqueue is done by program isolation for calls against this database. Serialization
between the program with PROCOPT=GO and any other update program does not
occur; updates to the same data occur simultaneously.

If a segment has been deleted and another segment of the same type has been
inserted in the same location, the segment data and all subsequent data that is
returned to the application may be from a different database record.

A read-without-integrity program can also retrieve a segment even if another
program is updating the segment. This means that the program need not wait for
segments that other programs are accessing. If a read-without-integrity program
reads data that is being updated by another program, and that program terminates

94 Application Programming

abnormally before reaching the next commit point, the updated segments might
contain invalid pointers. If an invalid pointer is detected, the read-without-integrity
program terminates abnormally, unless the N or T options were specified with GO.
Pointers are updated during insert, delete and backout functions.

N option

When you use the N option with GO to access a full-function database or a DEDB,
and the segment you are retrieving contains an invalid pointer, IMS returns a GG
status code to your program. Your program can then terminate processing,
continue processing by reading a different segment, or access the data using a
different path. The N option must be specified as PROCOPT=GON, GON, or
GONP.

T option

When you use the T option with GO and the segment you are retrieving contains
an invalid pointer, the response from an application program depends on whether
the program is accessing a full-function or Fast Path database.

For calls to full-function databases, the T option causes DL/I to automatically retry
the operation. You can retrieve the updated segment, but only if the updating
program has reached a commit point or has had its updates backed out since you
last tried to retrieve the segment. If the retry fails, a GG status code is returned to
your program.

For calls to Fast Path DEDBs, option T does not cause DL/I to retry the operation.
A GG status code is returned. The T option must be specified as PROCOPT=GOT,
GOT, or GOTP.

GOx and data integrity

For a very small set of applications and data, PROCOPT=GOx offers some
performance and parallelism benefits. However, it does not offer application data
integrity. For example, using PROCOPT=GOT in an online environment on a
full-function database can cause performance degradation. The T option forces a
re-read from DASD, negating the advantage of very large buffer pools and VSAM
hiperspace for all currently running applications and shared data. For more
information on the GOx processing option for DEDBs, see IMS Version 14 System
Utilities.
Related concepts:
“Read without integrity”

Read without integrity
Database-level sharing of IMS databases provides for sharing of databases between
a single update-capable batch or online IMS system and any number of other IMS
systems that are reading data that are without integrity.

A GE status code might be returned to a program using PROCOPT=GOx for a
segment that exists in a HIDAM database during control interval (CI) splits.

In IMS, programs that use database-level sharing include PROCOPT=GOx in their
DBPCBs for that data. For batch jobs, the DBPCB PROCOPTs establish the batch
job's access level for the database. That is, a batch job uses the highest declared

Chapter 5. Gathering requirements for database options 95

intent for a database as the access level for DBRC database authorization. In an
online IMS environment, database ACCESS is specified on the DATABASE macro
during IMS system definition, and it can be changed using the /START DB
ACCESS=RO command. Online IMS systems schedule programs with data availability
determined by the PROCOPTs within those program PSBs being scheduled. That
data availability is therefore limited by the online system's database access.

The PROCOPT=GON and GOT options provide certain limited PCB status code
retry for some recognizable pointer errors, within the data that is being read
without integrity. In some cases, dependent segment updates, occurring
asynchronously to the read-without-integrity IMS instance, do not interfere with
the program that is reading that data without integrity. However, update activity to
an average database does not always allow a read-without-integrity IMS system to
recognize a data problem.

What read without integrity means

Each IMS batch or online instance has OSAM and VSAM buffer pools defined for
it. Without locking to serialize concurrent updates that are occurring in another
IMS instance, a read without integrity from a database data set fetches a copy of a
block or CI into the buffer pool in storage. Blocks or CIs in the buffer pool can
remain there a long time. Subsequent read without integrity of other blocks or CIs
can then fetch more recent data. Data hierarchies and other data relationships
between these different blocks or CIs can be inconsistent.

For example, consider an index database (VSAM KSDS), which has an index
component and a data component. The index component contains only hierarchic
control information, relating to the data component CI where a given keyed record
is located. Think of this as the way that the index component CI maintains the
high key in each data component CI. Inserting a keyed record into a KSDS data
component CI that is already full causes a CI split. That is, some portion of the
records in the existing CI are moved to a new CI, and the index component is
adjusted to point to the new CI.

For example, suppose the index CI shows the high key in the first data CI as
KEY100, and a split occurs. The split moves keys KEY051 through KEY100 to a
new CI; the index CI now shows the high key in the first data CI as KEY050, and
another entry shows the high key in the new CI as KEY100.

A program that is reading is without integrity, which already read the “old” index
component CI into its buffer pool (high key KEY100), does not point to the newly
created data CI and does not attempt to access it. More specifically, keyed records
that exist in a KSDS at the time a read-without-integrity program starts might
never be seen. In this example, KEY051 through KEY100 are no longer in the first
data CI even though the “old” copy of the index CI in the buffer pool still
indicates that any existing keys up to KEY100 are in the first data CI.

Hypothetical cases also exist where the deletion of a dependent segment and the
insertion of that same segment type under a different root, placed in the same
physical location as the deleted segment, can cause simple Get Next processing to
give the appearance of only one root in the database. For example, accessing the
segments under the first root in the database down to a level-06 segment (which
had been deleted from the first root and is now logically under the last root)
would then reflect data from the other root. The next and subsequent Get Next
calls retrieve segments from the other root.

96 Application Programming

Read-only (PROCOPT=GO) processing does not provide data integrity.

Data set extensions

IMS instances with database-level sharing can open a database for read without
integrity.

After the database is opened, another program that is updating that database can
make changes to the data. These changes might result in logical and physical
extensions to the database data set. Because the read-without-integrity program is
not aware of these extensions, problems with the RBA (beyond end-of-data) can
occur.
Related concepts:
“Preventing a program from updating data: processing options” on page 93

Chapter 5. Gathering requirements for database options 97

98 Application Programming

Chapter 6. Gathering requirements for message processing
options

One of the tasks of application design is providing information about your
application's requirements to the people in charge of designing and administering
your IMS system.

Restriction: This information applies to DB/DC and DCCTL environments only.
Related concepts:
“Programming with the IMS Java dependent region resource adapter” on page 718

Identifying online security requirements
Security in an online system means protecting the data from unauthorized use
through terminals. It also means preventing unauthorized use of both the IMS
system and the application programs that access the database. For example, you do
not want a program that processes paychecks to be available to everyone who can
access the system.

The security mechanisms that IMS provides are signon, terminal, and password
security.

Related reading: For an explanation of how to establish these types of security, see
IMS Version 14 System Administration.

Limiting access to specific individuals: signon security

Signon security is available through Resource Access Control Facility (RACF®) or a
user-written security exit routine. With signon security, individuals who want to
use IMS must be defined to RACF or its equivalent before they are allowed access.

When a person signs on to IMS, RACF or security exits verify that the person is
authorized to use IMS before access to IMS-controlled resources is allowed. This
signon security is provided by the /SIGN ON command. You can also limit the
transaction codes and commands that individuals are allowed to enter. You do this
by associating an individual's user identification (USERID) with the transaction
codes and commands.

LU 6.2 transactions contain the USERID.

Related reading: For more information on security, see IMS Version 14
Communications and Connections.

Limiting access for specific terminals: terminal security

Use terminal security to limit the entry of a transaction code to a particular
terminal or group of terminals in the system. How you do this depends on how
many programs you want to protect.

To protect a particular program, you can either authorize a transaction code to be
entered from a list of logical terminals, or you can associate each logical terminal

© Copyright IBM Corp. 1974, 2015 99

with a list of the transaction codes that a user can enter from that logical terminal.
For example, you could protect the paycheck application program by defining the
transaction code associated with it as valid only when entered from the terminals
in the payroll department. If you wanted to restrict access to this application even
more, you could associate the paycheck transaction code with only one logical
terminal. To enter that transaction code, a user needs to be at a physical terminal
that is associated with that logical terminal.

Restriction: If you are using the shared-queues option, static control blocks
representing the resources needed for the security check need to be available in the
IMS system where the security check is being made. Otherwise, the security check
is bypassed.

Related reading: For more information on shared queues, see IMS Version 14
System Administration.

Limiting access to the program: password security

Another way you can protect the application program is to require a password
when a person enters the transaction code that is associated with the application
program you want to protect. If you use only password security, the person
entering a particular transaction code must also enter the password of the
transaction before IMS processes the transaction.

If you use password security with terminal security, you can restrict access to the
program even more. In the paycheck example, using password security and
terminal security means that you can restrict unauthorized individuals within the
payroll department from executing the program.

Restriction: Password security for transactions is only supported if the
transactions that are needed for the security check are defined in the IMS system
where the security check is being made. Otherwise, the security check is bypassed.

Allowing access to security data: authorization security

RACF has a data set that you can use to store user-unique information. The AUTH
call gives application programs access to the RACF data set security data, and a
way to control access to application-defined resources. Thus, application programs
can obtain the security information about a particular user.

How IMS security relates to DB2 for z/OS security

An important part of DB2 for z/OS security is the authorization ID. The
authorization ID that IMS uses for a program or a user at a terminal depends on
the kind of security that is used and the kind of program that is running.

For MPPs, IFPs, and transaction-oriented BMPs, the authorization ID depends on
the type of IMS security:
v If signon is required, IMS passes the USERID and group name that are

signed-on to DB2 for z/OS.
v If signon is not required, DB2 for z/OS uses the name of the originating logical

terminal as the authorization ID.

For batch-oriented BMPs, the authorization ID is dependent on the value specified
for the BMPUSID= keyword in the DFSDCxxx PROCLIB member:

100 Application Programming

v If BMPUSID=USERID is specified, the value from the USER= keyword on the
JOB statement is used.

v If USER= is not specified on the JOB statement, the program's PSB name is used.
v If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at all, the

program's PSB name is used.

Supplying security information

When you evaluate your application in terms of its security requirements, you
need to look at each program individually. When you have done this, you can
supply the following information to your security personnel.
v For programs that require signon security:

– List the individuals who should be able to access IMS.
v For programs that require terminal security:

– List the transaction codes that must be secured.
– List the terminals that should be allowed to enter each of these transaction

codes. If the terminals you are listing are already installed and being used,
identify the terminals by their logical terminal names. If not, identify them by
the department that will use them (for example, the accounting department).

v For programs that require password security:
– List the transaction codes that require passwords.

v For commands that require security:
– List the commands that require signon or password security.

Related concepts:
“An overview of application design” on page 15

Analyzing screen and message formats
When an application program communicates with a terminal, an editing procedure
translates messages from the way they are entered at the terminal to the way the
program expects to receive and process them.

The decisions about how IMS will edit your program's messages are based on how
your data should be presented to the person at the terminal and to the application
program. You need to describe how you want data from the program to appear on
the terminal screen, and how you want data from the terminal to appear in the
application program's I/O area. (The I/O area contains the segments being
processed by the application program.)

To supply information that will be helpful in these decisions, you should be
familiar with how IMS edits messages. IMS has two editing procedures:
v Message Format Service (MFS) uses control blocks that define what a message

should look like to the person at the terminal and to the application program.
v Basic edit is available to all IMS application programs. Basic edit removes

control characters from input messages and inserts the control characters you
specify in output messages to the terminal.

Related reading: For information on defining IMS editing procedures and on other
design considerations for IMS networks, see IMS Version 14 Communications and
Connections.

Chapter 6. Gathering requirements for message processing options 101

An overview of MFS
MFS uses four kinds of control blocks to format messages between an application
program and a terminal. The information you gather about how you want the data
formatted when it is passed between the application program and the terminal is
contained in these control blocks.

The two control blocks that describe input messages to IMS are:
v The device input format (DIF) describes to IMS what the input message is to

look like when it is entered at the terminal.
v The message input descriptor (MID) tells IMS how the application program

expects to receive the input message in its I/O area.

By using the DIF and the MID, IMS can translate the input message from the way
that it is entered at the terminal to the way it should appear in the program's I/O
area.

The two control blocks that describe output messages to IMS are:
v The message output descriptor (MOD) tells IMS what the output message is to

look like in the program's I/O area.
v The device output format (DOF) tells IMS how the message should appear on

the terminal.

To define the MFS control blocks for an application program, you need to know
how you want the data to appear at the terminal and in the application program's
I/O area for both input and output.

An overview of basic edit
Basic edit removes the control characters from an input message before the
application program receives it, and inserts the control characters you specify
when the application program sends a message back to the terminal.

To format output messages at a terminal using basic edit, you need to supply the
necessary control characters for the terminal you are using.

If your application will use basic edit, you should describe how you want the data
to be presented at the terminal, and what it is to look like in the program's I/O
area.

Editing considerations in your application
Before you describe the editing requirements of your application, be sure that you
are aware of your standards concerning screen design. Make sure that the
requirements that you describe comply with those standards.

Provide the following information about your program's editing requirements:
v How you want the screen to be presented to the person at the terminal for the

person to enter the input data. For example, if an airline agent wants to reserve
seats on a particular flight, the screen that asks for this information might look
like this:

FLIGHT#:
NAME:
NO. IN PARTY:

102 Application Programming

v What the data should look like when the person at the terminal enters the input
message.

v What the input message should look like in the program's I/O area.
v What the data should look like when the program builds the output message in

its I/O area.
v How the output message should be formatted at the terminal.
v The length and type of data that your program and the terminal will be

exchanging.

The type of data you are processing is only one consideration when you analyze
how you want the data presented at the terminal. In addition, you should weigh
the needs of the person at the terminal (the human factors aspects in your
application) against the effect of the screen design on the efficiency of the
application program (the performance factors in the application program).
Unfortunately, sometimes a trade-off between human factors and performance
factors exists. A screen design that is easily understood and used by the person at
the terminal may not be the design that gives the application program its best
performance. Your first concern should be that you are following whatever are
your established screen standards.

A terminal screen that has been designed with human factors in mind is one that
puts the person at the terminal first; it is one that makes it as easy as possible for
that person to interact with IMS. Some of the things you can do to make it easy for
the person at the terminal to understand and respond to your application program
are:
v Display a small amount of data at one time.
v Use a format that is clear and uncluttered.
v Provide clear and simple instructions.
v Display one idea at a time.
v Require short responses from the person at the terminal.
v Provide some means for help and ease of correction for the person at the

terminal.

At the same time, you do not want the way in which a screen is designed to have
a negative effect on the application program's response time, or on the system's
performance. When you design a screen with performance first in mind, you want
to reduce the processing that IMS must do with each message. To do this, the
person at the terminal should be able to send a lot of data to the application
program in one screen so that IMS does not have to process additional messages.
And the program should not require two screens to give the person at the terminal
information that it could give on one screen.

When describing how the program should receive the data from the terminal, you
need to consider the program logic and the type of data you are working with.

Gathering requirements for conversational processing
When you use conversational processing, the person at the terminal enters some
information, and an application program processes the information and responds
to the terminal. The person at the terminal then enters more information for an
application program to process. Each of these interactions between the person at

Chapter 6. Gathering requirements for message processing options 103

the terminal and the program is called a step in the conversation. Only MPPs can
be conversational programs; Fast Path programs and BMPs cannot be
conversational.

Definition: Conversational processing means that the person at the terminal can
communicate with the application program.

What happens in a conversation
A conversation is defined as a dialog between a user at a terminal and IMS through
a scratchpad area (SPA) and one or more application programs.

During a conversation, the user at the terminal enters a request, receives the
information from IMS, and enters another request. Although it is not apparent to
the user, a conversation can be processed by several application programs or by
one application program.

To continue a conversation, the program must have the necessary information to
continue processing. IMS stores data from one step of the conversation to the next
in a SPA. When the same program or a different program continues the
conversation, IMS gives the program the SPA for the conversation associated with
that terminal.

In the preceding airline example, the first program might save the flight number
and the names of the people traveling, and then pass control to another application
program to reserve seats for those people on that flight. The first program saves
this information in the SPA. If the second application program did not have the
flight number and names of the people traveling, it would not be able to do its
processing.

Designing a conversation
The first part of designing a conversation is to design the flow of the conversation.
If the requests from the person at the terminal are to be processed by only one
application program, you need only to design that program. If the conversation
should be processed by several application programs, you need to decide which
steps of the conversation each program is to process, and what each program is to
do when it has finished processing its step of the conversation.

When a person at a terminal enters a transaction code that has been defined as
conversational, IMS schedules the conversational program (for example, Program
A) associated with that transaction code. When Program A issues its first call to the
message queue, IMS returns the SPA that is defined for that transaction code to
Program A's I/O area. The person at the terminal must enter the transaction code
(and password, if one exists) only on the first input screen; the transaction code
need not be entered during each step of the conversation. IMS treats data in
subsequent screens as a continuation of the conversation started on the first screen.

After the program has retrieved the SPA, Program A can retrieve the input
message from the terminal. After it has processed the message, Program A can
either continue the conversation, or end it.

To continue the conversation, Program A can do any of the following:
v Reply to the terminal that sent the message.
v Reply to the terminal and pass the conversation to another conversational

program, for example Program B. This is called a deferred program switch.

104 Application Programming

Definition: A deferred program switch means that Program A responds to the
terminal and then passes control to another conversational program, Program B.
After passing control to Program B, Program A is no longer part of the
conversation. The next input message that the person at the terminal enters goes
to Program B, although the person at the terminal is unaware that this message
is being sent to a second program.

Restriction: A deferred program switch is disallowed if the application is
involved in an inbound protected conversation. The application will receive an
X6 status code if it attempts to perform a deferred program switch in this
environment.

v Pass control of the conversation to another conversational program without first
responding to the originating terminal. This is called an immediate program switch.
Definition: An immediate program switch lets you pass control directly to
another conversational program without having to respond to the originating
terminal. When you do this, the program that you pass the conversation to must
respond to the person at the terminal. To continue the conversation, Program B
then has the same choices as Program A did: It can respond to the originating
terminal and keep control, or it can pass control in a deferred or immediate
program switch.

Restriction: An immediate program switch is disallowed if the application is
involved in an inbound protected conversation. The application will be abended
with a U711 if it attempts to perform an immediate program switch in this
environment.

To end the conversation, Program A can do either of the following:
v Move a blank to the first byte of the transaction code area of the SPA and then

return the SPA to IMS.
v Respond to the terminal and pass control to a nonconversational program. This

is also called a deferred program switch, but Program A ends the conversation
before passing control to another application program. The second application
program can be an MPP or a transaction-oriented BMP that processes
transactions from the conversational program.

Important points about the scratchpad area (SPA)
When program A passes control of a conversation to program B, program B needs
to have the data that program A saved in the SPA in order to continue the
conversation. IMS gives the SPA for the transaction to program B when program B
issues its first message call.

The SPA is kept with the message. When the truncated data option is on, the size
of the retained SPA is the largest SPA of any transaction in the conversation.

For example, if the conversation starts with TRANA (SPA=100), and the program
switches to a TRANB (SPA=50), the input message for TRANB will contain a SPA
segment of 100 bytes. IMS adjusts the size of the SPA so that TRANB receives only
the first 50 bytes.

Recovery considerations in conversations
Because a conversation involves several steps and can involve several application
programs, consider the following items.
v One way you can make recovery easier is to design the conversation so that all

the database updates are done in the last step of the conversation. This way, if

Chapter 6. Gathering requirements for message processing options 105

the conversation terminates abnormally, IMS can back out all the updates
because they were all made during the same step of the conversation. Updating
the database during the last step of the conversation is also a good idea, because
the input from each step of the conversation is available.

v Although a conversation can terminate abnormally during any step of the
conversation, IMS backs out only the database updates and output messages
resulting during the last step of the conversation. IMS does not back out
database updates or cancel output messages for previous steps, even though
some of that processing might be inaccurate as a result of the abnormal
termination.

v Certain IMS system service calls can be helpful if the program determines that
some of its processing was invalid. These calls include ROLB, SETS, SETU, and
ROLS. The Roll Back call (ROLB) backs out all of the changes that the program has
made to the database. ROLB also cancels the output messages that the program
has created (except those sent with an express PCB) since the program's last
commit point.
The SETS, or SETU, and ROLS (with a token) calls work together to allow the
application program to set intermediate backout points within the call
processing of the program. The application program can set up to nine
intermediate backout points. Your program needs to use the SETS or SETU call to
specify a token for each point. A subsequent ROLS call, using the same token, can
back out all database changes and discard all nonexpress messages processed
since that SETS or SETU call.
Definition: A token is a 4-byte identifier.

v The program can use an express PCB to send a message to the person at the
terminal and to the master terminal operator. When the application program
inserts messages using an express PCB, IMS waits until it has the complete
message, rather than for the occurrence of a commit point, to transmit the
message to its destination. (In this context, “insert” refers to a situation in which
the application program sends the message and it is received by IMS; “transmit”
refers to a situation in which IMS begins sending the message to its destination.)
Therefore, when IMS has the complete message, it will be transmitted even if the
program abnormally terminates. Messages sent with an express PCB are sent to
their final destinations even if the program terminates abnormally or issues a
ROLB call.

v To verify the accuracy of the previous processing, and to correct the processing
that is determined to be inaccurate, you can use the Conversational Abnormal
termination routine, DFSCONE0.
Related reading: For more information on DFSCONE0, see IMS Version 14 Exit
Routines.

v You can write an MPP to examine the SPA, send a message notifying the person
at the terminal of the abnormal termination, make any necessary database calls,
and use a user-written or system-provided exit routine to schedule it.

Related concepts:
“To other programs and terminals” on page 107

Identifying output message destinations
An application program can send messages to another application program or to
IMS terminals. To send output messages, the program issues a call and references
the I/O PCB or an alternate PCB. The I/O PCB and alternate PCBs represent
logical terminals and other application programs with which the application
program communicates.

106 Application Programming

Definition: An alternate PCB is a data communication program communication
block (DCPCB) that you define to describe output message destinations other than
the terminal that originated the input message.
Related concepts:
“Batch message processing: transaction-oriented BMPs” on page 44

The originating terminal
To send a message to the logical terminal that sent the input message, the program
uses an I/O PCB. IMS puts the name of the logical terminal that sent the message
in the I/O PCB when the program receives the message.

As a result, the program need not do anything to the I/O PCB before sending the
message. If a program receives a message from a batch-oriented BMP or CPI
Communications driven program, no logical terminal name is available to put into
the I/O PCB. In these cases, the logical terminal name field contains blanks.
Related concepts:
“Identifying output message destinations” on page 106

To other programs and terminals
When you want to send an output message to a terminal other than, or in addition
to, the terminal that sent the input message, you use an alternate PCB. You can set
the alternate PCB for a specific logical terminal when the program's PSB is
generated, or you can define the alternate PCB as being modifiable. A program can
change the destination of a modifiable alternate PCB while the program is running,
so you can send output messages to several alternate destinations.

The application program might need to respond to the originating terminal before
the person at the originating terminal can send any more messages. This might
occur when a terminal is in response mode or in conversational mode:
v Response mode can apply to a communication line, a terminal, or a transaction.

When response mode is in effect, IMS does not accept any input from the
communication line or terminal until the program has sent a response to the
previous input message. The originating terminal is unusable (for example, the
keyboard locks) until the program has processed the transaction and sent the
reply back to the terminal.
If a response-mode transaction is processed, including Fast Path transactions,
and the application does not insert a response back to the terminal through
either the I/O PCB or alternate I/O PCB, but inserts a message to an alternate
PCB (program-to-program switch), the second or subsequent application
program must respond to the originating terminal and satisfy the response. IMS
will not take the terminal out of response mode.
If an application program terminates normally and does not issue an ISRT call to
the I/O PCB, alternate I/O PCB, or alternate PCB, IMS sends system message
DFS2082I to the originating terminal to satisfy the response for all
response-mode transactions, including Fast Path transactions.
You can define communication lines and terminals as operating in response
mode, not operating in response mode, or operating in response mode only if
processing a transaction that is been defined as response mode. You specify
response mode for communication lines and terminals on the TYPE and
TERMINAL macros, respectively, at IMS system definition. You can define any
transaction as a response-mode transaction; you do this on the TRANSACT
macro at IMS system definition. Response mode is in effect if:
– The communication line has been defined as being in response mode.

Chapter 6. Gathering requirements for message processing options 107

– The terminal has been defined as being in response mode.
– The transaction code has been defined as response mode.

v Conversational mode applies to a transaction. When a program is processing a
conversational transaction, the program must respond to the originating terminal
after each input message it receives from the terminal.

In these processing modes, the program must respond to the originating terminal.
But sometimes the originating terminal is a physical terminal that is made up of
two components—for example, a printer and a display. If the physical terminal is
made up of two components, each component has a different logical terminal
name. To send an output message to the printer part of the terminal, the program
must use a different logical terminal name than the one associated with the input
message; it must send the output message to an alternate destination. A special
kind of alternate PCB is available to programs in these situations; it is called an
alternate response PCB.

Definition: An alternate response PCB lets you send messages when exclusive,
response, or conversational mode is in effect. See the next section for more
information.

Alternate response PCB

The destination of an alternate response PCB must be a logical terminal—you
cannot use an alternate response PCB to represent another application program.
When you use an alternate response PCB during response mode or conversational
mode, the logical terminal represented by the alternate response PCB must
represent the same physical terminal as the originating logical terminal.

In these processing modes, after receiving the message, the application program
must respond by issuing an ISRT call to one of the following:
v The I/O PCB.
v An alternate response PCB.
v An alternate PCB whose destination is another application program, that is, a

program-to-program switch.
v An alternate PCB whose destination is an ISC link. This is allowed only for

front-end switch messages.
Related reading: For more information on front-end switch messages, see IMS
Version 14 Exit Routines.

If one of these criteria is not met, message DFS2082I is sent to the terminal.

Express PCB

Consider specifying an alternate PCB as an express PCB. The express designation
relates to whether a message that the application program inserted is actually
transmitted to the destination if the program abnormally terminates or issues a
ROLL, ROLB, or ROLS call. For all PCBs, when a program abnormally terminates or
issues a ROLL, ROLB, or ROLS call, messages that were inserted but not made
available for transmission are cancelled while messages that were made available
for transmission are never cancelled.

Definition: An express PCB is an alternate response PCB that allows your program
to transmit the message to the destination terminal earlier than when you use a
nonexpress PCB.

108 Application Programming

Henry
Notiz
Express PCB

For a nonexpress PCB, the message is not made available for transmission to its
destination until the program reaches a commit point. The commit point occurs
when the program terminates, issues a CHKP call, or requests the next input
message and when the transaction has been defined with MODE=SNGL.

For an express PCB, when IMS has the complete message, it makes the message
available for transmission to the destination. In addition to occurring at a commit
point, it also occurs when the application program issues a PURG call using that
PCB or when it requests the next input message.

You should provide the answers to the following questions to the data
communications administrator to help in meeting your application's message
processing requirements:
v Will the program be required to respond to the terminal before the terminal can

enter another message?
v Will the program be responding only to the terminal that sends input messages?
v If the program needs to send messages to other terminals or programs as well, is

there only one alternate destination?
v What are the other terminals to which the program must send output messages?
v Should the program be able to send an output message before it terminates

abnormally?
Related concepts:
“Recovery considerations in conversations” on page 105
“Identifying output message destinations” on page 106

Chapter 6. Gathering requirements for message processing options 109

110 Application Programming

Chapter 7. Designing an application for APPC

Advanced Program-to-Program Communication (APPC) is IBM's preferred protocol
for program-to-program communication. Application programs can be distributed
throughout the network and communicate with each other in many hardware
architectures and software environments.

Related Reading: For more information on APPC, see:
v IMS Version 14 Communications and Connections, which includes an overview of

APPC for LU 6.2 devices and CPI Communications concepts.

Overview of APPC and LU 6.2
APPC allows application programs using APPC protocols to enter IMS transactions
from LU 6.2 devices. The LU 6.2 application program runs on an LU 6.2 device
supporting APPC.

APPC creates an environment that allows:
v Remote LU 6.2 devices to enter IMS local and remote transactions
v IMS application programs to insert transaction output to LU 6.2 devices with no

coding changes to existing application programs
v New application programs to make full use of LU 6.2 device facilities
v Data integrity provided by IMS and in LU 6.2 environments that do not have a

distributed sync-point function

Application program types
APPC/IMS is part of IMS TM that uses the CPI communications interface to
communicate with application programs.

APPC/IMS supports the following types of application programs for LU 6.2
processing:
v Standard DL/I
v Modified standard DL/I
v CPI Communications driven

Standard DL/I application program

A standard DL/I application program does not issue any CPI Communications
calls or establish any CPI-C conversations. This application program can
communicate with LU 6.2 products that replace other LU-type terminals using the
IMS API. A standard DL/I application program does not need to be modified,
recompiled, or bound, and it executes as it currently does.

Modified standard DL/I application program

A modified standard DL/I application program is a standard DL/I online IMS TM
application program that uses both DL/I calls and CPI Communications calls. It
can be an MPP, BMP, or IFP that can access full-function databases, DEDBs,
MSDBs, and DB2 for z/OS databases.

© Copyright IBM Corp. 1974, 2015 111

A modified standard DL/I application program uses CPI Communications (CPI-C)
calls to provide support for an LU 6.2 and non-LU 6.2 mixed network. The same
application program can be a standard DL/I on one execution, when the CPI
Communications ALLOCATE verb is not issued, and a modified standard DL/I on a
different execution when the CPI Communications ALLOCATE verb is issued.

A modified standard DL/I application program receives its messages using DL/I
GU calls to the I/O PCB and issues output responses using DL/I ISRT calls. CPI
Communications calls can also be used to allocate new conversations and to send
and receive data for them.

Related Reading: For a list of the CPI Communications calls, see CPI
Communications Reference.

Use a modified standard DL/I application program when you want to use an
existing standard DL/I application program to establish a conversation with
another LU 6.2 device or the same network destination. The standard DL/I
application program is optionally modified and uses new functions, new
application and transaction definitions, and modified DL/I calls to initiate LU 6.2
application programs. Program calls and parameters are available to use the
IMS-provided implicit API and the CPI Communications explicit API.

CPI Communications driven program

A CPI Communications driven application program uses Commit and Backout calls,
and CPI Communications interface calls or LU 6.2 verbs for input and output
message processing. This application program uses the CPI Communications
explicit API, and can access full-function databases, DEDBs, MSDBs, and DB2 for
z/OS databases. An LU 6.2 device can activate a CPI Communications driven
application program only by allocating a conversation.

Unlike a standard DL/I or modified standard DL/I application program, input
and output message processing for a CPI Communications driven program uses
APPC/MVS™ buffers and bypasses IMS message queueing. Because these
application programs do not use the IMS message queue, they can control their
own execution with the partner LU 6.2 system. An IMS APSB call enables you to
allocate a PSB for accessing IMS databases and alternate PCBs.

The application program uses the Common Programming Interface Resource
Recovery (CPI-RR) SRRCMIT verb to initiate an IMS sync point and the CPI-RR
SRRBACK verb for backout. CPI Communications driven application programs use
the CPI-RR calls to initiate IMS sync point processing prior to program
termination.

A CPI Communications driven application program is able to:
v Access any type of database
v Receive and send large messages like the standard DL/I and modified standard

DL/I application programs
v Control the flow of input and output with CPI Communications calls
v Allocate multiple conversations with partner LU 6.2 devices
v Cause synchronization with conversation partners
v Use the IMS implicit API (for example, IMS queue services)
v Use IMS services (for example, sync point at program termination) regardless of

the API that is used

112 Application Programming

Application objectives
Each application type has a different purpose, and its ease-of-use varies depending
on whether the program is a standard DL/I, modified standard DL/I, or a CPI
Communications driven application program.

The following table lists the purpose and ease-of-use for each application type
(standard DL/I, modified standard DL/I, and PI-C driven). This information must
be balanced with IMS resource use.

Table 26. Using application programs in APPC.

Purpose of
application program

Ease of use

Standard DL/I
program

Modified standard
DL/I program PI-C driven program

Inquiry Easy Neutral Very Difficult

Data Entry Easy Easy Difficult

Bulk Transfer Easy Easy Neutral

Cooperative Difficult Difficult Desirable

Distributed Difficult Neutral Desirable

High Integrity Neutral Neutral Desirable

Client Server Easy Neutral Very Difficult

Choosing conversation attributes

The LU 6.2 transaction program indicates how the transaction is to be processed by
IMS. Two processing modes are available: synchronous and asynchronous.

Synchronous conversation

A conversation is synchronous if the partner waits for the response on the same
conversation used to send the input data.

Synchronous processing is requested by issuing the RECEIVE_AND_WAIT verb after
the SEND_DATA verb. Use this mode for IMS response-mode transactions and IMS
conversational-mode transactions.

Example:
MC_ALLOCATE TPN(MYTXN)
MC_SEND_DATA ’THIS CAN BE A RESPONSE MODE’
MC_SEND_DATA ’OR CONVERSATIONAL MODE’
MC_SEND_DATA ’IMS TRANSACTION’
MC_RECEIVE_AND_WAIT

Asynchronous conversation

A conversation is asynchronous if the partner program normally deallocates a
conversation after sending the input data. Output is sent to the TP name of
DFSASYNC.

Asynchronous processing is requested by issuing the DEALLOCATE verb after the
SEND_DATA verb. Use asynchronous processing for IMS commands, message
switches, and non-response, non-conversational transactions.

Chapter 7. Designing an application for APPC 113

Example:
MC_ALLOCATE TPN(OTHERTXN)
MC_SEND_DATA ’THIS MUST BE A MESSAGE SWITCH, IMS COMMAND’
MC_SEND_DATA ’OR A NON-RESP NON-CONV TRANSACTION’
MC_DEALLOCATE

Asynchronous output delivery

Asynchronous output is held on the IMS message queue for delivery. When the
output is enqueued, IMS attempts to allocate a conversation to send this output. If
this fails, IMS holds the output for later delivery. This delivery can be initiated by
an operator command (/ALLOC), or by the enqueue of a new message for this LU
6.2 destination.

MSC synchronous and asynchronous conversation

MSC remote application messages from both synchronous and asynchronous APPC
conversations can be queued on the multiple systems coupling (MSC) link. These
messages can then be sent across the MSC link to a remote IMS for processing.
Related concepts:
“LU 6.2 flow diagrams” on page 122

Conversation type
The APPC conversation type defines how data is passed on and retrieved from
APPC verbs.

It is similar in concept to file blocking and affects both ends of the conversation.

APPC supports two types of conversations:

Basic conversation
This low-conversation allows programs to exchange data in a standardized
format. This format is a stream of data containing 2-byte length fields
(referred to as LLs) that specify the amount of data to follow before the
next length field. The typical data pattern is:
LL, data, LL, data

Each grouping of LL, data is referred to as a logical record. A basic
conversation is used to send multiple segments with one verb and to
receive maximum data with one verb.

Mapped conversation
This high-conversation allows programs to exchange arbitrary data records
in data formats approved by application programmers. One send verb
results in one receive verb, and z/OS and VTAM® handle the buffering.

Related Reading: For more information on basic and mapped conversations, see
v Systems Network Architecture: LU 6.2 Reference: Peer Protocols and
v Systems Network Architecture: Transaction Programmer's Reference Manual for LU

Type 6.2

114 Application Programming

Conversation state
CPI Communications uses conversation state to determine what the next set of
actions will be.

Examples of conversation states are:

RESET
The initial state before communications begin.

SEND The program can send or optionally receive.

RECEIVE
The program must receive or abort.

CONFIRM
The program must respond to a partner.

The basic rules for APPC verbs are:
v The program that initiates the conversation speaks first.
v Only one APPC verb can be outstanding at time.
v Programs take turns sending and receiving.
v The state of the conversation determines the verbs a program can issue.

Synchronization level
The APPC synchronization level defines the protocol that is used when changing
conversation states.

APPC and IMS support the following synchronization level values:

SYNCLVL=NONE
Specifies that the programs do not issue calls or recognize returned
parameters relating to synchronization.

SYNCLVL=CONFIRM
Specifies that the programs can perform confirmation processing on the
conversation.

SYNCLVL=SYNCPT
Specifies that the programs participate in coordinated commit processing
on resources that are updated during the conversation under the z/OS
Resource Recovery Services (RRS) recovery platform. A conversation with
this level is also called a protected conversation.

Additionally, either IMS or RRS can be specified as the synchronization point
manager.

RRS=Y
If AOS=B, AOS=S, or AOS=X, transactions with SYNCLVL=NONE or
CONFIRM are processed with IMS as the synchronization point manager.

If AOS=B or AOS=Y, transactions with SYNCLVL=SYNCPT are processed
with RRS as the synchronization point manager.

In a shared message queue environment where the front-end IMS system is
also the back-end IMS system, transactions with SYNCLVL=SYNCPT are
processed with RRS as the synchronization point manager.

Chapter 7. Designing an application for APPC 115

In a non-shared message queue environment, transactions with
SYNCLVL=SYNCPT are processed with RRS as the synchronization point
manager.

Restriction: The AOS= setting is applicable to shared message queue
environment only.

RRS=N
If AOS=B, AOS=S, or AOS=X, transactions with SYNCLVL=NONE or
CONFIRM are processed with IMS as the synchronization point manager.

If the back-end IMS system has RRS=N specified, transactions with
SYNCLVL=SYNCPT are processed only at the front-end IMS system.
However, if the front-end IMS system also has RRS=N specified,
transactions with SYNCLVL=SYNCPT are not processed at all.

Allocating a conversation with SYNCLVL=SYNCPT requires the RRS as the
synchronization point manager. RRS controls the commitment of protected
resources by coordinating the commit or backout request with the participating
owners of the updated resources, the resource managers. IMS is the resource
manager for DL/I, Fast Path data, and the IMS message queues. The application
program decides whether the data is to be committed or aborted and
communicates this decision to the synchronization point manager. The
synchronization point manager then coordinates the actions in support of this
decision among the resource managers.
Related concepts:

Activating protected conversations (Communications and Connections)

Introduction to resource recovery
Most customers maintain computer resources that are essential to the survival of
their businesses. When these resources are updated in a controlled and
synchronized manner, they are said to be protected resources or recoverable
resources. These resources can all reside locally (on the same system) or be
distributed (across nodes in the network). The protocols and mechanisms for
regulating the updating of multiple protected resources in a consistent manner is
provided in z/OS with z/OS Resource Recovery Services (RRS).

Participants in resource recovery

As shown in the following figure, the Resource Recovery environment is composed
of three participants:
v Sync-point manager
v Resource managers
v Application program

RRS is the sync-point manager, also known as the coordinator. The sync-point
manager controls the commitment of protected resources by coordinating the
commit request (or backout request) with the resource managers, the participating
owners of the updated resources. These resource managers are known as
participants in the sync-point process. IMS participates as a resource manager for
DL/I, Fast Path, and DB2 for z/OS data if this data has been updated in such an
environment.

116 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_cpic_dsp_pcv_activatepcv.htm#ims_cpic_dsp_pcv_activatepcv

The final participant in this resource recovery protocol is the application program,
the program accessing and updating protected resources. The application program
decides whether the data is to be committed or aborted and relates this decision to
the sync-point manager. The sync-point manager then coordinates the actions in
support of this decision among the resource managers.

Two-phase commit protocol

As shown in the following figure, the two-phase commit protocol is a process
involving the sync-point manager and the resource manager participants to ensure
that of the updates made to a set of resources by a third participant, the
application program, either all updates occur or none. In simple terms, the
application program decides to commit its changes to some resources; this commit
is made to the sync-point manager that then polls all of the resource managers as
to the feasibility of the commit call. This is the prepare phase, often called phase
one. Each resource manager votes yes or no to the commit.

After the sync-point manager has gathered all the votes, phase two begins. If all
votes are to commit the changes, then the phase two action is commit. Otherwise,
phase two becomes a backout. System failures, communication failures, resource
manager failures, or application failures are not barriers to the completion of the
two-phase commit process.

The work done by various resource managers is called a unit of recovery (UOR) and
spans the time from one consistent point of the work to another consistent point,
usually from one commit point to another. It is the unit of recovery that is the
object of the two-phase commit process.

Resource
manager

Resource
manager

Application
program

RRS
sync point
manager

Figure 25. Participants in resource recovery

Chapter 7. Designing an application for APPC 117

Notes:

1. The application and IMS make a connection.
2. IMS expresses protected interest in the work started by the application. This

tells RRS that IMS will participate in the 2-phase commit process.
3. The application makes a read request to an IMS resource.
4. Control is returned to the application following its read request.
5. The application updates a protected resource.
6. Control is returned to the application following its update request.
7. The application requests that the update be made permanent by way of the

SRRCMIT call.
8. RRS calls IMS to do the prepare (phase 1) process.
9. IMS returns to RRS with its vote to commit.

10. RRS calls IMS to do the commit (phase 2) process.
11. IMS informs RRS that it has completed phase 2.
12. Control is returned to the application following its commit request.

Local versus distributed

The residence of the participants involved in the recovery process determines
whether that recovery is considered local or distributed. In a local recovery
scenario, all the participants reside on the same single system. In a distributed
recovery scenario, the participants are scattered over multiple systems. The
following figure shows the communication between Resource Manager participants

Figure 26. Two-phase commit process with one resource manager

118 Application Programming

in a distributed resource recovery. There is no conceptual difference between a
local and distributed recovery in the functions provided by RRS. However, to
distribute the original sync-point manager's function to involve remote sync-point
managers, a special resource manager is required. The APPC communications
resource manager provides this support in the distributed environment.

Summary of z/OS Resource Recovery Services support
z/OS Resource Recovery Services (RRS) provides a system resource recovery
platform so that applications running on z/OS can access local and distributed
resources and have system coordinated recovery management of these resources.

The support includes:
v A synchronization point manager to coordinate the two-phase commit process
v Implementation of the SAA Commit and Backout callable services for use by

application programs

Figure 27. Distributed resource recovery

Chapter 7. Designing an application for APPC 119

v A mechanism to associate resources with an application instance
v Services for resource manager registration and participation in the two-phase

commit process with RRS
v Services to allow resource managers to express interest in an application instance

and be informed of commit and backout requests
v Services to enable resource managers to obtain system data to restore their

resources to consistent state
v A communications resource manager (called APPC/PC for APPC/Protected

Conversations) so that distributed applications can coordinate their recovery
with participating local resource managers

Restrictions:

v Extended Recovery Facility (XRF)
Running protected conversations in an IMS-XRF environment does not
guarantee that the alternate system can resume and resolve any unfinished work
started by the active system. This process is not guaranteed because a failed
resource manager must re-register with its original RRS system if the RRS is still
available when the resource manager restarts. Only if the RRS on the active
system is not available can an XRF alternate can register with another RRS in the
sysplex and obtain the incomplete unit of recovery data of the failing active.

Recommendation: Because IMS retains indoubt units-of-recovery indefinitely
until they are resolved, switch back to the original active system as soon as
possible to pick up unit-of -recovery information to resolve and complete all the
work of the resource managers involved. If this is not possible, the indoubt
units-of-recovery can be resolved using commands.

v Remote Site Recovery (RSR)
Active systems tracked by a remote system in an RSR environment can
participate in protected conversations, although it will be necessary to resolve
indoubt units-of-recovery using commands if they exist after a takeover to a
remote site has been done. This is because the remote site is probably not part of
the active sysplex and the new IMS cannot acquire unfinished unit-of-recovery
information from RRS. IMS provides commands to interrogate protected
conversation work and to resolve the unfinished unit-of-recovery, if necessary.

v Batch and non-message-driven BMPs in a DBCTL Environment
Distributed Sync Point does not support the IMS batch environment. In a
DBCTL environment, inbound protected conversations are not possible.
However, a BMP in a DBCTL environment can allocate an outbound protected
conversation, which will be supported by Distributed Sync Point and RRS.

Distributed sync point
The Distributed Sync Point support enables IMS and remote application programs
(APPC or OTMA) to participate in protected conversations with coordinated
resource updates and recoveries. Before this support, IMS acted as the sync-point
manager. In this new scenario, z/OS manages the sync-point process on behalf of
the conversation participants: the application program and IMS (now acting as a
resource manager).

z/OS implements a system resource recovery platform, the z/OS Resource
Recovery Services (RRS). RRS supports the Common Programming Interface -
Resource Recovery (CPI-RR), an element of the SAA Common Programming
Interface that defines resource recovery and provides for the coordinated

120 Application Programming

management of resource recovery for both local and distributed resources. In
addition to RRS, a communications resource manager (called APPC/PC for
APPC/Protected Conversations) provides distribution of the recovery.

In the APPC environment, a protected conversation is initiated when the
application program allocates an APPC conversation with SYNC_LEVEL=SYNCPT. Both
IMS and APPC are resource managers in this scenario. In the OTMA environment,
some additional code is required because OTMA is not a resource manager. The
additional code needed is an OTMA adapter, IBM supplied or equivalent. This
adapter indicates to IMS (in the OTMA message prefix) that this message is part of
a protected conversation, and thus IMS and the adapter are participants in the
coordinated commit process as managed by RRS.

Application programmers can now develop APPC application programs (local and
remote) and remote OTMA application programs that use RRS as the sync-point
manager, rather than IMS. This enhancement enables resources across multiple
platforms to be updated and recovered in a coordinated manner.

Distributed sync point concepts

The Distributed Sync Point support entails:
v Changes in IMS that allow it to function as a resource manager under RRS
v Changes to the application program environment that support using applications

in protected conversations
v Changes to some commands that aid the user

Impact on the network

Network traffic will increase as a result of the conversation participants and the
sync-point manager communicating with each other.

Application programming interface for LU type 6.2
IMS application programs can use the IMS implicit LU 6.2 API to access LU 6.2
devices. This API provides compatibility with non-LU 6.2 device types so that the
same application program can be used from both LU 6.2 and non-LU 6.2 devices.

The API adds to the APPC interface by supplying IMS-provided processing for the
application program. You can use the explicit CPI Communications interface for
APPC functions and facilities for new or rewritten IMS application programs.

Implicit API

The implicit API accesses an APPC conversation indirectly. This API uses the
standard DL/I calls (GU, ISRT, PURG) to send and receive data. It allows application
programs that are not specific to LU 6.2 protocols to use LU 6.2 devices.

The API uses new and changed DL/I calls (CHNG, INQY, SETO) to utilize LU 6.2.
Using the existing IMS application programming base, you can write specific
applications for LU 6.2 using this API and not using the CPI Communications
calls. Although the implicit API uses only some of the LU 6.2 capabilities, it can be
a useful simplification for many applications. The implicit API also provides
function outside of LU 6.2, like message queueing and automatic asynchronous
message delivery.

Chapter 7. Designing an application for APPC 121

IMS generates all CPI Communications calls under the implicit API. The
application interaction is strictly with the IMS message queue.

The remote LU 6.2 system must be able to handle the LU 6.2 flows. APPC/MVS
generates these flows from the CPI Communications calls issued by the IMS
application program using the implicit API. An IMS application program can use
the explicit API to issue the CPI Communications directly. This is useful with
remote LU 6.2 systems that have incomplete LU 6.2 implementations, or that are
incompatible with the IMS implicit API support.

The existing API is extended so that:
v Asynchronous LU 6.2 output is created by using alternate PCBs that reference

LU 6.2 destinations. The DL/I CHNG call can supply parameters to specify an LU
6.2 destination. Default values are used for omitted parameters.

v An application program can retrieve the current conversation attributes such as
the conversation type (basic or mapped), the sync_level (NONE, CONFIRM, or
SYNCPT), and asynchronous or synchronous conversation.

v A terminal message switch can be used to and from LU 6.2 devices.

Explicit API

The explicit API (the CPI Communications API) can be used by any IMS
application program to access an APPC conversation directly.

IMS resources are available to the CPI Communications driven application
program only if the application issues the APSB (Allocate PSB) call. The CPI
Communications driven application program must use the CPI-RR SRRCMIT and
SRRBACK verbs to initiate an IMS sync point or backout, or if SYNCLVL=SYNCPT is
specified, to communicate the sync point decision to the z/OS Resource Recovery
Services sync point manager.

Related Reading: For a description of the SRRCMIT and SRRBACK verbs, see SAA CPI
Resource Recovery Reference.

LU 6.2 partner program design
The flow of a transaction that is sent from an LU 6.2 device differs, depending on
the conversation attributes and synchronization levels. Different results occur, and
the partner system takes actions accordingly.

LU 6.2 flow diagrams
The following diagrams show the flows for transactions that are sent from an LU
6.2 device.

The following figures show:
v The flow between a synchronous or asynchronous LU 6.2 application program

and an IMS application program in a single (local) IMS system
v The flow between a synchronous or asynchronous LU 6.2 application program in

a single (local) IMS system and an IMS application program in a remote IMS
system across a multiple systems coupling (MSC) link

v A backout scenario with SYNC_LEVEL=SYNCPT

Differences in buffering and encapsulation of control data with user data may
cause variations in the flows. The control data are the 3 returned fields from the

122 Application Programming

Receive APPC verb: Status_received, Data_received, and Request_to_send_received.
Any variations based on these differences will not affect the function or use of the
flows.

Figure 29 on page 124 shows the flow of a local synchronous transaction when
Sync_level is Confirm.

Figure 28. Flow of a local IMS synchronous transaction when Sync_level=None

Chapter 7. Designing an application for APPC 123

Figure 30 on page 125 shows the flow of a local asynchronous transaction when
Sync_level is None.

Figure 29. Flow of a local IMS synchronous transaction when Sync_level=Confirm

124 Application Programming

Figure 31 on page 126 shows the flow of a local asynchronous transaction when
Sync_level is Confirm.

Figure 30. Flow of a local IMS asynchronous transaction when Sync_level=None

Chapter 7. Designing an application for APPC 125

The following figure shows the flow of a local conversational transaction When
Sync_level is None.

Figure 31. Flow of a local IMS asynchronous transaction when Sync_level=Confirm

126 Application Programming

The following figure shows the flow of a local IMS command when Sync_level is
None.

Figure 32. Flow of a local IMS conversational transaction when Sync_level=None

Chapter 7. Designing an application for APPC 127

The following figure shows the flow of a local asynchronous command when
Sync_level is Confirm.

Figure 33. Flow of a local IMS command when Sync_level=None

128 Application Programming

The following figure shows the flow of a message switch When Sync_level is
None.

Figure 34. Flow of a local IMS asynchronous command when Sync_level=Confirm

Chapter 7. Designing an application for APPC 129

Synchronous is used to verify that no error has occurred while processing
DFSAPPC. If an error occurred, the error message returns before DEALLOCATE.

The following figure shows the flow of a CPI-C driven program when Sync_level
is None.

Figure 35. Flow of a message switch when Sync_level=None

130 Application Programming

The following figure shows the flow of a remote synchronous transaction when
Sync_level is None.

Figure 36. Flow of a local CPI communications driven program when Sync_level=None

Chapter 7. Designing an application for APPC 131

The following figure shows the flow of a remote asynchronous transaction when
Sync_level is None.

Figure 37. Flow of a remote IMS synchronous transaction when Sync_level=None

132 Application Programming

The following figure shows the flow of a remote asynchronous transaction when
Sync_level is Confirm.

Figure 38. Flow of a remote IMS asynchronous transaction when Sync_level=None

Chapter 7. Designing an application for APPC 133

The following figure shows the flow of a remote synchronous transaction when
Sync_level is Confirm.

Figure 39. Flow of a remote IMS asynchronous transaction when Sync_level=Confirm

134 Application Programming

The scenarios shown in the following figure provide examples of the two-phase
process for the supported application program types. The LU 6.2 verbs are used to
illustrate supported functions and interfaces between the components. Only
parameters pertinent to the examples are included. This does not imply that other
parameters are not supported.

The following figure shows a standard DL/I program commit scenario when
Sync_Level=Syncpt.

Figure 40. Flow of a remote IMS synchronous transaction when Sync_level=Confirm

Chapter 7. Designing an application for APPC 135

Notes:

▌1▐Sync_Level=Syncpt triggers a protected resource update.
▌2▐This application program inserts output for the remote application to the
IMS message queue.
▌3▐ The GU initiates the transfer of the output.
▌4▐ The remote application sends a Confirmed after receiving data (output).
▌5▐ IMS issues ATRCMIT (equivalent to SRRCMIT) to start the two-phase process.

The following figure shows a CPI-C driven commit scenario when
Sync_Level=Syncpt.

Figure 41. Standard DL/I program commit scenario when Sync_Level=Syncpt

136 Application Programming

Notes:

▌1▐Sync_Level=Syncpt triggers a protected resource update.
▌2▐ The programs send and receive data.
▌3▐ The remote application decides to commit the updates.
▌4▐ The CPI-C program issues SRRCMIT to commit the changes.
▌5▐ The commit return code is returned to the remote application.

The following figure shows a standard DL/I program backout scenario when
Sync_Level=Syncpt.

Figure 42. CPI-C driven commit scenario when Sync_Level=Syncpt

Chapter 7. Designing an application for APPC 137

Notes:

▌1▐Sync_Level=Syncpt triggers a protected-resource update.
▌2▐ This application program inserts output for the remote application to the
IMS message queue.
▌3▐ The GU initiates the transfer of the output.
▌4▐ The remote application decides to back out any updates.
▌5▐ IMS abends the application with a U119 to back out the application.
▌6▐ The backout return code is returned to the remote application.

The following figure shows a standard DL/I program backout scenario when
Sync_Level=Syncpt.

Figure 43. Standard DL/I program U119 backout scenario when Sync_Level=Syncpt

138 Application Programming

Notes:

▌1▐Sync_Level=Syncpt triggers a protected-resource update.
▌2▐ This application program inserts output for the remote application to the
IMS message queue.
▌3▐ The GU initiates the transfer of the output.
▌4▐ The remote application sends a Confirmed after receiving data (output).
▌5▐ IMS issues ATBRCVW on behalf of the DL/I application to wait for a
commit or backout.
▌6▐ The remote application decides to back out any updates.
▌7▐ IMS abends the application with U0711 to back out the application.
▌8▐ The backout return code is returned to the remote application.

The following figure shows a standard DL/I program ROLB scenario when
Sync_Level=Syncpt.

Figure 44. Standard DL/I program U0711 backout scenario when Sync_Level=Syncpt

Chapter 7. Designing an application for APPC 139

Notes:

▌1▐Sync_Level=Syncpt triggers a protected-resource update.
▌2▐ This application program inserts output for the remote application to the
IMS message queue.

The following figure shows multiple transactions in the same commit when
Sync_Level=Syncpt.

Standard DL/I
Program IMS LU APPC VTAM

Remote LU 6.2
Application

2

Sched Transaction

ROLB

1Allocate
Sync Level =Syncpt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Send

Receive

Sched Exit

Receive

OK,Data

Receive

OK,Send

GU IOPCB

'QD' STATUS

ISRT IOPCB

GN IOPCB

Figure 45. Standard DL/I program ROLB scenario when Sync_Level=Syncpt

140 Application Programming

Notes:

▌1▐ An allocate with Sync_Level=Syncpt triggers a protected resource update
with Conversation 1.
▌2▐ The first transaction provides the output for Conversation 1.
▌3▐ An allocate with Sync_Level=Syncpt triggers a protected resource update
with Conversation 2.
▌4▐ The second transaction provides the output for Conversation 2.
▌5▐ The remote application issues SRRCMIT to commit both transactions.

Figure 46. Multiple transactions in same commit when Sync_Level=Syncpt

Chapter 7. Designing an application for APPC 141

▌6▐ IMS issues ATRCMIT to start the two-phase process on behalf of each DL/I
application.

Related concepts:
“Application objectives” on page 113

Integrity tables
The following tables show the message integrity of conversations, results of
processing when integrity is compromised, and how IMS recovers APPC messages.

The following table shows the results, from the viewpoint of the IMS partner
system, of normal conversation completion, abnormal conversation completion due
to a session failure, and abnormal conversation completion due to non-session
failures. These results apply to asynchronous and synchronous conversations and
both input and output. This table also shows the outcome of the message, and the
action that the partner system takes when it detects the failure. An example of an
action, under “LU 6.2 Session Failure,” is a programmable work station (PWS)
resend.

Table 27. Message integrity of conversations

Conversation attributes Normal LU 6.2 session failure1 Other failure2

Synchronous
Sync_level=NONE

Input: Reliable
Output: Reliable

Input: PWS resend
Output: PWS resend

Input: Reliable
Output: Reliable

Synchronous
Sync_level=CONFIRM

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Synchronous
Sync_level=SYNCPT

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Asynchronous
Sync_level=NONE

Input: Ambiguous
Output: Reliable

Input: Undetectable
Output: Reliable

Input: Undetectable
Output: Reliable

Asynchronous
Sync_level=CONFIRM

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Asynchronous
Sync_level=SYNCPT

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Input: Reliable
Output: Reliable

Notes:

1. A session failure is a network-connectivity breakage.

2. A non-session failure is any other kind of failure, such as invalid security authorization.

3. IMS resends asynchronous output if CONFIRM is lost; therefore, the PWS must tolerate duplicate output.

The following table shows the specifics of the processing windows when integrity
is compromised (the message is either lost or its state is ambiguous). The table
indicates the relative probability of an occurrence of each window and whether
output is lost or duplicated.

A Sync_level value of NONE does not apply to asynchronous output, because IMS
always uses Sync_level=CONFIRM for such output.

Table 28. Results of processing when integrity is compromised

Conversation attributes

State of window1

before accepting
transaction

Probability of
window state

Possible action while
sending response

Probability of action
while sending
response

Synchronous
Sync_level=NONE

ALLOCATE to
PREPARE_TO_
RECEIVE return

Medium Can lose or send
duplicate output.

Medium

142 Application Programming

Table 28. Results of processing when integrity is compromised (continued)

Conversation attributes

State of window1

before accepting
transaction

Probability of
window state

Possible action while
sending response

Probability of action
while sending
response

Synchronous
Sync_level=CONFIRM

PREPARE_TO_
RECEIVE to
PREPARE_TO_
RECEIVE return

Small CONFIRM to IMS
receipt. Can cause
duplicate output.

Small

Synchronous
Sync_level=SYNCPT

PREPARE_TO_
RECEIVE to
PREPARE_TO_
RECEIVE return

Small CONFIRM to IMS
receipt. Can cause
duplicate output.

Small

Asynchronous
Sync_level=NONE

Allocate to
Deallocate

High CONFIRMED to IMS
receipt. Can cause
duplicate output.

Small

Asynchronous
Sync_level=CONFIRM

PREPARE_TO_
RECEIVE to
PREPARE_TO_
RECEIVE return

Small2 CONFIRMED to IMS
receipt. Can cause
duplicate output.

Small

Asynchronous
Sync_level=SYNCPT

PREPARE_TO_
RECEIVE to
PREPARE_TO_
RECEIVE return

Small2 CONFIRMED to IMS
receipt. Can cause
duplicate output.

Notes:

1. The term window refers to a period of time when certain events can occur, such as the consequences described in
this table.

2. Can be recoverable.

The following table indicates how IMS recovers APPC transactions across IMS
warm starts, XRF takeovers, APPC session failures, and MSC link failures.

Table 29. Recovering APPC messages

Message type
IMS warm start
(NRE or ERE) XRF takeover

APPC (LU 6.2)
session fail

MSC LINK
failure

Local Recoverable Tran., Non
Resp., Non Conversation - APPC
Sync. Conv. Mode - APPC Async.
Conv. Mode

Discarded (2)
Recovered

Discarded (4)
Recovered

Discarded (6)
Recovered (1)

N/A (9)
N/A (9)

Local Recoverable Tran., Conv. or
Resp. mode - APPC Sync. Conv.
Mode - APPC Async. Conv.
Mode

Discarded (2)
N/A (8)

Discarded (4)
N/A (8)

Discarded (6)
N/A (8)

N/A (9)
N/A (8,9)

Local Non Recoverable Tran., -
APPC Sync. Conv. Mode - APPC
Async. Conv. Mode

Discarded (2)
Discarded (2) Discarded (4)

Discarded (6)
Recovered (1)

N/A (9)
N/A (9)

Remote Recoverable Tran., Non
Resp., Non Conv. - APPC Sync.
Conv. Mode - APPC Async.
Conv. Mode

Discarded (2,5)
Recovered

Discarded (3,5)
Recovered

Recovered (1)
Recovered (1)

Recovered (7)
Recovered (7)

Remote Recoverable Tran., Conv.
or Resp. mode - APPC Sync.
Conv. Mode - APPC Async.
Conv. Mode

Discarded (2,5)
N/A (8)

Discarded (3,5)
N/A (8)

Recovered (1)
N/A (8)

Recovered (7)
N/A (8)

Chapter 7. Designing an application for APPC 143

Table 29. Recovering APPC messages (continued)

Message type
IMS warm start
(NRE or ERE) XRF takeover

APPC (LU 6.2)
session fail

MSC LINK
failure

Remote Non Recoverable Tran., -
APPC Sync. Conv. Mode - APPC
Async. Conv. Mode

Discarded (2,5)
Discarded (2,5)

Discarded (3,5)
Discarded (3,5)

Recovered (1)
Recovered (1)

Recovered (7)
Recovered (7)

Note:

1. This recovery scenario assumes the message was enqueued before failure; otherwise, the message is discarded.

2. The message is discarded during IMS warm-start processing.

3. The message is discarded when the MSC link is restarted and when the message is taken off the queue (for
sending across the link).

4. The message is discarded when the message region is started and when the message is taken off the queue (for
processing by the application program).

5. For all remote MSC APPC transactions, if the message has already been sent across the MSC link to the remote
system when the failure occurs in the local IMS, the message is processed. After the message is processed by the
remote application program and a response message is sent back to the local system, it is enqueued to the
DFSASYNC TP name of the LU 6.2 device or program that submitted the original transaction.

6. At sync point, the User Message Control Error exit routine (DFSCMUX0) can prevent the transaction from being
aborted and the output message can be rerouted (recovered).

For more information about this exit routine, see IMS Version 14 Exit Routines.

7. The standard MSC Link recovery protocol recovers all messages that are queued or are in the process of being
sent across the MSC link when the link fails.

8. IMS conversational-mode and response-mode transactions cannot be submitted from APPC asynchronous
conversation sessions. APPC synchronous conversation-mode must be used.

9. MSC link failures do not affect local transactions.

DFSAPPC message switch
DFSAPPC is an LU 6.2 descriptor that provides an IMS system service.

It allows LU 6.2 application programs to send messages to the following:
v Application programs (transactions)
v IMS-managed local or remote LTERMs (message switches)
v LU name and TP name

Messages sent with the LTERM= option are directed to IMS-managed local or
remote LTERMs. Messages sent without the LTERM= option are sent to the
appropriate LU 6.2 application or IMS application program.

Because the LTERM can be an LU 6.2 descriptor name, the message is sent to the
LU 6.2 application program as if an LU 6.2 device had been explicitly selected.

With DFSAPPC, message delivery is asynchronous. If a message is allocated and
the allocate fails, the message is held on the IMS message queue until it can be
successfully delivered.

Example: In the LU 6.2 conversation example, an IMS application issues a
DFSAPPC message switch to its partner with the LU name FRED and TPN name
REPORT. REPI is the user data.
DFSAPPC (TPN=REPORT LU=FRED) REP1

You can use a 17-byte network-qualified name in the LU= field.

144 Application Programming

Restriction: LU 6.2 architecture prohibits the use of the ALTRESP PCB on a CHNG
call in an LU 6.2 conversation. The LU 6.2 conversation can only be associated
with the IOPCB. The application sends a message on the existing LU 6.2
conversation (synchronous) or has IMS create a new conversation (asynchronous)
using the IOPCB. Since there is no LTERM associated with an LU 6.2 conversation,
only the IOPCB represents the original LU 6.2 conversation.

Related Reading: For more information about DFSAPPC, see IMS Version 14
Communications and Connections.

Chapter 7. Designing an application for APPC 145

146 Application Programming

Chapter 8. Testing an IMS application program

You should perform a program unit test on your IMS application program to
ensure that the program correctly handles its input data, processing, and output
data. The amount and type of testing you do depends on the individual program.

Recommendations for testing an IMS program
Before you start testing your program, be aware of your established test
procedures.

To start testing, you need the following three items:
v Test JCL.
v A test database. Never test a program using a production database because the

program, if faulty, might damage valid data.
v Test input data. The input data that you use need not be current, but it should

be valid. You cannot be sure that your output data is valid unless you use valid
input data.

The purpose of testing the program is to make sure that the program can correctly
handle all the situations that it might encounter. To thoroughly test the program,
try to test as many of the paths that the program can take as possible.

Recommendations:

v Test each path in the program by using input data that forces the program to
execute each of its branches.

v Be sure that your program tests its error routines. Again, use input data that will
force the program to test as many error conditions as possible.

v Test the editing routines your program uses. Give the program as many different
data combinations as possible to make sure it correctly edits its input data.

Testing DL/I call sequences (DFSDDLT0) before testing your IMS
program

The DL/I test program, DFSDDLT0, is an IMS application program that executes
the DL/I calls you specify against any database.

Restriction: DFSDDLT0 does not work if you are using a coordinator controller
(CCTL).

An advantage of using DFSDDLT0 is that you can test the DL/I call sequence you
will use prior to coding your program. Testing the DL/I call sequence before you
test the program makes debugging easier, because by the time you test the
program, you know that the DL/I calls are correct. When you test the program,
and it does not execute correctly, you know that the DL/I calls are not part of the
problem if you have already tested them using DFSDDLT0.

For each DL/I call that you want to test, you give DFSDDLT0 the call and any
SSAs that you are using with the call. DFSDDLT0 then executes and gives you the
results of the call. After each call, DFSDDLT0 shows you the contents of the DB
PCB mask and the I/O area. This means that for each call, DFSDDLT0 checks the

© Copyright IBM Corp. 1974, 2015 147

access path you have defined for the segment, and the effect of the call. DFSDDLT0
is helpful in debugging because it can display IMS application control blocks.

To indicate to DFSDDLT0 the call you want executed, you use four types of control
statements:

Status statements establish print options for DFSDDLT0's output and select the
DB PCB to use for the calls you specify.
Comment statements let you choose whether you want to supply comments.
Call statements indicate to DFSDDLT0 the call you want to execute, any SSAs
you want used with the call, and how many times you want the call executed.
Compare statements tell DFSDDLT0 that you want it to compare its results
after executing the call with the results you supply.

In addition to testing call sequences to see if they work, you can also use
DFSDDLT0 to check the performance of call sequences.

Using BTS to test your IMS program
IMS Batch Terminal Simulator for z/OS (BTS) is a valuable tool for testing
programs because you can use it to test call sequences. The documentation that
BTS produces is helpful in debugging. You can also test online application
programs without actually running them online.

Restriction: BTS does not work if you are using a CCTL or running under DBCTL.

Related reading: For information about how to use BTS, see IMS Batch Terminal
Simulator for z/OS User's Guide.

Tracing DL/I calls with image capture for your IMS program
The DL/I image capture program (DFSDLTR0) is a trace program that can trace
and record DL/I calls issued by all types of IMS application programs.

Restriction: The image capture program does not trace calls to Fast Path
databases.

You can run the image capture program in a DB/DC or a batch environment to:
v Test your program

If the image capture program detects an error in a call it traces, it reproduces as
much of the call as possible, although it cannot document where the error
occurred, and cannot always reproduce the full SSA.

v Produce input for DFSDDLT0

You can use the output produced by the image capture program as input to
DFSDDLT0. The image capture program produces status statements, comment
statements, call statements, and compare statements for DFSDDLT0.

v Debug your program

When your program terminates abnormally, you can rerun the program using
the image capture program, which can then reproduce and document the
conditions that led to the program failure. You can use the information in the
report produced by the image capture program to find and fix the problem.

148 Application Programming

Using image capture with DFSDDLT0
The image capture program produces the following control statements that you can
use as input to DFSDDLT0.
v Status statements

When you invoke the image capture program, it produces the status statement.
The status statement it produces:
– Sets print options so that DFSDDLT0 prints all call trace comments, all DL/I

calls, and the results of all comparisons.
– Determines the new relative PCB number each time a PCB change occurs

while the application program is executing.
v Comments statement

The image capture program also produces a comments statement when you
invoke it. The comments statements give:
– The time and date IMS started the trace
– The name of the PSB being traced
The image capture program also produces a comments statement preceding any
call in which IMS finds an error.

v Call statements

The image capture program produces a call statement for each DL/I call the
application program issues. It also generates a CHKP call when it starts the trace
and after each commit point or CHKP request.

v Compare statements

The image capture program produces data and PCB comparison statements if
you specify COMP on the TRACE command (if you run the image capture
program online), or on the DLITRACE control statement (if you run the image
capture program as a batch job).

Restrictions on using image capture output
The status statement of the image capture call is based on relative PCB position.

When the PCB parameter LIST=NO has been specified, the status statement may
need to be changed to select the PCB as follows:
v If all PCBs have the parameter LIST=YES, the status statement does not need to

be changed.
v If all PCBs have the parameter LIST=NO, the status statement needs to be

changed from the relative PCB number to the correct PCB name.
v If some PCBs have the parameter LIST=YES and some have the parameter

LIST=NO, the status statement needs to be changed as follows:
– The PCB relative position is based on all PCBs as if LIST=YES.
– For PCBs that have a PCB name, the status statement can be changed to use

the PCB name based on a relative PCB number.
– For PCBs that have LIST=YES and no PCB name, change the relative PCB

number to refer to the relative PCB number in the user list by looking at the
PCB list using LIST=YES and LIST=NO.

Running image capture online
When you run the image capture program online, the trace output goes to the IMS
log data set. To run the image capture program online, you issue the IMS TRACE
command from the IMS master terminal.

Chapter 8. Testing an IMS application program 149

If you trace a BMP or an MPP and you want to use the trace results with
DFSDDLT0, the BMP or MPP must have exclusive write access to the databases it
processes. If the application program does not have exclusive access, the results of
DFSDDLT0 may differ from the results of the application program. When you trace
a BMP that accesses GSAM databases, you must include an //IMSERR DD
statement to get a formatted dump of the GSAM control blocks.

The following diagram shows the TRACE command format:

►► / TRACE SET
ON
OFF PSB psbname

NOCOMP
COMP

►◄

SET ON|OFF
Turns the trace on or off.

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than one
PSB at the same time by issuing a separate TRACE command for each PSB.

COMP|NOCOMP
Specifies whether you want the image capture program to produce data and
PCB compare statements to be used as input to DFSDDLT0.

Running image capture as a batch job
To run the image capture program as a batch job, you use the DLITRACE control
statement in the DFSVSAMP DD data set.

In the DLITRACE control statement, you specify:
v Whether you want to trace all of the DL/I calls the program issues or trace only

a certain group of calls.
v Whether you want the trace output to go to:

A sequential data set that you specify
The IMS log data set
Both sequential and IMS log data sets

If the program being traced issues CHKP and XRST calls, the checkpoint and restart
information may not be directly reproducible when you use the trace output with
DFSDDLT0.

When you run DFSDDLT0 in an IMS DL/I or DBB batch region with trace output,
the results are the same as the application program's results, but only if the
database has not been altered.

For information on the format of the DLITRACE control statement in the
DFSVSAMP DD data set, see the topic “Defining DL/I call image trace” in IMS
Version 14 System Definition.

Retrieving image capture data from the log data set
If the trace output is sent to the IMS log data set, you can retrieve it by using
utility DFSERA10 and a DL/I call trace exit routine, DFSERA50. DFSERA50
deblocks, formats, and numbers the image capture program records that are to be
retrieved.

150 Application Programming

To use DFSERA50, you must insert a DD statement defining a sequential output
data set in the DFSERA10 input stream. The default ddname for this DD statement
is TRCPUNCH. The statement must specify BLKSIZE=80.

For example, you can use the following examples of DFSERA10 input control
statements in the SYSIN data set to retrieve the image capture program data from
the log data set:
v Print all image capture program records:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X

v Print selected image capture program records by PSB name:
Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,

VALUE=psbname, COND=E

v Format image capture program records (in a format that can be used as input
to DFSDDLT0):
Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,OFFSET=25,FLDTYP=C

VALUE=psbname,FLDLEN=8,DDNAME=OUTDDN,COND=E

Remember: The DDNAME= parameter names the DD statement to be used by
DFSERA50. The data set that is defined on the OUTDDN DD statement is used
instead of the default TRCPUNCH DD statement. For this example, the DD is:
//OUTDDN DD ...,DCB=(BLKSIZE=80),...

Requests for monitoring and debugging your IMS program
You can use the STAT and LOG requests to help you in debugging your program.
v The Statistics (STAT) call retrieves database statistics.
v The Log (LOG) call makes it possible for the application program to write a

record on the system log.

The enhanced OSAM and VSAM STAT calls provide additional information for
monitoring performance and fine tuning of the system for specific needs.

When the enhanced STAT call is issued, the following information is returned:
v OSAM statistics for each defined subpool
v VSAM statistics that also include hiperspace statistics
v OSAM and VSAM count fields that have been expanded to 10 digits

Retrieving database statistics: the STAT call
The STAT call is helpful in debugging a program because it retrieves IMS database
statistics. It is also helpful in monitoring and fine tuning for performance. The STAT
call retrieves OSAM database buffer pool statistics and VSAM database buffer
subpool statistics.

This topic contains Product-sensitive Programming Interface information.

When you issue the STAT call, you indicate:
v An I/O area into which the statistics are to be returned.

Chapter 8. Testing an IMS application program 151

v A statistics function, which is the name of a 9-byte area whose contents describe
the type and format of the statistics you want returned. The contents of the area
are defined as follows:
– The first 4 bytes define the type of statistics desired (OSAM or VSAM).
– The 5th byte defines the format to be returned (formatted, unformatted, or

summary).
– The remaining 4 bytes are defined as follows:

- The normal or enhanced STAT call contains 4 bytes of blanks.
- The extended STAT call contains the 4-byte parameter ' E1 ' (a 1-byte blank,

followed by a 2-byte character string, and then another 1-byte blank).
Related reference:

STAT call (Application Programming APIs)

Format of OSAM buffer pool statistics
For OSAM buffer pool statistics, the values are possible for the stat-function
parameter and for the format of the data that is returned to the application
program. If no OSAM buffer pool is present, a GE status code is returned to the
program.

DBASF

This function value provides the full OSAM database buffer pool statistics in a
formatted form. The application program I/O area must be at least 360 bytes.
Three 120-byte records (formatted for printing) are provided as two heading lines
and one line of statistics. The following diagram shows the data format.

BLOCK FOUND READS BUFF OSAM BLOCKS NEW CHAIN
REQ IN POOL ISSUED ALTS WRITES WRITTEN BLOCKS WRITES

nnnnnnn nnnnnnn nnnnn nnnnnnn nnnnnnn nnnnnnn nnnnn nnnnn

WRITTEN LOGICAL PURGE RELEASE
AS NEW CYL REQ REQ ERRORS

FORMAT
nnnnnnn nnnnnnn nnnnnnn nnnnnnn nn/nn

BLOCK REQ
Number of block requests received.

FOUND IN POOL
Number of times the block requested was found in the buffer pool.

READS ISSUED
Number of OSAM reads issued.

BUFF ALTS
Number of buffers altered in the pool.

OSAM WRITES
Number of OSAM writes issued.

BLOCKS WRITTEN
Number of blocks written from the pool.

NEW BLOCKS
Number of new blocks created in the pool.

CHAIN WRITES
Number of chained OSAM writes issued.

152 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_statcall.htm#ims_statcall

WRITTEN AS NEW
Number of blocks created.

LOGICAL CYL FORMAT
Number of format logical cylinder requests issued.

PURGE REQ
Number of purge user requests.

RELEASE REQ
Number of release ownership requests.

ERRORS
Number of write error buffers currently in the pool or the largest number
of errors in the pool during this execution.

DBASU

This function value provides the full OSAM database buffer pool statistics in an
unformatted form. The application program I/O area must be at least 72 bytes.
Eighteen fullwords of binary data are provided:

Word Contents

1 A count of the number of words that follow.

2-18 The statistic values in the same sequence as presented by the DBASF
function value.

DBASS

This function value provides a summary of the OSAM database buffer pool
statistics in a formatted form. The application program I/O area must be at least
180 bytes. Three 60-byte records (formatted for printing) are provided. The
following diagram shows the data format.
DATA BASE BUFFER POOL: SIZE nnnnnnn

REQ1 nnnnn REQ2 nnnnn READ nnnnn WRITES nnnnn LCYL nnnnn
PURG nnnnn OWNRR nnnnn ERRORS nn/nn

SIZE Buffer pool size.

REQ1 Number of block requests.

REQ2 Number of block requests satisfied in the pool plus new blocks created.

READ Number of read requests issued.

WRITES
Number of OSAM writes issued.

LCYL Number of format logical cylinder requests.

PURG Number of purge user requests.

OWNRR
Number of release ownership requests.

ERRORS
Number of permanent errors now in the pool or the largest number of
permanent errors during this execution.

Format of VSAM buffer subpool statistics
Because there might be several buffer subpools for VSAM databases, the STAT call
is iterative when requesting these statistics. If more than one VSAM local shared

Chapter 8. Testing an IMS application program 153

resource pool is defined, statistics are retrieved for all VSAM local shared resource
pools in the order in which they are defined. For each local shared resource pool,
statistics are retrieved for each subpool according to buffer size.

The first time the call is issued, the statistics for the subpool with the smallest
buffer size are provided. For each succeeding call (without intervening use of the
PCB), the statistics for the subpool with the next-larger buffer size are provided.

If index subpools exist within the local shared resource pool, the index subpool
statistics always follow statistics of the data subpools. Index subpool statistics are
also retrieved in ascending order based on the buffer size.

The final call for the series returns a GA status code in the PCB. The statistics
returned are totals for all subpools in all local shared resource pools. If no VSAM
buffer subpools are present, a GE status code is returned to the program.

VBASF

This function value provides the full VSAM database subpool statistics in a
formatted form. The application program I/O area must be at least 360 bytes.
Three 120-byte records (formatted for printing) are provided as two heading lines
and one line of statistics. Each successive call returns the statistics for the next data
subpool. If present, statistics for index subpools follow the statistics for data
subpools.

The following diagram shows the data format.
BUFFER HANDLER STATISTICS

BSIZ NBUF RET RBA RET KEY ISRT ES ISRT KS BFR ALT BGWRT SYN PTS
nnnK nnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn

VSAM STATISTICS POOLID: xxxx
GETS SCHBFR FOUND READS USR WTS NUR WTS ERRORS

nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nn/nn

POOLID
ID of the local shared resource pool.

BSIZ Size of the buffers in this VSAM subpool. In the final call, this field is set
to ALL.

NBUF Number of buffers in this subpool. In the final call, this is the number of
buffers in all subpools.

RET RBA
Number of retrieve-by-RBA calls received by the buffer handler.

RET KEY
Number of retrieve-by-key calls received by the buffer handler.

ISRT ES
Number of logical records inserted into ESDSs.

ISRT KS
Number of logical records inserted into KSDSs.

BFR ALT
Number of logical records altered in this subpool. Delete calls that result in
erasing records from a KSDS are not counted.

154 Application Programming

BGWRT
Number of times the background-write function was executed by the
buffer handler.

SYN PTS
Number of Synchronization calls received by the buffer handler.

GETS Number of VSAM GET calls issued by the buffer handler.

SCHBFR
Number of VSAM SCHBFR calls issued by the buffer handler.

FOUND
Number of times VSAM found the control interval already in the subpool.

READS
Number of times VSAM read a control interval from external storage.

USR WTS
Number of VSAM writes initiated by IMS.

NUR WTS
Number of VSAM writes initiated to make space in the subpool.

ERRORS
Number of write error buffers currently in the subpool or the largest
number of write errors in the subpool during this execution.

VBASU

This function value provides the full VSAM database subpool statistics in a
unformatted form. The application program I/O area must be at least 72 bytes.
Eighteen fullwords of binary data are provided for each subpool:

Word Contents

1 A count of the number of words that follow.

2-18 The statistic values in the same sequence as presented by the VBASF
function value, except for POOLID, which is not included in this
unformatted form.

VBASS

This function value provides a summary of the VSAM database subpool statistics
in a formatted form. The application program I/O area must be at least 180 bytes.
Three 60-byte records (formatted for printing) are provided.

The following diagram shows the data format.
DATA BASE BUFFER POOL: BSIZE nnnnnnn POOLID xxxx Type x

RRBA nnnnn RKEY nnnnn BFALT nnnnn NREC nnnnn SYN PTS nnnnn
NMBUFS nnn VRDS nnnnn FOUND nnnnn VWTS nnnnn ERRORS nn/nn

BSIZE Size of the buffers in this VSAM subpool.

POOLID
ID of the local shared resource pool.

TYPE Indicates a data (D) subpool or an index (I) subpool.

RRBA Number of retrieve-by-RBA requests.

RKEY Number of retrieve-by-key requests.

Chapter 8. Testing an IMS application program 155

BFALT
Number of logical records altered.

NREC Number of new VSAM logical records created.

SYN PTS
Number of sync point requests.

NMBUFS
Number of buffers in this VSAM subpool.

VRDS Number of VSAM control interval reads.

FOUND
Number of times VSAM found the requested control interval already in the
subpool.

VWTS
Number of VSAM control interval writes.

ERRORS
Number of permanent write errors now in the subpool or the largest
number of errors in this execution.

Format of enhanced/extended OSAM buffer subpool statistics
The enhanced OSAM buffer pool statistics provide additional information
generated for each defined subpool. Because there might be several buffer subpools
for OSAM databases, the enhanced STAT call repeatedly requests these statistics.
The first time the call is issued, the statistics for the subpool with the smallest
buffer size is provided. For each succeeding call (without intervening use of the
PCB), the statistics for the subpool with the next-larger buffer size is provided.

The final call for the series returns a GA status code in the PCB. The statistics
returned are the totals for all subpools. If no OSAM buffer subpools are present, a
GE status code is returned.

Extended OSAM buffer pool statistics can be retrieved by including the 4-byte
parameter '�E1�' following the enhanced call function. The extended STAT call
returns all of the statistics returned with the enhanced call, plus the statistics on
the coupling facility buffer invalidates, OSAM caching, and sequential buffering
IMMED/SYNC read counts.

Restriction: The extended format parameter is supported by the DBESO, DBESU,
and DBESF functions only.

DBESF

This function value provides the full OSAM subpool statistics in a formatted form.
The application program I/O area must be at least 600 characters. For OSAM
subpools, five 120-byte records (formatted for printing) are provided. Three of the
records are heading lines and two of the records are lines of subpool statistics.

The following example shows the enhanced stat call format:
B U F F E R H A N D L E R O S A M S T A T I S T I C S FIXOPT=X/X POOLID: xxxx

BSIZ NBUFS LOCATE-REQ NEW-BLOCKS ALTER- REQ PURGE- REQ FND-IN-POOL BUFRS-SRCH READ- REQS BUFSTL-WRT
PURGE-WRTS WT-BUSY-ID WT-BUSY-WR WT-BUSY-RD WT-RLSEOWN WT-NO-BFRS ERRORS

nn1K nnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnn/nnnnnnn

The following example shows the extended stat call format:

156 Application Programming

B U F F E R H A N D L E R O S A M S T A T I S T I C S STG CLS= FIXOPT=N/N POOLID:
BSIZ NBUFS LOCATE-REQ NEW-BLOCKS ALTER- REQ PURGE- REQ FND-IN-POOL BUFRS-SRCH READ- REQS BUFSTL-WRT

PURGE-WRTS WT-BUSY-ID WT-BUSY-WR WT-BUSY-RD WT-RLSEOWN WT-NO-BFRS ERRORS
nn1K nnnnnnn5 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0 nnnnnnnnn0

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnn/nnnnnnn
CF-READS EXPCTD-NF CFWRT-PRI CFWRT-CHG STGCLS-FULL XI-CNT VECTR-XI SB-SEQRD SB-ANTICIP
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

FIXOPT
Fixed options for this subpool. Y or N indicates whether the data buffer
prefix and data buffers are fixed.

POOLID
ID of the local shared resource pool.

BSIZ Size of the buffers in this subpool. Set to ALL for total line. For the
summary totals (BSIZ=ALL), the FIXOPT and POOLID fields are replaced
by an OSM= field. This field is the total size of the OSAM subpool.

NBUFS
Number of buffers in this subpool. This is the total number of buffers in
the pool for the ALL line.

LOCATE-REQ
Number of LOCATE-type calls.

NEW-BLOCKS
Number of requests to create new blocks.

ALTER-REQ
Number of buffer alter calls. This count includes NEW BLOCK and
BYTALT calls.

PURGE-REQ
Number of PURGE calls.

FND-IN-POOL
Number of LOCATE-type calls for this subpool where data is already in
the OSAM pool.

BUFRS-SRCH
Number of buffers searched by all LOCATE-type calls.

READ-REQS
Number of READ I/O requests.

BUFSTL-WRT
Number of single block writes initiated by buffer steal routine.

PURGE-WRTS
Number of blocks for this subpool written by purge.

WT-BUSY-ID
Number of LOCATE calls that waited due to busy ID.

WT-BUSY-WR
Number of LOCATE calls that waited due to buffer busy writing.

WT-BUSY-RD
Number of LOCATE calls that waited due to buffer busy reading.

WT-RLSEOWN
Number of buffer steal or purge requests that waited for ownership to be
released.

WT-NO-BFRS
Number of buffer steal requests that waited because no buffers are
available to be stolen.

Chapter 8. Testing an IMS application program 157

ERRORS
Total number of I/O errors for this subpool or the number of buffers
locked in pool due to write errors.

CF-READS
Number of blocks read from CF.

EXPCTD-NF
Number of blocks expected but not read.

CFWRT-PRI
Number of blocks written to CF (prime).

CFWRT-CHG
Number of blocks written to CF (changed).

STGGLS-FULL
Number of blocks not written (STG CLS full).

XI-CNTL
Number of XI buffer invalidate calls.

VECTR-XI
Number of buffers found invalidated by XI on VECTOR call.

SB-SEQRD
Number of immediate (SYNC) sequential reads (SB stat).

SB-ANTICIP
Number of anticipatory reads (SB stat).

DBESU

This function value provides full OSAM statistics in an unformatted form. The
application program I/O area must be at least 84 bytes. Twenty-one fullwords of
binary data are provided for each subpool:

Word Contents

1 A count of the number of words that follow.

2-19 The statistics provided in the same sequence as presented by the DBESF
function value.

20 The POOLID provided at subpool definition time.

21 The second byte contains the following fix options for this subpool:
v X'04' = DATA BUFFER PREFIX fixed
v X'02' = DATA BUFFERS fixed

The summary totals (word 2=ALL), for word 21, contain the total size of
the OSAM pool.

22-30 Extended stat data in same sequence as on DBESF call.

DBESS

This function value provides a summary of the OSAM database buffer pool
statistics in a formatted form. The application program I/O area must be at least
360 bytes. Six 60-byte records (formatted for printing) are provided. This STAT call
is a restructured DBASF STAT call that allows for 10-digit count fields. In addition,
the subpool header blocks give a total of the number of OSAM buffers in the pool.

The following shows the data format:

158 Application Programming

DATA BASE BUFFER POOL: NSUBPL nnnnnn NBUFS nnnnnnnn
BLKREQ nnnnnnnnnn INPOOL nnnnnnnnnn READS nnnnnnnnnn
BUFALT nnnnnnnnnn WRITES nnnnnnnnnn BLKWRT nnnnnnnnnn
NEWBLK nnnnnnnnnn CHNWRT nnnnnnnnnn WRTNEW nnnnnnnnnn
LCYLFM nnnnnnnnnn PURGRQ nnnnnnnnnn RLSERQ nnnnnnnnnn
FRCWRT nnnnnnnnnn ERRORS nnnnnnnn/nnnnnnnn

NSUBPL
Number of subpools defined for the OSAM buffer pool.

NBUFS
Total number of buffers defined in the OSAM buffer pool.

BLKREQ
Number of block requests received.

INPOOL
Number of times the block requested is found in the buffer pool.

READS
Number of OSAM reads issued.

BUFALT
Number of buffers altered in the pool.

WRITES
Number of OSAM writes issued.

BLKWRT
Number of blocks written from the pool.

NEWBLK
Number of blocks created in the pool.

CHNWRT
Number of chained OSAM writes issued.

WRTNEW
Number of blocks created.

LCYLFM
Number of format logical cylinder requests issued.

PURGRQ
Number of purge user requests.

RLSERQ
Number of release ownership requests.

FRCWRT
Number of forced write calls.

ERRORS
Number of write error buffers currently in the pool or the largest number
of errors in the pool during this execution.

DBESO

This function value provides the full OSAM database subpool statistics in a
formatted form for online statistics that are returned as a result of a /DIS POOL
command. This call can also be a user-application STAT call. When issued as an
application DL/I STAT call, the program I/O area must be at least 360 bytes. Six
60-byte records (formatted for printing) are provided.

Example: The following shows the enhanced stat call format:

Chapter 8. Testing an IMS application program 159

OSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnK NBUFnnnnnnn FX=X/X
LCTREQ nnnnnnnnnn NEWBLK nnnnnnnnnn ALTREQ nnnnnnnnnn
PURGRQ nnnnnnnnnn FNDIPL nnnnnnnnnn BFSRCH nnnnnnnnnn
RDREQ nnnnnnnnnn BFSTLW nnnnnnnnnn PURGWR nnnnnnnnnn
WBSYID nnnnnnnnnn WBSYWR nnnnnnnnnn WBSYRD nnnnnnnnnn
WRLSEO nnnnnnnnnn WNOBFR nnnnnnnnnn ERRORS nnnnn/nnnnn

Example: The following shows the extended stat call format:
OSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnK NBUFnnnnnnn FX=X/X

LCTREQ nnnnnnnnnn NEWBLK nnnnnnnnnn ALTREQ nnnnnnnnnn
PURGRQ nnnnnnnnnn FNDIPL nnnnnnnnnn BFSRCH nnnnnnnnnn
RDREQ nnnnnnnnnn BFSTLW nnnnnnnnnn PURGWR nnnnnnnnnn
WBSYID nnnnnnnnnn WBSYWR nnnnnnnnnn WBSYRD nnnnnnnnnn
WRLSEO nnnnnnnnnn WNOBFR nnnnnnnnnn ERRORS nnnnn/nnnnn
CFREAD nnnnnnnnnn CFEXPC nnnnnnnnnn CFWRPR nnnnn/nnnnn
CFWRCH nnnnnnnnnn STGCLF nnnnnnnnnn XIINV nnnnn/nnnnn
XICLCT nnnnnnnnnn SBSEQR nnnnnnnnnn SBANTR nnnnn/nnnnn

POOLID
ID of the local shared resource pool.

BSIZE Size of the buffers in this subpool. Set to ALL for summary total line. For
the summary totals (BSIZE=ALL), the FX= field is replaced by the OSAM=
field. This field is the total size of the OSAM buffer pool. The POOLID is
not shown. For the summary totals (BSIZE=ALL), the FX= field is replaced
by the OSAM= field. This field is the total size of the OSAM buffer pool.
The POOLID is not shown.

NBUF Number of buffers in this subpool. Total number of buffers in the pool for
the ALL line.

FX= Fixed options for this subpool. Y or N indicates whether the data buffer
prefix and data buffers are fixed.

LCTREQ
Number of LOCATE-type calls.

NEWBLK
Number of requests to create new blocks.

ALTREQ
Number of buffer alter calls. This count includes NEW BLOCK and
BYTALT calls.

PURGRQ
Number of PURGE calls.

FNDIPL
Number of LOCATE-type calls for this subpool where data is already in
the OSAM pool.

BFSRCH
Number of buffers searched by all LOCATE-type calls.

RDREQ
Number of READ I/O requests.

BFSTLW
Number of single-block writes initiated by buffer-steal routine.

PURGWR
Number of buffers written by purge.

WBSYID
Number of LOCATE calls that waited due to busy ID.

160 Application Programming

WBSYWR
Number of LOCATE calls that waited due to buffer busy writing.

WBSYRD
Number of LOCATE calls that waited due to buffer busy reading.

WRLSEO
Number of buffer steal or purge requests that waited for ownership to be
released.

WNOBRF
Number of buffer steal requests that waited because no buffers are
available to be stolen.

ERRORS
Total number of I/O errors for this subpool or the number of buffers
locked in pool due to write errors.

CFREAD
Number of blocks read from CF.

CFEXPC
Number of blocks expected but not read.

CFWRPR
Number of blocks written to CF (prime).

CFWRCH
Number of blocks written to CF (changed).

STGCLF
Number of blocks not written (STG CLS full).

XIINV
Number of XI buffer invalidate calls.

XICLCT
Number of buffers found invalidated by XI on VECTOR call.

SBSEQR
Number of immediate (SYNC) sequential reads (SB stat).

SBANTR
Number of anticipatory reads (SB stat).

Format of enhanced VSAM buffer subpool statistics
The enhanced VSAM buffer subpool statistics provide information on the total size
of VSAM subpools in virtual storage and in hiperspace. All count fields are 10
digits.

Because there might be several buffer subpools for VSAM databases, the enhanced
STAT call repeatedly requests these statistics. If more than one VSAM local shared
resource pool is defined, statistics are retrieved for all VSAM local shared resource
pools in the order in which they are defined. For each local shared resource pool,
statistics are retrieved for each subpool according to buffer size.

The first time the call is issued, the statistics for the subpool with the smallest
buffer size are provided. For each succeeding call (without intervening use of the
PCB), the statistics for the subpool with the next-larger buffer size are provided.

If index subpools exist within the local shared resource pool, the index subpool
statistics always follow the data subpools statistics. Index subpool statistics are also
retrieved in ascending order based on the buffer size.

Chapter 8. Testing an IMS application program 161

The final call for the series returns a GA status code in the PCB. The statistics
returned are totals for all subpools in all local shared resource pools. If no VSAM
buffer subpools are present, a GE status code is returned to the program.

VBESF

This function value provides the full VSAM database subpool statistics in a
formatted form. The application program I/O area must be at least 600 bytes. For
each shared resource pool ID, the first call returns five 120-byte records (formatted
for printing). Three of the records are heading lines and two of the records are
lines of subpool statistics.

The following shows the data format:
B U F F E R H A N D L E R S T A T I S T I C S / V S A M S T A T I S T I C S FIXOPT=X/X/X POOLID: xxxx

BSIZ NBUFFRS HS-NBUF RETURN-RBA RETURN-KEY ESDS-INSRT KSDS-INSRT BUFFRS-ALT BKGRND-WRT SYNC-POINT ERRORS
VSAM-GETS SCHED-BUFR VSAM-FOUND VSAM-READS USER-WRITS VSAM-WRITS HSRDS-SUCC HSWRT-SUCC HSR/W-FAIL

nn1K nnnnnn nnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnn/nnnnnn
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnn/nnnnn

FIXOPT
Fixed options for this subpool. Y or N indicates whether the data buffer
prefix, the index buffers, and the data buffers are fixed.

POOLID
ID of the local shared resource pool.

BSIZ Size of the buffers in this subpool. Set to ALL for total line. For the
summary totals (BSIZ=ALL), the FIXOPT and POOLID fields are replaced
by a VS= field and a HS= field. The VS= field is the total size of the VSAM
subpool in virtual storage. The HS= field is the total size of the VSAM
subpool in hiperspace.

NBUFFRS
Number of buffers in this subpool. Total number of buffers in the VSAM
pool that appears in the ALL line.

HS-NBUF
Number of hiperspace buffers defined for this subpool.

RETURN-RBA
Number of retrieve-by-RBA calls received by the buffer handler.

RETURN-KEY
Number of retrieve-by-key calls received by the buffer handler.

ESDS-INSRT
Number of logical records inserted into ESDSs.

KSDS-INSRT
Number of logical records inserted into KSDSs.

BUFFRS-ALT
Number of logical records altered in this subpool. Delete calls that result in
erasing records from a KSDS are not counted.

BKGRND-WRT
Number of times the background write function was executed by the
buffer handler.

SYNC-POINT
Number of Synchronization calls received by the buffer handler.

162 Application Programming

ERRORS
Number of write error buffers currently in the subpool or the largest
number of write errors in the subpool during this execution.

VSAM-GETS
Number of VSAM Get calls issued by the buffer handler.

SCHED-BUFR
Number of VSAM Scheduled-Buffer calls issued by the buffer handler

VSAM-FOUND
Number of times VSAM found the control interval in the buffer pool.

VSAM-READS
Number of times VSAM read a control interval from external storage.

USER-WRITS
Number of VSAM writes initiated by IMS.

VSAM-WRITS
Number of VSAM writes initiated to make space in the subpool.

HSRDS-SUCC
Number of successful VSAM reads from hiperspace buffers.

HSWRT-SUCC
Number of successful VSAM writes from hiperspace buffers.

HSR/W-FAIL
Number of failed VSAM reads from hiperspace buffers/number of failed
VSAM writes to hiperspace buffers. This indicates the number of times a
VSAM READ/WRITE request from or to hiperspace resulted in DASD
I/O.

VBESU

This function value provides full VSAM statistics in an unformatted form. The
application program I/O area must be at least 104 bytes. Twenty-five fullwords of
binary data are provided for each subpool.

Word Contents

1 A count of the number of words that follow.

2-23 The statistics provided in the same sequence as presented by the VBESF
function value.

24 The POOLID provided at the time the subpool is defined.

25 The first byte contains the subpool type, and the third byte contains the
following fixed options for this subpool:
v X'08' = INDEX BUFFERS fixed
v X'04' = DATA BUFFER PREFIX fixed
v X'02' = DATA BUFFERS fixed

The summary totals (word 2=ALL) for word 25 and word 26 contain the
virtual and hiperspace pool sizes.

Chapter 8. Testing an IMS application program 163

VBESS

This function value provides a summary of the VSAM database subpool statistics
in a formatted form. The application program I/O area must be at least 360 bytes.
For each shared resource pool ID, the first call provides six 60-byte records
(formatted for printing).

The following shows the data format:
VSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnnK TYPE x FX=X/X/X

RRBA nnnnnnnnnn RKEY nnnnnnnnnn BFALT nnnnnnnnnn
NREC nnnnnnnnnn SYNC PT nnnnnnnnnn NBUFS nnnnnnnnnn
VRDS nnnnnnnnnn FOUND nnnnnnnnnn VWTS nnnnnnnnnn
HSR-S nnnnnnnnnn HSW-S nnnnnnnnnn HS NBUFS nnnnnnnn
HS-R/W-FAIL nnnnn/nnnnn ERRORS nnnnnn/nnnnnn

POOLID
ID of the local shared resource pool.

BSIZE Size of the buffers in this VSAM subpool.

TYPE Indicates a data (D) subpool or an index (I) subpool.

FX Fixed options for this subpool. Y or N indicates whether the data buffer
prefix, the index buffers, and the data buffers are fixed.

RRBA
Number of retrieve-by-RBA calls received by the buffer handler.

RKEY Number of retrieve-by-key calls received by the buffer handler.

BFALT
Number of logical records altered.

NREC Number of new VSAM logical records created.

SYNC PT
Number of sync point requests.

NBUFS
Number of buffers in this VSAM subpool.

VRDS Number of VSAM control interval reads.

FOUND
Number of times VSAM found the requested control interval already in the
subpool.

VWTS
Number of VSAM control interval writes.

HSR-S
Number of successful VSAM reads from hiperspace buffers.

HSW-S
Number of successful VSAM writes to hiperspace buffers.

HS NBUFS
Number of VSAM hiperspace buffers defined for this subpool.

HS-R/W-FAIL
Number of failed VSAM reads from hiperspace buffers and number of
failed VSAM writes to hiperspace buffers. This indicates the number of
times a VSAM READ/WRITE request to or from hiperspace resulted in
DASD I/O.

164 Application Programming

ERRORS
Number of permanent write errors now in the subpool or the largest
number of errors in this execution.

Writing Information to the system log: the LOG request
An application program can write a record to the system log by issuing the LOG
call.

When you issue the LOG request, you specify the I/O area that contains the record
you want written to the system log. You can write any information to the log that
you want, and you can use different log codes to distinguish between different
types of information.

Related Reading: For information about coding the LOG request, see the
appropriate application programming reference information.

What to do when your IMS program terminates abnormally
When your program terminates abnormally, you can take the following actions to
simplify the task of finding and fixing the problem.
v Record as much information as possible about the circumstances under which

the program terminated abnormally.
v Check for certain initialization and execution errors.

Recommended actions after an abnormal termination of an IMS
program

Many places have guidelines on what you should do if your program terminates
abnormally. The suggestions given here are common guidelines:
v Document the error situation to help in investigating and correcting it. The

following information can be helpful:
– The program's PSB name
– The transaction code that the program was processing (online programs only)
– The text of the input message being processed (online programs only)
– The call function
– The name of the originating logical terminal (online programs only)
– The contents of the PCB that was referenced in the call that was executing
– The contents of the I/O area when the problem occurred
– If a database call was executing, the SSAs, if any, that the call used
– The date and time of day

v When your program encounters an error, it can pass all the required error
information to a standard error routine. You should not use STAE or ESTAE
routines in your program; IMS uses STAE or ESTAE routines to notify the
control region of any abnormal termination of the application program. If you
call your own STAE or ESTAE routines, IMS may not get control if an abnormal
termination occurs.

v Online programs might want to send a message to the originating logical
terminal to inform the person at the terminal that an error has occurred. Unless
you are using a CCTL, your program can get the logical terminal name from the
I/O PCB, place it in an express PCB, and issue one or more ISRT calls to send
the message.

Chapter 8. Testing an IMS application program 165

v An online program might also want to send a message to the master terminal
operator giving information about the program's termination. To do this, the
program places the logical terminal name of the master terminal in an express
PCB and issues one or more ISRT calls. (This is not applicable if you are using a
CCTL.)

v You might also want to send a message to a printer so that you will have a
hard-copy record of the error.

v You can send a message to the system log by issuing a LOG request.
v Some places run a BMP at the end of the day to list all the errors that have

occurred during the day. If your shop does this, you can send a message using
an express PCB that has its destination set for that BMP. (This is not applicable if
you are using a CCTL.)

Diagnosing an abnormal termination of an IMS program

If your program does not run correctly when you are testing it or when it is
executing, you need to isolate the problem. The problem might be anything from a
programming error (for example, an error in the way you coded one of your
requests) to a system problem. This section gives some guidelines about the steps
that you, as the application programmer, can take when your program fails to run,
terminates abnormally, or gives incorrect results.

IMS program initialization errors

Before your program receives control, IMS must have correctly loaded and
initialized the PSB and DBDs used by your application program. Often, when the
problem is in this area, you need a system programmer or DBA (or your
equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that
they generate.

IMS program execution errors

If you do not have any initialization errors, check:
1. The output from the compiler. Make sure that all error messages have been

resolved.
2. The output from the binder:
v Are all external references resolved?
v Have all necessary modules been included?
v Was the language interface module correctly included?
v Is the correct entry point specified?

3. Your JCL:
v Is the information that described the files that contain the databases correct?

If not, check with your DBA.
v Have you included the DL/I parameter statement in the correct format?
v Have you included the region size parameter in the EXEC statement? Does it

specify a region or partition large enough for the storage required for IMS
and your program?

v Have you declared the fields in the PCB masks correctly?

166 Application Programming

v If your program is an assembler language program, have you saved and
restored registers correctly? Did you save the list of PCB addresses at entry?
Does register 1 point to a parameter list of fullwords before issuing any DL/I
calls?

v For COBOL for z/OS and PL/I for MVS and VM, are the literals you are
using for arguments in DL/I calls producing the results you expect? For
example, in PL/I for MVS and VM, is the parameter count being generated
as a half-word instead of a fullword, and is the function code producing the
required 4-byte field?

v Use the PCB as much as possible to determine what in your program is
producing incorrect results.

Related concepts:
“Use of STAE or ESTAE and SPIE in IMS programs” on page 55

Chapter 8. Testing an IMS application program 167

168 Application Programming

Chapter 9. Testing a CICS application program

You should perform a program unit test on your CICS application program to
ensure that the program correctly handles its input data, processing, and output
data. The amount and type of testing you do depends on the individual program.

Recommendations for testing a CICS program
When you are ready to test your program, be aware of your established test
procedures before you start.

To start testing, you need the following three items:
v Test JCL.
v A test database. When you are testing a program, do not execute it against a

production database because the program, if faulty, might damage valid data.
v Test input data. The input data that you use need not be current, but it should

be valid data. You cannot be sure that your output data is valid unless you use
valid input data.

The purpose of testing the program is to make sure that the program can correctly
handle all the situations that it might encounter.

To thoroughly test the program, try to test as many of the paths that the program
can take as possible. For example:
v Test each path in the program by using input data that forces the program to

execute each of its branches.
v Be sure that your program tests its error routines. Again, use input data that will

force the program to test as many error conditions as possible.
v Test the editing routines your program uses. Give the program as many different

data combinations as possible to make sure it correctly edits its input data.

Testing your CICS program
You can use different tools to test a CICS program, depending on the type of
program.

The following table summarizes the tools that are available for online DBCTL,
batch, and BMP programs.

Table 30. Tools you can use for testing your program.

Tool
Online
(DBCTL) Batch BMP

Execution Diagnostic Facility (EDF) Yes1 No No

CICS dump control Yes No No

CICS trace control Yes Yes No

DFSDDLT0 No Yes2 Yes2

DL/I image capture program Yes Yes Yes

© Copyright IBM Corp. 1974, 2015 169

Table 30. Tools you can use for testing your program (continued).

Tool
Online
(DBCTL) Batch BMP

Notes:

1. For online, command-level programs only.

2. For call-level programs only. (For a command-level batch program, you can use DL/I
image capture program first, to produce calls for DFSDDLT0.)

Using the Execution Diagnostic Facility (command-level only)

You can use the Execution Diagnostic Facility (EDF) to test command-level
programs online. EDF can display EXEC CICS and EXEC DLI commands in online
programs; it cannot intercept DL/I calls.

With EDF you can:
v Display and modify working storage; you can change values in the DIB.
v Display and modify a command before it is executed. You can modify the value

of any argument, and then execute the command.
v Modify the return codes after the execution of the command. After the command

has been executed, but before control is returned to the application program, the
command is intercepted to show the response and any argument values set by
CICS.

You can run EDF on the same terminal as the program you are testing.

Related Reading: For more information about using EDF, see “Execution
(Command-Level) Diagnostic Facility” in CICS Transaction Server for z/OS CICS
Application Programming Reference.

Using CICS dump control

You can use the CICS dump control facility to dump virtual storage areas, CICS
tables, and task-related storage areas. For more information about using the CICS
dump control facility, see the CICS application programming reference manual that
applies to your version of CICS.

Using CICS trace control

You can use the trace control facility to help debug and monitor your online
programs in the DBCTL environment. You can use trace control requests to record
entries in a trace table. The trace table can be located either in virtual storage or on
auxiliary storage. If it is in virtual storage, you can gain access to it by
investigating a dump; if it is on auxiliary storage, you can print the trace table. For
more information about the control statements you can use to produce trace
entries, see the information about trace control in the application programming
reference manual that applies to your version of CICS.

Tracing DL/I calls with image capture
DL/I image capture program (DFSDLTR0) is a trace program that can trace and
record DL/I calls issued by batch, BMP, and online (DBCTL environment)
programs. You can also use the image capture program with command-level
programs, and you can produce calls for use as input to DFSDDLT0.

170 Application Programming

You can use the image capture program to:
v Test your program

If the image capture program detects an error in a call it traces, it reproduces as
much of the call as possible, although it cannot document where the error
occurred, and cannot always reproduce the full SSA.

v Produce input for DFSDDLT0 (DL/I test program)

You can use the output produced by the image capture program as input to
DFSDDLT0. The image capture program produces status statements, comment
statements, call statements, and compare statements for DFSDDLT0. For
example, you can use the image capture program with a command-level
program, to produce calls for DFSDDLT0.

v Debug your program

When your program terminates abnormally, you can rerun the program using
the image capture program. The image capture program can then reproduce and
document the conditions that led to the program failure. You can use the
information in the report produced by the image capture program to find and
fix the problem.

Using image capture with DFSDDLT0

The image capture program produces the following control statements that you can
use as input to DFSDDLT0:
v Status statements

When you invoke the image capture program, it produces the status statement.
The status statement it produces:
– Sets print options so that DFSDDLT0 prints all call trace comments, all DL/I

calls, and the results of all comparisons.
– Determines the new relative PCB number each time a PCB change occurs

while the application program is executing.
v Comments statement

The image capture program also produces a comments statement when you
invoke it. The comments statements give:
– The time and date IMS started the trace
– The name of the PSB being traced
The image capture program also produces a comments statement preceding any
call in which IMS finds an error.

v Call statements

The image capture program produces a call statement for each DL/I call or
EXEC DLI command the application program issues. It also generates a CHKP call
when it starts the trace and after each commit point or CHKP request.

v Compare statements

If you specify COMP on the DLITRACE control statement, the image capture
program produces data and PCB comparison statements.

Running image capture online

When you run the image capture program online, the trace output goes to the IMS
log data set. To run the image capture program online, you issue the IMS TRACE
command from the z/OS console.

Chapter 9. Testing a CICS application program 171

If you trace a BMP and you want to use the trace results with DFSDDLT0, the
BMP must have exclusive write access to the databases it processes. If the
application program does not have exclusive access, the results of DFSDDLT0 may
differ from the results of the application program.

The following diagram shows TRACE command format:

►► / TRACE SET
ON
OFF PSB psbname

NOCOMP
COMP

►◄

SET ON|OFF
Turns the trace on or off.

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than one
PSB at the same time, by issuing a separate TRACE command for each PSB.

COMP|NOCOMP
Specifies whether you want the image capture program to produce data and
PCB compare statements to be used with DFSDDLT0.

Running image capture as a batch job

To run the image capture program as a batch job, you use the DLITRACE control
statement in the DFSVSAMP DD data set.

In the DLITRACE control statement, you specify:
v Whether you want to trace all of the DL/I calls the program issues or trace only

a certain group of calls.
v Whether you want the trace output to go to:

A sequential data set that you specify
The IMS log data set
Both sequential and IMS log data sets

If the program being traced issues CHKP and XRST calls, the checkpoint and restart
information may not be directly reproducible when you use the trace output with
DFSDDLT0.

When you run DFSDDLT0 in an IMS DL/I or DBB batch region with trace output,
the results are the same as the application program's results, but only if the
database has not been altered.

For information on the format of the DLITRACE control statement in the
DFSVSAMP DD data set, see the topic “Defining DL/I call image trace” in IMS
Version 14 System Definition.

Example of DLITRACE

This example shows a DLITRACE control statement that traces the first 14 DL/I
calls or commands that the program issues, sends the output to the IMS log data
set, and produces data and PCB comparison statements for DFSDDLT0.
//DFSVSAMP DD *
DLITRACE LOG=YES,STOP=14,COMP
/*

172 Application Programming

Special JCL requirements

The following are special JCL requirements:

//IEFRDER DD
If you want log data set output, this DD statement is required to define the
IMS log data set.

//DFSTROUT DD|anyname
If you want sequential data set output, this DD statement is required to define
that data set. If you want to specify an alternate DDNAME (anyname), it must
be specified using the DDNAME parameter on the DLITRACE control
statement.

The DCB parameters on the JCL statement are not required. The data set
characteristics are:
v RECFM=F
v LRECL=80

Notes on using image capture
v If the program being traced issues CHKP and XRST calls, the checkpoint and

restart information may not be directly reproducible when you use the trace
output with the DFSDDLT0.

v When you run DFSDDLT0 in an IMS DL/I or DBB batch region with trace
output, the results are the same as the application program's results provided
the database has not been altered.

Retrieving image capture data from the log data set

If the trace output is sent to the IMS log data set, you can retrieve it by using
utility DFSERA10 and a DL/I call trace exit routine, DFSERA50. DFSERA50
deblocks, formats, and numbers the image capture program records to be retrieved.
To use DFSERA50, you must insert a DD statement defining a sequential output
data set in the DFSERA10 input stream. The default ddname for this DD statement
is TRCPUNCH. The card must specify BLKSIZE=80.

For example, you can use the following examples of DFSERA10 input control
statements in the SYSIN data set to retrieve the image capture program data from
the log data set:
v Print all image capture program records:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X

v Print selected image capture program records by PSB name:
Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,

VALUE=psbname, COND=E

v Format image capture program records (in a format that can be used as input
to DFSDDLT0):
Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,OFFSET=25,FLDTYP=C

VALUE=psbname,FLDLEN=8,DDNAME=OUTDDN,COND=E

Chapter 9. Testing a CICS application program 173

The DDNAME= parameter is used to name the DD statement used by DFSERA50.
The data set defined on the OUTDDN DD statement is used instead of the default
TRCPUNCH DD statement. For this example, the DD appears as:
//OUTDDN DD ...,DCB=(BLKSIZE=80),...

Requests for monitoring and debugging your CICS program
You can use the STAT and LOG requests to help you in debugging your program.
v The statistics (STAT) request retrieves database statistics. STAT can be issued from

both call- and command-level programs.
v The log (LOG) request makes it possible for the application program to write a

record on the system log. You can issue LOG as a command or call in a batch
program; in this case, the record is written to the IMS log. You can issue LOG as a
call or command in an online program in the DBCTL environment; in this case,
the record is written to the DBCTL log.

What to do when your CICS program terminates abnormally
Whenever your program terminates abnormally, you can take some actions to
simplify the task of finding and fixing the problem.

First, you can record as much information as possible about the circumstances
under which the program terminated abnormally; and second, you can check for
certain initialization and execution errors.

Recommended actions after an abnormal termination of CICS

Many places have guidelines on what you should do if your program terminates
abnormally. The suggestions given here are some common guidelines:
v Document the error situation to help in investigating and correcting it. Some of

the information that can be helpful is:
– The program's PSB name
– The transaction code that the program was processing (online programs only)
– The text of the input screen being processed (online programs only)
– The call function
– The terminal ID (online programs only)
– The contents of the PCB or the DIB
– The contents of the I/O area when the problem occurred
– If a database request was executing, the SSAs or SEGMENT and WHERE

options, if any, the request used
– The date and time of day

v When your program encounters an error, it can pass all the required error
information to a standard error routine.

v An online program might also want to send a message to the master terminal
destination (CSMT) and application terminal operator, giving information about
the program's termination.

v You can send a message to the system log by issuing a LOG request.

Diagnosing an abnormal termination of CICS

If your program does not run correctly when you are testing it or when it is
executing, you need to isolate the problem. The problem might be anything from a

174 Application Programming

programming error (for example, an error in the way you coded one of your
requests) to a system problem. This section gives some guidelines about the steps
that you, as the application programmer, can take when your program fails to run,
terminates abnormally, or gives incorrect results.

CICS initialization errors

Before your program receives control, IMS must have correctly loaded and
initialized the PSB and DBDs used by your application program. Often, when the
problem is in this area, you need a system programmer or DBA (or your
equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that
they generate.

CICS execution errors

If you do not have any initialization errors, check the following in your program:
1. The output from the compiler. Make sure that all error messages have been

resolved.
2. The output from the binder:
v Are all external references resolved?
v Have all necessary modules been included?
v Was the language interface module correctly included?
v Is the correct entry point specified (for batch programs only)?

3. Your JCL:
v Is the information that described the files that contain the databases correct?

If not, check with your DBA.
v Have you included the DL/I parameter statement in the correct format (for

batch programs only)?
v Have you included the region size parameter in the EXEC statement? Does it

specify a region or partition large enough for the storage required for IMS
and your program (for batch programs only)?

4. Your call-level program:
v Have you declared the fields in the PCB masks correctly?
v If your program is an assembler language program, have you saved and

restored registers correctly? Did you save the list of PCB addresses at entry?
Does register 1 point to a parameter list of full words before issuing any
DL/I calls?

v For COBOL for z/OS and PL/I for MVS and VM, are the literals you are
using for arguments in DL/I calls producing the results you expect? For
example, in PL/I for MVS and VM, is the parameter count being generated
as a half word instead of a fullword, and is the function code producing the
required 4-byte field?

v Use the PCB as much as possible to determine what in your program is
producing incorrect results.

5. Your command-level program:
v Did you use the FROM option with your ISRT or REPL command? If not, data

will not be transferred to the database.
v Check translator messages for errors.

Chapter 9. Testing a CICS application program 175

176 Application Programming

Chapter 10. Documenting your application program

Many places establish standards for program documentation; make sure you are
aware of your established standards.

Documentation for other programmers
Documenting a program is not something you do at the end of the project; your
documentation will be much more complete, and more useful to others, if you
record information about the program as you structure and code it. Include any
information that might be useful to someone else who must work with your
program.

The reason you record this information is so that people who maintain your
program know why you chose certain commands, options, call structures, and
command codes. For example, if the DBA were considering reorganizing the
database in some way, information about why your program accesses the data the
way it does would be helpful.

Information you can include for other programmers includes:
v Flowcharts and pseudocode for the program
v Comments about the program from code inspections
v A written description of the program flow
v Information about why you chose the call sequence you did, such as:

– Did you test the call sequence using DFSDDLT0?
– In cases where more than one combination of calls would have had the same

results, why did you choose the sequence you did?
– What was the other sequence? Did you test it using DFSDDLT0?

v Any problems you encountered in structuring or coding the program
v Any problems you had when you tested the program
v Warnings about what should not be changed in the program

All this information relates to structuring and coding the program. In addition, you
should include the documentation for end users with the documentation for
programmers.

Ultimately, you must determine the level of detail necessary and the most suitable
form for documenting the program. These documentation guidelines are provided
as suggestions.

Documentation for end users
In addition to documenting the design of the application, you should record
information about how the program is used.

The amount of information that users need and how much of it you should supply
depends upon whom the users of the program are and what type of program it is.

At a minimum, include the following information for those who use your program:
v What one needs in order to use the program, for example:

© Copyright IBM Corp. 1974, 2015 177

– For online programs, is there a password?
– For batch programs, what is the required JCL?

v The input that one needs to supply to the program, for example:
– For an MPP, what is the MOD name that must be entered to initially format

the screen?
– For a CICS online program, what is the CICS transaction code that must be

entered? What terminal input is expected?
– For a batch program, is the input in the form of a tape, or a disk data set? Is

the input originally output from a previous job?
v The content and form of the program's output, for example:

– If it is a report, show the format or include a sample listing.
– For an online application program, show what the screen will look like.

v For online programs, if decisions must be made, explain what is involved in
each decision. Present the choices and the defaults.

If the people that will be using your program are unfamiliar with terminals, they
will need a user's guide also. This guide should give explicit instructions on how
to use the terminal and what a user can expect from the program. The guide
should contain discussions of what should be done if the task or program abends,
whether the program should be restarted, or if the database requires recovery.
Although you may not be responsible for providing this kind of information, you
should provide any information that is unique to your application to whomever is
responsible for this kind of information.

178 Application Programming

Part 2. Application programming for IMS DB

IMS provides support for writing application programs to access the IMS database.

© Copyright IBM Corp. 1974, 2015 179

180 Application Programming

Chapter 11. Writing your application programs for IMS DB

You can write application programs in High Level Assembler language, C
language, COBOL, Java, Pascal, and PL/I to access data in the IMS DB.
Related concepts:
Chapter 38, “IMS solutions for Java development overview,” on page 603

Programming guidelines
The number, type, and sequence of the IMS requests your program issues affects
the efficiency of your program. A program that is poorly designed can still run if it
is coded correctly. IMS will not find design errors for you. The suggestions that
follow will help you develop the most efficient design possible for your application
program.

When you have a general sequence of calls mapped out for your program, look
over the guidelines on sequence to see if you can improve it. An efficient sequence
of requests results in efficient internal IMS processing. As you write your program,
keep in mind the guidelines explained in this section. The following list offers
programming guidelines that will help you write efficient and error-free programs.
v Use the most simple call. Qualify your requests to narrow the search for IMS.
v Use the request or sequence of requests that will give IMS the shortest path to

the segment you want.
v Use as few requests as possible. Each DL/I call your program issues uses system

time and resources. You may be able to eliminate unnecessary calls by:
– Using path requests when you are replacing, retrieving, or inserting more

than one segment in the same path. If you are using more than one request to
do this, you are issuing unnecessary requests.

– Changing the sequence so that your program saves the segment in a separate
I/O area, and then gets it from that I/O area the subsequent times it needs
the segment. If your program retrieves the same segment more than once
during program execution, you are issuing unnecessary requests.

– Anticipating and eliminating needless and nonproductive requests, such as
requests that result in GB, GE, and II status codes. For example, if you are
issuing GN calls for a particular segment type, and you know how many
occurrences of that segment type exist, do not issue the GN that results in a GE
status code. Keep track of the number of occurrences your program retrieves,
and then continue with other processing when you know you have retrieved
all the occurrences of that segment type.

– Issuing an insert request with a qualification for each parent, rather than
issuing Get requests for the parents to make sure that they exist. If IMS
returns a GE status code, at least one of the parents does not exist. When you
are inserting segments, you cannot insert dependent segments unless the
parent segments exist.

v Commit your updates regularly. IMS limits full-function databases so that only
300 databases at a time can have uncommitted updates. Logically related
databases, secondary indexes, and HALDB partitions are counted towards this
limit. The number of partitions in HALDB databases is the most common reason
for approaching the 300 database limit for uncommitted updates. If the
PROCOPT values allow a BMP application to insert, replace, or delete segments

© Copyright IBM Corp. 1974, 2015 181

in the databases, ensure that the BMP application does not update a combined
total of more than 300 databases and HALDB partitions without committing the
changes.

v Keep the main section of the program logic together. For example, branch to
conditional routines, such as error and print routines in other parts of the
program, instead of branching around them to continue normal processing.

v Use call sequences that make good use of the physical placement of the data.
Access segments in hierarchic sequence as often as possible, and avoid moving
backward in the hierarchy.

v Process database records in order of the key field of the root segments. (For
HDAM and PHDAM databases, this order depends on the randomizing routine
that is used. Check with your DBA for this information.)

v Avoid constructing the logic of the program and the structure of commands or
calls in a way that depends heavily on the database structure. Depending on the
current structure of the hierarchy reduces the program's flexibility.

v Minimize the number of segments your program locks. You may need to take
checkpoints to release the locks on updated segments and the lock on the
current database record for each PCB your program uses. Each PCB used by
your program has the current database record locked at share or update level. If
this lock is no longer required, issuing the GU call, qualified at the root level with
a greater-than operator for a key of X'FF' (high values), releases the current lock
without acquiring a new lock.
Do not use the minimization technique if you use a randomizer that puts high
values at the end of the database and you use secondary indexes. If there is
another root beyond the supposed high value key, IMS returns a GE to allow the
application to determine the next step. A secondary index might not work
because the hierarchical structure is inverted, and although the key is past the
last root in the index, it might not be past the last root in the database.
Using PCBs with a processing option of get (G) results in locks for the PCB at
share level. This allows other programs that use the get processing option to
concurrently access the same database record. Using a PCB with a processing
option that allows updates (I, R, or D) results in locks for the PCB at update
level. This does not allow any other program to concurrently access the same
database record.

Related concepts:
“Reserving segments for the exclusive use of your program” on page 295

Segment search arguments (SSAs)
Segment search arguments (SSAs) specify information for IMS to use in processing
a DL/I call. Regardless of the datatype for the field specified in a SSA, the SSA
treats the field as a binary type and does a binary comparison.

A DL/I call with one or more SSAs is a qualified call, and a DL/I call without SSAs
is an unqualified call.

Unqualified SSAs
Contains only a segment name.

Qualified SSAs
Includes one or more qualification statements that name a segment
occurrence. The C command and a segment occurrence's concatenated key
can be substituted for a qualification statement.

182 Application Programming

You can use SSA to select segments by name and to specify search criteria for
specific segments. Specific segments are described by adding qualification
statements to the DL/I call. You can further qualify your calls by using command
codes.

Unqualified SSAs

An unqualified SSA gives the name of the segment type that you want to access.
In an unqualified SSA, the segment name field is 8 bytes and must be followed by
a 1-byte blank. If the actual segment name is fewer than 8 bytes long, it must be
padded to the right with blanks. An example of an unqualified SSA follows:
PATIENTbb

Qualified SSAs

To qualify an SSA, you can use either a field or the sequence field of a virtual
child. A qualified SSA describes the segment occurrence that you want to access.
This description is called a qualification statement and has three parts. The
following table shows the structure of a qualified SSA.

Table 31. Qualified SSA structure

SSA Component Field Length

Segment name 8

(1

Field name 8

Relative operator 2

Field value Variable

) 1

Using a qualification statement enables you to give IMS information about the
particular segment occurrence that you are looking for. You do this by giving IMS
the name of a field within the segment and the value of the field you are looking
for. The field and the value are connected by a relational operator (R.O. in the
previous table) which tells IMS how you want the two compared. For example, to
access the PATIENT segment with the value 10460 in the PATNO field, you could
use this SSA:
PATIENTb(PATNObb=b10460)

Alternatively, if the DL/I call uses command code O, you can use a 4-byte starting
offset position and 4-byte data length instead of an 8-byte field name. The starting
offset is relative to the physical segment definition and starts with 1. The
maximum length that can be retrieved is the maximum segment size for the
database type, and the minimum length is 1. The two fields are specified in the
following format: ’oooollll’. oooo is the offset position and llll is the length of the
data that you want to retrieve. You can use this approach to search for and retrieve
data without a field definition.

The qualification statement is enclosed in parentheses. The first field contains the
name of the field (Fld Name in the previous table) that you want IMS to use in
searching for the segment. The second field contains a relational operator. The
relational operator can be any one of the following:
v Equal, represented as

Chapter 11. Writing your application programs for IMS DB 183

=b
b=
EQ

v Greater than, represented as
>b
b>
GT

v Less than, represented as
<b
b<
LT

v Greater than or equal to, represented as
>=
=>
GE

v Less than or equal to, represented as
<=
=<
LE

v Not equal to, represented as
¬=
=¬
NE

The third field (Fld Value in the previous table) contains the value that you want
IMS to use as the comparative value. The length of Fld Value must be the same
length as the field specified by Fld Name.

You can use more than one qualification statement in an SSA. Special cases exist,
such as in a virtual logical child segment when the sequence field consists of
multiple fields.

Sequence fields of a virtual logical child

As a general rule, a segment can have only one sequence field. However, in the
case of the virtual logical-child segment type, multiple FIELD statements can be
used to define a noncontiguous sequence field.

When specifying the sequence field for a virtual logical child segment, if the field
is not contiguous, the length of the field named in the SSA is the concatenated
length of the specified field plus all succeeding sequence fields. The following
figure shows a segment with a noncontiguous sequence field.

184 Application Programming

If the first sequence field is not included in a “scattered” sequence field in an SSA,
IMS treats the argument as a data field specification, rather than as a sequence
field.

Related reading: For more information on the virtual logical child segment, refer
to IMS Version 14 Database Administration.
Related concepts:
“Specifying segment search arguments using the SSAList interface” on page 694

SSA guidelines
Using SSAs can simplify your programming, because the more information you
can give IMS to do the searching for you, the less program logic you need to
analyze and compare segments in your program.

Using SSAs does not necessarily reduce system overhead, such as internal logic
and I/Os, required to obtain a specific segment. To locate a particular segment
without using SSAs, you can issue DL/I calls and include program logic to
examine key fields until you find the segment you want. By using SSAs in your
DL/I calls, you can reduce the number of DL/I calls that are issued and the
program logic needed to examine key fields. When you use SSAs, IMS does this
work for you.

Recommendations:

v Use qualified calls with qualified SSAs whenever possible. SSAs act as filters,
returning only the segments your program requires. This reduces the number of
calls your program makes, which provides better performance. It also provides
better documentation of your program. Qualified SSAs are particularly useful
when adding segments with insert calls. They ensure that the segments are
inserted where you want them to go.

v For the root segment, specify the key field and an equal relational operator, if
possible. Using a key field with an equal-to, equal-to-or-greater-than, or
greater-than operator lets IMS go directly to the root segment.

v For dependent segments, it is desirable to use the key field in the SSA, although
it is not as important as at the root level. Using the key field and an equal-to
operator lets IMS stop the search at that level when a higher key value is
encountered. Otherwise IMS must search through all occurrences of the segment
type under its established parent in order to determine whether a particular
segment exists.

v If you often must search for a segment using a field other than the key field,
consider putting a secondary index on the field.

For example, suppose you want to find the record for a patient by the name of
“Ellen Carter”. As a reminder, the patient segment in the examples contains three
fields: the patient number, which is the key field; the patient name; and the patient

Sequence field Sequence field
A B

10 bytes 11 bytes

Segment

AB=21 bytes

Figure 47. Segment with a noncontiguous sequence field

Chapter 11. Writing your application programs for IMS DB 185

address. The fact that patient number is the key field means that IMS stores the
patient segments in order of their patient numbers. The best way to get the record
for “Ellen Carter” is to supply her patient number in the SSA. If her number is
09000, your program uses this call and SSA:
GUbbbbbbPATIENTb(PATNObbb=b09000)

If your program supplies an invalid number, or if someone has deleted Ellen
Carter's record from the database, IMS does not need to search through all the
PATIENT occurrences to determine that the segment does not exist.

However, if your program does not have the number and must give the name
instead, IMS must search through all the patient segments and read each patient
name field until it finds “Ellen Carter” or until it reaches the end of the patient
segments.
Related concepts:
Chapter 18, “Secondary indexing and logical relationships,” on page 297

Multiple qualification statements
When you use a qualification statement, you can do more than give IMS a field
value with which to compare the fields of segments in the database. You can give
several field values to establish limits for the fields you want IMS to compare.

You can use a maximum of 1024 qualification statements on a call.

Connect the qualification statements with one of the Boolean operators. You can
indicate to IMS that you are looking for a value that, for example, is greater than A
and less than B, or you can indicate that you are looking for a value that is equal
to A or greater than B. The Boolean operators are:

Logical AND
For a segment to satisfy this request, the segment must satisfy both
qualification statements that are connected with the logical AND (coded *
or &).

Logical OR
For a segment to satisfy this request, the segment can satisfy either of the
qualification statements that are connected with the logical OR (coded + or
|).

One more Boolean operator exists and is called the independent AND. Use it only
with secondary indexes.

For a segment to satisfy multiple qualification statements, the segment must satisfy
a set of qualification statements. A set is a number of qualification statements that
are joined by an AND. To satisfy a set, a segment must satisfy each of the
qualification statements within that set. Each OR starts a new set of qualification
statements. When processing multiple qualification statements, IMS reads them left
to right and processes them in that order.

When you include multiple qualification statements for a root segment, the fields
you name in the qualification statements affect the range of roots that IMS
examines to satisfy the call. DL/I examines the qualification statements to
determine the minimum acceptable key value.

186 Application Programming

If one or more of the sets do not include at least one statement that is qualified on
the key field with an operator of equal-to, greater-than, or equal-to-or-greater-than,
IMS starts at the first root of the database and searches for a root that meets the
qualification.

If each set contains at least one statement that is qualified on the key field with an
equal-to, greater-than, or equal-to-or-greater-than operator, IMS uses the lowest of
these keys as the starting place for its search. After establishing the starting
position for the search, IMS processes the call by searching forward sequentially in
the database, similar to the way it processes GN calls. IMS examines each root it
encounters to determine whether the root satisfies a set of qualification statements.
IMS also examines the qualification statements to determine the maximum
acceptable key value.

If one or more of the sets do not include at least one statement that is qualified on
the key field with an operator of equal-to, less-than-or-equal-to, or less-than, IMS
determines that no maximum key value exists. If each set contains at least one
statement that is qualified on the key field with an equal-to, less-than, or
equal-to-or-less-than operator, IMS uses the maximum of these keys to determine
when the search stops.

IMS continues the search until it satisfies the call, encounters the end of the
database, or finds a key value that exceeds the maximum. If no maximum key
value is found, the search continues until IMS satisfies the call or encounters the
end of the database.

Examples: Shown below are cases of SSAs used at the root level:
ROOTKEYb
=b10&FIELDBb
b=XYZ+ROOTKEYb
=10&FIELDBb
b
=ABC

In this case, the minimum and maximum key is 10. This means that IMS starts
searching with key 10 and stops when it encounters the first key greater than 10.
To satisfy the SSA, the ROOTKEY field must be equal to 10, and FIELDB must be
equal to either ABC or XYZ.
ROOTKEYb
=>10&ROOTKEYb
<20

In this case, the minimum key is 10 and the maximum key is 20. Keys in the range
of 10 to 20 satisfy the SSA. IMS stops the search when it encounters the first key
greater than 20.
ROOTKEYb
10&ROOTKEYb
=<20+ROOTKEYb
=>110&ROOTKEYb
=<120

In this case, the minimum key is 10 and the maximum key is 120. Keys in the
range of 10 to 20 and 110 to 120 satisfy the call. IMS stops the search when it
encounters the first key greater than 120. IMS does not scan from 20 to 110 but
skips forward (using the index for HIDAM or PHIDAM) from 20 to 110. Because
of this, you can use ranges for more efficient program operation.

Chapter 11. Writing your application programs for IMS DB 187

When you use multiple qualification statement segments that are part of logical
relationships, additional considerations exist.
Related concepts:
“Multiple qualification statements with secondary indexes” on page 298

Example of how to use multiple qualification statements
The following example shows how you can use multiple qualification statements.

Given the sample Medical database, we want to answer the following question:

Did we see patient number 04120 during 1992?

To find the answer to this question, you need to give IMS more than the patient’s
name; you want IMS to search through the ILLNESS segments for that patient,
read each one, and return any that have a date in 1992. The call you would issue
to do this is:
GU PATIENT�
(PATNO���
EQ04120)

ILLNESS�
(ILLDATE�
>=19920101&ILLDATE�
<=19921231)

In other words, you want IMS to return any ILLNESS segment occurrences under
patient number 04120 that have a date on or after January 1, 1992, and on or before
December 31, 1992, joined with an AND connector. Suppose you wanted to answer
the following request:

Did we see Judy Jennison during January of 1992 or during July of 1992? Her
patient number is 05682.

You could issue a GU call with the following SSAs:
GU PATIENT�
PATNO�
EQ05682)

ILLNESS�
(ILLDATE�
>=19920101&ILLDATE�
<=19920131|

ILLDATE�
>=19920701&ILLDATE�
<=19920731)

To satisfy this request, the value for ILLDATE must satisfy either of the two sets.
IMS returns any ILLNESS segment occurrences for the month of January 1992, or
for the month of July 1992.

Multiple qualification statements for HDAM, PHDAM, or DEDB
For HDAM (Hierarchical Direct Access Method), PHDAM (partitioned HDAM), or
data entry database (DEDB) organizations, a randomizing exit routine usually does
not store the root keys in ascending key sequence. For these organizations, IMS
determines the minimum and maximum key values. The minimum key value is
passed to the randomizing exit routine, which determines the starting anchor
point.

The first root off this anchor is the starting point for the search. When IMS
encounters a key that exceeds the maximum key value, IMS terminates the search

188 Application Programming

with a GE status code. If the randomizing routine randomized so that the keys are
stored in ascending key sequence, a call for a range of keys will return all of the
keys in the range. However, if the randomizing routine did not randomize into key
sequence, the call does not return all keys in the requested range. Therefore, use
calls for a range of key values only when the keys are in ascending sequence
(when the organization is HDAM, PHDAM, or DEDB).

Recommendations:

v When the organization is HDAM, PHDAM, or DEDB, use calls for a range of
key values only when the keys are in ascending sequence.

v When the organization is HDAM, PHDAM or DEDB, do not use calls that allow
a range of values at the root level.

While not recommended, a sequential search of the database can be accomplished
with the use of command codes A and G when making GN/GHN database calls.
Command code A will clear positioning and cause the call to start at the beginning
of the database. Command code G will prevent randomization and cause a
sequential search of the database when used with SSAs that specify a range of
values at the root level. The returned segments may not be in sequential order
depending on how they were randomized.

To search the database sequentially, you can use the use the following segment
search argument (SSA) together with SSAs that specify a range of values at the
root level.
key field > hex zeros & key field < all f’s key

The returned segments may not be in sequential order depending on how they
were randomized.

For more details about HDAM or PHDAM databases, see IMS Version 14 Database
Administration.

SSAs and command codes
SSAs can also include one or more command codes, which can change and extend
the functions of DL/I calls.

For information on command codes, see the topic "General Command Codes for
DL/I Calls" in IMS Version 14 Application Programming APIs.

IMS always returns the lowest segment in the path to your I/O area. If your
program codes a D command code in an SSA, IMS also returns the segment
described by that SSA. A call that uses the D command code is called a path call.

For example, suppose your program codes a D command code on a GU call that
retrieves segment F and all segments in the path to F in the hierarchy shown in the
following figure.

Chapter 11. Writing your application programs for IMS DB 189

The call function and the SSAs for the call look like this:
GU Abbbbbbb

*D
Cbbbbbbb
*D
Ebbbbbbb
Fbbbbbbb

A command code consists of one letter. Code the command codes in the SSA after
the segment name field. Separate the segment name field and the command code
with an asterisk, as shown in the following table.

Table 32. Unqualified SSA with command code

SSA Component Field Length

Seg Name 8

* 1

Cmd Code Variable

b 1

Your program can use command codes in both qualified and unqualified SSAs.
However, command codes cannot be used by MSDB calls. If the command codes
are not followed by qualification statements, they must each be followed by a
1-byte blank. If the command codes are followed by qualification statements, do
not use the blank. The left parenthesis of the qualification statement follows the
command code instead, as indicated in the following table.

Table 33. Qualified SSA with command code

SSA Component Field Length

Seg Name 8

(1

Field
Position

8

Relational Operator (R.O.) 2

Field Value Variable

A

B C

D E

F

Figure 48. D command code example

190 Application Programming

Table 33. Qualified SSA with command code (continued)

SSA Component Field Length

) 1

By giving IMS the field position within the segment and the value of the field you
are looking for, the field position and the value are connected by a relational
operator which tells IMS how you want the two to be compared. The field position
can be either a searchable field name as defined in the DBD or a position and
length when using command code O.
Related concepts:
“Processing Fast Path DEDBs with subset pointer command codes” on page 332

Considerations for coding DL/I calls and data areas
If you have made all the design decisions about your program, coding the
program is a matter of implementing the decisions that you have made. In
addition to knowing the design and processing logic for your program, you need
to know about the data that your program is processing, the PCBs it references,
and the segment formats in the hierarchies your program processes.

You can use the following list as a checklist to make sure you are not missing any
information. If you are missing information about data, IMS options being used in
the application program, or segment layouts and the application program's data
structures, obtain this information from the DBA or the equivalent specialist at
your installation. Be aware of the programming standards and conventions that
have been established at your installation.

Program design considerations:
v The sequence of calls for your program.
v The format of each call:

– Does the call include any SSAs?
– If so, are they qualified or unqualified?
– Does the call contain any command codes?

v The processing logic for the program.
v The routine the program uses to check the status code after each call.
v The error routine the program uses.

Checkpoint considerations:
v The type of checkpoint call to use (basic or symbolic).
v The identification to assign to each checkpoint call, regardless of whether the

Checkpoint call is basic or symbolic.
v If you are going to use the symbolic checkpoint call, which areas of your

program to checkpoint.

Segment considerations:
v Whether the segment is fixed length or variable length.
v The length of the segment (the maximum length, if the segment is variable

length).
v The names of the fields that each segment contains.

Chapter 11. Writing your application programs for IMS DB 191

v Whether the segment has a key field. If it does, is the key field unique or
non-unique? If it does not, what sequencing rule has been defined for it? (A
segment's key field is defined in the SEQ keyword of the FIELD statement in the
DBD. The sequencing rule is defined in the RULES keyword of the SEGM
statement in the DBD.)

v The segment's field layouts:
– The byte location of each field.
– The length of each field.
– The format of each field.

Data structure considerations:
v Each data structure your program processes has been defined in a DB PCB. All

of the PCBs your program references are part of a PSB for your application
program. You need to know the order in which the PCBs are defined in the PSB.

v The layout of each of the data structures your program processes.
v Whether multiple or single positioning has been specified for each data

structure. This is specified in the POS keyword of the PCB statement during PSB
generation.

v Whether any data structures use multiple DB PCBs.

Preparing to run your CICS DL/I call program
You must perform several steps before you run your CICS DL/I call program.

Refer to the appropriate CICS reference information:
v For information on translating, compiling, and binding your CICS online

program, see the description of installing application programs in CICS
Transaction Server for z/OS CICS System Definition Guide.

v For information on which compiler options should be used for a CICS online
program, as well as for CICS considerations when converting a CICS online
COBOL program with DL/I calls to Enterprise COBOL, see CICS Transaction
Server for z/OS CICS Application Programming Guide.

Examples of how to code DL/I calls and data areas
You can code DL/I calls and data areas in assembler language, C, COBOL, Pascal,
Java, and PL/I.

Coding a batch program in assembler language
The following code example shows how to write an IMS program to access the
IMS database in assembler language.

The numbers to the right of the program refer to the notes that follow the
program. This kind of program can run as a batch program or as a batch-oriented
BMP.

Sample assembler language program
PGMSTART CSECT NOTES
* EQUATE REGISTERS 1
* USEAGE OF REGISTERS
R1 EQU 1 ORIGINAL PCBLIST ADDRESS
R2 EQU 2 PCBLIST ADDRESS1
R5 EQU 5 PCB ADDRESSS
R12 EQU 12 BASE ADDRESS

192 Application Programming

R13 EQU 13 SAVE AREA ADDRESS
R14 EQU 14
R15 EQU 15
*

USING PGMSTART,R12 BASE REGISTER ESTABLISHED 2
SAVE (14,12) SAVE REGISTERS
LR 12,15 LOAD REGISTERS
ST R13,SAVEAREA+4 SAVE AREA CHAINING
LA R13,SAVEAREA NEW SAVE AREA
USING PCBLIST,R2 MAP INPUT PARAMETER LIST
USING PCBNAME,R5 MAP DB PCB
LR R2,R1 SAVE INPUT PCB LIST IN REG 2
L R5,PCBDETA LOAD DETAIL PCB ADDRESS
LA R5,0(R5) REMOVE HIGH ORDER END OF LIST FLAG 3
CALL ASMTDLI,(GU,(R5),DETSEGIO,SSANAME),VL 4

*
*

L R5,PCBMSTA LOAD MASTER PCB ADDRESS
CALL ASMTDLI,(GHU,(R5),MSTSEGIO,SSAU),VL 5

*
*

CALL ASMTDLI,(GHN,(R5),MSTSEGIO),VL 6
*
*

CALL ASMTDLI,(REPL,(R5),MSTSEGIO),VL
*
*

L R13,4(R13) RESTORE SAVE AREA
RETURN (14,12) RETURN BACK 7

*
* FUNCTION CODES USED
*
GU DC CL4’GU’
GHU DC CL4’GHU’
GHN DC CL4’GHN’
REPL DC CL4’REPL’ 8
*
* SSAS
*
SSANAME DS 0C

DC CL8’ROOTDET’
DC CL1’(’
DC CL8’KEYDET’ 9
DC CL2’ =’

NAME DC CL5’ ’
DC C’)’

*
SSAU DC CL9’ROOTMST’*
MSTSEGIO DC CL100’ ’
DETSEGIO DC CL100’ ’
SAVEAREA DC 18F’0’
* 10
PCBLIST DSECT
PCBIO DS A ADDRESS OF I/O PCB
PCBMSTA DS A ADDRESS OF MASTER PCB
PCBDETA DS A ADDRESS OF DETAIL PCB 11
*
PCBNAME DSECT
DBPCBDBD DS CL8 DBD NAME
DBPCBLEV DS CL2 LEVEL FEEDBACK
DBPCBSTC DS CL2 STATUS CODES
DBPCBPRO DS CL4 PROC OPTIONS
DBPCBRSV DS F RESERVED
DBPCBSFD DS CL8 SEGMENT NAME FEEDBACK

Chapter 11. Writing your application programs for IMS DB 193

DBPCBMKL DS F LENGTH OF KEY FEEDBACK
DBPCBNSS DS F NUMBER OF SENSITIVE SEGMENTS IN PCB
DBPCBKFD DS C KEY FEEDBACK AREA

END PGMSTART

Note:

1. The entry point to an assembler language program can have any name. Also,
you can substitute CBLTDLI for ASMTDLI in any of the calls.

2. When IMS passes control to the application program, register 1 contains the
address of a variable-length fullword parameter list. Each word in this list
contains the address of a PCB that the application program must save. The
high-order byte of the last word in the parameter list has the 0 bit set to a
value of 1 which indicates the end of the list. The application program
subsequently uses these addresses when it executes DL/I calls.

3. The program loads the address of the DETAIL DB PCB.
4. The program issues a GU call to the DETAIL database using a qualified SSA

(SSANAME).
5. The program loads the address of the HALDB master PCB.
6. The next three calls that the program issues are to the HALDB master. The

first is a GHU call that uses an unqualified SSA. The second is an unqualified
GHN call. The REPL call replaces the segment retrieved using the GHN call with
the segment in the MSTSEGIO area.
You can use the parmcount parameter in DL/I calls in assembler language
instead of the VL parameter, except for in the call to the sample status-code
error routine.

7. The RETURN statement loads IMS registers and returns control to IMS.
8. The call functions are defined as four-character constants.
9. The program defines each part of the SSA separately so that it can modify the

SSA's fields.
10. The program must define an I/O area that is large enough to contain the

largest segment it is to retrieve or insert (or the largest path of segments if the
program uses the D command code). This program's I/O areas are 100 bytes
each.

11. A fullword must be defined for each PCB. The assembler language program
can access status codes after a DL/I call by using the DB PCB base addresses.
This example assumes that an I/O PCB was passed to the application
program. If the program is a batch program, CMPAT=YES must be specified
on the PSBGEN statement of PSBGEN so that the I/O PCB is included.
Because the I/O PCB is required for a batch program to make system service
calls, CMPAT=YES should always be specified.

Restriction: The IMS language interface module (DFSLI000) must be bound to the
compiled assembler language program.

Coding a CICS online program in assembler language
The following code example in assembler language shows how you define and
establish addressability to the UIB.

The numbers to the right of the program refer to the notes that follow the
program. This program can run in a CICS environment using DBCTL.

194 Application Programming

Sample call-level assembler language program (CICS online)
PGMSTART DSECT NOTES
UIBPTR DS F
IOAREA DS 0CL40 ▌1▐
AREA1 DS CL3
AREA2 DS CL37

DLIUIB
USING UIB,8 ▌2▐

PCBPTRS DSECT
* PSB ADDRESS LIST
PCB1PTR DS F
PCB1 DSECT

USING PCB1,6 ▌3▐
DBPC1DBD DS CL8
DBPC1LEV DS CL2
DBPC1STC DS CL2
DBPC1PRO DS CL4
DBPC1RSV DS F
DBPC1SFD DS CL8
DBPC1MKL DS F
DBPC1NSS DS F
DBPC1KFD DS 0CL256
DBPC1NM DS 0CL12
DBPC1NMA DS 0CL14
DBPC1NMP DS CL17
ASMUIB CSECT

B SKIP
PSBNAME DC CL8’ASMPSB’
PCBFUN DC CL4’PCB’
REPLFUN DC CL4’REPL’
TERMFUN DC CL4’TERM’
GHUFUN DC CL4’GHU’
SSA1 DC CL9’AAAA4444’
GOODRC DC XL1’00’
GOODSC DC CL2’ ’
SKIP DS 0H ▌4▐
* SCHEDULE PSB AND OBTAIN PCB ADDRESSES

CALLDLI ASMTDLI,(PCBFUN,PSBNAME,UIBPTR)
L 8,UIBPTR ▌5▐
CLC UIBFCTR,X’00’
BNE ERROR1

* GET PSB ADDRESS LIST
L 4,UIBPCBAL
USING PCBPTRS,4

* GET ADDRESS OF FIRST PCB IN LIST
L 6,PCB1PTR

* ISSUE DL/I CALL: GET A UNIQUE SEGMENT
CALLDLI ASMTDLI,(GHUFUN,PCB1,IOAREA,SSA1) ▌6▐
CLC UIBFCTR,GOODRC
BNE ERROR2
CLC DBPC1STC,GOODSC
BNE ERROR3 ▌7▐

* PERFORM SEGMENT UPDATE ACTIVITY
MVC AREA1,.......
MVC AREA2,.......

* ISSUE DL/I CALL: REPLACE SEGMENT AT CURRENT POSITION
CALLDLI ASMTDLI,(REPLFUN,PCB1,IOAREA,SSA1) ▌8▐
CLC UIBFCTR,GOODRC
BNE ERROR4
CLC DBPC1STC,GOODSC
B TERM

ERROR1 DS 0H
* INSERT ERROR DIAGNOSTIC CODE

B TERM
ERROR2 DS 0H
* INSERT ERROR DIAGNOSTIC CODE

B TERM

Chapter 11. Writing your application programs for IMS DB 195

ERROR3 DS 0H
* INSERT ERROR DIAGNOSTIC CODE

B TERM
ERROR4 DS 0H
* INSERT ERROR DIAGNOSTIC CODE
ERROR5 DS 0H
* INSERT ERROR DIAGNOSTIC CODE

B TERM
TERM DS 0H
* RELEASE THE PSB

CALLDLI ASMDLI, (TERMFUN)
EXEC CICS RETURN
END ASMUIB ▌9,10▐

Note:

1. The program must define an I/O area that is large enough to contain the
largest segment it is to retrieve or insert (or the largest path of segments if the
program uses the D command code).

2. The DLIUIB statement copies the UIB DSECT.
3. A fullword must be defined for each DB PCB. The assembler language

program can access status codes after a DL/I call by using the DB PCB base
addresses.

4. This is an unqualified SSA. For qualified SSA, define each part of the SSA
separately so that the program can modify the fields of the SSA.

5. This call schedules the PSB and obtains the PSB address.
6. This call retrieves a segment from the database.

CICS online assembler language programs use the CALLDLI macro, instead of
the call statement, to access DL/I databases. This macro is similar to the call
statement. It looks like this:
CALLDLI ASMTDLI,(function,PCB-name,ioarea, SSA1,...SSAn),VL

7. CICS online programs must check the return code in the UIB before checking
the status code in the DB PCB.

8. The REPL call replaces the data in the segment that was retrieved by the most
recent Get Hold call. The data is replaced by the contents of the I/O area
referenced in the call.

9. This call releases the PSB.
10. The RETURN statement loads IMS registers and returns control to IMS.

Related reading: For more information on installing CICS application programs,
see CICS Transaction Server for z/OS CICS Application Programming Reference.
Related reference:
“Specifying the UIB (CICS online programs only)” on page 237

Coding a batch program in C language
The following code example shows how to write an IMS program to access the
IMS database in C language.

The numbers to the right of the program refer to the notes that follow the
program.

Sample C language program
#pragma runopts(env(IMS),plist(IMS)) NOTES
#include <ims.h>
#include <stdio.h> ▌1▐

196 Application Programming

main() { ▌2▐
/* */
/* descriptive statements */
/* */
IO_PCB_TYPE *IO_PCB = (IO_PCB_TYPE*)PCBLIST[0];
struct {PCB_STRUCT(10)} *mast_PCB = __pcblist[1];

struct {PCB_STRUCT(20)} *detail_PCB = __pcblist[2]; ▌3▐
const static char func_GU[4] = "GU ";
const static char func_GN[4] = "GN ";
const static char func_GHU[4] = "GHU ";
const static char func_GHN[4] = "GHN ";
const static char func_GNP[4] = "GNP "; ▌4▐
const static char func_GHNP[4] = "GHNP";
const static char func_ISRT[4] = "ISRT";
const static char func_REPL[4] = "REPL";
const static char func_DLET[4] = "DLET";
char qual_ssa[8+1+8+2+6+1+1]; /* initialized by sprintf ▌5▐

/*below. See the */
/*explanation for */
/*sprintf in note 7 for the */
/*meanings of 8,1,8,2,6,1 ——*/
/*the final 1 is for the */
/*trailing ’\0’ of string */

static const char unqual_ssa[]= "NAME ");
/* 12345678_ */

struct {
———
———
———

} mast_seg_io_area;

struct {
———
——— ▌6▐
———

} det_seg_io_area;
/* */
/* Initialize the qualifier */
/* */

sprintf(qual_ssa,
"8.8s(8.8s6.6s)",
"ROOT", "KEY", "=", "vvvvv"); ▌7▐

/* */
/* Main part of C batch program */
/* */

ctdli(func_GU, detail_PCB,
&det_seg_io_area,qual_ssa); ▌8▐

ctdli(func_GHU, mast_PCB,
&mast_seg_io_area,qual_ssa); ▌9▐

ctdli(func_GHN, mast_PCB,
&mast_seg_io_area); ▌10▐

ctdli(func_REPL, mast_PCB,
&mast_seg_io_area; ▌11▐

} ▌12▐

Note:

1. The env(IMS) establishes the correct operating environment and the
plist(IMS) establishes the correct parameter list when invoked under IMS. The
ims.h header file contains declarations for PCB layouts, __pcblist, and the

Chapter 11. Writing your application programs for IMS DB 197

ctdli routine. The PCB layouts define masks for the PCBs that the program
uses as structures. These definitions make it possible for the program to check
fields in the PCBs.
The stdio.h header file contains declarations for sprintf (used to build up the
SSA).

2. After IMS has loaded the application program's PSB, IMS gives control to the
application program through this entry point.

3. The C run-time sets up the __pcblist values. The order in which you refer to
the PCBs must be the same order in which they have been defined in the PSB.
(Values other than “10” and “20” can be used, according to the actual key
lengths needed.) These declarations can be done using macros, such as:
#define IO_PCB (IO_PCB_TYPE *) (__pcblist[0])
#define mast_PCB (__pcblist[1])
#define detail_PCB (__pcblist[2])

This example assumes that an I/O PCB was passed to the application
program. When the program is a batch program, CMPAT=YES must be
specified on the PSBGEN statement of PSBGEN so that the I/O PCB is
included. Because the I/O PCB is required for a batch program to make
system service calls, CMPAT=YES should always be specified for batch
programs.

4. Each of these areas defines one of the call functions used by the batch
program. Each character string is defined as four alphanumeric characters,
with a value assigned for each function. (If the [4]s had been left out, 5 bytes
would have been reserved for each constant.) You can define other constants
in the same way. Also, you can store standard definitions in a source library
and include them by using a #include directive.
Instead, you can define these by macros, although each string would have a
trailing null ('\0').

5. The SSA is put into a string (see note 7). You can define a structure, as in
COBOL, PL/I, or Pascal, but using sprintf is more convenient. (Remember
that C strings have trailing nulls that cannot be passed to IMS.) Note that the
string is 1 byte longer than required by IMS to contain the trailing null, which
is ignored by IMS. Note also that the numbers in brackets assume that six
fields in the SSA are equal to these lengths.

6. The I/O areas that will be used to pass segments to and from the database are
defined as structures.

7. The sprintf function is used to fill in the SSA. The “%-8.8s” format means “a
left-justified string of exactly eight positions”. The “%2.2s” format means “a
right-justified string of exactly two positions”.
Because the ROOT and KEY parts do not change, this can also be coded:
sprintf(qual_ssa,

"ROOT (KEY =%-6.6s)", "vvvvv");
/* 12345678 12345678 */

8. This call retrieves data from the database. It contains a qualified SSA. Before
you can issue a call that uses a qualified SSA, initialize the data field of the
SSA. Before you can issue a call that uses an unqualified SSA, initialize the
segment name field. Unlike the COBOL, PL/I, and Pascal interface routines,
ctdli also returns the status code as its result. (Blank is translated to 0.) So,
you can code:
switch (ctdli(....)) {

case 0: ... /* everything ok */

break;
case ’AB’:

198 Application Programming

break;
case ’IX’: ...

break;
default:

}

You can pass only the PCB pointer for DL/I calls in a C program.
9. This is another call with a qualified SSA.

10. This call is an unqualified call that retrieves data from the database. Because it
is a Get Hold call, it can be followed by REPL or DLET.

11. The REPL call replaces the data in the segment that was retrieved by the most
recent Get Hold call. The data is replaced by the contents of the I/O area that
is referenced in the call.

12. The end of the main routine (which can be done by a return statement or exit
call) returns control to IMS.

Restriction: IMS provides a language interface module (DFSLI000) that is an
interface between IMS and the C language. This module must be made available to
the application program at bind time.

Coding a batch program in COBOL
The following code example shows how to write an IMS program to access the
IMS database in COBOL.

The numbers to the right of the program refer to the notes that follow the
program. This kind of program can run as a batch program or as a batch-oriented
BMP.

Sample COBOL program
Identification Division.
Program-ID. BATCOBOL.
Environment Division.
Data Division.
Working-Storage Section.

01 Func-Codes.
05 Func-GU Picture XXXX Value ’GU ’.
05 Func-GHU Picture XXXX Value ’GHU ’.
05 Func-GN Picture XXXX Value ’GHN ’.
05 Func-GHN Picture XXXX Value ’GHN ’.
05 Func-GNP Picture XXXX Value ’GNP ’.
05 Func-GHNP Picture XXXX Value ’GHNP’.
05 Func-REPL Picture XXXX Value ’REPL’.
05 Func-ISRT Picture XXXX Value ’ISRT’.
05 Func-DLET Picture XXXX Value ’DLET’.
05 Parmcount Picture S9(5) Value +4 Comp-5.

01 Unqual-SSA.
05 Seg-Name Picture X(08) Value ’ ’.
05 Filler Picture X Value ’ ’.

01 Qual-SSA-Mast.
05 Seg-Name-M Picture X(08) Value ’ROOTMast’.
05 Begin-Paren-M Picture X Value ’(’.
05 Key-Name-M Picture X(08) Value ’KeyMast ’.
05 Kel-Oper-M Picture X(05) Value ’ =’.
05 Key-Value-M Picture X(06) Value ’VVVVVV’.
05 End-Paren-M Picture X Value ’)’.

01 Qual-SSA-Det.
05 Seg-Name-D Picture X(08) Value ’ROOTDET ’.
05 Begin-Paren-D Picture X Value ’(’.
05 Key-Name-D Picture X(08) Value ’KEYDET ’.

Chapter 11. Writing your application programs for IMS DB 199

05 Rel-Oper-D Picture X(05) Value ’ =’.
05 Key-Value-D Picture X(06) Value ’VVVVVV’.
05 End-Paren-D Picture X Value ’)’.

01 Det-Seg-In.
05 Data1 Picture X.
05 Data2 Picture X.

01 Mast-Seg-In.
05 Data1 Picture X.
05 Data2 Picture X.

linkage section.
01 IO-PCB.

05 Filler Picture X(10).
05 IO-Status-Code Picture XX.
05 Filler Picture X(20).

01 DB-PCB-Mast.
05 Mast-Dbd-Name Picture X(8).
05 Mast-Seg-Level Picture XX.
05 Mast-Status-Code Picture XX.
05 Mast-Proc-Opt Picture XXXX.
05 Filler Picture S9(5) Comp-5.
05 Mast-Seg-Name Picture X(8).
05 Mast-Len-KFB Picture S9(5) Comp-5.
05 Mast-Nu-Senseg Picture S9(5) Comp-5.
05 Mast-Key-FB Picture X(256).

01 DB-PCB-Detail.
05 Det-Dbd-Name Picture X(8).
05 Det-Seg-Level Picture XX.
05 Det-Status-Code Picture XX.
05 Det-Proc-Opt Picture XXXX.
05 Filler Picture S9(5) Comp-5.
05 Det-Seg-Name Picture X(8).
05 Det-Len-KFB Picture S9(5) Comp-5.
05 Det-Nu-Senseg Picture S9(5) Comp-5.
05 Det-Key-FB Picture X(256).

Procedure Division using IO-PCB DB-PCB-Mast DB-PCB-Detail.
Call ’CBLTDLI’ using Func-GU DB-PCB-Detail

Det-seg-in Qual-SSA-Det.
.
.

Call ’CBLTDLI’ using Parmcount Func-ghu DB-PCB-Mast
Mast-seg-in Qual-SSA-Mast.

.

.
Call ’CBLTDLI’ using Func-GHN DB-PCB-Mast

Mast-seg-in.
.
.

Call ’CBLTDLI’ using Func-REPL DB-PCB-Mast
Mast-seg-in.

.

.
Goback.

Note:

1. You define each of the DL/I call functions the program uses with a 77-level or
01-level working storage entry. Each picture clause is defined as four
alphanumeric characters and has a value assigned for each function. If you
want to include the optional parmcount field, you can initialize count values
for each type of call. You can also use a COBOL COPY statement to include
these standard descriptions in the program.

200 Application Programming

2. A 9-byte area is set up for an unqualified SSA. Before the program issues a
call that requires an unqualified SSA, it moves the segment name to this area.
If a call requires two or more SSAs, you may need to define additional areas.

3. A 01-level working storage entry defines each qualified SSA that the
application program uses. Qualified SSAs must be defined separately, because
the values of the fields are different.

4. A 01-level working storage entry defines I/O areas that are used for passing
segments to and from the database. You can further define I/O areas with
sub-entries under the 01-level. You can use separate I/O areas for each
segment type, or you can define one I/O area that you use for all segments.

5. A 01-level linkage section entry defines a mask for each of the PCBs that the
program requires. The DB PCBs represent both input and output databases.
After issuing each DL/I call, the program checks the status code through this
linkage. You define each field in the DB PCB so that you can reference it in
the program.

6. This is the standard procedure division statement of a batch program. After
IMS has loaded the PSB for the program, IMS passes control to the application
program. The PSB contains all the PCBs that are defined in the PSB. The
coding of USING on the procedure division statement references each of the
PCBs by the names that the program has used to define the PCB masks in the
linkage section. The PCBs must be listed in the order in which they are
defined in the PSB.
The previous code example assumes that an I/O PCB was passed to the
application program. When the program is a batch program, CMPAT=YES
must be specified on the PSBGEN statement of PSBGEN so that the I/O PCB
is included. Because the I/O PCB is required for a batch program to make
system service calls, CMPAT=YES should always be specified for batch
programs.
The entry DLITCBL statement is only used in the main program. Do not use it
in called programs.

7. This call retrieves data from the database by using a qualified SSA. Before
issuing the call, the program must initialize the key or data value of the SSA
so that it specifies the particular segment to be retrieved. The program should
test the status code in the DB PCB that was referenced in the call immediately
after issuing the call. You can include the parmcount parameter in DL/I calls in
COBOL programs, except in the call to the sample status-code error routine. It
is never required in COBOL.

8. This is another retrieval call that contains a qualified SSA.
9. This is an unqualified retrieval call.

10. The REPL call replaces the segment that was retrieved in the most recent Get
Hold call. The segment is replaced with the contents of the I/O area that is
referenced in the call (MAST-SEG-IN).

11. The program issues the GOBACK statement when it has finished processing.

Related reading: For information on how to use these procedures, see IMS Version
14 System Definition.

Binding COBOL code to the IMS language interface module
IMS supplies a language interface module (DFSLI000). This module must be bound
to the batch program after the program has been compiled. It gives a common
interface to IMS.

Chapter 11. Writing your application programs for IMS DB 201

If you use the IMS-supplied procedures (IMSCOBOL or IMSCOBGO), IMS binds
the language interface with the application program. IMSCOBOL is a two-step
procedure that compiles and binds your program. IMSCOBGO is a three-step
procedure that compiles, binds, and executes your program in an IMS batch
region.

Coding a CICS online program in COBOL
The following code examples are skeleton online programs in Enterprise COBOL.
They show examples of how to define and set up addressability to the UIB.

The numbers to the right of the programs refer to the notes that follow them. This
kind of program can run in a CICS environment using DBCTL.

Sample COBOL program that can run in CICS
Identification Division.
Program-ID. CBLUIB.
Environment Division.
Data Division.
Working-Storage Section.
01 Func-Codes.

05 Psb-Name Picture X(8) Value ’CBLPSB ’.
05 Func-PCB Picture X(4) Value ’PCB ’.
05 Func-TERM Picture X(4) Value ’TERM’. ▌1▐
05 Func-GHU Picture X(4) Value ’GHU ’.
05 Func-REPL Picture X(4) Value ’REPL’.
05 SSA1 Picture X(9) Value ’AAAA4444 ’.
05 Success-Message Picture X(40).
05 Good-Status-Code Picture XX Value ’ ’. ▌2▐
05 good-return-code Picture X Value low-Value.

01 Message0.
05 Message1 Picture X(38). ▌3▐
05 Message2 Picture XX.

01 Dli-IO-Area.
05 Area1 Picture X(3).
05 Area2 Picture X(37).
Procedure Division.

* Schedule the psb and address the uib
Call ’CBLTDli’ using Func-PCB Psb-Name ▌4▐

address of Dliuib.
If Uibfctr is not equal low-Values then

* Insert error diagnostic code
Exec CICS return end-exec

End-if.
Set address of pcb-addresses to pcbaddr.

* Issue DL/I Call: get a unique segment
Set address of pcb1 to pcb-address-list(1).
Call ’CBLTDli’ using Func-GHU Pcb1 ▌5▐

Dli-io-area ssa1.
If uibfctr is not equal good-return-code then

* Insert error diagnostic code ▌6▐
Exec CICS return end-Exec

End-if.
If pcb1-status-code is not equal good-status-code then

* Insert error diagnostic code
Exec CICS return end-Exec

End-if.
* Perform segment update activity

Move ’aaa’ to area1.
Move ’bbb’ to area2.

* Issue DL/I Call: replace segment at current position ▌7▐
Call ’CBLTDli’ using Func-REPL Pcb1

Dli-io-area ssa1
If uibfctr is not equal good-return-code then

202 Application Programming

* Insert error diagnostic code
Exec CICS return end-Exec

End-if.
If pcb1-status-code is not equal good-status-code then

* Insert error diagnostic code
Exec CICS return end-Exec

End-if.
* Release the psb

Call ’CBLTDli’ using Func-TERM.
* Other application Function ▌8,9▐

Exec CICS return end-Exec.
Goback.

Note:

1. You define each of the DL/I call functions the program uses with a 77-level or
01-level working storage entry. Each picture clause is defined as four
alphanumeric characters and has a value assigned for each function. If you
want to include the optional parmcount field, initialize count values for each
type of call. You can also use the COBOL COPY statement to include these
standard descriptions in the program.

2. A 9-byte area is set up for an unqualified SSA. Before the program issues a call
that requires an unqualified SSA, it can either initialize this area with the
segment name or move the segment name to this area. If a call requires two or
more SSAs, you may need to define additional areas.

3. An 01-level working storage entry defines I/O areas that are used for passing
segments to and from the database. You can further define I/O areas with
sub-entries under the 01-level. You can use separate I/O areas for each segment
type, or you can define one I/O area that you use for all segments.

4. One PCB layout is defined in the linkage section. The PCB-ADDRESS-LIST
occurs n times, where n is greater than or equal to the number of PCBs in the
PSB.

5. The PCB call schedules a PSB for your program to use. The address of the
DLIUIB parameter returns the address of DLIUIB.

6. This unqualified GHU call retrieves a segment from the database and places it in
the I/O area that is referenced by the call. Before issuing the call, the program
must initialize the key or data value of the SSA so that it specifies the
particular segment to be retrieved.

7. CICS online programs should test the return code in the UIB before testing the
status code in the DB PCB.

8. The REPL call replaces the segment that was retrieved in the most recent Get
Hold call with the data that the program has placed in the I/O area.

9. The TERM call terminates the PSB the program scheduled earlier. This call is
optional and is only issued if a sync point is desired prior to continued
processing. The program issues the EXEC CICS RETURN statement when it has
finished its processing. If this is a RETURN from the highest-level CICS
program, a TERM call and sync point are internally generated by CICS.

Sample call-level OS/VS COBOL program for CICS online
(obsolete with Enterprise COBOL)

Identification Division. NOTES
Program-ID. CBLUIB.

Environment Division.
Data Division.
Working-Storage Section.

01 Func-Codes.
05 Psb-Name Picture X(8) Value ’CBLPSB ’. ▌1▐
05 Func-PCB Picture X(4) Value ’PCB ’.

Chapter 11. Writing your application programs for IMS DB 203

05 Func-TERM Picture X(4) Value ’TERM’.
05 Func-GHU Picture X(4) Value ’GHU ’.
05 Func-REPL Picture X(4) Value ’REPL’.
05 SSA1 Picture X(9) Value ’AAAA4444 ’. ▌2▐
05 Success-Message Picture X(40).
05 Good-Status-Code Picture XX Value ’ ’.
05 Good-Return-Code Picture X Value low-Value.

01 Message0.
05 Message1 Picture X(38).
05 Message2 Picture XX.

01 Dli-IO-Area. ▌3▐
05 Area1 Picture X(3).
05 Area2 Picture X(37).

Linkage Section. ▌4▐
01 BllCells.

05 FIller Picture S9(8) Comp-5.
05 Uib-Ptr Picture S9(8) Comp-5.
05 B-Pcb-Ptrs Picture S9(8) Comp-5.
05 Pcb1-Ptr Picture S9(8) Comp-5.
Copy DliUib. ▌5,6▐

01 Overlay-Dliuib Redefines Dliuib.
05 Pcbaddr usage is pointer.
05 Filler Picture XX.

01 Pcb-Ptrs.
05 B-Pcb1-Ptr Picture 9(8) Comp-5.

01 Pcb1. ▌7▐
05 Pcb1-Dbd-Name Picture X(8).
05 Pcb1-Seg-Level Picture XX.
05 Pcb1-Status-Code Picture XX.
05 Pcb1-PROC-OPT Picture XXXX.
05 FIller Picture S9(5) Comp-5.
05 Pcb1-Seg-Name Picture X(8).
05 Pcb1-Len-KFB Picture S9(5) Comp-5.
05 Pcb1-NU-ENSeg Picture S9(5) Comp-5.
05 Pcb1-KEY-FB Picture X(256).

Procedure Division. ▌8▐
Call ’CBLTDLI’ using Func-PCB Psb-Name Uib-ptr.
If Uibfctr is not equal low-values then

* Insert error diagnostic Code
Exec CICS Return end-Exec

End-if.
Move Uibpcbal to B-Pcb-Ptrs.
Move B-Pcb1-Ptr to Pcb1-Ptr.

* Issue DL/I Call: get a unique segment ▌9▐
Call ’CBLTDLI’ using Func-GHU Pcb1

Dli-io-area ssa1.
Service reload Uib-ptr
If Uibfctr is not equal Good-Return-Code then ▌10▐

* Insert error diagnostic Code
Exec CICS Return end-Exec

End-if.

If Pcb1-Status-Code is not equal Good-Status-Code then
* Insert error diagnostic Code

Exec CICS Return end-Exec
End-if.

* Perform segment update activity
Move ’aaa’ to area1.
Move ’bbb’ to area2.

* Issue DL/I Call: replace segment at current position ▌11▐
Call ’CBLTDLI’ using Func-REPL Pcb1

Dli-io-area ssa1.
If Uibfctr is not equal Good-Return-Code then

* Insert error diagnostic Code

204 Application Programming

Exec CICS Return end-Exec
End-if.

If Pcb1-Status-Code is not equal Good-Status-Code then
* Insert error diagnostic Code

Exec CICS Return end-Exec
End-if.

* Release the PSB
Call ’CBLTDLI’ using Func-TERM. ▌12,13▐

Exec CICS Return end-Exec.

Note:

1. You define each of the DL/I call functions the program uses with a 77-level or
01-level working storage entry. Each picture clause is defined as four
alphanumeric characters and has a value assigned for each function. If you
want to include the optional parmcount field, you can initialize count values
for each type of call. You can also use the COBOL COPY statement to include
these standard descriptions in the program.

2. A 9-byte area is set up for an unqualified SSA. Before the program issues a
call that requires an unqualified SSA, it can either initialize this area with the
segment name or move the segment name to this area. If a call requires two
or more SSAs, you may need to define additional areas.

3. An 01-level working storage entry defines I/O areas that are used for passing
segments to and from the database. You can further define I/O areas with
02-level entries. You can use separate I/O areas for each segment type, or you
can define one I/O area to use for all segments.

4. The linkage section must start with a definition of this type to provide
addressability to a parameter list that will contain the addresses of storage
that is outside the working storage of the application program. The first
02-level definition is used by CICS to provide addressability to the other fields
in the list. A one-to-one correspondence exists between the other 02-level
names and the 01-level data definitions in the linkage section.

5. The COPY DLIUIB statement will be expanded.
6. The UIB returns the address of an area that contains the PCB addresses. The

definition of PCB pointers is necessary to obtain the actual PCB addresses. Do
not alter the addresses in the area.

7. The PCBs are defined in the linkage section.
8. The PCB call schedules a PSB for your program to use.
9. This unqualified GHU call retrieves a segment from the database and places it

in the I/O area that is referenced by the call. Before issuing the call, the
program must initialize the key or data value of the SSA so that it specifies
the particular segment to be retrieved.

10. CICS online programs should test the return code in the UIB before testing the
status code in the DB PCB.

11. The REPL call replaces the segment that was retrieved in the most recent Get
Hold call with the data that the program has placed in the I/O area.

12. The TERM call terminates the PSB that the program scheduled earlier. This call
is optional and is only issued if a sync point is desired prior to continued
processing.

13. The program issues the EXEC CICS RETURN statement when it has finished
its processing. If this is a return from the highest-level CICS program, a TERM
call and sync point are internally generated by CICS.

Chapter 11. Writing your application programs for IMS DB 205

Related reading: For more information about installing application programs, see
CICS Transaction Server for z/OS CICS Application Programming Guide.
Related reference:
“Specifying the UIB (CICS online programs only)” on page 237

Coding a program in Java
IMS provides support for developing applications using the Java programming
language.

You can write Java applications to access IMS databases and process IMS
transactions by using the drivers and resource adapters of the IMS solutions for
Java development.
Related concepts:
Chapter 38, “IMS solutions for Java development overview,” on page 603

Coding a batch program in Pascal
The following code sample is a skeleton batch program in Pascal. It shows you
how the parts of an IMS program that is written in Pascal fit together. The
numbers to the right of the program refer to the notes that follow the program.

Restriction: Pascal is not supported by CICS.
segment PASCIMS; NOTES

1
type 2

CHAR2 = packed array [1..2] of CHAR;
CHAR4 = packed array [1..4] of CHAR;
CHAR6 = packed array [1..6] of CHAR;
CHARn = packed array [1..n] of CHAR;

DB_PCB_TYPE = record 3
DB_NAME : ALFA;
DB_SEG_LEVEL : CHAR2;
DB_STAT_CODE : CHAR2;
DB_PROC_OPT : CHAR4;
FILLER : INTEGER;
DB_SEG_NAME : ALFA;
DB_LEN_KFB : INTEGER;
DB_NO_SENSEG : INTEGER;
DB_KEY_FB : CHARn;

end;
procedure PASCIMS (var SAVE: INTEGER; 4

var DB_PCB_MAST: DB_PCB_TYPE;
var DB_PCB_DETAIL : DB_PCB_TYPE);

REENTRANT;
procedure PASCIMS;
type 5

QUAL_SSA_TYPE = record
SEG_NAME : ALFA;

SEQ_QUAL : CHAR;
SEG_KEY_NAME : ALFA;
SEG_OPR : CHAR2;
SEG_KEY_VALUE: CHAR6;
SEG_END_CHAR : CHAR;
end;

MAST_SEG_IO_AREA_TYPE = record
(* Field declarations *)

end;
DET_SEG_IO_AREA_TYPE = record

(* Field declarations *)
end;

var 6

206 Application Programming

MAST_SEG_IO_AREA : MAST_SEG_IO_AREA_TYPE;
DET_SEG_IO_AREA : DET_SEG_IO_AREA_TYPE;

const 7
GU = ’GU ’;
GN = ’GN ’;

GHU = ’GHU ’;
GHN = ’GHN ’;
GHNP = ’GHNP’;
ISRT = ’ISRT’;
REPL = ’REPL’;
DLET = ’DLET’;
QUAL_SSA = QUAL_SSA_TYPE(’ROOT’,’(’,’KEY’,’ =’,

’vvvvv’,’)’);
UNQUAL_SSA = ’NAME ’;

procedure PASTDLI; GENERIC; 8
begin

PASTDLI(const GU, 9
var DB_PCB_DETAIL;
var DET_SEG_IO_AREA;
const QUAL_SSA);

PASTDLI(const GHU, 10
var DB_PCB_MAST,
var MAST_SEG_IO_AREA,
const QUAL_SSA);

PASTDLI(const GHN, 11
var DB_PCB_MAST,
var MAST_SEG_IO_AREA);

PASTDLI(const REPL, 12
var DB_PCB_MAST,
var MAST_SEG_IO_AREA);

end;
13

Note:

1. Define the name of the Pascal compile unit.
2. Define the data types that are needed for the PCBs used in your program.
3. Define the PCB data type that is used in your program.
4. Declare the procedure heading for the REENTRANT procedure that is called

by IMS. The first word in the parameter list should be an INTEGER, which is
reserved for VS Pascal's usage. The rest of the parameters are the addresses of
the PCBs that are received from IMS.

5. Define the data types that are needed for the SSAs and I/O areas.
6. Declare the variables used for the I/O areas.
7. Define the constants, such as function codes and SSAs that are used in the

PASTDLI DL/I calls.
8. Declare the IMS interface routine by using the GENERIC directive. GENERIC

identifies external routines that allow multiple parameter list formats. A
GENERIC routine's parameters are “declared” only when the routine is called.

9. This call retrieves data from the database. It contains a qualified SSA. Before
you can issue a call that uses a qualified SSA, you must initialize the data
field of the SSA. Before you can issue a call that uses an unqualified SSA, you
must initialize the segment name field.

10. This is another call that has a qualified SSA.
11. This call is an unqualified call that retrieves data from the database. Because it

is a Get Hold call, it can be followed by a REPL or DLET call.
12. The REPL call replaces the data in the segment that was retrieved by the most

recent Get Hold call; the data is replaced by the contents of the I/O area that
is referenced in the call.

Chapter 11. Writing your application programs for IMS DB 207

13. You return control to IMS by exiting from the PASCIMS procedure. You can
also code a RETURN statement to exit at another point.

Restriction: You must bind your program to the IMS language interface module
(DFSLI000) after compiling your program.

Coding a batch program in PL/I
The following code example is a skeleton batch program in PL/I. It shows you
how the parts of an IMS program that is written in PL/I fit together.

The numbers to the right of the program refer to the notes that follow. This kind of
program can run as a batch program or as a batch-oriented BMP.

Restriction: IMS application programs cannot use PL/I multitasking. This is
because all tasks operate as subtasks of a PL/I control task when you use
multitasking.

Sample PL/I program
/* */ NOTES
/* ENTRY POINT */
/* */
DLITPLI: PROCEDURE (IO_PTR_PCB,DB_PTR_MAST,DB_PTR_DETAIL) ▌1▐

OPTIONS (MAIN);
/* */
/* DESCRIPTIVE STATEMENTS */
/* */
DCL IO_PTR_PCB POINTER;
DCL DB_PTR_MAST POINTER;
DCL DB_PTR_DETAIL POINTER;
DCL FUNC_GU CHAR(4) INIT(’GU ’); ▌2▐
DCL FUNC_GN CHAR(4) INIT(’GN ’);
DCL FUNC_GHU CHAR(4) INIT(’GHU ’);
DCL FUNC_GHN CHAR(4) INIT(’GHN ’);
DCL FUNC_GNP CHAR(4) INIT(’GNP ’);
DCL FUNC_GHNP CHAR(4) INIT(’GHNP’);
DCL FUNC_ISRT CHAR(4) INIT(’ISRT’);
DCL FUNC_REPL CHAR(4) INIT(’REPL’);
DCL FUNC_DLET CHAR(4) INIT(’DLET’);
DCL 1 QUAL_SSA STATIC UNALIGNED, ▌3▐

2 SEG_NAME CHAR(8) INIT(’ROOT ’),
2 SEG_QUAL CHAR(1) INIT(’(’),
2 SEG_KEY_NAME CHAR(8) INIT(’KEY ’),
2 SEG_OPR CHAR(2) INIT(’ =’),
2 SEG_KEY_VALUE CHAR(6) INIT(’vvvvv’),
2 SEG_END_CHAR CHAR(1) INIT(’)’);

DCL 1 UNQUAL SSA STATIC UNALIGNED,
2 SEG_NAME_U CHAR(8) INIT(’NAME ’),
2 BLANK CHAR(1) INIT(’ ’);

DCL 1 MAST_SEG_IO_AREA, ▌4▐
2 ———
2 ———
2 ———

DCL 1 DET_SEG_IO_AREA,
2 ———
2 ———
2 ———

DCL 1 IO_PCB BASED (IO_PTR_PCB), ▌5▐
2 FILLER CHAR(10),
2 STAT CHAR(2);

DCL 1 DB_PCB_MAST BASED (DB_PTR_MAST),
2 MAST_DB_NAME CHAR(8),
2 MAST_SEG_LEVEL CHAR(2),
2 MAST_STAT_CODE CHAR(2),

208 Application Programming

2 MAST_PROC_OPT CHAR(4),
2 FILLER FIXED BINARY (31,0),
2 MAST_SEG_NAME CHAR(8),
2 MAST_LEN_KFB FIXED BINARY (31,0),
2 MAST_NO_SENSEG FIXED BINARY (31,0),
2 MAST_KEY_FB CHAR(*);

DCL 1 DB_PCB_DETAIL BASE (DB_PTR_DETAIL),
2 DET_DB_NAME CHAR(8),
2 DET_SEG_LEVEL CHAR(2),
2 DET_STAT_CODE CHAR(2),
2 DET_PROC_OPT CHAR(4),
2 FILLER FIXED BINARY (31,0),
2 DET_SEG_NAME CHAR(8),
2 DET_LEN_KFB FIXED BINARY (31,0),
2 DET_NO_SENSEG FIXED BINARY (31,0),
2 DET_KEY_FB CHAR(*);

DCL THREE FIXED BINARY (31,0) INITIAL(3); ▌6▐
DCL FOUR FIXED BINARY (31,0) INITIAL(4);
DCL FIVE FIXED BINARY (31,0) INITIAL(5);
DCL SIX FIXED BINARY (31,0) INITIAL(6);
/* */
/* MAIN PART OF PL/I BATCH PROGRAM */
/* */
CALL PLITDLI (FOUR,FUNC_GU,DB_PCB_DETAIL,DET_SEG_IO_AREA, QUAL_SSA); ▌7▐

IF DET_STAT_CODE = GOOD_STATUS_CODE THEN DO;
CALL PLITDLI (FOUR,FUNC_GHU,DB_PCB_MAST,MAST_SEG_IO_AREA,QUAL_SSA); ▌8▐
IF MAST_STAT_CODE = GOOD_STATUS_CODE THEN DO;

CALL PLITDLI (THREE,FUNC_GHN,DB_PCB_MAST,MAST_SEG_IO_AREA); ▌9▐
IF MAST_STAT_CODE = GOOD_STATUS_CODE THEN DO;

CALL PLITDLI (THREE,FUNC_REPL,DB_PCB_MAST,MAST_SEG_IO_AREA); ▌10▐
IF MAST_STAT_CODE ^= GOOD_STATUS_CODE THEN DO;

/* INSERT REPLACE DIAGNOSTIC MESSAGE */
END;

END;
ELSE DO;

/* INSERT GHN DIAGNOSTIC MESSAGE */
END;

END;
ELSE DO;

/* INSERT GHU DIAGNOSTIC MESSAGE */
END;

END;
ELSE DO;

/* INSERT GU DIAGNOSTIC MESSAGE */
END;
RETURN; ▌11▐
END DLITPLI;

Note:

1. After IMS has loaded the PSB of the application program, IMS gives control to
the application program through this entry point. PL/I programs must pass
the pointers to the PCBs, not the names, in the entry statement. The entry
statement lists the PCBs that the program uses by the names that it has
assigned to the definitions for the PCB masks. The order in which you refer to
the PCBs in the entry statement must be the same order in which they have
been defined in the PSB.
The code example assumes that an I/O PCB was passed to the application
program. When the program is a batch program, CMPAT=YES must be
specified on the PSBGEN statement of PSBGEN so that the I/O PCB is
included. Because the I/O PCB is required for a batch program to make
system service calls, CMPAT=YES should always be specified for batch
programs.

Chapter 11. Writing your application programs for IMS DB 209

2. Each of these areas defines one of the call functions used by the batch
program. Each character string is defined as four alphanumeric characters,
with a value assigned for each function. You can define other constants in the
same way. Also, you can store standard definitions in a source library and
include them by using a %INCLUDE statement.

3. A structure definition defines each SSA the program uses. The unaligned
attribute is required for SSAs. The SSA character string must reside
contiguously in storage. You should define a separate structure for each
qualified SSA, because the value of the data field for each SSA is different.

4. The I/O areas that are used to pass segments to and from the database are
defined as structures.

5. Level-01 declaratives define masks for the PCBs that the program uses as
structures. These definitions make it possible for the program to check fields
in the PCBs.

6. This statement defines the parmcount that is required in DL/I calls that are
issued from PL/I programs (except for the call to the sample status-code error
routine, where it is not allowed). The parmcount is the address of a 4-byte field
that contains the number of subsequent parameters in the call. The parmcount
is required only in PL/I programs. It is optional in the other languages. The
value in parmcount is binary. This example shows how you can code the
parmcount parameter when three parameters follow in the call:
DCL THREE FIXED BINARY (31,0) INITIAL(3);

7. This call retrieves data from the database. It contains a qualified SSA. Before
you can issue a call that uses a qualified SSA, initialize the data field of the
SSA. Before you can issue a call that uses an unqualified SSA, initialize the
segment name field. Check the status code after each DL/I call that you issue.
Although you must declare the PCB parameters that are listed in the entry
statement to a PL/I program as POINTER data types, you can pass either the
PCB name or the PCB pointer in DL/I calls in a PL/I program.

8. This is another call that has a qualified SSA.
9. This is an unqualified call that retrieves data from the database. Because it is a

Get Hold call, it can be followed by REPL or DLET.
10. The REPL call replaces the data in the segment that was retrieved by the most

recent Get Hold call; the data is replaced by the contents of the I/O area
referenced in the call.

11. The RETURN statement returns control to IMS.

Binding PL/I code to the IMS language interface module
IMS provides a language interface module (DFSLI000) which gives a common
interface to IMS. This module must be bound to the program.

If you use the IMS-supplied procedures (IMSPLI or IMSPLIGO), IMS binds the
language interface module to the application program. IMSPLI is a two-step
procedure that compiles and binds your program. IMSPLIGO is a three-step
procedure that compiles, binds, and executes your program in a DL/I batch region.
For information on how to use these procedures, see IMS Version 14 System
Definition.

Coding a CICS online program in PL/I
The following code example is a skeleton CICS online program in PL/I. It shows
you how to define and establish addressability to the UIB.

210 Application Programming

The numbers to the right of the program refer to the notes that follow. This kind of
program can run in a CICS environment using DBCTL.

Sample call-level PL/I program (CICS online)
PLIUIB: PROC OPTIONS(MAIN); NOTES
DCL PSB_NAME CHAR(8) STATIC INIT(’PLIPSB ’); ▌1▐
DCL PCB_FUNCTION CHAR(4) STATIC INIT(’PCB ’);
DCL TERM_FUNCTION CHAR(4) STATIC INIT(’TERM’);
DCL GHU_FUNCTION CHAR(4) STATIC INIT(’GHU ’);
DCL REPL_FUNCTION CHAR(4) STATIC INIT(’REPL’);
DCL SSA1 CHAR(9) STATIC INIT(’AAAA4444 ’); ▌2▐
DCL PARM_CT_1 FIXED BIN(31) STATIC INIT(1);
DCL PARM_CT_3 FIXED BIN(31) STATIC INIT(3);
DCL PARM_CT_4 FIXED BIN(31) STATIC INIT(4);
DCL GOOD_RETURN_CODE BIT(8) STATIC INIT(’0’B);
DCL GOOD_STATUS_CODE CHAR(2) STATIC INIT(’ ’);
%INCLUDE DLIUIB; ▌3▐
DCL 1 PCB_POINTERS BASED(UIBPCBAL), ▌4▐

2 PCB1_PTR POINTER;
DCL 1 DLI_IO_AREA, ▌5▐

2 AREA1 CHAR(3),
2 AREA2 CHAR(37);

DCL 1 PCB1 BASED(PCB1_PTR), ▌6▐
2 PCB1_DBD_NAME CHAR(8),
2 PCB1_SEG_LEVEL CHAR(2),
2 PCB1_STATUS_CODE CHAR(2),
2 PCB1_PROC_OPTIONS CHAR(4),
2 PCB1_RESERVE_DLI FIXED BIN (31,0),
2 PCB1_SEGNAME_FB CHAR(8),
2 PCB1_LENGTH_FB_KEY FIXED BIN(31,0),
2 PCB1_NUMB_SENS_SEGS FIXED BIN(31,0),
2 PCB1_KEY_FB_AREA CHAR(17);

/* SCHEDULE PSB AND OBTAIN PCB ADDRESSES */
CALL PLITDLI (PARM_CT_3,PCB_FUNCTION,PSB_NAME,UIBPTR); ▌7▐
IF UIBFCTR = GOOD RETURN CODE THEN DO;

/* ISSUE DL/I CALL: GET A UNIQUE SEGMENT */
CALL PLITDLI (PARM_CT_4,GHU_FUNCTION,PCB1,DLI_IO_AREA,SSA1); ▌8▐
IF UIBFCTR = GOOD_RETURN_CODE& PCB1_STATUS_CODE = GOOD_STATUS_CODE THEN DO; ▌9▐

/* PERFORM SEGMENT UPDATE ACTIVITY */
AREA1 =;
AREA2 =;

/* ISSUE DL/I: REPLACE SEGMENT AT CURRENT POSITION */
PLITDLI (PARM_CT_3,REPL_FUNCTION,PCB1,DLI_IO_AREA); ▌10▐

IF UIBFCTR ^= GOOD_RETURN_CODE
| PCB1_STATUS_CODE ^= GOOD_STATUS_CODE THEN DO;
/* INSERT REPL ERROR DIAGNOSTIC CODE */

END;
END;
ELSE DO;

/* INSERT GHU ERROR DIAGNOSTIC CODE */
END;

END;
ELSE DO;

/* ANALYZE UIB PROBLEM */
/* ISSUE UIB DIAGNOSTIC MESSAGE */

END;
/* RELEASE THE PSB */
CALL PLITDLI(PARM_CT_1,TERM_FUNCTION); ▌11▐
EXEC CICS RETURN; ▌12▐
END PLIUIB;

Note:

1. Each of these areas defines the DL/I call functions the program uses. Each
character string is defined as four alphanumeric characters and has a value

Chapter 11. Writing your application programs for IMS DB 211

assigned for each function. You can define other constants in the same way.
You can store standard definitions in a source library and include them by
using a %INCLUDE statement.

2. A structure definition defines each SSA the program uses. The unaligned
attribute is required for SSA. The SSA character string must reside
contiguously in storage. If a call requires two or more SSA, you may need to
define additional areas.

3. The %INCLUDE DLIUIB statement will be expanded.
4. The UIB returns the address of an area containing the PCB addresses. The

definition of PCB pointers is necessary to obtain the actual PCB addresses. Do
not alter the addresses in the area.

5. The I/O areas that are used to pass segments to and from the database are
defined as structures.

6. The PCBs are defined based on the addresses that are passed in the UIB.
7. The PCB call schedules a PSB for your program to use.
8. This unqualified GHU call retrieves a segment from the database. The segment

is placed in the I/O area that is referenced in the call. Before issuing the call,
the program must initialize the key or data value of the SSA so that it
specifies the particular segment to be retrieved.

9. CICS online programs must test the return code in the UIB before testing the
status code in the DB PCB.

10. The REPL call replaces the segment that was retrieved in the most recent Get
Hold call. The I/O area that is referenced in the call contains the segment to
be replaced.

11. The TERM call terminates the PSB that the program scheduled earlier.
12. The program issues the EXEC CICS RETURN statement when it has finished

processing.

Related reading: For more information about installing application programs, see
CICS Transaction Server for z/OS CICS Application Programming Guide.
Related reference:
“Specifying the UIB (CICS online programs only)” on page 237
“Coding a CICS online program in PL/I” on page 210

212 Application Programming

Chapter 12. Defining application program elements for IMS DB

Use these specific parameters and formats for making DL/I calls through the
language interfaces for your applications program written in assembler language,
C language, COBOL, Pascal, and PL/I.

Formatting DL/I calls for language interfaces
When you use DL/I calls in assembler language, C language, COBOL, Pascal, or
PL/I, you must call the DL/I language interface to initiate the functions specified
with the DL/I calls.

IMS offers several interfaces for DL/I calls:
v A language-independent interface for any programs that are Language

Environment® conforming (CEETDLI)
v Language-specific interfaces for all supported languages (xxxTDLI)
v A non-language-specific interface for all supported languages (AIBTDLI)

Java makes use of the all three DL/I language interfaces, but the usage is internal
and no calls are necessary to initiate the functions specified with the DL/I calls.
Related concepts:
Chapter 38, “IMS solutions for Java development overview,” on page 603

Assembler language application programming
Application programs in assembly language use the following format, parameters,
and DL/I calls to communicate with IMS databases.

In assembler language programs, all DL/I call parameters that are passed as
addresses can be passed in a register, which, if used, must be enclosed in
parentheses.

Format

►► CALL ASMTDLI,(function
parmcount, ,db pcb A

,tp pcb
A
B

C
AIBTDLI,(function, aib

parmcount, A
B

►

►)
,VL

►◄

A:

© Copyright IBM Corp. 1974, 2015 213

▼

,i/o area
,

,ssa
,token
,stat function
,rsa
,rootssa

B:

▼

,i/o area length, i/o area
,

,area length,area

C:

,psb name, uibptr
,sysserve

Parameters

parmcount
Specifies the address of a 4-byte field in user-defined storage that contains the
number of parameters in the parameter list that follows parmcount. Assembler
language application programs must use either parmcount or VL.

function
Specifies the address of a 4-byte field in user-defined storage that contains the
call function. The call function must be left-justified and padded with blanks
(such as GUbb).

db pcb
Specifies the address of the database PCB to be used for the call. The PCB
address must be one of the PCB addresses passed on entry to the application
program in the PCB list.

tp pcb
Specifies the address of the I/O PCB or alternate PCB to be used for the call.
The PCB address must be one of the PCB addresses passed on entry to the
application program in the PCB list.

aib
Specifies the address of the application interface block (AIB) in user-defined
storage.

i/o area
Specifies the address of the I/O area in user-defined storage that is used for
the call. The I/O area must be large enough to contain the returned data.

i/o area length
Specifies the address of a 4-byte field in user-defined storage that contains the
I/O area length (specified in binary).

area length
Specifies the address of a 4-byte field in user-defined storage that contains the

214 Application Programming

length (specified in binary) of the area immediately following it in the
parameter list. Up to seven area lengths or area pairs can be specified.

area
Specifies the address of the area in user-defined storage to be checkpointed. Up
to seven area lengths or area pairs can be specified.

token
Specifies the address of a 4-byte field in user-defined storage that contains a
user token.

stat function
Specifies the address of a 9-byte field in user-defined storage that contains the
stat function to be performed.

ssa
Specifies the address in user-defined storage that contains the SSAs to be used
for the call. Up to 15 SSAs can be specified, one of which is rootssa.

rootssa
Specifies the address of a root segment search argument in user-defined
storage.

rsa
Specifies the address of the area in user-defined storage that contains the
record search argument.

psb name
Specifies the address in user-defined storage of an 8-byte PSB name to be used
for the call.

uibptr
Specifies the address in user-defined storage of the user interface block (UIB).

sysserve
Specifies the address of an 8-byte field in user-defined storage to be used for
the call.

VL
Signifies the end of the parameter list. Assembler language programs must use
either parmcount or VL.

Example of a DL/I call format

Using the DL/I AIBTDLI interface:
CALL AIBTDLI,(function,aib,i/o area,ssa1),VL

Using the DL/I language-specific interface:
CALL ASMTDLI,(function,db pcb,i/o area,ssa1),VL

Related concepts:
“AIBTDLI interface” on page 245
Related reference:

DL/I calls for database management (Application Programming APIs)

DL/I calls for IMS DB system services (Application Programming APIs)

C language application programming
Application programs in C use the following format, parameters, and DL/I calls to
communicate with IMS databases.

Chapter 12. Defining application program elements for IMS DB 215

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

Format

►►
(1)

rc=CTDLI(function
parmcount, ,db pcb A

,tp pcb
A
B

C
rc=AIBTDLI(parmcount, function, aib

A
B

CEETDLI(function
parmcount, ,db pcb A

,i/o pcb
A
B

,aib
A
B

); ►◄

A:

▼

,i/o area
,

,ssa
,token
,stat function
,rsa
,rootssa

B:

▼

,i/o area length, i/o area
,

,area length,area

C:

,psb name, uibptr
,sysserve

Notes:

1 For AIBTDLI, parmcount is required for C applications.

Parameters

rc This parameter receives the DL/I status or return code. It is a two-character
field shifted into the 2 low-order bytes of an integer variable (int). If the status
code is two blanks, 0 is placed in the field. You can test the rc parameter with
an if statement. For example, if (rc == ’IX’). You can also use rc in a switch
statement. You can choose to ignore the value placed in rc and use the status
code returned in the PCB instead.

216 Application Programming

parmcount
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the number of parameters in the parameter list that follows
parmcount.

function
Specifies the name of a character (4) variable, left justified in user-defined
storage, that contains the call function to be used. The call function must be
left-justified and padded with blanks (such as GUbb)

db pcb
Specifies the name of a pointer variable that contains the address of the
database to be used for the call. The PCB address must be one of the PCB
addresses passed on entry to the application program in the PCB list.

tp pcb
Specifies the name of a pointer variable that contains the address of the I/O
PCB or alternate PCB to be used for the call. The PCB address must be one of
the PCB addressed passed on entry to the application program in the PCB list.

aib
Specifies the name of the pointer variable that contains the address of the
structure that defines the application interface block (AIB) in user-defined
storage.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character
string that defines the I/O area in user-defined storage used for the call. The
I/O area must be large enough to contain all of the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the I/O area length.

area length
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the length of the area immediately following it in the parameter list.
Up to seven area lengths or area pairs can be specified.

area
Specifies the name of the pointer variable that contains the address of the
structure that defines the user-defined storage to be checkpointed. Up to seven
area lengths or area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that
contains a user token.

stat function
Specifies the name of a character (9) variable in user-defined storage that
contains the stat function to be performed.

ssa
Specifies the name of a character variable in user-defined storage that contains
the SSAs to be used for the call. Up to 15 SSAs can be specified, one of which
is rootssa.

rootssa
Specifies the name of a character variable that defines the root segment search
argument in user-defined storage.

Chapter 12. Defining application program elements for IMS DB 217

rsa
Specifies the name of a character variable that contains the record search
argument for a GU call or where IMS should return the rsa for an ISRT or GN
call.

psb name
Specifies the name of a character (8) variable containing the PSB name to be
used for the call.

uibptr
Specifies the name of a pointer variable that contains the address of the
structure that defines the user interface block (UIB) that is used in user-defined
storage.

sysserve
Specifies the name of a character (8) variable string in user-defined storage to
be used for the call.

I/O area

In C, the I/O area can be of any type, including structures or arrays. The ctdli
declarations in ims.h do not have any prototype information, so no type checking
of the parameters is done. The area may be auto, static, or allocated (with malloc
or calloc). You need to give special consideration to C-strings because DL/I does
not recognize the C convention of terminating strings with nulls (’\0’) Instead of
the usual strcpy and strcmp functions, you may want to use memcpy and
memcmp.

Example of a DL/I call format

Using the DL/I CEETDLI interface:
#include <leawi.h>...
CEETDLI (function,db pcb,i/o area,ssa1);

Using the DL/I AIBTDLI interface:
int rc;...
rc=AIBTDLI (parmcount,function,aib,i/o area,ssa1);

Using the DL/I language-specific interface:
#include <ims.h>
int rc;...
rc=CTDLI (function,db pcb,i/o area,ssa1);

Related concepts:
“AIBTDLI interface” on page 245
Related reference:

DL/I calls for database management (Application Programming APIs)

DL/I calls for IMS DB system services (Application Programming APIs)

COBOL application programming
Application programs in COBOL use the following format, parameters, and DL/I
calls to communicate with IMS databases.

218 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

Format

►► CALL 'CBLTDLI' USING function
parmcount db pcb A

tp pcb
A
B

C
'AIBTDLI' USING function aib

parmcount A
B

'CEETDLI' USING function
parmcount db pcb A

tp pcb
A
B

aib
A
B

►

► . ►◄

A:

▼

i/o area
,

ssa
token
stat function
rsa
rootssa

B:

▼

i/o area length i/o area
,

area lengtharea

C:

psb name uibptr
sysserve

Note: All apostrophes (') can be replaced by quotation marks (") and can be done
regardless of the APOST/QUOTE compiler (or CICS translator) option.

Parameters

parmcount
Specifies the identifier of a usage binary (4) byte data item in user-defined
storage that contains the number of parameters in the parameter list that
follows parmcount. If you define this field as COMP-5 rather than COMP,

Chapter 12. Defining application program elements for IMS DB 219

COMP-4, or BINARY, then it can contain the maximum possible values
regardless of the COBOL TRUNC compiler option setting.

function
Specifies the identifier of a usage display (4) byte data item, left justified in
user-defined storage that contains the call function to be used. The call
function must be left-justified and padded with blanks (such as GU��).

db pcb
Specifies the identifier of the database PCB group item from the PCB list that is
passed to the application program on entry. This identifier will be used for the
call.

tp pcb
Specifies the identifier of the I/O PCB or alternate PCB group item from the
PCB list that is passed to the application program on entry. This identifier will
be used for the call.

aib
Specifies the identifier of the group item that defines the application interface
block (AIB) in user-defined storage.

i/o area
Specifies the identifier of a major group item, table, or usage display data item
that defines the I/O area length in user-defined storage used for the call. The
I/O area must be large enough to contain all of the returned data.

i/o area length
Specifies the identifier of a usage binary (4) byte data item in user-defined
storage that contains the I/O area length (specified in binary). If you define
this field as COMP-5 rather than COMP, COMP-4, or BINARY, then it can
contain the maximum possible values regardless of the COBOL TRUNC
compiler option setting.

area length
Specifies the identifier of a usage binary (4) byte data item in user-defined
storage that contains the length (specified in binary) of the area immediately
following it in the parameter list. Up to seven area lengths or area pairs can be
specified. If you define this field as COMP-5 rather than COMP, COMP-4, or
BINARY, then it can contain the maximum possible values regardless of the
COBOL TRUNC compiler option setting.

area
Specifies the identifier of the group item that defines the user-defined storage
to be checkpointed. Up to seven area lengths or area pairs can be specified.

token
Specifies the identifier of a usage display (4) byte data item in user-defined
storage that contains a user token.

stat function
Specifies the identifier of a usage display (9) byte data item in user-defined
storage that contains the stat function to be performed.

ssa
Specifies the identifier of a usage display data item in user-defined storage that
contains the SSAs to be used for the call. Up to 15 SSAs can be specified, one
of which is rootssa.

rootssa
Specifies the identifier of a usage display data item that defines the root
segment search argument in user-defined storage.

220 Application Programming

rsa
Specifies the identifier of a usage display data item that contains the record
search argument.

psb name
Specifies the identifier of a usage display (8) byte data item containing the PSB
name to be used for the call.

uibptr
Specifies the identifier of the group item that defines the user interface block
(UIB) that is used in user-defined storage.

sysserve
Specifies the identifier of a usage display (8) byte data item in user-defined
storage to be used for the call.

Example of a DL/I call format

Using the DL/I CEETDLI interface:
CALL ’CEETDLI’ USING function,db pcb,i/o area,ssa1.

Using the DL/I AIBTDLI interface:
CALL ’AIBTDLI’ USING function,aib,i/o area,ssa1.

Using the DL/I language-specific interface:
CALL ’CBLTDLI’ USING function,db pcb,i/o area,ssa1.

Related reference:

DL/I calls for database management (Application Programming APIs)

DL/I calls for IMS DB system services (Application Programming APIs)

Java application programming for IMS
IMS provides support for developing applications using the Java programming
language.

You can write Java applications to access IMS databases and process IMS
transactions by using the drivers and resource adapters of the IMS solutions for
Java development.
Related concepts:
Chapter 38, “IMS solutions for Java development overview,” on page 603

Pascal application programming
Application programs in Pascal use the following format, parameters, and DL/I
calls to communicate with IMS databases.

Format

Chapter 12. Defining application program elements for IMS DB 221

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

►► PASTDLI (A
,VAR db pcb B
,VAR tp pcb

B
C

D
AIBTDLI (A , VAR aib,

B
C

); ►◄

A:

CONST function
CONST parmcount ,

B:

▼

,VAR i/o area
,

,VAR ssa
,CONST token
,CONST stat function
,VAR rsa
,VAR rootssa

C:

▼

,VAR i/o area length, VAR i/o area
,

,VAR area length,VAR area

D:

,VAR psb name, VAR uibptr
,VAR sysserve

Parameters

parmcount
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the number of parameters in the parameter list that follows
parmcount.

function
Specifies the name of a character (4) variable, left justified in user-defined
storage, that contains the call function to be used. The call function must be
left-justified and padded with blanks (such as GUbb).

db pcb
Specifies the name of a pointer variable that contains the address of the
database PCB defined in the call procedure statement.

222 Application Programming

tp pcb
Specifies the name of a pointer variable that contains the address of the I/O
PCB or alternate PCB defined in the call procedure statement.

aib
Specifies the name of the pointer variable that contains the address of the
structure that defines the application interface block (AIB) in user-defined
storage.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character
string that defines the I/O area in user-defined storage used for the call. The
I/O area must be large enough to contain all of the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the I/O area length.

area length
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the length of the area immediately following it in the parameter list.
Up to seven area lengths or area pairs can be specified.

area
Specifies the name of the pointer variable that contains the address of the
structure that defines the user-defined storage to be checkpointed. Up to seven
area lengths or area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that
contains a user token.

stat function
Specifies the name of a character (9) variable in user-defined storage that
contains the stat function to be performed.

ssa
Specifies the name of a character variable in user-defined storage that contains
the SSAs to be used for the call. Up to 15 SSAs can be specified, one of which
is rootssa.

rootssa
Specifies the name of a character variable that defines the root segment search
argument in user-defined storage.

rsa
Specifies the name of a character variable that contains the record search
argument.

psb name
Specifies the name of a character (8) variable containing the PSB name to be
used for the call.

uibptr
Specifies the name of a pointer variable that contains the address of the
structure that defines the user interface block (UIB) that is used in user-defined
storage.

sysserve
Specifies the name of a character (8) variable string in user-defined storage to
be used for the call.

Chapter 12. Defining application program elements for IMS DB 223

Example of a DL/I call format

Using the DL/I AIBTDLI interface:
AIBTDLI(CONST function,

VAR aib,
VAR i/o area,
VAR ssa1);

Using the DL/I language-specific interface:
PASTDLI(CONST function,

VAR db pcb,
VAR i/o area,
VAR ssa1);

Related reference:

DL/I calls for database management (Application Programming APIs)

DL/I calls for IMS DB system services (Application Programming APIs)

Application programming for PL/I
Application programs in PL/I use the following format, parameters, and DL/I
calls to communicate with IMS databases.

Restriction: For the PLITDLI interface, all parameters except parmcount are
indirect pointers; for the AIBTDLI interface, all parameters are direct pointers.

Format

►► CALL PLITDLI (parmcount, function
,db pcb A
,tp pcb

A
B

C
AIBTDLI (parmcount, function, aib

A
B

CEETDLI (parmcount, function
,db pcb A
,tp pcb

A
B

,aib
A
B

); ►◄

A:

▼

,i/o area
,

,ssa
,token
,stat function
,rsa
,rootssa

224 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

B:

▼

,i/o area length, i/o area
,

,area length,area

C:

,psb name, uibptr
,sysserve

Parameters

parmcount
Specifies the name of a fixed binary (31-bit) variable that contains the number
of arguments that follow parmcount.

function
Specifies the name of a fixed-character (4-byte) variable left-justified, blank
padded character string containing the call function to be used (such as GUbb).

db pcb
Specifies the structure associated with the database PCB to be used for the call.
This structure is based on a PCB address that must be one of the PCB
addresses passed on entry to the application program.

tp pcb
Specifies the structure associated with the I/O PCB or alternate PCB to be used
for the call.

aib
Specifies the name of the structure that defines the AIB in your application
program.

i/o area
Specifies the name of the I/O area used for the call. The I/O area must be
large enough to contain all the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable that contains the I/O area
length.

area length
Specifies the name of a fixed binary (31) variable that contains the length of the
area immediately following it in the parameter list. Up to seven area lengths or
area pairs can be specified.

area
Specifies the name of the area to be checkpointed. Up to seven area lengths or
area pairs can be specified.

token
Specifies the name of a character (4) variable that contains a user token.

stat function
Specifies the name of a character (9) variable string containing the stat function
to be performed.

Chapter 12. Defining application program elements for IMS DB 225

ssa
Specifies the name of a character variable that contains the SSAs to be used for
the call. Up to 15 SSAs can be specified, one of which is rootssa.

rootssa
Specifies the name of a character variable that contains a root segment search
argument.

rsa
Specifies the name of a character variable that contains the record search
argument.

psb name
Specifies the name of a character (8) containing the PSB name to be used for
the call.

uibptr
Specifies the name of the user interface block (UIB).

sysserve
Specifies the name of a character (8) variable character string to be used for the
call.

Example of a DL/I call format

Using the DL/I CEETDLI interface:
CALL CEETDLI (parmcount,function,db pcb,i/o area,ssa1);

Using the DL/I AIBTDLI interface:
CALL AIBTDLI (parmcount,function,aib,i/o area,ssa1);

Using the DL/I language-specific interface:
%INCLUDE CEEIBMAW;
CALL PLITDLI (parmcount,function,db pcb,i/o area,ssa1);

Related reference:

DL/I calls for database management (Application Programming APIs)

DL/I calls for IMS DB system services (Application Programming APIs)

Specifying the I/O PCB mask
After your program issues a call with the I/O Program Communications Block
(I/O PCB), IMS returns information about the results of the call to the I/O PCB. To
determine the results of the call, your program must check the information that
IMS returns.

Issuing a system service call requires an I/O PCB. Because the I/O PCB resides
outside your program, you must define a mask of the PCB in your program to
check the results of IMS calls. The mask must contain the same fields, in the same
order, as the I/O PCB. Your program can then refer to the fields in the PCB
through the PCB mask.

The following table shows the fields that the I/O PCB contains, their lengths, and
the applicable environment for each field.

226 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

Table 34. I/O PCB mask

Descriptor Byte
Length

DB/DC DBCTL DCCTL DB
Batch

TM
Batch

Logical terminal name 1 8 X X

Reserved for IMS 2 2 X X

Status code 3 2 X X X X X

4-Byte Local date and
time 4

Date 4 X X

Time 4 X X

Input message sequence
number 5

4 X X

Message output descriptor
name 6

8 X X

Userid 7 8 X X

Group name 8 8 X X

12-Byte Time Stamp 9

Date 4 X X

Time 6 X X

UTC Offset
2 X X

Userid Indicator10 1 X X

Reserved for IMS2 3

Note:

1. Logical Terminal Name

This field contains the name of the terminal that sent the message. When your
program retrieves an input message, IMS places the name of the logical
terminal that sent the message in this field. When you want to send a message
back to this terminal, you refer to the I/O PCB when you issue the ISRT call,
and IMS takes the name of the logical terminal from the I/O PCB as the
destination.

2. Reserved for IMS

These fields are reserved.
3. Status Code

IMS places the status code describing the result of the DL/I call in this field.
IMS updates the status code after each DL/I call that the program issues. Your
program should always test the status code after issuing a DL/I call.
The three status code categories are:
v Successful status codes or status codes with exceptional but valid

conditions. This category does not contain errors. If the call was completely
successful, this field contains blanks. Many of the codes in this category are
for information only. For example, a QC status code means that no more
messages exist in the message queue for the program. When your program
receives this status code, it should terminate.

Chapter 12. Defining application program elements for IMS DB 227

v Programming errors. The errors in this category are usually ones that you
can correct. For example, an AD status code indicates an invalid function
code.

v I/O or system errors.
For the second and third categories, your program should have an error
routine that prints information about the last call that was issued before
program termination. Most installations have a standard error routine that all
application programs at the installation use.

4. Local Date and Time

The current local date and time are in the prefix of all input messages except
those originating from non-message-driven BMPs. The local date is a
packed-decimal, right-aligned date, in the format yyddd. The local time is a
packed-decimal time in the format hhmmsst. The current local date and time
indicate when IMS received the entire message and enqueued it as input for
the program, rather than the time that the application program received the
message. To obtain the application processing time, you must use the time
facility of the programming language you are using.
For a conversation, for an input message originating from a program, or for a
message received using Multiple System Coupling (MSC), the time and date
indicate when the original message was received from the terminal.

5. Input Message Sequence Number

The input message sequence number is in the prefix of all input messages
except those originating from non-message-driven BMPs. This field contains
the sequence number IMS assigned to the input message. The number is
binary. IMS assigns sequence numbers by physical terminal, which are
continuous since the time of the most recent IMS startup.

6. Message Output Descriptor Name

You only use this field when you use MFS. When you issue a GU call with a
message output descriptor (MOD), IMS places its name in this area. If your
program encounters an error, it can change the format of the screen and send
an error message to the terminal by using this field. To do this, the program
must change the MOD name by including the MOD name parameter on an
ISRT or PURG call.
Although MFS does not support APPC, LU 6.2 programs can use an interface
to emulate MFS. For example, the application program can use the MOD
name to communicate with IMS to specify how an error message is to be
formatted.
Related reading: For more information on the MOD name and the LTERM
interface, see IMS Version 14 Communications and Connections.

7. Userid

The use of this field is connected with RACF signon security. If signon is not
active in the system, this field contains blanks.
If signon is active in the system, the field contains one of the following:
v The user's identification from the source terminal.
v The LTERM name of the source terminal if signon is not active for that

terminal.
v The authorization ID. For batch-oriented BMPs, the authorization ID is

dependent on the value specified for the BMPUSID= keyword in the
DFSDCxxx PROCLIB member:
– If BMPUSID=USERID is specified, the value from the USER= keyword

on the JOB statement is used.

228 Application Programming

– If USER= is not specified on the JOB statement, the program's PSB name
is used.

– If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at
all, the program's PSB name is used.

8. Group Name

The group name, which is used by DB2 to provide security for SQL calls, is
created through IMS transactions.
Three instances that apply to the group name are:
v If you use RACF and SIGNON on your IMS system, the RACROUTE SAF

(extract) call returns an eight-character group name.
v If you use your own security package on your IMS system, the RACROUTE

SAF call returns any eight-character name from the package and treats it as
a group name. If the RACROUTE SAF call returns a return code of 4 or 8, a
group name was not returned, and IMS blanks out the group name field.

v If you use LU 6.2, the transaction header can contain a group name.
Related reading: For more information about LU 6.2, see IMS Version 14
Communications and Connections.

9. 12-Byte Time Stamp

This field contains the current date and time fields, but in the IMS internal
packed-decimal format. The time stamp has the following parts:

Date yyyydddf

This packed-decimal date contains the year (yyyy), day of the year
(ddd), and a valid packed-decimal + sign such as (f).

Time hhmmssthmiju

This packed-decimal time consists of hours, minutes, and seconds
(hhmmss) and fractions of the second to the microsecond (thmiju). No
packed-decimal sign is affixed to this part of the time stamp.

UTC Offset
aqq$

The packed-decimal UTC offset is prefixed by 4 bits of attributes (a). If
the 4th bit of (a) is 0, the time stamp is UTC; otherwise, the time
stamp is local time. The control region parameter, TSR=(U/L), specified
in the DFSPBxxx PROCLIB member, controls the representation of the
time stamp with respect to local time versus UTC time.

The offset value (qq$) is the number of quarter hours of offset to be
added to UTC or local time to convert to local or UTC time
respectively.

The offset sign ($) follows the convention for a packed-decimal plus or
minus sign.

Field 4 always contains the local date and time.
Related reading: For a more detailed description of the internal
packed-decimal time-format, see IMS Version 14 Operations and Automation.

10. Userid Indicator

The Userid Indicator is provided in the I/O PCB and in the response to the
INQY call. The Userid Indicator contains one of the following:
v U - The user's identification from the source terminal during signon
v L - The LTERM name of the source terminal if signon is not active

Chapter 12. Defining application program elements for IMS DB 229

v P - The PSBNAME of the source BMP or transaction
v O - Other name
The value contained in the Userid Indicator field indicates the contents of the
userid field.

Specifying the DB PCB mask
IMS describes the results of the calls your program issues in the DB PCB that is
referenced in the call. To determine the success or failure of the DL/I call, the
application program includes a mask of the DB PCB and then references the fields
of the DB PCB through the mask.

A DB PCB mask must contain the fields shown in the following table. (Your
program can look at, but not change, the fields in the DB PCB.) The fields in your
DB PCB mask must be defined in the same order and with the same length as the
fields shown here. When you code the DB PCB mask, you also give it a name, but
the name is not part of the mask. You use the name (or the pointer, for PL/I) when
you reference each of the PCBs your program processes. A GSAM DB PCB mask is
slightly different from other DB PCB masks.

Of the nine fields, only five are important to you as you construct the program.
These are the fields that give information about the results of the call. They are the
segment level number, status code, segment name, length of the key feedback area,
and key feedback area. The status code is the field your program uses most often
to find out whether the call was successful. The key feedback area contains the
data from the segments you have specified; the level number and segment name
help you determine the segment type you retrieved after an unqualified GN or GNP
call, or they help you determine your position in the database after an error or
unsuccessful call.

Table 35. DB PCB mask

Descriptor Byte
Length

DB/DC DBCTL DCCTL DB
Batch

TM
Batch

Database name 1 8 X X X

Segment level number 2 2 X X X

Status code 3 2 X X X

Processing options 4 4 X X X

Reserved for IMS 5 4 X X X

Segment name 6 8 X X X

Length of key
feedback area 7

4 X X X

Number of sensitive
segments 8

4 X X X

Key feedback area 9 var length X X X

Note:

1. This contains the name of the database. This field is 8 bytes long and contains
character data.

2. Segment Level Number

230 Application Programming

This field contains numeric character data. It is 2 bytes long and right-justified.
When IMS retrieves the segment you have requested, IMS places the level
number of that segment in this field. If you are retrieving several segments in a
hierarchic path with one call, IMS places the number of the lowest-level
segment retrieved. If IMS is unable to find the segment that you request, it
gives you the level number of the last segment it encounters that satisfied your
call.

3. Status Code

After each DL/I call, this field contains the two-character status code that
describes the results of the DL/I call. IMS updates this field after each call and
does not clear it between calls. The application program should test this field
after each call to find out whether the call was successful.
When the program is initially scheduled, this field contains a data-availability
status code, which indicates any possible access constraint based on segment
sensitivity and processing options.
Related Reading: For more information on these status codes, see the topic
"INIT Call" in IMS Version 14 Application Programming APIs.
During normal processing, four categories of status codes exist:
v Successful or exceptional but valid conditions. If the call was completely

successful, this field contains blanks. Many of the codes in this category are
for information only. For example, GB means that IMS has reached the end
of the database without satisfying the call. This situation is expected in
sequential processing and is not usually the result of an error.

v Errors in the program. For example, AK means that you have included an
invalid field name in a segment search argument (SSA). Your program
should have error routines available for these status codes. If IMS returns an
error status code to your program, your program should terminate. You can
then find the problem, correct it, and restart your program.

v I/O or system error. For example, an AO status code means that there has
been an I/O error concerning OSAM, BSAM, or VSAM. If your program
encounters a status code in this category, it should terminate immediately.
This type of error cannot normally be fixed without a system programmer,
database administrator, or system administrator.

v Data-availability status codes. These are returned only if your program has
issued the INIT call indicating that it is prepared to handle such status codes.
“Status Code Explanations” in IMS Version 14 Messages and Codes, Volume 4:
IMS Component Codes describes possible causes and corrections in more
detail.

4. Processing Options

This is a 4-byte field containing a code that tells IMS what type of calls this
program can issue. It is a security mechanism in that it can prevent a particular
program from updating the database, even though the program can read the
database. This value is coded in the PROCOPT parameter of the PCB statement
when the PSB for the application program is generated. The value does not
change.

5. Reserved for IMS

This 4-byte field is used by IMS for internal linkage. It is not used by the
application program.

6. Segment Name

After each successful call, IMS places in this field the name of the last segment
that satisfied the call. When a retrieval is successful, this field contains the
name of the retrieved segment. When a retrieval is unsuccessful, this field

Chapter 12. Defining application program elements for IMS DB 231

contains the last segment along the path to the requested segment that would
satisfy the call. The segment name field is 8 bytes long.
When a program is initially scheduled, the name of the database type is put in
the SEGNAME field. For example, the field contains DEDB when the database
type is DEDB; GSAM when the database type is GSAM; HDAM, or PHDAM
when the database type is HDAM or PHDAM.

7. Length of Key Feedback Area

This is a 4-byte binary field that gives the current length of the key feedback
area. Because the key feedback area is not usually cleared between calls, the
program needs to use this length to determine the length of the relevant
current concatenated key in the key feedback area.

8. Number of Sensitive Segments

This is a 4-byte binary field that contains the number of segment types in the
database to which the application program is sensitive.

9. Key Feedback Area

At the completion of a retrieval or ISRT call, IMS places the concatenated key of
the retrieved segment in this field. The length of the key for this request is
given in the 4-byte field. If IMS is unable to satisfy the call, the key feedback
area contains the key of the segment at the last level that was satisfied. A
segment's concatenated key is made up of the keys of each of its parents and
its own key. Keys are positioned left to right, starting with the key of the root
segment and following the hierarchic path. IMS does not normally clear the key
feedback area. IMS sets this length of the key feedback area to indicate the
portion of the area that is valid at the completion of each call. Your program
should not use the content of the key feedback area that is not included in the
key feedback area length.

Related concepts:
“Data areas in GSAM databases” on page 245

Specifying the AIB mask
The application interface block (AIB) is used by your program to communicate
with IMS, when your application does not have a PCB address or the call function
does not use a PCB.

The application program can use the returned PCB address, when available, to
inspect the status code in the PCB and to obtain any other information needed by
the application program. The AIB mask enables your program to interpret the
control block defined. The AIB structure must be defined in working storage, on a
fullword boundary, and initialized according to the order and byte length of the
fields as shown in the following table. The table’s notes describe the contents of
each field.

Table 36. AIB fields

Descriptor Byte Length DB/DC DBCTL DCCTL DB
Batch

TM
Batch

AIB identifier 8 X X X X X

DFSAIB allocated length 4 X X X X X

Subfunction code 8 X X X X X

Resource name 8 X X X X X

Reserved 1 16

232 Application Programming

Table 36. AIB fields (continued)

Descriptor Byte Length DB/DC DBCTL DCCTL DB
Batch

TM
Batch

Maximum output area
length

4 X X X X X

Output area length used 4 X X X X X

Reserved 2 12

Return code 4 X X X X X

Reason code 4 X X X X X

Error code extension 4 X X

Resource address 4 X X X X X

AIB return token 8 X X X

Reserved 3 40

AIB Identifier (AIBID)
This 8-byte field contains the AIB identifier. You must initialize AIBID in
your application program to the value DFSAIB �� before you issue DL/I
calls. This field is required. When the call is completed, the information
returned in this field is unchanged.

DFSAIB Allocated Length (AIBLEN)
This field contains the actual 4-byte length of the AIB as defined by your
program. You must initialize AIBLEN in your application program before
you issue DL/I calls. The minimum length required is 128 bytes. When the
call is completed, the information returned in this field is unchanged. This
field is required.

Subfunction Code (AIBSFUNC)
This 8-byte field contains the subfunction code for those calls that use a
subfunction. You must initialize AIBSFUNC in your application program
before you issue DL/I calls. When the call is completed, the information
returned in this field is unchanged.

Resource Name (AIBRSNM1)

This 8-byte field contains the name of a resource. The resource varies
depending on the call. You must initialize AIBRSNM1 in your application
program before you issue DL/I calls. When the call is complete, the
information returned in this field is unchanged. This field is required.

For PCB related calls where the AIB is used to pass the PCB name instead
of passing the PCB address in the call list, this field contains the PCB
name. The PCB name for the I/O PCB is IOPCB�� The PCB name for other
types of PCBs is defined in the PCBNAME= parameter in PSBGEN.

Logical Terminal Override Name (AIBRSNM2)

This 8-byte, alphanumeric, left-aligned field contains the logical terminal
name used to override the LTERM name in the I/O PCB of the IMS
application program for the target transaction of an ICAL call for
synchronous program switch. The name specified in the AIB is used
instead of any name specified in the OTMA destination descriptor.
However, if no name is specified in AIBRSNM2, the name from the OTMA
descriptor is used. If no name is found in the descriptor or in the AIB, the
IMS application terminal symbolic (PSTSYMBO) is used as the default
logical terminal name for the target transaction.

Chapter 12. Defining application program elements for IMS DB 233

Reserved 1
This 16-byte field is reserved.

Maximum Output Area Length (AIBOALEN)
This 4-byte field contains the length of the output area in bytes that was
specified in the call list. You must initialize AIBOALEN in your application
program for all calls that return data to the output area. When the call is
completed, the information returned in this area is unchanged.

Used Output Area Length (AIBOAUSE)
This 4-byte field contains the length of the data returned by IMS for all
calls that return data to the output area. When the call is completed this
field contains the length of the I/O area used for this call.

Reserved 2
This 12-byte field is reserved.

Return code (AIBRETRN)
When the call is completed, this 4-byte field contains the return code.

Reason Code (AIBREASN)
When the call is completed, this 4-byte field contains the reason code.

Error Code Extension (AIBERRXT)
This 4-byte field contains additional error information depending on the
return code in AIBRETRN and the reason code in AIBREASN.

Resource Address (AIBRSA1)
When the call is completed, this 4-byte field contains call-specific
information. For PCB related calls where the AIB is used to pass the PCB
name instead of passing the PCB address in the call list, this field returns
the PCB address.

AIB return token (AIBRTKN)
AIB return token. This 8-byte field contains a token returned by a DL/I
call. The usage is specific to the DL/I call for which the token was
returned.

Reserved 3

This 40-byte field is reserved.

Specifying the AIB mask for ODBA applications
The following table describes the fields for specifying the application interface
block (AIB) mask for ODBA applications.

The notes that follow describe the contents of each field.

Table 37. AIB fields for use of ODBA applications

AIB Fields Byte
Length

DB/DC IMS DB DCCTL DB
Batch

TM
Batch

AIB identifier 8 X X X X X

DFSAIB allocated length 4 X X X X X

Subfunction code 8 X X X X X

Resource name #1 8 X X X X X

Resource name #2 8

Reserved 1 8 X

234 Application Programming

Table 37. AIB fields for use of ODBA applications (continued)

AIB Fields Byte
Length

DB/DC IMS DB DCCTL DB
Batch

TM
Batch

Maximum output area
length

4 X X X X X

Output area length used 4 X X X X X

Reserved 2 12

Return code 4 X X X X X

Reason code 4 X X X X X

Error code extension 4 X

Resource address #1 4 X X X X X

Resource address #2 4

Resource address #3 4

AIB return token 8 X X X

Reserved 3 32

Reserved for ODBA 136

AIB Identifier (AIBID)
This 8-byte field contains the AIB identifier. You must initialize AIBID in
your application program to the value DFSAIBbb before you issue DL/I
calls. This field is required. When the call is completed, the information
returned in this field is unchanged.

DFSAIB Allocated Length (AIBLEN)
This field contains the actual 4-byte length of the AIB as defined by your
program. You must initialize AIBLEN in your application program before
you issue DL/I calls. The minimum length required is 264 bytes for ODBA.
When the call is completed, the information returned in this field is
unchanged. This field is required.

Subfunction Code (AIBSFUNC)
This 8-byte field contains the subfunction code for those calls that use a
subfunction. You must initialize AIBSFUNC in your application program
before you issue DL/I calls. When the call is completed, the information
returned in this field is unchanged.

Resource Name (AIBRSNM1) #1

This 8-byte field contains the name of a resource. The resource varies
depending on the call. You must initialize AIBRSNM1 in your application
program before you issue DL/I calls. When the call is complete, the
information returned in this field is unchanged. This field is required.

For PCB related calls where the AIB is used to pass the PCB name instead
of passing the PCB address in the call list, this field contains the PCB
name. The PCB name for the I/O PCB is IOPCBbb. The PCB name for
other types of PCBs is defined in the PCBNAME= parameter in PSBGEN.

Resource Name (AIBRSNM2) #2
Specify a 4-character ID of ODBA startup table DFSxxxx0, where xxxx is a
4-character ID.

Reserved 1
This 8-byte field is reserved.

Chapter 12. Defining application program elements for IMS DB 235

Maximum Output Area Length (AIBOALEN)
This 4-byte field contains the length of the output area in bytes that was
specified in the call list. You must initialize AIBOALEN in your application
program for all calls that return data to the output area. When the call is
completed, the information returned in this area is unchanged.

Used Output Area Length (AIBOAUSE)
This 4-byte field contains the length of the data returned by IMS for all
calls that return data to the output area. When the call is completed this
field contains the length of the I/O area used for this call.

Reserved 2
This 12-byte field is reserved.

Return code (AIBRETRN)
When the call is completed, this 4-byte field contains the return code.

Reason Code (AIBREASN)
When the call is completed, this 4-byte field contains the reason code.

Error Code Extension (AIBERRXT)
This 4-byte field contains additional error information depending on the
return code in AIBRETRN and the reason code in AIBREASN.

Resource Address (AIBRSA1) #1
When the call is completed, this 4-byte field contains call-specific
information. For PCB related calls where the AIB is used to pass the PCB
name instead of passing the PCB address in the call list, this field returns
the PCB address.

Resource Address (AIBRSA2) #2
This 4-byte field is reserved for ODBA.

Resource Address (AIBRSA3) #3
This 4-byte token, returned on the APSB call, is required for subsequent
DLI calls and the DPSB call related to this thread.

AIB return token (AIBRTKN)
AIB return token. This 8-byte field contains a token returned by a DL/I
call. The usage is specific to the DL/I call for which the token was
returned.

Reserved 3

This 32-byte field is reserved.

Reserved for ODBA
This 136-byte field is reserved for ODBA.

The application program can use the returned PCB address, when available, to
inspect the status code in the PCB and to obtain any other information needed by
the application program.

COBOL AIB Mask Example
01 AIB.

02 AIBRID PIC x(8).
02 AIBRLEN PIC 9(9) USAGE BINARY.
02 AIBRSFUNC PIC x(8).
02 AIBRSNM1 PIC x(8).
02 AIBRSNM2 PIC x(8).
02 AIBRESV1 PIC x(8).
02 AIBOALEN PIC 9(9) USAGE BINARY.
02 AIBOAUSE PIC 9(9) USAGE BINARY.

236 Application Programming

02 AIBRESV2 PIC x(12).
02 AIBRETRN PIC 9(9) USAGE BINARY.
02 AIBREASN PIC 9(9) USAGE BINARY.
02 AIBERRXT PIC 9(9) USAGE BINARY.
02 AIBRESA1 USAGE POINTER.
02 AIBRESA2 USAGE POINTER.
02 AIBRESA3 USAGE POINTER.
02 AIBRESV4 PIC x(40).
02 AIBRSAVE OCCURS 18 TIMES USAGE POINTER.
02 AIBRTOKN OCCURS 6 TIMES USAGE POINTER.
02 AIBRTOKC PIC x(16).
02 AIBRTOKV PIC x(16).
02 AIBRTOKA OCCURS 2 TIMES PIC 9(9) USAGE BINARY.

Assembler AIB Mask Example
DFSAIB DSECT
AIBID DS CL8’DFSAIB’
AIBLEN DS F
AIBSFUNC DS CL8
AIBRSNM1 DS CL8
AIBRSVM2 DS CL8

DS 2F
AIBOALEN DS F
AIBOAUSE DS F

DS 2F
DS H
DS H

AIBRETRN DS F
AIBREASN DS F
AIBRRXT DS F
AIBRSA1 DS A
AIBRSA2 DS A
AIBRSA3 DS A

DS 10F
AIBLL EQU *-DFSAIB
AIBSAVE DS 18F
AIBTOKN DS 6F
AIBTOKC DS CL16
AIBTOKV DS XL16
AIBTOKA DS 2F
AIBAERL EQU *-DFSAIB

Specifying the UIB (CICS online programs only)
The interface between your CICS online program and DL/I passes additional
information to your program in a user interface block (UIB). The UIB contains the
address of the PCB list and any return codes your program must examine before
checking the status code in the DB PCB.

When you issue the PCB call to obtain a PSB for your program, a UIB is created for
your program. As with any area outside your program, you must include a
definition of the UIB and establish addressability to it. CICS provides a definition
of the UIB for all programming languages:
v In COBOL programs, use the COPY DLIUIB statement.
v In PL/I programs, use a %INCLUDE DLIUIB statement.
v In assembler language programs, use the DLIUIB macro.

Three fields in the UIB are important to your program: UIBPCBAL, UIBFCTR, and
UIBDLTR. UIBPCBAL contains the address of the PCB address list. Through it you
can obtain the address of the PCB you want to use. Your program must check the
return code in UIBFCTR (and possibly UIBDLTR) before checking the status code

Chapter 12. Defining application program elements for IMS DB 237

in the DB PCB. If the contents of UIBFCTR and UIBDLTR are not null, the content
of the status code field in the DB PCB is not meaningful. The return codes are
described in the topic "CICS-DL/I user interface block return codes" in IMS Version
14 Messages and Codes, Volume 4: IMS Component Codes.

Immediately after the statement that defines the UIB in your program, you must
define the PCB address list and the PCB mask.

The following code example shows how to use the COPY DLIUIB statement in a
VS COBOL II program:

Defining the UIB, PCB address list, and the PCB mask for VS
COBOL II
LINKAGE SECTION.

COPY DLIUIB.
01 OVERLAY-DLIUIB REDEFINES DLIUIB.

02 PCBADDR USAGE IS POINTER.
02 FILLER PIC XX.

01 PCB-ADDRESSES.
02 PCB-ADDRESS-LIST

USAGE IS POINTER OCCURS 10 TIMES.
01 PCB1.

02 PCB1-DBD-NAME PIC X(8).
02 PCB1-SEG-LEVEL PIC XX.

.

.

.

The COBOL COPY DLIUIB copybook
01 DLIUIB.
* Address of the PCB addr list

02 UIBPCBAL PIC S9(8) COMP.
* DL/I return codes

02 UIBRCODE.
* Return codes

03 UIBFCTR PIC X.
88 FCNORESP VALUE ’ ’.
88 FCNOTOPEN VALUE ’ ’.
88 FCINVREQ VALUE ’ ’.
88 FCINVPCB VALUE ’ ’.

* Additional information
03 UIBDLTR PIC X.

88 DLPSBNF VALUE ’ ’.
88 DLTASKNA VALUE ’ ’.
88 DLPSBSCH VALUE ’ ’.
88 DLLANGCON VALUE ’ ’.
88 DLPSBFAIL VALUE ’ ’.
88 DLPSBNA VALUE ’ ’.
88 DLTERMNS VALUE ’ ’.
88 DLFUNCNS VALUE ’ ’.
88 DLINA VALUE ’ ’.

The values placed in level 88 entries are not printable. They are described in the
topic "CICS-DL/I User Interface Block Return Codes" in IMS Version 14 Messages
and Codes, Volume 4: IMS Component Codes. The meanings of the field names and
their hexadecimal values are shown below:

FCNORESP
Normal response Value X'00'

238 Application Programming

FCNOTOPEN
Not open Value X'0C'

FCINVREQ
Invalid request Value X'08'

FCINVPCB
Invalid PCB Value X'10'

DLPSBNF
PSB not found Value X'01'

DLTASKNA
Task not authorized Value X'02'

DLPSBSCH
PSB already scheduled Value X'03'

DLLANGCON
Language conflict Value X'04'

DLPSBFAIL
PSB initialization failed Value X'05'

DLPSBNA
PSB not authorized Value X'06'

DLTERMNS
Termination not successful Value X'07'

DLFUNCNS
Function unscheduled Value X'08'

DLINA
DL/I not active Value X'FF'

The following code example shows how to define the UIB, PCB address list, and
PCB mask for PL/I.

Defining the UIB, PCB address list, and the PCB mask for PL/I
DCL UIBPTR PTR; /* POINTER TO UIB */
DCL 1 DLIUIB UNALIGNED BASED(UIBPTR),

/* EXTENDED CALL USER INTFC BLK*/
2 UIBPCBAL PTR, /* PCB ADDRESS LIST */
2 UIBRCODE, /* DL/I RETURN CODES */
3 UIBFCTR BIT(8) ALIGNED, /* RETURN CODES */
3 UIBDLTR BIT(8) ALIGNED; /* ADDITIONAL INFORMATION */

The following code example shows how to define the UIB, PCB address list, and
PCB mask for assembler language.

Defining the UIB, PCB address list, and the PCB mask for
assembler language
DLIUIB DSECT
UIB DS 0F EXTENDED CALL USER INTFC BLK
UIBPCBAL DS A PCB ADDRESS LIST
UIBRCODE DS 0XL2 DL/I RETURN CODES
UIBFCTR DS X RETURN CODE
UIBDLTR DS X ADDITIONAL INFORMATION

DS 2X RESERVED
DS 0F LENGTH IS FULLWORD MULTIPLE

UIBLEN EQU *-UIB LENGTH OF UIB

Related reference:

Chapter 12. Defining application program elements for IMS DB 239

“Coding a CICS online program in COBOL” on page 202
“Coding a CICS online program in PL/I” on page 210
“Coding a CICS online program in assembler language” on page 194
“Language specific entry points” on page 246

Specifying the I/O areas
Use an I/O area to pass segments between the application program and IMS.

What the I/O area contains depends on the type of call you are issuing:
v When you retrieve a segment, IMS places the segment you requested in the I/O

area.
v When you add a new segment, you first build the new segment in the I/O area.
v Before modifying a segment, your program must first retrieve it. When you

retrieve the segment, IMS places the segment in an I/O area.

The format of the record segments you pass between your program and IMS can
be fixed length or variable length. Only one difference is important to the
application program: a message segment containing a 2-byte length field (or 4
bytes for the PLITDLI interface) at the beginning of the data area of the segment.

The I/O area for IMS calls must be large enough to hold the largest segment your
program retrieves from or sends to IMS.

If your program issues any Get or ISRT calls that use the D command code, the
I/O area must be large enough to hold the largest path of segments that the
program retrieves or inserts.

Formatting segment search arguments (SSAs)
Segment search arguments in your assembler language, C language, COBOL, Java,
Pascal, and PL/I application programs must be coded according to the following
rules and formats.

SSA coding rules
Use the following rules for coding a segment search argument.
v Define the SSA in the data area of your program.
v The segment name field must:

– Be 8 bytes long. If the name of the segment you are specifying is less than 8
bytes long, it should be left justified and padded on the right with blanks.

– Contain a segment name that has been defined in the DBD that your
application program uses. In other words, make sure you use the exact
segment name, or your SSA will be invalid.

– Or, if the DL/I call uses command code O, the segment field name is the
starting offset and length of the data that you want to retrieve. The starting
offset is relative to the physical segment definition and starts with 1. The
maximum length that can be retrieved is the maximum segment size for the
database type, and the minimum length is 1. The two fields are specified
instead of a standard field name in the following format: ’oooollll’. oooo is
the offset position and llll is the length of the data that you want to retrieve.

v If the SSA contains only the segment name, byte 9 must contain a blank.
v If the SSA contains one or more command codes:

240 Application Programming

– Byte 9 must contain an asterisk (*).
– The last command code must be followed by a blank unless the SSA contains

a qualification statement. If the SSA contains a qualification statement, the
command code must be followed by the left parenthesis of the qualification
statement.

v If the SSA contains a qualification statement:
– The qualification statement must begin with a left parenthesis and end with a

right parenthesis.
– There must not be any blanks between the segment name or command codes,

if used, and the left parenthesis.
– The field name must be 8 bytes long. If the field name is less than 8 bytes, it

must be left justified and padded on the right with blanks. The field name
must have been defined for the specified segment type in the DBD the
application program is using.

– The relational operator follows the field name. It must be 2 bytes long and
can be represented alphabetically or symbolically. The following table lists the
relational operators.

Table 38. Relational operators

Symbolic Alphabetic Meaning

=�= EQ Equal to

>= or => GE Greater than or equal to

<= or =< LE Less than or equal to

>�> GT Greater than

<�< LT Less than

¬= or =¬ NE Not equal to

– The comparative value follows the relational operator. The length of this
value must be equal to the length of the field that you specified in the field
name. This length is defined in the DBD. The comparative value must include
leading zeros for numeric values or trailing blanks for alphabetic values as
necessary. The comparative value cannot include any parenthesis.

v If you are using multiple qualification statements within one SSA (Boolean
qualification statements), the qualification statements must be separated by one
of these symbols:

* or & Dependent AND

+ or | Logical OR

Independent AND
One of these symbols must appear between the qualification statements that the
symbol connects.

v The last qualification statement must be followed by a right parenthesis.

An SSA created by the application program must not exceed the space allocated for
the SSA in the PSB.

Related reading: For additional information about defining the PSB SSA size, see
the explanation of the PSBGEN statement in IMS Version 14 Database Utilities.

Chapter 12. Defining application program elements for IMS DB 241

SSA coding formats
Use the following formats to code segment search arguments in assembler
language, C language, COBOL, Pascal, and PL/I.

Assembler language SSA definition examples

The following code example shows how you would define a qualified SSA without
command codes. If you want to use command codes with this SSA, code the
asterisk (*) and command codes between the 8-byte segment name field and the
left parenthesis that begins the qualification statement.
* CONSTANT AREA...
SSANAME DS 0CL26
ROOT DC CL8’ROOT ’

DC CL1’(’
DC CL8’KEY ’
DC CL2’ =’

NAME DC CLn’vv...v’
DC CL1’)’

This SSA looks like this:
ROOTbbbb(KEYbbbbbb=vv...v)

C language SSA definition examples

An unqualified SSA that does not use command codes looks like this in C:
const struct {
char seg_name_u[8];
char blank[1];

} unqual_ssa = {"NAME ", " "};

You can use an SSA that is coded like this for each DL/I call that needs an
unqualified SSA by supplying the name of the segment type you want during
program execution. Note that the string size declarations are such that the C null
terminators do not appear within the structure.

You can, of course, declare this as a single string:
const char unqual_ssa[] = "NAME "; /* 8 chars + 1 blank */

DL/I ignores the trailing null characters.

You can define SSAs in any of the ways explained for the I/O area.

The easiest way to create a qualified SSA is using the sprintf function. However,
you can also define it using a method similar to that used by COBOL or PL/I.

The following is an example of a qualified SSA without command codes. To use
command codes with this SSA, code the asterisk (*) and command codes between
the 8-byte segment name field and the left parenthesis that begins the qualification
statement.
struct {

seg_name char[8];
seg_qual char[1];
seg_key_name char[8];
seg_opr char[2];

242 Application Programming

seg_key_value char[n];
seg_end_char char[1];

} qual_ssa = {"ROOT ", "(", "KEY ", " =", "vv...vv", ")"};

Another way is to define the SSA as a string, using sprintf. Remember to use the
preprocessor directive #include <stdio.h>.
char qual_ssa[8+1+8+2+6+1+1]; /* the final 1 is for the */

/* trailing ’\0’ of string */
sprintf(qual_ssa,

",
"ROOT", "KEY", "=", "vvvvv");

Alternatively, if only the value were changing, the sprintf call can be:
sprintf(qual_ssa,

"ROOT (KEY =, "vvvvv");
/* 12345678 12345678 */

In both cases, the SSA looks like this:
ROOTbbbb(KEYbbbbbb=vv...v)

COBOL SSA definition examples

An unqualified SSA that does not use command codes looks like this in COBOL:
DATA DIVISION.
WORKING-STORAGE SECTION....
01 UNQUAL-SSA.

02 SEG-NAME PICTURE X(08) VALUE ’........’.
02 FILLER PICTURE X VALUE ’ ’.

By supplying the name of the segment type you want during program execution,
you can use an SSA coded like the one in this example for each DL/I call that
needs an unqualified SSA.

Use a 01 level working storage entry to define each SSA that the program is to use.
Then use the name you have given the SSA as the parameter in the DL/I call, in
this case:
UNQUAL-SSA,

The following SSA is an example of a qualified SSA that does not use command
codes. If you use command codes in this SSA, code the asterisk (*) and the
command code between the 8-byte segment name field and the left parenthesis
that begins the qualification statement.
DATA DIVISION.
WORKING-STORAGE SECTION....
01 QUAL-SSA-MAST.

02 SEG-NAME-M PICTURE X(08) VALUE ’ROOT ’.
02 BEGIN-PAREN-M PICTURE X VALUE ’(’.
02 KEY-NAME-M PICTURE X(08) VALUE ’KEY ’.
02 REL-OPER-M PICTURE X(02) VALUE ’ =’.
02 KEY-VALUE-M PICTURE X(n) VALUE ’vv...v’.
02 END-PAREN-M PICTURE X VALUE ’)’.

The SSA looks like this:
ROOTbbbb(KEYbbbbbb=vv...v)

Chapter 12. Defining application program elements for IMS DB 243

Pascal SSA definition examples

An unqualified SSA that does not use command codes looks like this in Pascal:
type

STRUCT = record
SEG_NAME : ALFA;
BLANK : CHAR;

end;
const

UNQUAL_SSA = STRUCT(’NAME’,’ ’);

You can also declare this SSA as a single string:
const

UNQUAL_SSA = ’NAME ’;

The SSA shown in the following example is a qualified SSA that does not use
command codes. If you use command codes in this SSA, code the asterisk (*) and
the command code between the 8-byte segment name field and the left parenthesis
that begins the qualification statement.
type

STRUCT = record
SEG_NAME : ALFA;
SEG_QUAL : CHAR;
SEG_KEY_NAME : ALFA;
SEG_OPR : CHAR;
SEG_KEY_VALUE : packed array[1..n] of CHAR;
SEG_END_CHAR : CHAR;

end;
const

QUAL_SSA = STRUCT(’ROOT’,’(’,’KEY’,’ =’,’vv...v’,’)’);

This SSA looks like this:
ROOTbbbb(KEYbbbbbb=vv...v)

PL/I SSA definition examples

An unqualified SSA that does not use command codes looks like this in PL/I:
DCL 1 UNQUAL_SSA STATIC UNALIGNED,

2 SEG_NAME_U CHAR(8) INIT(’NAME ’),
2 BLANK CHAR(1) INIT(’ ’);

You can use a SSA that is coded like this for each DL/I call that needs an
unqualified SSA by supplying the name of the segment type you want during
program execution.

In PL/I you define SSAs in structure declarations. The unaligned attribute is
required for SSA data interchange with IMS. The SSA character string must reside
contiguously in storage. For example, assignment of variable key values might
cause IMS to construct an invalid SSA if the key value has changed the aligned
attribute.

A separate SSA structure is required for each segment type that the program
accesses because the value of the key fields differs among segment types. After you
have initialized the fields (other than the key values), the SSA should not need to
be changed again. You can define SSAs in any of the ways explained for the I/O
area.

244 Application Programming

The following is an example of a qualified SSA without command codes. If you
use command codes in this SSA, code the asterisk (*) and command codes between
the 8-byte segment name field and the left parenthesis that begins the qualification
statement.
DCL 1 QUAL_SSA STATIC UNALIGNED,

2 SEG_NAME CHAR(8) INIT(’ROOT ’),
2 SEG_QUAL CHAR(1) INIT(’(’),
2 SEG_KEY_NAME CHAR(8) INIT(’KEY ’),
2 SEG_OPR CHAR(2) INIT(’ =’),
2 SEG_KEY_VALUE CHAR(n) INIT(’vv...v’),
2 SEG_END_CHAR CHAR(1) INIT(’)’);

This SSA looks like this:
ROOTbbbb(KEYbbbbbb=vv...v)

Related concepts:
“Specifying segment search arguments using the SSAList interface” on page 694

Data areas in GSAM databases
Generalized Sequential Access Method (GSAM) databases are available only to
application programs that can run as batch programs, batch-oriented BMPs,
transaction-oriented BMPS, or JBPs. The program communication block (PCB)
mask and the record search argument (RSA) that you use in a GSAM database call
have special formats.

GSAM DB PCB masks are slightly different from other DB PCB masks. The fields
that are different are the length of the key feedback area and the key feedback
area. Also, an additional field exists that gives the length of the record being
retrieved or inserted when using undefined-length records.

The RSA is an 8-byte token for basic format data sets or 12-byte token for large
format data sets that can be returned on GN and ISRT calls. The application
program can save the RSA for use in a subsequent GU call.
Related concepts:
Chapter 20, “Processing GSAM databases,” on page 309
Related reference:
“Specifying the DB PCB mask” on page 230

AIBTDLI interface
Use AIBTDLI as the interface between your application program and IMS.

Restriction: No fields in the AIB can be used by the application program except as
defined by IMS.

When you use the AIBTDLI interface, you specify the program communication
block (PCB) requested for the call by placing the PCB name (as defined by
PSBGEN) in the resource name field of the AIB. You do not specify the PCB
address. Because the AIB contains the PCB name, your application program can
refer to the PCB name rather than the PCB address. Your application program does
not need to know the relative PCB position in the PCB list. At completion of the
call, the AIB returns the PCB address that corresponds to the PCB name passed by
the application program.

Chapter 12. Defining application program elements for IMS DB 245

The names of DB PCBs and alternate PCBs are defined by the user during
PSBGEN. All I/O PCBs are generated with the PCB name ��� For a generated
program specification block (GPSB), the I/O PCB is generated with the PCB name
IOPCB���, and the modifiable alternate PCB is generated with the PCB name
TPPCB1��.

The ability to pass the PCB name means that you do not need to know the relative
PCB number in the PCB list. In addition, the AIBTDLI interface enables your
application program to make calls on PCBs that do not reside in the PCB list. The
LIST= keyword, which is defined in the PCB macro during PSBGEN, controls
whether the PCB is included in the PCB list.

The AIB resides in user-defined storage that is passed to IMS for DL/I calls that
use the AIBTDLI interface. Upon call completion, IMS updates the AIB. Allocate at
least 128 bytes of storage for the AIB.
Related concepts:
“PCB masks for GSAM databases” on page 309
Related reference:
“Application programming for PL/I” on page 390
“Application programming for Pascal” on page 387
“Application programming for C language” on page 382
“Application programming for assembler language” on page 379
“Assembler language application programming” on page 213

Language specific entry points
In your application program written in assembler language, C, COBOL, Pascal, or
PL/I, control is passed from IMS through an entry point.

Your entry point must refer to the PCBs in the order in which they have been
defined in the PSB. When you code each DL/I call, you must provide the PCB you
want to use for that call. In all cases except CICS online, the list of PCBs that the
program can access is passed to the program at its entry point. For CICS online,
you must first schedule a PSB as described in the topic "System Service Call: PCB"
in IMS Version 14 Application Programming APIs.

Application interfaces that use the AIB structure (AIBTDLI or CEETDLI), such as
Java application interfaces, use the PCB name rather than the PCB structure and do
not require the PCB list to be passed at entry to the application.

In a CICS online program, you do not obtain the address of the PCBs through an
entry statement, but through the user interface block (UIB).

Leave the value blank if the application has been enabled for the IBM Language
Environment® for z/OS & VM.

Assembler language entry point

You can use any name for the entry statement to an assembler language DL/I
program. When IMS passes control to the application program, register 1 contains
the address of a variable-length fullword parameter list. Each word in the list
contains the address of a PCB. Save the content of register 1 before you overwrite
it. IMS sets the high-order byte of the last fullword in the list to X'80' to indicate

246 Application Programming

the end of the list. Use standard z/OS linkage conventions with forward and
backward chaining.

C language entry point

When IMS passes control to your program, it passes the addresses, in the form of
pointers, for each of the PCBs that your program uses. The usual argc and argv
arguments are not available to a program that is invoked by IMS. The IMS
parameter list is made accessible by using the __pcblist macro. You can directly
reference the PCBs by __pcblist[0], __pcblist[1], or you can define macros to give
these more meaningful names. Note that I/O PCBs must be cast to get the proper
type:
(IO_PCB_TYPE *)(__pcblist[0])

The entry statement for a C language program is the main statement.
#pragma runopts(env(IMS),plist(IMS))
#include <ims.h>

main()
{...
}

The env option specifies the operating environment in which your C language
program is to run. For example, if your C language program is invoked under IMS
and uses IMS facilities, specify env(IMS). The plist option specifies the format of
the invocation parameters that is received by your C language program when it is
invoked. When your program is invoked by a system support services program,
the format of the parameters passed to your main program must be converted into
the C language format: argv, argc, and envp. To do this conversion, you must
specify the format of the parameter list that is received by your C language
program. The ims.h include file contains declarations for PCB masks.

You can finish in three ways:
v End the main procedure without an explicit return statement.
v Execute a return statement from main.
v Execute an exit or an abort call from anywhere, or alternatively issue a longjmp

back to main, and then do a normal return.

One C language program can pass control to another by using the system function.
The normal rules for passing parameters apply; in this case, the argc and argv
arguments can be used to pass information. The initial __pcblist is made available
to the invoked program.

COBOL entry point

The procedure statement must refer to the I/O PCB first, then to any alternate PCB
it uses, and finally to the DB PCBs it uses. The alternate PCBs and DB PCBs must
be listed in the order in which they are defined in the PSB.
PROCEDURE DIVISION USING PCB-NAME-1 [,...,PCB-NAME-N]

In previous versions of IMS, USING might be coded on the entry statement to
reference PCBs. However, IMS continues to accept such coding on the entry
statement.

Chapter 12. Defining application program elements for IMS DB 247

Recommendation: Use the procedure statement rather than the entry statement to
reference the PCBs.

Pascal entry point

The entry point must be declared as a REENTRANT procedure. When IMS passes
control to a Pascal procedure, the first address in the parameter list is reserved for
Pascal's use, and the other addresses are the PCBs the program uses. The PCB types
must be defined before this entry statement. The IMS interface routine PASTDLI
must be declared with the GENERIC directive.
procedure ANYNAME(var SAVE: INTEGER;

var pcb1-name: pcb1-name-type[;
...
var pcbn-name: pcbn-name-type]); REENTRANT;

procedure ANYNAME;
(* Any local declarations *)

procedure PASTDLI; GENERIC;
begin

(* Code for ANYNAME *)
end;

PL/I entry point

The entry statement must appear as the first executable statement in the program.
When IMS passes control to your program, it passes the addresses of each of the
PCBs your program uses in the form of pointers. When you code the entry
statement, make sure you code the parameters of this statement as pointers to the
PCBs, and not the PCB names.
anyname: PROCEDURE (pcb1_ptr [,..., pcbn_ptr]) OPTIONS (MAIN);...
RETURN;

The entry statement can be any valid PL/I name.

CEETDLI, AIBTDLI, and AERTDLI interface considerations

The following considerations apply for CEETDLI, AIBTDLI, and AERTDLI.

The considerations for CEETDLI are:
v For PL/I programs, the CEETDLI entry point is defined in the CEEIBMAW

include file. Alternatively, you can declare it yourself, but it must be declared as
an assembler language entry (DCL CEETDLI OPTIONS(ASM);).

v For C language application programs, you must specify env(IMS) and
plist(IMS); these specifications enable the application program to accept the PCB
list of arguments. The CEETDLI function is defined in <leawi.h>; the CTDLI
function is defined in <ims.h>.

The considerations for AIBTDLI are:
v When using the AIBTDLI interface for C/MVS™, Enterprise COBOL, or PL/I

language application programs, the language run-time options for suppressing
abend interception (that is, NOSPIE and NOSTAE) must be specified. However,
for Language Environment-conforming application programs, the NOSPIE and
NOSTAE restriction is removed.

v The AIBTDLI entry point for PL/I programs must be declared as an assembler
language entry (DCL AIBTDLI OPTIONS(ASM);).

248 Application Programming

v For C language applications, you must specify env(IMS) and plist(IMS); these
specifications enable the application program to accept the PCB list of
arguments.

The considerations for AERTDLI are:
v When using the AERTDLI interface for C/MVS, COBOL, or PL/I language

application programs, the language run-time options for suppressing abend
interception (that is, NOSPIE and NOSTAE) must be specified. However, for
Language Environment-conforming application programs, the NOSPIE and
NOSTAE restriction is removed.

v The AERTDLI entry point for PL/I programs must be declared as an assembler
language entry (DCL AERTDLI OPTIONS(ASM);).

v For C language applications, you must specify env(IMS) and plis(IMS). These
specifications enable the application program to accept the PCB list of
arguments.

v AERTDLI must receive control with 31 bit addressability.
Related reference:
“Specifying the UIB (CICS online programs only)” on page 237

Program communication block (PCB) lists
In your application program, code your PCB or GPSB list in the following format.

PCB list format

The following example shows the general format of a PCB list.
[IOPCB]
[Alternate PCB ... Alternate PCB]
[DB PCB ... DB PCB]
[GSAM PCB ... GSAM PCB]

Each PSB must contain at least one PCB. An I/O PCB is required for most system
service calls. An I/O PCB or alternate PCB is required for transaction management
calls. (Alternate PCBs can exist in IMS TM.) DB PCBs for DL/I databases are used
only with the IMS Database Manager under DBCTL. GSAM PCBs can be used
with DCCTL.

Format of a GPSB PCB list

A generated program specification block (GPSB) takes this format:
[IOPCB]
[Alternate PCB]

A GPSB contains only an I/O PCB and one modifiable alternate PCB. (A
modifiable alternate PCB enables you to change the destination of the alternate
PCB while the program is running.) A GPSB can be used by all transaction
management application programs, and permits access to the specified PCBs
without the need for a specific PSB for the application program.

The PCBs in a GPSB have predefined PCB names. The name of the I/O PCB is
IOPCB. The name of the alternate PCB is TPPCB1��. The minimum size of the I/O
work area that IMS generates for GPSBs in a DBCTL environment is 600 bytes.

Chapter 12. Defining application program elements for IMS DB 249

PCB summary

If you intend to issue system service requests, be aware of the differences between
I/O PCBs and alternate PCBs in various types of application programs.

DB Batch Programs
If CMPAT=Y is specified in PSBGEN, the I/O PCB is present in the PCB list;
otherwise, the I/O PCB is not present, and the program cannot issue
system service calls. Alternate PCBs are always included in the list of PCBs
that IMS supplies to the program.

BMPs, MPPs, and IFPs
The I/O PCB and alternate PCBs are always passed to BMPs, MPPs, and
IFPs.

The PCB list always contains the address of the I/O PCB, followed by the
addresses of any alternate PCBs, followed by the addresses of the DB
PCBs.

CICS Online Programs with DBCTL
If you specify the IOPCB option on the PCB call, the first PCB address in
your PCB list is the I/O PCB, followed by any alternate PCBs, followed by
the addresses of the DB PCBs.

If you do not specify the I/O PCB option, the first PCB address in your
PCB list points to the first DB PCB.

The following table summarizes the I/O PCB and alternate PCB information.

Table 39. I/O PCB and alternate PCB information summary.

Environment

CALL DL/I

I/O PCB address in PCB list Alternate PCB address in
PCB list

MPP Yes Yes

IFP Yes Yes

BMP Yes Yes

DB Batch1 No Yes

DB Batch2 Yes Yes

TM Batch3 Yes Yes

CICS DBCTL4 No No

CICS DBCTL5 Yes Yes

Notes:

1. CMPAT = N specified.
2. CMPAT = Y specified.
3. CMPAT = Option. Default is always to Y, even when CMPAT = N is specified.
4. SCHD request issued without the IOPCB or SYSSERVE option.
5. SCHD request issued with the IOPCB or SYSSERVE for a CICS DBCTL request

or for a function-shipped request which is satisfied by a CICS system using
DBCTL.

250 Application Programming

The AERTDLI interface
You can make database calls with AIBs in your ODBA applications using the
AERTDLI interface.

Requirement: Allocate 264 bytes of storage for the AIB.

When you use the AERTDLI interface, the AIB used for database calls must be the
same AIB as used for the APSB call. Specify the PCB that is requested for the call
by placing the PCB name (as defined by PSBGEN) in the resource name field of
the AIB. You do not specify the PCB address. Because the AIB contains the PCB
name, your application can refer to the PCB name rather than to the PCB address.
The AERTDLI call allows you to select PCBs directly by name rather than by a
pointer to the PCB. At completion of the call, the AIB returns the PCB address that
corresponds to the PCB name that is passed by the application program.

For PCBs to be used in a AERTDLI call, you must assign a name in PSBGEN,
either with PCBNAME= or with the name as a label on the PCB statement. PCBs
that have assigned names are also included in the positional pointer list, unless
you specify LIST=NO. During PSBGEN, you define the names of the DB PCBs and
alternate PCBs. All I/O PCBs are generated with the PCB name IOPCB���.

Because you pass the PCB name, you do not need to know the relative PCB
number in the PCB list. In addition, the AERTDLI interface enables your
application program to make calls on PCBs that do not reside in the PCB list. The
LIST= keyword, which is defined in the PCB macro during PSBGEN, controls
whether the PCB is included in the PCB list.

The AIB resides in user-defined storage that is passed to IMS for DL/I calls that
use the AERTDLI interface. When the call is completed, the AIB is updated by
IMS. Because some of the fields in the AIB are used internally by IMS, the same
APSB AIB must be used for all subsequent calls for that PSB.

Language environments
IBM Language Environment provides the strategic execution environment for
running your application programs written in one or more high level languages.

It provides not only language-specific run-time support, but also cross-language
run-time services for your applications, such as support for initialization,
termination, message handling, condition handling, storage management, and
National Language Support. Many of Language Environment's services are
accessible explicitly through a set of Language Environment interfaces that are
common across programming languages; these services are accessible from any
Language Environment-conforming program.

Language Environment-conforming programs can be compiled with the following
compilers:
v IBM C++/MVS™

v IBM COBOL
v IBM PL/I

Chapter 12. Defining application program elements for IMS DB 251

The CEETDLI interface to IMS

The language-independent CEETDLI interface to IMS is provided by Language
Environment. It is the only IMS interface that supports the advanced error
handling capabilities provided by Language Environment. The CEETDLI interface
supports the same functionality as the other IMS application interfaces, and it has
the following characteristics:
v The parmcount variable is optional.
v Length fields are 2 bytes long.
v Direct pointers are used.

Related reading: For more information about Language Environment, see z/OS
Language Environment Programming Guide.

LANG= option on PSBGEN for PL/I compatibility

For IMS PL/I applications running in a compatibility mode that uses the
PLICALLA entry point, you must specify LANG=PLI on the PSBGEN. Your other
option is to change the entry point and add SYSTEM(IMS) to the EXEC PARM of
the compile step so that you can specify LANG=blank or LANG=PLI on the
PSBGEN. The following table summarizes when you can use LANG=blank and
LANG=PLI.

Table 40. Using LANG= option in a Language Environment for PL/I compatibility

Compile exec statement is
PARM=(...,SYSTEM(IMS)...

Entry point name is PLICALLA
Valid LANG= value

Yes Yes LANG=PLI

Yes No LANG=blank or LANG=PLI

No No Note: Not valid for IMS PL/I
applications

No Yes LANG=PLI

PLICALLA is only valid for PL/I compatibility with Language Environment. If a
PL/I application using PLICALLA entry at bind time is bound using Language
Environment with the PLICALLA entry, the bind will work; however, you must
specify LANG=PLI in the PSB. If the application is re-compiled using PL/I for
z/OS & VM Version 1 Release 1 or later, and then bound using Language
Environment Version 1 Release 2 or later, the bind will fail. You must remove the
PLICALLA entry statement from the bind.

Special DL/I situations for IMS DB programming
Special cases during application programming for IMS DB include usage of the
GUR call, program scheduling against HALDBs, mixed language programming,
using the extended addressing capabilities of z/OS, and setting COBOL compiler
options for preloaded programs.

GUR call

The get unique record (GUR) DL/I call is a special case because it always accesses
the IMS catalog database. When the catalog is enabled, IMS dynamically attaches
the catalog PCB on behalf of your application program. Your application program
can use the GUR call to get catalog data in the form of a single XML instance

252 Application Programming

document for a particular catalog record. You can also issue other DL/I read calls
to process the catalog database in the same way as any other database. The GUR
call is provided to reduce the number of processing steps required to retrieve a
complete catalog record for a DBD or PSB.

Restriction: The use of SSA command codes is not allowed.

Application program scheduling against HALDBs

Application programs are scheduled against HALDBs the same way they are
against non-HALDBs. Scheduling is based on the availability status of the HALDB
master and is not affected by individual partition access and status.

The application programmer needs to be aware of changes to the handling of
unavailable data for HALDBs. The feedback on data availability at PSB schedule
time shows the availability of the HALDB master, not of the partitions. However,
the error settings for data unavailability of a partition at the first reference to the
partition during the processing of a DL/I call are the same as those of a
non-HALDB, namely status code BA or pseudo ABENDU3303.

For example, if you issue the IMS /DBR command to half of the partitions to take
them offline, the remaining partitions are available to the programs.

When an application program accesses a partition, that partition is considered to
be in use by the application for the duration of that instance of the application.
DBDUMP, DBRECOVERY, and START commands can operate against a partition
currently not in use. The command is not processed for any partition that is being
accessed by a BMP. A DFS0565I message is issued for partitions that are in use by
a BMP. An exception to this rule is a partition where the accessing BMP issued a
CHKP call and has not issued any subsequent DL/I calls. If an application
attempts to access data from a stopped partition, a pseudo abend ABENDU3303
results or the application receives a BA status code. If the partition is started with
the STA DB command before the application attempts to access data in that
partition again, the DL/I call is processed successfully.

Mixed-language programming

When an application program uses the Language Environment
language-independent interface, CEETDLI, IMS does not need to know the
language of the calling program.

When the application program calls IMS in a language-dependent interface, IMS
determines the language of the calling program according to the entry name that is
specified in the CALL statement. That is, IMS assumes that the program is:
v Assembler language when the application program uses CALL ASMTDLI
v C language when the application program uses rc=CTDLI
v COBOL when the application program uses CALL CBLTDLI
v Pascal when the application program uses CALL PASTDLI
v PL/I when the application program uses CALL PLITDLI

For example, if a PL/I program calls an assembler language subroutine and the
assembler language subroutine makes DL/I calls by using CALL ASMTDLI, the
assembler language subroutine should use the assembler language calling
convention, not the PL/I convention.

Chapter 12. Defining application program elements for IMS DB 253

In this situation, where the I/O area uses the LLZZ format, LL is a halfword, not
the fullword that is used for PL/I.

Extended addressing capabilities of z/OS

The two modes in z/OS with extended addressing capabilities are: the addressing
mode (AMODE) and the residency mode (RMODE). IMS places no constraints on
the RMODE and AMODE of an application program. The program can reside in
the extended virtual storage area. The parameters that are referenced in the call can
also be in the extended virtual storage area.

COBOL compiler options for preloaded programs

If you compile your COBOL program with the VS COBOL II compiler and preload
it, you must use the COBOL compiler options RES and RENT.

Application programming with the IMS catalog
The IMS catalog database is accessible to standard IMS DB application programs
when it is enabled for your IMS system.

Information in the IMS catalog

The IMS catalog database stores application and database metadata in a format
that is accessible to standard IMS DB application programs. This information
includes database definitions, program specifications, and user comments. Any
application program can read this information, but the catalog database is
write-protected and can be updated only by authorized system utilities such as the
IMS catalog populate utility (DFS3PU00).

By default, the IMS catalog is named DFSCD000. The DFSC prefix is replaced with
an alias prefix if one is defined to IMS.

Information in the IMS catalog secondary index

The IMS catalog secondary index contains a single segment type, DBDPSB. It is
logically linked to the DBDXREF segment type in the IMS catalog database, which
is included in all catalog records for IMS PSBs. You can use the catalog secondary
index to determine which IMS programs reference a specific user database without
processing the entire IMS catalog.

By default, the IMS catalog is named DFSCX000. The DFSC prefix is replaced with
an alias prefix if one is defined to IMS.

IMS catalog PSBs and PCBs for application programs

IMS does not require user PSBs to contain a PCB for the IMS catalog database or
secondary index. The catalog PSBs DFSCP000, DFSCP002, and DFSCP003 are
dynamically attached to any user PSB that makes a DL/I call to the catalog
database or issues an INIT DB QUERY call. Each PSB is intended for use by a
different type of application program:

DFSCP000
High-level assembler and COBOL applications

DFSCP002
PL/I applications

254 Application Programming

DFSCP003
PASCAL applications

Restriction: The IMS catalog PSBs are not dynamically attached to generated PSBs
or GSAM-only PSBs.

The following PCBs are included to support different catalog processing models:

DFSCAT00
The primary PCB to access all data in the DFSCD000 (IMS catalog)
database. Use this PCB to perform standard catalog processing.

DFSCATSX
This PCB provides a SENSEG for the DBDXREF segment type in catalog
PSB records and uses PROCSEQ=DFSCX000. Use this PCB to perform
faster processing of the catalog database via the catalog secondary index.

DFSCATX0
This PCB provides a SENSEG for the DBDPSB segment type in catalog
secondary index records. Use this PCB to process the catalog secondary
index directly.

All catalog PCBs are resident. All catalog processing is performed with
PROCOPT=GP.

IMS automatically increases the space allocated for the user PSB to attach the
catalog PSBs. 96 bytes of additional space are allocated for each user PSB in the
PSB CSA storage pool. The catalog PSB itself occupies 12kb in the DLIPSB pool
and 500 bytes CSAPSB pool for each user PSB that is using the catalog PSBs. You
might need to increase the size of your storage pools, up to the maximum size of
the catalog PSB in each pool multiplied by the number of user PSBs that
concurrently access the catalog.

GUR call

Your application program can use the Get Unique Record (GUR) DL/I call to get
catalog data in the form of a single XML instance document for a particular catalog
record. You can also issue other DL/I read calls to process the catalog database in
the same way as any other IMS database. The GUR call is provided to reduce the
number of processing steps required to retrieve a complete catalog record for a
DBD or PSB.

Restriction: The use of SSA command codes is not allowed.
Related concepts:

Format of records in the IMS catalog database (Database Administration)

IMS catalog secondary index (Database Administration)
Related reference:
“Special DL/I situations for IMS DB programming” on page 252

GUR call (Application Programming APIs)

Chapter 12. Defining application program elements for IMS DB 255

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_cat_db_format.htm#formatofrecordsintheimscatalog
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_cat_db_sx.htm#ims_cat_db_sx
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_gurcall.htm#ims_gurcall

256 Application Programming

Chapter 13. Database versioning and application
programming

When database versioning is enabled in an IMS system, IMS can maintain multiple
versions of the structural definition of a database so that existing application
programs can continue to access a database after the database is modified to
support new application programs.

When a new version of a database is defined, the database administrator specifies
a version number for the new database definition. The version number is then
used to request access to that version of the database.

When multiple version of a database are available, if a specific database version is
not specified for an application program, IMS provides access to the current
version of the database by default. The current version of a database has the
highest version number and contains the latest changes to the database. This IMS
system default can be changed so that IMS provides access to version 0 of the
database instead.

The IMS system default can be overridden at the program specification block (PSB)
level by specifying the DBLEVEL parameter in the PSBGEN statement during PSB
generation.

If an application program requires a specific database version, that version number
can be specified explicitly either on the DBVER parameter of a PCB statement
when the PCB is defined or at runtime by issuing the DL/I INIT VERSION call.

If the requested version of a database definition cannot be found or if database
versioning is not enabled when a version is requested, IMS terminates the program
with abend 3303 and issues message DFS3303I, which contains details regarding
the cause of the abend. Optionally, application programs can issue the INIT
STATUS GROUPA call to receive a BA status code instead of abend 3303.

Attention: When a new version of a database is created, before application
programs update the new version of the database, confirm that the prior versions
of the database can still be accessed.

Database versioning supports only certain changes to a database definition. If
unsupported changes are made to a database, application programs will not be
able to access the prior versions of the database. Only the current version of the
database is accessible.

For most database types, the unsupported changes are not detected until an
application program that uses a prior version of the database is scheduled.
However, if the HALDB alter function is used to apply the structural changes to a
HALDB database, IMS detects unsupported database changes during alter
processing.

If a new version of a database contains unsupported changes, either all application
programs need to be updated to use the database structure of the new version or
the database definition needs to be changed to remove the unsupported structure
change.

© Copyright IBM Corp. 1974, 2015 257

Batch application programs and database versioning

You can enable database versioning for offline DL/I batch application programs
that run in DLIBATCH or DBBBATCH regions by specifying DBVERSION=Y in a
DFSDFxxx member in the IMS.PROCLIB data set.

The DLIBATCH or DBBBATCH application programs reference the DFSDFxxx
member by specifying the DFSDF=xxx parameter in the EXEC statement of their
JCL. For example:
//STEP1 EXEC PGM=DFSRRC00,REGION=0M,
// PARM=(DLI,DFSDDLT0,PSBCJK03,,01,,,,,,,BCH1,,Y,Y,,,,,,,,,,,,,,,,,,,,,
// ,,,,,’DFSDF=C35’)

Important: DLIBATCH application programs use PSB and DBD libraries instead of
an ACB library. When using database versioning, DLIBATCH application programs
must use the DBD library that contains the DBD member that matches the current
physical database structure.
Related concepts:

Database versioning (Database Administration)
Related tasks:

Altering the definition of an online HALDB database (Database
Administration)
Related reference:

INIT call (Application Programming APIs)

PSBGEN statement (System Utilities)

258 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_db_versioning.htm#ims_database_versioning
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_db_alter.htm#ims_dbalter
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_db_alter.htm#ims_dbalter
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_hinitcall.htm#ims_hinitcall
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_psbgenpsbgenstmt.htm#ims_psbgenpsbgenstmt

Chapter 14. Establishing a DL/I interface from COBOL or PL/I

To establish a DL/I interface from COBOL or PL/I, use either the CBLTDLI
procedure or the PLITDLI procedure.

CBLTDLI

The following control statements are necessary to establish a COBOL to DL/I
interface. The block size of the following members must be less than or equal to
3200.

LIBRARY SDFSRESL(CBLTDLI) DL/I LANGUAGE INTERFACE
LIBRARY SDFSRESL(DFHEI01) HLPI LANGUAGE INTERFACE
LIBRARY SDFSRESL(DFHEI1) HLPI LANGUAGE INTERFACE

PLITDLI

The following control statements are necessary to establish a PL/I to DL/I
interface. The blocksize of the following members must be less than or equal to
3200.

LIBRARY SDFSRESL(PLITDLI) DL/I LANGUAGE INTERFACE
LIBRARY SDFSRESL(DFHEI01) HLPI LANGUAGE INTERFACE
LIBRARY SDFSRESL(DFHEI1) HLPI LANGUAGE INTERFACE
ENTRY PLICALLA

PLITDLI is valid when using the PL/I Optimizing Compiler.

© Copyright IBM Corp. 1974, 2015 259

260 Application Programming

Chapter 15. Current position in the database after each call

Positioning means that DL/I tracks your place in the database after each call that
you issue. By tracking your position in the database, DL/I enables you to process
the database sequentially.

Current position after successful calls
Position is important when you process the database sequentially by issuing GN,
GNP, GHN, and GHNP calls.

Current position is where IMS starts its search for the segments that you specify in
the calls.

This section explains current position for successful calls. Current position is also
affected by an unsuccessful retrieval or ISRT call.

Before you issue the first call to the database, the current position is the place
immediately before the first root segment occurrence in the database. This means
that if you issue an unqualified GN call, IMS retrieves the first root segment
occurrence. It is the next segment occurrence in the hierarchy that is defined by the
DB PCB that you referenced.

Certain calls cancel your position in the database. You can reestablish this position
with the GU call. Because the CHKP and SYNC (commit point) calls cancel position,
follow either of these calls with a GU call. The ROLS and ROLB calls also cancel your
position in the database.

When you issue a GU call, your current position in the database does not affect the
way that you code the GU call or the SSA you use. If you issue the same GU call at
different points during program execution (when you have different positions
established), you will receive the same results each time you issue the call. If you
have coded the call correctly, IMS returns the segment occurrence you requested
regardless of whether the segment is before or after the current position.

Exception: If a GU call does not have SSAs for each level in the call, it is possible
for IMS to return a different segment at different points in your program. This is
based on the position at each level.

For example, suppose you issue the following call against the data structure shown
in the following figure.
GU Abbbbbbb(AKEYbbbbbA1)

Bbbbbbbb(BKEYbbbb=bB11)
Dbbbbbbb(DKEYbbbbbD111)

The structure in the figure contains six segment types: A, B, C, D, E, and F.
Figure 49 on page 262 shows one database record, the root of which is A1.

© Copyright IBM Corp. 1974, 2015 261

When you issue this call, IMS returns the D segment with the key D111, regardless
of where your position is when you issue the call. If this is the first call your
program issues (and if this is the first database record in the database), current
position before you issue the call is immediately before the first segment
occurrence in the database—just before the A segment with the key of A1. Even if
current position is past segment D111 when you issue the call (for example, just
before segment F111), IMS still returns the segment D111 to your program. This is
also true if the current position is in a different database record.

When you issue GN and GNP calls, current position in the database affects the way
that you code the call and the SSA. That is because when IMS searches for a
segment described in a GN or GNP call, it starts the search from current position and
can only search forward in the database. IMS cannot look behind that segment
occurrence to satisfy a GN or GNP. These calls can only move forward in the
database when trying to satisfy your call, unless you use the F command code, the
use of which is described in the topic "F Command Code" in IMS Version 14
Application Programming APIs.

If you issue a GN call for a segment occurrence that you have already passed, IMS
starts searching at the current position and stops searching when it reaches the end
of the database (resulting in a GB status code), or when it determines from your
SSA that it cannot find the segment you have requested (GE status code).

Current position affects ISRT calls when you do not supply qualified SSAs for the
parents of the segment occurrence that you are inserting. If you supply only the
unqualified SSA for the segment occurrence, you must be sure that your position
in the database is where you want the segment occurrence to be inserted.
Related concepts:

A command code (Application Programming APIs)

B

BKEY = B11

C

CKEY = C111

BKEY = B13

BKEY = B12

CKEY = C112

D

DKEY = D111

F

FKEY = F111

E

EKEY = E11

A

AKEY = A1

Figure 49. Current position hierarchy

262 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_acmdcode.htm#ims_acmdcode

G command code (Application Programming APIs)
“Current position after unsuccessful calls” on page 267

Position after retrieval calls
After you issue any kind of successful retrieval call, position immediately follows
the segment occurrence you just retrieved—or the lowest segment occurrence in
the path if you retrieved several segment occurrences using the D command code.
When you use the D command code in a retrieval call, a successful call is one that
IMS completely satisfies.

For example, if you issue the following call against the database shown in the
previous figure, IMS returns the C segment occurrence with the key of C111.
Current position is immediately after C111. If you then issue an unqualified GN call,
IMS returns the C112 segment to your program.
GU Abbbbbbb(AKEYbbbbEQA1)

Bbbbbbbb(BKEYbbbbEQB11)
Cbbbbbbb(CKEYbbbbEQC111)

Your current position is the same after retrieving segment C111, whether you
retrieve it with GU, GN, GNP, or any of the Get Hold calls.

If you retrieve several segment occurrences by issuing a Get call with the D
command code, current position is immediately after the lowest segment
occurrence that you retrieved. If you issue the GU call as shown in the example
above, but include the D command code in the SSA for segments A and B, the
current position is still immediately after segment C111. C111 is the last segment
that IMS retrieves for this call. With the D command code, the call looks like this:
GU Abbbbbbb(AKEYbbbbEQA1)

Bbbbbbbb(BKEYbbbbEQB11)
Cbbbbbbb*D(CKEYbbbbEQC111)

You do not need the D command code on the SSA for the C segment because IMS
always returns to your I/O area the segment occurrence that is described in the
last SSA.

Position after DLET
After a successful DLET call, position immediately follows the segment occurrence
you deleted. This is true when you delete a segment occurrence with or without
dependents.

For example, if you issue the call shown in the following code example to delete
segment C111, current position is immediately after segment C111. Then, if you
issue an unqualified GN call, IMS returns segment C112.
GHU Abbbbbbb(AKEYbbbb=bA1)

Bbbbbbbb(BKEYbbbb=bB11)
Cbbbbbbb(CKEYbbbb=bC111)

DLET

The following figure shows what the hierarchy looks like after this call. The
successful DLET call has deleted segment C111.

Chapter 15. Current position in the database after each call 263

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_gcmdcode.htm#ims_gcmdcode

When you issue a successful DLET call for a segment occurrence that has
dependents, IMS deletes the dependents, and the segment occurrence. Current
position still immediately follows the segment occurrence you deleted. An
unqualified GN call returns the segment occurrence that followed the segment you
deleted.

For example, if you delete segment B11 in the hierarchy shown in the previous
figure, IMS deletes its dependent segments, C112 and D111, as well. Current
position immediately follows segment B11, just before segment B12. If you then
issue an unqualified GN call, IMS returns segment B12. The following figure shows
what the hierarchy looks like after you issued this call.

BKEY = B13

C

CKEY = C112

BKEY = B12

D

DKEY = D111

E

EKEY = E11

A

AKEY = A1

B

BKEY = B11

F

FKEY = F111

Figure 50. Hierarchy after deleting a segment

264 Application Programming

Because IMS deletes the segment's dependents, you can think of current position
immediately following the last (lowest, right-most) dependent. In the example in
the first figure, this immediately follows segment D111. But if you then issue an
unqualified GN call, IMS still returns segment B12. You can think of position in
either place—the results are the same either way. An exception to this can occur for
a DLET that follows a GU path call, which returned a GE status code.
Related concepts:
“Current position after unsuccessful calls” on page 267

Position after REPL
A successful REPL call does not change your position in the database. Current
position is just where it was before you issued the REPL call.

It immediately follows the lowest segment that is retrieved by the Get Hold call
that you issued before the REPL call.

For example, if you retrieve segment B13 in the previous figure using a GHU instead
of a GU call, change the segment in the I/O area, and then issue a REPL call, current
position immediately follows segment B13.

Position after ISRT
After you add a new segment occurrence to the database, current position
immediately follows the new segment occurrence.

For example, in the following figure, if you issue the following call to add segment
C113 to the database, current position immediately follows segment C113. An
unqualified call would retrieve segment D111.
ISRT Abbbbbbb(AKEYbbbb=bA1)

Bbbbbbbb(BKEYbbbb=bB11)
Cbbbbbbb

BKEY = B13

A

AKEY = A1

B

BKEY = B12

E

EKEY = E11

F

FKEY = F111

Figure 51. Hierarchy after deleting a segment and dependents

Chapter 15. Current position in the database after each call 265

If you are inserting a segment that has a unique key, IMS places the new segment
in key sequence. If you are inserting a segment that has either a non-unique key or
no key at all, IMS places the segment according to the rules parameter of the
SEGM statement of the DBD for the database. the topic "ISRT Call" in IMS Version
14 Application Programming APIs explains these rules.

If you insert several segment occurrences using the D command code, current
position immediately follows the lowest segment occurrence that is inserted.

For example, suppose you insert a new segment B (this would be B14), and a new
C segment occurrence (C141), which is a dependent of B14. The following figure
shows what the hierarchy looks like after these segment occurrences are inserted.
The call to do this looks like this:
ISRT Abbbbbbb(AKEYbbbb=bA1)

Bbbbbbbb
*D

Cbbbbbbbb

You do not need the D command code in the SSA for the C segment. On ISRT calls,
you must include the D command code in the SSA for the only first segment you
are inserting. After you issue this call, position immediately follows the C segment
occurrence with the key of C141. Then, if you issue an unqualified GN call, IMS
returns segment E11.

If your program receives an II status code as a result of an ISRT call (which means
that the segment you tried to insert already exists in the database), current position
is just before the duplicate of the segment that you tried to insert.

BKEY = B14

BKEY = B13

B

BKEY = B11

C

CKEY = C141

BKEY = B12

CKEY = C112

A

AKEY = A1

E

EKEY = E11

C

CKEY = C111

D

DKEY = D111

F

FKEY = F111

Figure 52. Hierarchy after adding new segments and dependents

266 Application Programming

Current position after unsuccessful calls
IMS establishes another kind of position when you issue retrieval and ISRT calls.
This is position on one segment occurrence at each hierarchic level in the path to
the segment that you are retrieving or inserting. Not every DL/I call that your
program issues will be completely successful. When a call is unsuccessful, you
should understand how to determine your position in the database after that call.

You need to know how IMS establishes this position to understand the U and V
command codes described in the topic "General Command Codes for DL/I Calls"
in IMS Version 14 Application Programming APIs. Also, you need to understand
where your position in the database is when IMS returns a not-found status code
to a retrieval or ISRT call.

Position after an unsuccessful DLET or REPL call

DLET and REPL calls do not affect current position. Your position in the database is
the same as it was before you issued the call. However, an unsuccessful Get call or
ISRT call does affect your current position.

To understand where your position is in the database when IMS cannot find the
segment you have requested, you need to understand how DL/I determines that it
cannot find your segment.

In addition to establishing current position after the lowest segment that is
retrieved or inserted, IMS maintains a second type of position on one segment
occurrence at each hierarchic level in the path to the segment you are retrieving or
inserting.

For example, in the following figure, if you had just successfully issued the GU call
with the SSA shown below, IMS has a position established at each hierarchic level.
GU Abbbbbbb(AKEYbbbb=bA1)

Bbbbbbbb(BKEYbbbbbbB11)
Cbbbbbbb(CKEYbbbb=bC111)

Now DL/I has three positions, one on each hierarchic level in the call:
v One on the A segment with the key A1
v One on the B segment with the key B11
v One on the C segment with the key C111

Chapter 15. Current position in the database after each call 267

When IMS searches for a segment occurrence, it accepts the first segment
occurrence it encounters that satisfies the call. As it does so, IMS stores the key of
that segment occurrence in the key feedback area.

Position after an unsuccessful retrieval or ISRT call

Current position after a retrieval or ISRT call that receives a GE status code
depends on how far IMS got in trying to satisfy the SSA in the call. When IMS
processes an ISRT call, it checks for each of the parents of the segment occurrence
you are inserting. An ISRT call is similar to a retrieval call, because IMS processes
the call level by level, trying to find segment occurrences to satisfy each level of
the call. When IMS returns a GE status code on a retrieval call, it means that IMS
was unable to find a segment occurrence to satisfy one of the levels in the call.
When IMS returns a GE status code on an ISRT call, it means that IMS was unable
to find one of the parents of the segment occurrence you are inserting. These are
called not-found calls.

When IMS processes retrieval and ISRT calls, it tries to satisfy your call until it
determines that it cannot. When IMS first tries to find a segment matching the
description you have given in the SSA and none exists under the first parent, IMS
tries to search for your segment under another parent. How you code the SSA in
the call determines whether IMS can move forward and try again under another
parent.

For example, suppose you issue the following GN call to retrieve the C segment
with the key of C113 in the hierarchy shown in the previous figure.

Abbbbbbb(AKEYbbbb=bA1)
Bbbbbbbb(BKEYbbbb=bB11)
Cbbbbbbb(CKEYbbbb=bC113)

B

BKEY = B11

C

CKEY = C111

BKEY = B13

BKEY = B12

CKEY = C112

D

DKEY = D111

F

FKEY = F111

E

EKEY = E11

A

AKEY = A1

Figure 53. DL/I positions

268 Application Programming

When IMS processes this call, it searches for a C segment with the key equal to
C113. IMS can only look at C segments whose parents meet the qualifications for
the A and B segments. The B segment that is part of the path must have a key
equal to B11, and the A segment that is part of the path must have a key equal to
A1. IMS then looks at the first C segment. Its key is C111. The next C segment has
a key of C112. IMS looks for a third C segment occurrence under the B11 segment
occurrence. No more C segment occurrences exist under B11.

Because you have specified in the SSA that the A and B segment occurrences in C's
path must be equal to certain values, IMS cannot look for a C segment occurrence
with a key of C113 under any other A or B segment occurrence. No more C
segment occurrences exist under the parent B11; the parent of C must be B11, and
the parent of B11 must be A1. IMS determines that the segment you have specified
does not exist and returns a not-found (GE) status code.

When you receive the GE status code on this call, you can determine where your
position is from the key feedback area, which reflects the positions that IMS has at
the levels it was able to satisfy—in this case, A1 and B11.

After this call, current position immediately follows the last segment occurrence
that IMS examined in trying to satisfy your call—in this case, C112. Then, if you
issue an unqualified GN call, IMS returns D111.

The current position after this call is different if A and B have non-unique keys.
Suppose A's key is unique and B's is non-unique. After IMS searches for a C113
segment under B11 and is unable to find one, IMS moves forward from B11 to look
for another B segment with a key of B11. When IMS does not find one, DL/I
returns a GE status code. Current position is further in the database than it was
when both keys were unique. Current position immediately follows segment B11.
An unqualified GN call would return B12.

If A and B both have non-unique keys, current position after the previous call
immediately follows segment A1. Assuming no more segment A1s exist, an
unqualified GN call would return segment A2. If other A1s exist, IMS tries to find a
segment C113 under the other A1s.

But suppose you issue the same call with a greater-than-or-equal-to relational
operator in the SSA for segment B:
GU Abbbbbbb(AKEYbbbb=>bA1)

Bbbbbbbb(BKEYbbbb=>B11)
Cbbbbbbb(CKEYbbbb=>bC113)

IMS establishes position on segment A1 and segment B11. Because A1 and B11
satisfy the first two SSAs in the call, IMS stores their keys in the key feedback area.
IMS searches for a segment C113 under segment B11. None is found. But this time,
IMS can continue searching, because the key of the B parent can be greater than or
equal to B11. The next segment is B12. Because B12 satisfies the qualification for
segment B, IMS places B12's key in the key feedback area. IMS then looks for a
C113 under B12 and does not find one. The same thing happens for B13: IMS
places the key of B13 in the key feedback area and looks for a C113 under B13.

When IMS finds no more B segments under A1, it again tries to move forward to
look for B and C segments that satisfy the call under another A parent. But this
time it cannot; the SSA for the A segment specifies that the A segment must be
equal to A1. (If the keys were non-unique, IMS could look for another A1

Chapter 15. Current position in the database after each call 269

segment.) IMS then knows that it cannot find a C113 under the parents you have
specified and returns a GE status code to your program.

In this example, you have not limited the search for segment C113 to only one B
segment, because you have used the greater-than-or-equal-to operator. The position
is further than you might have expected, but you can tell what the position is from
the key feedback area. The last key in the key feedback area is the key of segment
B13. The current position of IMS immediately follows segment B13. If you then
issue an unqualified GN call, IMS returns segment E11.

Each of the B segments that IMS examines for this call satisfies the SSA for the B
segment, so IMS places the key of each in the key feedback area. But if one or
more of the segments IMS examines does not satisfy the call, IMS does not place
the key of that segment in the key feedback area. This means that the position in
the database might be further than the position reflected by the key feedback area.
For example, suppose you issue the same call, but you qualify segment B on a data
field in addition to the key field. To do this, you use multiple qualification
statements for segment B.

Assume the data field you are qualifying the call on is called BDATA. Assume the
value you want is 14, but that only one of the segments, B11, contains a value in
BDATA of 14:
GN Abbbbbbb(AKEYbbbb=bA1)

Bbbbbbbb(BKEYbbbb>=B11*BDATAbbb=b14)
Cbbbbbbb(CKEYbbbb=bC113)

After you issue this call, the key feedback area contains the key for segment B11. If
you continue issuing this call until you receive a GE status code, the current
position immediately follows segment B13, but the key feedback area still contains
only the key for segment B11. Of the B segments IMS examines, only one of them
(B11) satisfies the SSA in the call.

When you use a greater-than or greater-than-or-equal-to relational operator, you do
not limit the search. If you get a GE status code on this kind of call, and if one or
more of the segments IMS examines does not satisfy an SSA, the position in the
database may be further than the position reflected in the key feedback area. If,
when you issue the next GN or GNP call, you want IMS to start searching from the
position reflected in the key feedback area instead of from its “real” position, you
can either:
v Issue a fully qualified GU call to reestablish position to where you want it.
v Issue a GN or GNP call with the U command code. Including a U command code

on an SSA tells IMS to use the first position it established at that level as
qualification for the call. This is like supplying an equal-to relational operator for
the segment occurrence that IMS has positioned on at that level.

For example, suppose that you first issue the GU call with the greater-than-or-equal-
to relational operator in the SSA for segment B, and then you issue this GN call:
GN Abbbbbbb*U

Bbbbbbbb*U
Cbbbbbbbb

The U command code tells IMS to use segment A1 as the A parent, and segment
B11 as the B parent. IMS returns segment C111. But if you issue the same call
without the U command code, IMS starts searching from segment B13 and moves
forward to the next database record until it encounters a B segment. IMS returns
the first B segment it encounters.

270 Application Programming

Related concepts:
“Position after DLET” on page 263

Multiple processing
The order in which an application program accesses segments in a hierarchy
depends on the purpose of the application program. Some programs access
segments directly, others sequentially. Some application programs require that the
program process segments in different hierarchic paths, or in different database
records, in parallel.

If your program must process segments from different hierarchic paths or from
different database records in parallel, using multiple positioning or multiple PCBs
can simplify the program's processing. For example:
v Suppose your program must retrieve segments from different hierarchic paths

alternately: for example, in the following figure, it might retrieve B11, then C11,
then B12, then C12, and so on. If your program uses multiple positioning, IMS
maintains positions in both hierarchic paths. Then the program is not required to
issue GU calls to reset position each time it needs to retrieve a segment from a
different path.

v Suppose your program must retrieve segments from different database records
alternately: for example, it might retrieve a B segment under A1, and then a B
segment under another A root segment. If your program uses multiple PCBs,
IMS maintains positions in both database records. Then the program does not
have to issue GU calls to reset position each time it needs to access a different
database record.

Multiple positioning

When you define the PSB for your application program, you have a choice about
the kind of positioning you want to use: single or multiple. All of the examples
used so far, and the explanations about current position, have used single
positioning.

Specify the kind of position you want to use for each PCB on the PCB statement
when you define the PSB. The POS operand for a DEDB is disregarded. DEDBs
support multiple positioning only.

Single positioning
IMS maintains position in one hierarchic path for the hierarchy that is

C12

B13

B12

A1

B11 C11

Figure 54. Multiple processing

Chapter 15. Current position in the database after each call 271

defined by that PCB. When you retrieve a segment, IMS clears position for
all dependents and all segments on the same level.

Multiple positioning
IMS maintains position in each hierarchic path in the database record that
is being accessed. When you retrieve a segment, IMS clears position for all
dependents but keeps position for segments at the same level. You can
process different segment types under the same parent in parallel.

For example, suppose you issue these two calls using the hierarchy shown in the
following figure:
GU Abbbbbbb(AKEYbbbb=bA1)

Bbbbbbbb(BKEYYbbbb=bB11)
Cbbbbbbb(CKEYYbbbb=bC111)

GN Ebbbbbbb(EKEYYbbbb=bE11)

After issuing the first call with single positioning, IMS has three positions
established: one on A1, one on B11, and one on C111. After issuing the second call,
the positions on B11 and C111 are canceled. Then IMS establishes positions on A1
and E11.

After issuing the first call with single and multiple positioning, IMS has three
positions established: one on A1, one on B11, and one on C111. However, after
issuing the second call, single positioning cancels positions on B11 and C111 while
multiple positioning retains positions on B11 and C111. IMS then establishes
positions on segments A1 and E11 for both single and multiple positioning.

After issuing the first call with multiple positioning, IMS has three positions
established (just as with single positioning): one on A1, one on B11, and one on
C111. But after issuing the second call, the positions on B11 and C111 are retained.

B

BKEY = B11

C

CKEY = C111

BKEY = B13

BKEY = B12

CKEY = C112

D

DKEY = D111

F

FKEY = F111

E

EKEY = E11

A

AKEY = A1

Figure 55. Multiple positioning hierarchy

272 Application Programming

In addition to these positions, IMS establishes position on segments A1 and E11.

The examples that follow compare the results of single and multiple positioning
using the hierarchy in the following figure.

Table 41. Results of single and multiple positioning with DL/I calls

Sequence
Result of Single
Positioning

Result of Multiple
Positioning

Example 1
GU (where AKEY equals A1) A1 A1
GNP B B11 B11
GNP C C11 C11
GNP B Not found B12
GNP C C12 C12
GNP B Not found B13
GNP C C13 C13
GNP B Not found Not found
GNP C Not found Not found
Example 2
GU A (where AKEY equals A1) A1 A1
GN B B11 B11
GN C C11 C11
GN B B21 B12
GN C C21 C12
Example 3
GU A (where AKEY equals A1) A1 A1
GN C C11 C11
GN B B21 B11
GN B B22 B12
GN C C21 C12
Example 4
GU A (where AKEY equals A1) A1 A1
GN B B11 B11
GN C C11 C11
GN D D111 D111
GN E E111 E111

E112D112

C13B13 B23

B12 B22C12

A1 A2

B11 C11 B21

D111 E111

C21

E121 D221 E221

Figure 56. Single and multiple positioning hierarchy

Chapter 15. Current position in the database after each call 273

Table 41. Results of single and multiple positioning with DL/I calls (continued)

Sequence
Result of Single
Positioning

Result of Multiple
Positioning

GN B B21 B12
GN D D221 D112
GN C C under next A C12
GN E E under next A E121

Multiple positioning is useful when you want to examine or compare segments in
two hierarchic paths. It lets you process different segment types under the same
parent in parallel. Without multiple positioning, you would have to issue GU calls
to reestablish position in each path.

Advantages of using multiple positioning
The advantages of using multiple positioning include the following:
v You might be able to design your program with greater data independence than

you would using single positioning. You can write application programs that use
GN and GNP calls, and GU and ISRT calls with missing levels in their SSAs,
independent of the relative order of the segment types being processed. If you
improve your program's performance by changing the relative order of segment
types and all of the application programs that access those segment types use
multiple positioning, you could make the change without affecting existing
application programs. To do this without multiple positioning, the program
would have to use GN and GNP calls, and GU and ISRT calls with incompletely
specified SSAs.

v Your program can process dependent segment types in parallel (it can switch
back and forth between hierarchic paths without reissuing GU calls to reset
position) more efficiently than is possible with single positioning. You indicate to
IMS the hierarchic path that contains the segments you want in your SSAs in the
call. IMS uses the position established in that hierarchic path to satisfy your call.
The control blocks that IMS builds for each kind of positioning are the same.
Multiple positioning does not require more storage, nor does it have a big
impact on performance.

Keep in mind that multiple positioning might use more processor time than single
positioning, and that multiple positioning cannot be used with HSAM databases.

How multiple positioning affects your program

Multiple positioning affects the order and structure of your DL/I calls.

GU and ISRT

The only time multiple positioning affects GU and ISRT calls is when you issue
these calls with missing SSAs in the hierarchic path. When you issue a GU or ISRT
call that does not contain an SSA for each level in the hierarchic path, IMS builds
the SSA for the missing levels according to the current position:
v If IMS has a position established at the missing level, the qualification IMS uses

is derived from that position, as reflected in the DB PCB.
v If no position is established at the missing level, IMS assumes a segment type

for that level.

274 Application Programming

v If IMS moves forward from a position that is established at a higher level, it
assumes a segment type for that level.

Because IMS builds the missing qualification based on current position, multiple
positioning makes it possible for IMS to complete the qualification independent of
current positions that are established for other segment types under the same
parent occurrence.

DLET and REPL with multiple positioning

Multiple positioning does not affect DLET or REPL calls; it only affects the Get Hold
calls that precede them.

Qualified GN and GNP calls

When your program issues a GN or GNP call, IMS tries to satisfy the call by moving
forward from current position. When you use multiple positioning, more than one
current position exist: IMS maintains a position at each level in all hierarchic paths,
instead of at each level in one hierarchic path. To satisfy GN and GNP calls with
multiple positioning, IMS moves forward from the current position in the path that
is referred to in the SSA.

Mixing qualified and unqualified GN and GNP calls

Although multiple positioning is intended to be used with qualified calls for
parallel processing and data independence, you may occasionally want to use
unqualified calls with multiple positioning. For example, you may want to
sequentially retrieve all of the segment occurrences in a hierarchy, regardless of
segment type.

Recommendation: Limit unqualified calls to GNP calls in order to avoid inconsistent
results. Mixing qualified and unqualified SSAs may be valid for parallel
processing, but doing so might also decrease the program's data independence.

There are three rules that apply to mixing qualified and unqualified GN and GNP
calls:
1. When you issue an unqualified GN or GNP, IMS uses the position that is

established by the preceding call to satisfy the GN or GNP call. For example:

Your program issues these calls: DL/I returns these segments:

GU A (where AKEY = A1) A1

GN B B11

GN E E11

GN F111

When your program issues the unqualified GN call, IMS uses the position that is
established by the last call, the call for the E segment, to satisfy the unqualified
call.

2. After you successfully retrieve a segment with an unqualified GN or GNP, IMS
establishes position in only one hierarchic path: the path containing the
segment just retrieved. IMS cancels positions in other hierarchic paths. IMS
establishes current position on the segment that is retrieved and sets parentage

Chapter 15. Current position in the database after each call 275

on the parent of the segment that is retrieved. If you issue a qualified call for a
segment in a different hierarchic path after issuing an unqualified call, the
results are unpredictable. For example:

Your program issues these calls: DL/I returns these segments:

GU A (where AKEY = A1) A1

GN B B11

GN E E11

GN F111

GN B unpredictable

When you issue the unqualified GN call, IMS no longer maintains a position in
the other hierarchic path, so the results of the GN call for the B segment are
unpredictable.

3. If you issue an unqualified GN or GNP call and IMS has a position established on
a segment that the unqualified call might encounter, the results of the call are
unpredictable. Also, when you issue an unqualified call and you have
established position on the segment that the call “should” retrieve, the results
are unpredictable.
For example:

Your program issues these calls: DL/I returns these segments:

GU A (where AKEY = A1) A1

GN E E11

GN D D111

GN B B12

GN B B13

GN E11 (The only position IMS has is the one
established by the GN call.)

In this example, IMS has a position established on E11. An unqualified GN call
moves forward from the position that is established by the previous call.
Multiple positions are lost; the only position IMS has is the position that is
established by the GN call.

To summarize these rules:
1. To satisfy an unqualified GN or GNP call, IMS uses the position established in the

last call for that PCB.
2. If an unqualified GN or GNP call is successful, IMS cancels positions in all other

hierarchic paths. Position is maintained only within the path of the segment
retrieved.

Resetting position with multiple positioning

To reset position, your program issues a GU call for a root segment. If you want to
reset position in the database record you are currently processing, you can issue a
GU call for that root segment, but the GU call cannot be a path call.

Example: Suppose you have positions established on segments B11 and E11. Your
program can issue one of the calls below to reset position on the next database
record.

276 Application Programming

Issuing this call causes IMS to cancel all positions in database record A1:
GU AbbbbbbbAKEYbbbb=bA2)

Or, if you wanted to continue processing segments in record A1, you issue this call
to cancel all positions in record A1:
GU AbbbbbbbAKEYbbbb=bA1)

Issuing this call as a path call does not cancel position.

Multiple DB PCBs
When a program has multiple PCBs, it usually means that you are defining views
of several databases, but this also can mean that you need several positions in one
database record. Defining multiple PCBs for the same hierarchic view of a database
is another way to maintain more than one position in a database record.

Using multiple PCBs also extends what multiple positioning does, because with
multiple PCBs you can maintain positions in two or more database records and
within two or more hierarchic paths in the same record.

For example, suppose you were processing the database record for Patient A. Then
you wanted to look at the record for Patient B and also be able to come back to
your position for Patient A. If your program uses multiple PCBs for the medical
hierarchy, you issue the first call for Patient A using PCB1 and then issue the next
call, for Patient B, using PCB2. To return to Patient A's record, you issue the next
call using PCB1, and you are back where you left off in that database record.

Using multiple PCBs can decrease the number of Get calls required to maintain
position and can sometimes improve performance. Multiple PCBs are particularly
useful when you want to compare information from segments in two or more
database records. However, the internal control block requirements increase with
each PCB that you define.

You can use the AIBTDLI interface with multiple PCBs by assigning different
PCBNAMEs to the PCBs during PSB generation. Just as multiple PCBs must have
different addresses in the PSB PCBLIST, multiple PCBs must have different
PCBNAMEs when using the AIBTDLI interface. For example, if your application
program issues DL/I calls against two different PCBs in a list that identifies the
same database, you achieve the same effect with the AIBTDLI interface by using
different PCBNAMEs on the two PCBs at PSB generation time.

Chapter 15. Current position in the database after each call 277

278 Application Programming

Chapter 16. Using IMS application program sync points

IMS application programs can (and should) take checkpoints. These checkpoints
and system sync points can affect IMS operations.

Commit process
During the synchronization point (sync point) processing for an application, IMS
creates a log record to establish commitment of database changes and availability
of output messages. The commit process is not complete until IMS physically
writes this log record to the OLDS because an incomplete set of database change
and message records exist on the log for system restart.

The commit processes work differently for full-function and Fast Path applications.
For full-function, IMS makes database changes in the buffer pool at the time of a
DL/I call, and can write the changes to disk before the commit point. If you restart
the system, IMS backs out these uncommitted changes by using the log. IMS stores
inserted message segments in the message queue and must similarly discard them.

For Fast Path, IMS keeps all changes in memory until it physically logs the commit
record. Only then does IMS write database changes to DASD and send output
messages. Because no changes appear on external storage (except for the log) until
the commit record is written, IMS does not perform backout processing for the
database. IMS discards the updates in memory. With Fast Path, system restart
ensures that IMS writes committed updates to DASD and sends output messages.

Relationship between checkpoints and sync points

IMS tracks all checkpoints and sync points. IMS usually uses a sync point during
recovery, but returns to the checkpoint in the following situations: In the following
figure, for example, if a system-wide failure occurs in the DB/DC environment just
after the MTO takes a system checkpoint but just before program B commits
(assuming that program A has not made any updates since its last commit), IMS
must return to the system checkpoint before Beta started.
v For a full recovery in the DB/DC environment, IMS returns to the earliest of

either the checkpoint before the current checkpoint or the checkpoint before the
first uncommitted application program update.

v For a full recovery in the DBCTL environment, IMS always returns to the
checkpoint before the first uncommitted application program update.

v For a full recovery in the DCCTL environment, IMS always returns to the
checkpoint before the latest system checkpoint.

v In the DB/DC or DCCTL environments, if a BUILDQ is requested on the restart,
IMS returns to the last SNAPQ or DUMPQ checkpoint. IMS returns to this
checkpoint even if it is older than the checkpoint normally needed for the
restart.

© Copyright IBM Corp. 1974, 2015 279

Synchronization point processing in CPI Communications-driven
programs

For CPI Communications-driven programs running under Advanced
Program-to-Program Communications for IMS (APPC/IMS), the application
programs control their own sync point processing. An application program can
issue certain CPI Resource Recovery calls: SRRCMIT calls to commit data and
SRRBACK calls to back out data. The protected resources managed by IMS (local)
include:
v IMS TM message-queue messages
v IMS DB databases
v DB2 for z/OS databases

The highest level of synchronization supported for a conversation is SYNCPT, so
CPI Communications-driven applications can have protected conversations.

Sync point and resource manager

IMS can be either the sync point manager or the resource manager, depending on
the setting of the sync point level. For SYNCLVL=NONE or CONFIRM and
AOS=B, S, or X, IMS is the sync point manager and the resource manager, but for
RRS=Y and SYNCLVL=SYNCPT, z/OS Resource Recovery Services (RRS) is the
sync point manager and IMS is the resource manager. For RRS=N, IMS is the sync
point manager.

Two-phase commit in the synchronization process
Application programs in a DBCTL, DCCTL, DB/DC, APPC/IMS, or OTMA
environment can be involved in a two-phase commit process to record a sync
point. At the completion of a two-phase commit, the resource manager commits
database and message changes.

The two phases are:

IMS
starts

Program
A begins

Program
A commits

IMS system
checkpoints

Program
B begins

Log

Program
A ends

MTO
requests

checkpoint

IMS
abends

Restart system from this checkpoint

Time

S P P S P P S

Figure 57. Independence of system checkpoints and application sync points

280 Application Programming

1. Phase 1, in which the sync-point coordinator directs sync point preparation and
asks the connected resource managers whether updates to connected databases
can be committed.
The sync-point coordinator can be:
v An IMS DB/DC subsystem for its resource managers and attached databases.
v An IMS DCCTL subsystem for attached databases.
v A Coordinator Controller (CCTL) subsystem for units of work associated

with the CCTL region. IMS DB acts as a resource manager when connected
to a CCTL and also when accessed by ODBA application programs through
the Open Database Access (ODBA) interface.

v z/OS Resource Recovery Services (RRS) for its protected conversations with
APPC/IMS applications programs or OTMA clients. IMS acts as a resource
manager when connected to RRS.

2. Phase 2, in which the sync-point coordinator directs commit or abort processing
and states that the resources must either be committed or aborted.
In the DBCTL environment, if an application program makes no update DL/I
calls or makes only inquiry-type DL/I calls, the CCTL requests a “forget”
response to Phase 1 (if forget processing has been enabled). This means that
only a limited Phase 2 occurs for that application program because no database
resources have been altered. See IMS Version 14 Exit Routines for details on how
to enable forget processing.
The sync-point coordinator can request an abort without a Phase 1.

The following figure shows the two phases of the sync-point cycle for an IMS
DBCTL environment and describes the activities taking place.

Chapter 16. Using IMS application program sync points 281

Unit of recovery
A unit of recovery (UOR) is the work done by a thread (connection between a
resource-manager control region and a sync-point coordinator) during a sync-point
interval, that is between two sync points.

In-flight unit of recovery

The unit of recovery is said to be in-flight from its creation or its last sync point
until the resource manager logs the end of Phase 1. If a resource manager fails
before or during Phase 1 and is subsequently restarted, IMS aborts all database
updates.

In-doubt unit of recovery for DBCTL connected to CCTL

From the time that the resource manager issues its response to the PREPARE
request (the completion of Phase 1), to the time it receives a COMMIT or ABORT
request from the CCTL, units of recovery are said to be in-doubt. When the

Sync-point coordinator

Sync-point coordinator
receives sync-point
request (Note 1)

Sync-point coordinator
writes to a log

Sync-point coordinator
writes to a log

Begins phase 1

Enters phase 1

Writes to a log

Writes to a log

Response to
COMMIT request

Response to PREPARE
request (Note 2)

COMMIT request

Retains locks

Releases locks

Begins phase 2

Enters phase 2

PREPARE request
FORGET (if CCTL is
sync-point coordinator)

in-flight unit
of recovery

prepare

commit

in-doubt unit
of recovery

commit

Resource manager

Notes:

1. If the resource manager indicates that it cannot commit the updates, the sync-point
coordinator should abort the unit of recovery, and the rest of this figure does not apply.

2. If the sync-point coordinator tells the resource manager to commit the updates, then it
must commit.

Figure 58. Two-phase commit process

282 Application Programming

resource manager is restarted after a failure, it tells the CCTL which in-doubt
UORs exist, if any. The CCTL then takes action to resolve these in-doubt UORs.
This is called resolve in-doubt processing, or resynchronization. If a CCTL cannot
resolve all in-doubt UORs, you can use IMS or CCTL commands to display the
units of recovery and take appropriate actions for committing or aborting them.

Recovery tokens for DBCTL connected to CCTL

A recovery token is a 16-byte identifier for each unit of recovery. The resource
manager validates the recovery token to protect against duplication of units of
recovery. In the DBCTL environment, you can display the recovery token using the
IMS /DISPLAY CCTL command. The recovery token is the primary identifier used by
DBRC, which performs unit-of-recovery management. DBRC keeps track of
backouts that are appropriate for the Batch Backout utility to perform.

Recoverable in-doubt structure

An IMS DBCTL subsystem builds a recoverable in-doubt structure (RIS) for each
in-doubt UOR when any of the following occurs:
v A CCTL fails
v A CCTL thread fails
v A resource manager fails

The resource manager uses a recoverable in-doubt structure during reconnecting to
the CCTL if in-doubt UORs existed when either the CCTL or the resource manager
failed. IMS logs all recoverable in-doubt structures during system checkpoints.

A recoverable in-doubt structure contains the following information:
v The recovery token in a residual recovery element (RRE)
v Changed data records in an in-doubt extended error queue element (IEEQE)
v An indication of data that is inaccessible because of unresolved in-doubt UORs
v Links to other recoverable in-doubt structures using extended error queue

element (EEQE) queue elements (EQELs)

DBCTL single-phase commit
A CCTL communicating with just one resource manager (IMS DBCTL subsystem)
can request a sync point using just a single phase. If the CCTL communicates with
more than one resource manager, it must use the two-phase commit process.

When the CCTL decides to commit a UOR, it can request a single-phase sync
point. Single-phase commit can affect the recoverability of in-doubt data. A
transaction is only in-doubt for the short time between the sync-point request and
DBCTL’s commit. IMS can recover in-doubt data after a thread failure during
single-phase commit, but cannot recover in-doubt data after a subsystem failure.

Sync-point log records
During the two-phase commit process, IMS creates log records to establish the
commitment of database changes. All these log records can be used by the IMS
Change Accumulation and recovery utilities.

All online log records involving the sync-point cycle contain a recovery token. This
token ensures that IMS can recover and restart each unit of recovery. The sequence
of log records for a unit of recovery reveals the sync-point cycle that it followed.

Chapter 16. Using IMS application program sync points 283

IMS logs the following records during the sync-point process:

Log record
Description

X'08' Schedule record

X'07' Unschedule (terminate) record

X'0A08'
CPI Communications-driven application program schedule record

X'0A07'
CPI Communications-driven application program unschedule (terminate)
record

X'5945'
Fast Path 64-bit buffer usage

X'5937'
Fast Path start commit

X'5938'
Fast Path start abort

X'5610'
Start of Phase 1

X'5611'
End of Phase 1

X'3730'
Start of Phase 2 Commit

X'5612'
End of Phase 2 Commit

X'3801'
Start of abort

X'4C01'
End of abort

X'5607'
Start unit of recovery

X'5613'
Recoverable in-doubt structure created

X'5614'
Recoverable in-doubt structure deleted

Sync points with a data-propagation manager
When using a data-propagation manager (such as the IMS DataPropagator) to
update DB2 for z/OS databases synchronously with IMS DL/I databases, the
updates to the DB2 for z/OS databases are committed (or aborted) at the same
time as the IMS updates. This provides consistency between the database
management subsystems. IMS DB/DC, DCCTL, and DBCTL (BMP regions only)
support the IMS Data Capture exit routine.

Restriction: In an IMS DBCTL environment, the data-propagation manager is
available only for BMP regions.

284 Application Programming

For more information about the IMS DataPropagator, go to the following web URL:
http://www.ibm.com/software/data/db2imstools/imstools/imsdprop.html

Chapter 16. Using IMS application program sync points 285

286 Application Programming

Chapter 17. Recovering databases and maintaining database
integrity

You can issue checkpoints, restart programs, and maintain database integrity in
your application programs.

Java applications running in Java batch processing (JBP) regions can issue symbolic
checkpoint and restart calls by using the IMS Java dependent region resource
adapter.
Related concepts:
“Developing JBP applications with the IMS Java dependent region resource
adapter” on page 728

Issuing checkpoints
Two kinds of checkpoint (CHKP) calls exist: the basic CHKP and the symbolic CHKP.
All IMS programs and CICS shared database programs can issue the basic CHKP
call; only BMPs and batch programs can use either call.

IMS Version 14 Application Programming APIs explains when and why you should
issue checkpoints in your program. Both checkpoint calls cause a loss of database
position when the call is issued, so you must reestablish position with a GU call or
some other method. You cannot reestablish position in the middle of non-unique
keys or nonkeyed segments.

Restriction: You must not specify CHKPT=EOV on any DD statement to take an
IMS checkpoint.

Some differences exist if you issue the same call sequence against a full-function
database or a DEDB, and an MSDB.

Depending on the database organization, a CHKP call can result in the database
position for the PCB being reset. When the CHKP call is issued, the locks held by the
program are released. Therefore, if locks are necessary for maintaining your
database position, the position is reset by the CHKP call. Position is reset in all cases
except those in which the organization is either GSAM (locks are not used) or
DEDB, and the CHKP call is issued after a GC status code. For a DEDB, the position
is maintained at the unit-of-work boundary.

Issuing a CHKP resets the destination of the modifiable alternate PCB.

Related Reading: For more information on CHKP calls, see the topic "CHKP (Basic)
Call" and the topic "CHKP (Symbolic) Call" in IMS Version 14 Application
Programming APIs .
Related concepts:
“Commit-point processing in MSDBs and DEDBs” on page 331

© Copyright IBM Corp. 1974, 2015 287

Restarting your program from the latest checkpoint
If you use basic checkpoints instead of symbolic checkpoints, provide the necessary
code to restart the program from the latest checkpoint if the program terminates
abnormally.

One way to restart the program from the latest checkpoint is to store repositioning
information in a HDAM or PHDAM database. With this method, your program
writes a database record containing repositioning information to the database each
time a checkpoint is issued. Before your program terminates, it should delete the
database record.

For more information on the XRST call, see the topic "XRST Call" in IMS Version 14
Application Programming APIs.

Maintaining database integrity (IMS batch, BMP, and IMS online
regions)

IMS uses these DL/I calls to back out database updates: ROLB, ROLL, ROLS, SETS, and
SETU.

The ROLB and ROLS calls can back out the database updates or cancel the output
messages that the program has created since the program's most recent commit
point. A ROLL call backs out the database updates and cancels any non-express
output messages the program has created since the last commit point. It also
deletes the current input message. SETS allows multiple intermediate backout
points to be noted during application program processing. SETU operates like SETS
except that it is not rejected by unsupported PCBs in the PSB. If your program
issues a subsequent ROLS call specifying one of these points, database updates and
message activity performed since that point are backed out.

CICS online programs with DBCTL can use the ROLS and SETS or SETU DL/I calls
to back out database changes to a previous commit point or to an intermediate
backout point.

Backing out to a prior commit point: ROLL, ROLB, and ROLS
When a program determines that some of its processing is invalid, some calls
enable the program to remove the effects of its incorrect processing. These are the
Roll Back calls: ROLL, ROLS using a DB PCB (or ROLS without an I/O area or
token), and ROLB.

When you issue one of these calls, IMS:
v Backs out the database updates that the program has made since the program's

most recent commit point.
v Cancels the non-express output messages that the program has created since the

program's most recent commit point.

The main difference between these calls is that ROLB returns control to the
application program after backing out updates and canceling output messages,
ROLS does not return control to the application program, and ROLL terminates the
program with an abend code of U0778. ROLB can return the first message segment
to the program since the most recent commit point, but ROLL and ROLS cannot.

288 Application Programming

The ROLL and ROLB calls, and the ROLS call without a specified token, are valid
when the PSB contains PCBs for GSAM data sets. However, segments inserted in
the GSAM data sets since the last commit point are not backed out by these calls.
An extended checkpoint-restart can be used to reposition the GSAM data sets
when restarting.

You can use a ROLS call either to back out to the prior commit point or to back
out to an intermediate backout point that was established by a prior SETS call.
This section refers only to the form of the ROLS call that backs out to the prior
commit point. For information about the other form of ROLS, see 'Backing out to
an intermediate backout point: SETS, SETU, and ROLS'.

The table below summarizes the similarities and the differences between the ROLB,
ROLL, and ROLS calls.

Table 42. Comparison of ROLB, ROLL, and ROLS.

Actions Taken: ROLB ROLL ROLS

Back out database updates since the last commit point. X X X

Cancel output messages created since the last commit point. X1 X1 X1

Delete from the queue the message in process. Previous
messages (if any) processed since the last commit point are
returned to the queue to be reprocessed.

X

Return the first segment of the first input message issued
since the most recent commit point.

X2

U3303 abnormal termination. Returns the processed input
messages to the message queue.

X3

U0778 abnormal termination. No dump. X

No abend. Program continues processing. X

Notes:

1. ROLB, ROLL, or ROLS calls cancel output messages that are sent with an
express PCB unless the program issued a PURG. For example, if the program
issues the call sequence that follows, MSG1 would be sent to its destination
because PURG tells IMS that MSG1 is complete and the I/O area now contains
the first segment of the next message (which in this example is MSG2). MSG2,
however, would be canceled.
ISRT EXPRESS PCB, MSG1
PURG EXPRESS PCB, MSG2
ROLB I/O PCB

Because IMS has the complete message (MSG1) and because an express PCB is
being used, the message can be sent before a commit point.

2. Returned only if you supply the address of an I/O area as one of the call
parameters.

3. The transaction is suspended and requeued for subsequent processing.

ROLL call

A ROLL call backs out the database updates and cancels any non-express output
messages the program has created since the last commit point. It also deletes the
current input message. Any other input messages that were processed since the
last commit point are returned to the queue to be reprocessed. IMS then terminates

Chapter 17. Recovering databases and maintaining database integrity 289

the program with an abend code U0778. This type of abnormal termination
terminates the program without a storage dump.

When you issue a ROLL call, the only parameter you supply is the call function,
ROLL.

You can use the ROLL call in a batch program. If your system log is on DASD, and
if dynamic backout has been specified through the use of the BKO execution
parameter, database changes made since the last commit point will be backed out;
otherwise they will not. One reason for issuing ROLL in a batch program is for
compatibility.

After backout is complete, the original transaction is discarded if it can be, and it is
not re-executed. IMS issues the APPC/MVS verb, ATBCMTP TYPE(ABEND),
specifying the TPI to notify remote transaction programs. Issuing the APPC/MVS
verb causes all active conversations (including any that are spawned by the
application program) to be DEALLOCATED TYP(ABEND_SVC).

ROLB call

The advantage of using a ROLB call is that IMS returns control to the program
after executing a ROLB call, so the program can continue processing. The
parameters for the ROLB call are:
v The call function, ROLB
v The name of the I/O PCB or AIB

The total effect of the ROLB call depends on the type of IMS application program
that issued it.
v For current IMS application programs:

After IMS backout is complete, the original transaction is represented to the IMS
application program. Any resources that cannot be rolled back by IMS are
ignored; for example, output that is sent to an express alternate PCB and a
PURG call that is issued before the ROLB call.

v For modified IMS application programs:
The same consideration for the current IMS application program applies. The
application program must notify any spawned conversations that a ROLB was
issued.

v For CPI-C driven IMS application programs:
Only IMS resources are affected. All database changes are backed out. Any
messages that are inserted to non-express alternate PCBs are discarded. Also,
any messages that are inserted to express PCBs that have not had a PURG call
are discarded. The application program must notify the originating remote
program and any spawned conversations that a ROLB call was issued.

MPPs and transaction-oriented BMPs

If the program supplies the address of an I/O area as one of the ROLB parameters,
the ROLB call acts as a message retrieval call and returns the first segment of the
first input message issued since the most recent commit point. This is true only if
the program has issued a GU call to the message queue since the last commit
point; it if has not, it was not processing a message when it issued the ROLB call.

290 Application Programming

If the program issues GN call to the message queue after issuing a ROLB call, IMS
returns the next segment of the message that was being processed when the ROLB
call was issued. If no more segments exist for that message, IMS returns a QD
status code.

If the program issues a GU call to the message queue after the ROLB call, IMS
returns the first segment of the next message to the application program. If no
more messages exist on the message queue for the program to process, IMS returns
a QC status code.

If you include the I/O area parameter, but you have not issued a successful GU
call to the message queue since the last commit point, IMS returns a QE status
code to your program.

If you do not include the address of an I/O area in the ROLB call, IMS does the
same thing for you. If the program has issued a successful GU call in the commit
interval and then issues a GN call, IMS returns a QD status code. If the program
issues a GU call after the ROLB call, IMS returns the first segment of the next
message or a QC status code, if no more messages exist for the program.

If you have not issued a successful GU call since the last commit point, and you
do not include an I/O area parameter on the ROLB call, IMS backs out the
database updates and cancels the output messages that were created since the last
commit point.

Batch programs

If your system log is on DASD, and if dynamic backout has been specified through
the use of the BKO execution parameter, you can use the ROLB call in a batch
program. The ROLB call does not process messages as it does for MPPs; it backs
out the database updates made since the last commit point and returns control to
your program. You cannot specify the address of an I/O area as one of the
parameters on the call; if you do, an AD status code is returned to your program.
You must, however, have an I/O PCB for your program. Specify CMPAT=YES on
the CMPAT keyword in the PSBGEN statement for your program's PSB.

ROLS call

You can use the ROLS call in two ways to back out to the prior commit point and
return the processed input messages to IMS for later reprocessing:
v Have your program issue the ROLS call using the I/O PCB but without an I/O

area or token in the call. The parameters for this form of the ROLS call are:
The call function, ROLS
The name of the I/O PCB or AIB

v Have your program issue the ROLS call using a database PCB that has received
one of the data-unavailable status codes. This has the same result as if
unavailable data were encountered and the INIT call was not issued. A ROLS
call must be the next call for that PCB. Intervening calls using other PCBs are
permitted.

On a ROLS call with a TOKEN, message queue repositioning can occur for all
non-express messages, including all messages processed by IMS. The processing
uses APPC/MVS calls, and includes the initial message segments. The original
input transaction can be represented to the IMS application program. Input and
output positioning is determined by the SETS call. This positioning applies to

Chapter 17. Recovering databases and maintaining database integrity 291

current and modified IMS application programs but does not apply to CPI-C
driven IMS programs. The IMS application program must notify all remote
transaction programs of the ROLS.

On a ROLS call without a TOKEN, IMS issues the APPC/MVS verb, ATBCMTP
TYPE(ABEND), specifying the TPI. Issuing this verb causes all conversations
associated with the application program to be DEALLOCATED
TYPE(ABEND_SVC). If the original transaction is entered from an LU 6.2 device
and IMS receives the message from APPC/MVS, a discardable transaction is
discarded rather than being placed on the suspend queue like a non-discardable
transaction.

The parameters for this form of the ROLS call are:
v The call function, ROLS
v The name of the DB PCB that received the BA or BB status code

In both of the these parameters, the ROLS call causes a U3303 abnormal
termination and does not return control to the application program. IMS keeps the
input message for future processing.
Related concepts:

Administering APPC/IMS and LU 6.2 devices (Communications and
Connections)
Related reference:

Program Specification Block (PSB) Generation utility (System Utilities)

ROLB call (Application Programming APIs)

Backing out to an intermediate backout point: SETS, SETU,
and ROLS

You can use a ROLS call either to back out to an intermediate backout point that
was established by a prior SETS or SETU call, or to back out to the prior commit
point.

The ROLS call that backs out to an intermediate point backs out only DL/I changes.
This version of the ROLS call does not affect CICS changes that use CICS file control
or CICS transient data.

The SETS and ROLS calls set intermediate backout points within the call processing
of the application program and then backout database changes to any of these
points. Up to nine intermediate backout points can be set. The SETS call specifies a
token for each point. IMS then associates this token with the current processing
point. A subsequent ROLS call using the same token backs out all database changes
and discards all non-express messages that were performed after the SETS call with
the same token. The following figure shows how the SETS and ROLS calls work
together.

In addition, to assist the application program in managing other variables that it
may want to reestablish after a ROLS call, user data can be included in the I/O area
of the SETS call. This data is then returned when the ROLS call is issued with the
same token.

292 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_appcad.htm#ims_appcad
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_appcad.htm#ims_appcad
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_psbgen.htm#ims_psbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_rolbcall.htm#ims_rolbcall

SETS and SETU calls

The SETS call sets up to nine intermediate backout points or cancels all existing
backout points. With the SETS call, you can back out pieces of work. If the
necessary data to complete one piece of work is unavailable, you can complete a
different piece of work and then return to the former piece.

To set an intermediate backout point, issue the call using the I/O PCB, and include
an I/O area and a token. The I/O area has the format LLZZuser-data, where LL is
the length of the data in the I/O area including the length of the LLZZ portion.
The ZZ field must contain binary zeros. The data in the I/O area is returned to the
application program on the related ROLS call. If you do not want to save some of
the data that is to be returned on the ROLS call, set the LL that defines the length of
the I/O area to 4.

For PLITDLI, you must define the LL field as a fullword rather than a halfword, as
it is for the other languages. The content of the LL field for PLITDLI is consistent
with the I/O area for other calls using the LLZZ format. The content is the total
length of the area, including the length of the 4-byte LL field, minus 2.

A 4-byte token associated with the current processing point is also required. This
token can be a new token for this program execution, or it can match a token that
was issued by a preceding SETS call. If the token is new, no preceding SETS calls
are canceled. If the token matches the token of a preceding SETS call, the current
SETS call assumes that position. In this case, all SETS calls that were issued
subsequent to the SETS call with the matching token are canceled.

The parameters for this form of the SETS call are:
v The call function, SETS
v The name of the I/O PCB or AIB
v The name of the I/O area containing the user data

Program starts

SETS Token=n

GHU
REPL
ISTR MSG1-Segment 1 to I/O PCB

SETS Token=B

GHU
DLET
ISRT MSG1-Segment 2 to I/O PCB

ROLS Token=B

Backs out
program to
SETS Token=B

Figure 59. SETS and ROLS calls working together

Chapter 17. Recovering databases and maintaining database integrity 293

v The name of an area containing the token

For the SETS call format, see the topic "SETS/SETU Call" in IMS Version 14
Application Programming APIs.

To cancel all previous backout points, the call is issued using the I/O PCB but
does not include an I/O area or a token. When an I/O area is not included in the
call, all intermediate backout points that were set by prior SETS calls are canceled.

The parameters for this form of the SETS call are:
v The call function, SETS
v The name of the I/O PCB or AIB

Because it is not possible to back out committed data, commit-point processing
causes all outstanding SETS to be canceled.

If PCBs for DEDB, MSDB, and GSAM organizations are in the PSB, or if the
program accesses an attached subsystem, a partial backout is not possible. In that
case, the SETS call is rejected with an SC status code. If the SETU call is used
instead, it is not rejected because of unsupported PCBs, but will return an SC
status code as a warning that the PSB contains unsupported PCBs and that the
function is not applicable to these unsupported PCBs.

Related reading: For status codes that are returned after the SETS call and the
explanations of those status codes and the response required, see IMS Version 14
Application Programming APIs.

ROLS

The ROLS call backs out database changes to a processing point set by a previous
SETS or SETU call, or to the prior commit point. The ROLS call then returns the
processed input messages to the message queue.

To back out database changes and message activity that have occurred since a
prior SETS call, issue the ROLS call using the I/O PCB, and specify an I/O area and
token in the call. If the token does not match a token that was set by a preceding
SETS call, an error status is returned. If the token matches the token of a preceding
SETS call, the database updates made since this corresponding SETS call are backed
out, and all non-express messages that were inserted since the corresponding SETS
are discarded. SETS that are issued as part of processing that was backed out are
canceled. The existing database positions for all supported PCBs are reset.

If a ROLS call is in response to a SETU call, and if there are unsupported PCBs
(DEDB, MSDB, or GSAM) in the PSB, the position of the PCBs is not affected. The
token specified by the ROLS call can be set by either a SETS or SETU call. If no
unsupported PCBs exist in the PSB, and if the program has not used an attached
subsystem, the function of the ROLS call is the same regardless of whether the token
was set by a SETS or SETU call.

If the ROLS call is in response to a SETS call, and if unsupported PCBs exist in the
PSB or the program used an attached subsystem when the preceding SETS call was
issued, the SETS call is rejected with an SC status code. The subsequent ROLS call is
either rejected with an RC status code, indicating unsupported options, or it is
rejected with an RA status code, indicating that a matching token that was set by a
preceding successful SETS call does not exist.

294 Application Programming

If the ROLS call is in response to a SETU call, the call is not rejected because of
unsupported options. If unsupported PCBs exist in the PSB, this is not reflected
with a status code on the ROLS call. If the program is using an attached subsystem,
the ROLS call is processed, but an RC status is returned as a warning indicating that
if changes were made using the attached subsystem, those changes were not
backed out.

The parameters for this form of the ROLS call are:
v The call function, ROLS
v The name of the I/O PCB or AIB
v The name of the I/O area to receive the user data
v The name of an area containing the 4-byte token

Related reading: For status codes that are returned after the ROLS call and the
explanations of those status codes and the response require, see IMS Version 14
Messages and Codes, Volume 4: IMS Component Codes.
Related concepts:
“Backing out to a prior commit point: ROLL, ROLB, and ROLS calls” on page 445

Reserving segments for the exclusive use of your program
You may want to reserve a segment and prohibit other programs from updating
the segment while you are using it. To some extent, IMS does this for you through
resource lock management. The Q command code lets you reserve segments in a
different way.

Restriction: The Q command code is not supported for MSDB organizations or for
a secondary index that is processed as a database.

Resource lock management and the Q command code both reserve segments for
your program's use, but they work differently and are independent of each other.
To understand how and when to use the Q command code and the DEQ call, you
must understand resource lock management.

The function of resource lock management is to prevent one program from
accessing data that another program has altered until the altering program reaches
a commit point. Therefore, you know that if you have altered a segment, no other
program (except those using the GO processing option) can access that segment
until your program reaches a commit point. For database organizations that
support the Q command code, if the PCB processing option allows updates and
the PCB holds position in a database record, no other program can access the
database record.

The Q command code allows you to prevent other programs from updating a
segment that you have accessed, even when the PCB that accessed the segment
moves to another database record.

Related reading: For more information on the Q command code, see the topic "Q
command code" in IMS Version 14 Application Programming APIs.

Chapter 17. Recovering databases and maintaining database integrity 295

296 Application Programming

Chapter 18. Secondary indexing and logical relationships

Secondary indexing and logical relationships are techniques that can change your
application program's view of the data. The DBA makes the decision about
whether to use these options.

Examples of when you use these techniques are:
v If an application program must access a segment type in a sequence other than

the sequence specified by the key field, secondary indexing can be used.
Secondary indexing also can change the application program's access to or view
of the data based on a condition in a dependent segment.

v If an application program requires a logical structure that contains segments
from different databases, logical relationships are used.

Related concepts:
“SSA guidelines” on page 185

How secondary indexing affects your program
One instance of using a secondary index occurs when an application program
needs to select database records in a sequence other than that defined by the root
key.

IMS stores root segments in the sequence of their key fields. A program that
accesses root segments out of the order of their key fields cannot operate
efficiently.

You can index any field in a segment by defining an XDFLD statement for the field
in the DBD for the database. If the Get call is not qualified on the key but uses
some other field, IMS must search all the database records to find the correct
record. With secondary indexing, IMS can go directly to a record based on a field
value that is not in the key field.

For more information about secondary indexes and examples, see IMS Version 14
Database Administration.

SSAs with secondary indexes
If your program uses a secondary index, you can use the name of an indexed field
in your SSAs. When you do this, IMS goes directly to the secondary index and
finds the pointer segment with the value you specify. Then IMS locates the
segment that the index segment points to in the primary database and returns the
segment to your program.

To use an indexed field name in the SSA, follow these guidelines:
v Define the indexed field, using the XDFLD statement, in the DBD for the

primary database during DBD generation.
v Use the name that was given on the XDFLD statement as the field name in the

qualification statement.
v Specify the secondary index as the processing sequence during PSB generation.

Do this by specifying the name of the secondary index database on the

© Copyright IBM Corp. 1974, 2015 297

PROCSEQ parameter for a full-function secondary index database or the
PROCSEQD parameter for a Fast Path secondary index database on the PCB
during PSB generation.

If you modify the XDFLD of the indexed segment (using the REPL call), you lose
any parentage that you had established before issuing the REPL call. The key
feedback area is no longer valid after a successful REPL call.

For example, to index the PATIENT segment on the NAME field, the segment must
have been defined on the XDFLD statement in the DBD for the medical database.
If the name of the secondary index database is INDEX, you specify
PROCSEQ=INDEX in the PCB. To issue a qualification that identifies a PATIENT
by the NAME field instead of by PATNO, use the name that you specified on the
XDFLD statement. If the name of the XDFLD is XNAME, use XNAME in the SSA,
as follows:

In the DBD:
XDFLD NAME=XNAME

In the PSB:
PROCSEQ=INDEX for full-function secondary index databases or
PROCSEQD=INDEX for Fast Path secondary index databases

In the program:
GU PATIENT�(XNAME���=�JBBROKE���)

A qualified GU/GN segment name with SSA using the primary key field for
target=root segment is supported when a primary DEDB database is accessed
through its secondary index using a PCB with the PROCSEQD= parameter.

A qualified GU/GN segment name with SSA using the primary key field for
target=dependent segment is not supported. An AC status code is returned for the
qualified Get call when a primary DEDB database is accessed through its
secondary index using a PCB with the PROCSEQD= parameter.

Multiple qualification statements with secondary indexes
When you qualify a call using the name of an indexed field, you can include
multiple qualification statements.

You can use two AND operators to connect the qualification statements:

* or & When used with secondary indexing, this AND is called the dependent
AND. To satisfy the call, IMS scans the index once and searches for one
pointer segment in the index that satisfies both qualification statements.

This is called the independent AND. You use it only with secondary
indexing. When you use the independent AND to satisfy the call, IMS
scans the index twice and searches for two or more different pointer
segments in the index that point to the same target segment.

The distinction between the two ANDs applies only when the indexed field (the
one defined as XDFLD in the DBD) is used in all qualifications. If one of the
qualification statements uses another field, both ANDs work like the dependent
AND.

The next two sections give examples of the dependent and independent AND.
Although the examples show only two qualification statements in the SSA, you can
use more than two. No set limit exists for the number of qualification statements

298 Application Programming

you can include in an SSA, but a limit on the maximum size of the SSA does exist.
You specify this size on the SSASIZE parameter of the PSBGEN statement. For
information on this parameter, see IMS Version 14 System Utilities.

The dependent AND

When you use the dependent AND, IMS scans the index only once. To satisfy the
call, it must find one pointer segment that satisfies both qualification statements.

For example, suppose you want to list patients whose bills are between $500 and
$1000. To do this, you index the PATIENT segment on the BILLING segment, and
specify that you want IMS to use the secondary index as the processing sequence.
The following figure shows the three secondary indexing segments.

You then use this call:
GU PATIENT (XBILLING>=00500*XBILLING<=01000)

To satisfy this call, IMS searches for one pointer segment with a value between 500
and 1000. IMS returns the PATIENT segment that is pointed to by that segment.

The independent AND

For example, suppose you want a list of the patients who have had both tonsillitis
and strep throat. To get this information, you index the PATIENT segment on the
ILLNAME field in the ILLNESS segment, and specify that you want IMS to use the
secondary index as the processing sequence. In this example, you retrieve the
PARENT segments based on a dependent's (the ILLNESS segment's) qualification.
The following figure shows the four secondary indexing segments.

Target
segment

Source
segment

INDEX

PATIENT

BILLING

Pointer
segments

XDFLD=XBILLING

XBILLING=1200

XBILLING=700

XBILLING=450

Figure 60. Example of using the dependent AND

Chapter 18. Secondary indexing and logical relationships 299

You want IMS to find two pointer segments in the index that point to the same
PATIENT segment, one with ILLNAME equal to TONSILLITIS and one with
ILLNAME equal to STREPTHRT. Use this call:
GU PATIENTb(XILLNAME=TONSILITIS#XILLNAME=bSTREPTHRT)

This call retrieves the first PATIENT segment with ILLNESS segments of strep
throat and tonsillitis. When you issue the call, IMS searches for an index entry for
tonsillitis. Then it searches for an index entry for strep throat that points to the
same PATIENT segment.

When you use the independent AND with GN and GNP calls, a special situation can
occur. If you repeat a GN or a GNP call using the same qualification, it is possible for
IMS to return the same segment to your program more than once. You can check
to find out whether IMS has already returned a segment to you by checking the
key feedback area.

If you continue issuing a GN call until you receive a not-found (GE) status code,
IMS returns a segment occurrence once for each independent AND group. When
IMS returns a segment that is identical to one that was already returned, the PCB
key feedback area is different.
Related concepts:
“Multiple qualification statements” on page 186

DL/I returns with secondary indexes
The term “key of the pointer segment” refers to the key as perceived by the
application program. That is, the key does not include subsequent fields. IMS
places this key in the position where the root key would be located if you had not
used a secondary index—in the left-most bytes of the key feedback area.

The PATIENT segment that IMS returns to the application program's I/O area
looks just as it would if you had not used secondary indexing. The key feedback
area, however, contains something different. The concatenated key that IMS returns
is the same, except that, instead of giving you the key for the segment you
requested (the key for the PATIENT segment), IMS gives you the search portion of
the key of the secondary index (the key for the segment in the INDEX database).

If you try to insert or replace a segment that contains a secondary index source
field that is a duplicate of one that is already reflected in the secondary index, IMS

Target
segment

Source
segment

INDEX

PATIENT

ILLNESS

Pointer
segments XILLNAME=TONSILITIS

XILLNAME=STREPTHRT

XILLNAME=MEASLES

XILLNAME=FLU

Figure 61. Example of using the independent AND

300 Application Programming

returns an NI status code. An NI status code is returned only for batch programs
that log to direct-access storage. Otherwise, the application program is abnormally
terminated. You can avoid having your program terminated by making sure a
duplicate index source field does not exist. Before inserting a segment, try to
retrieve the segment using the secondary index source field as qualification.

Status codes for secondary indexes
If a secondary index is defined for a segment and if the definition specifies a
unique key for the secondary index (most secondary indexes allow duplicate keys),
your application program might receive the NI status code in addition to regular
status codes.

This status code can be received for a PCB that either uses or does not use the
secondary index as a processing sequence. See IMS Version 14 Messages and Codes,
Volume 4: IMS Component Codes for additional information about the NI status
code.

Processing segments in logical relationships
Sometimes an application program needs to process a hierarchy that is made up of
segments that already exist in two or more separate database hierarchies. Logical
relationships make it possible to establish hierarchic relationships between these
segments. When you use logical relationships, the result is a new hierarchy—one
that does not exist in physical storage but that can be processed by application
programs as though it does exist. This type of hierarchy is called a logical
structure.

One advantage of using logical relationships is that programs can access the data
as though it exists in more than one hierarchy, even though it is only stored in one
place. When two application programs need to access the same segment through
different paths, an alternative to using logical relationships is to store the segment
in both hierarchies. The problem with this approach is that you must update the
data in two places to keep it current.

Processing segments in logical relationships is not very different from processing
other segments. The following examples are taken from a scenario for an inventory
application program that processes data in a purchasing database, but which also
needs access to a segment in a patient database.

For example, the hierarchy that an inventory application program needs to process
contains four segment types:
v An ITEM segment containing the name and an identification number of a

medication that is used at a medical clinic
v A VENDOR segment that contains the name and address of the vendor who

supplies the item
v A SHIPMENT segment that contains information such as quantity and date for

each shipment of the item that the clinic receives
v A DISBURSE segment that contains information about the disbursement of the

item at the clinic, such as the quantity, the date, and the doctor who prescribed
it

The TREATMNT segment in the medical database contains the same information
that the inventory application program needs to process in the DISBURSE segment.
Rather than store this information in both hierarchies, you can store the

Chapter 18. Secondary indexing and logical relationships 301

information in the TREATMNT segment, and define a logical relationship between
the DISBURSE segment in the item hierarchy and the TREATMNT segment in the
patient hierarchy. Doing this makes it possible to process the TREATMNT segment
through the item hierarchy as though it is a child of SHIPMENT. DISBURSE then
has two parents: SHIPMENT is DISBURSE's physical parent, and TREATMNT is
DISBURSE's logical parent.

Three segments are involved in this logical relationship: DISBURSE, SHIPMENT,
and TREATMNT. The following figure shows the item hierarchy on the right. The
DISBURSE segment points to the TREATMNT segment in the patient hierarchy
shown on the left. (The patient hierarchy is part of the medical database.)

Three types of segments are found in a logical relationship:
v TREATMNT is called the logical parent segment. It is a physical dependent of

ILLNESS, but it can be processed through the item hierarchy because a path is
established by the logical child segment DISBURSE. The logical parent segment
can be accessed through both hierarchies, but it is stored in only one place.

v SHIPMENT is called a physical parent segment. The physical parent is the
parent of the logical child in the physical database hierarchy.

v DISBURSE is called a logical child segment. It establishes a path to the
TREATMNT segment in the PATIENT hierarchy from the SHIPMENT segment
in the ITEM hierarchy.

Because a logical child segment points to its logical parent, two paths exist through
which a program can access the logical parent segment:
v When a program accesses the logical parent segment through the physical path,

it reaches this logical parent segment through the segment's physical parent.
Accessing the TREATMNT segment through ILLNESS is accessing the logical
parent segment through its physical path.

v When a program accesses the logical parent segment through the logical path, it
reaches this logical parent segment through the segment's logical child.
Accessing the TREATMNT segment through SHIPMENT is accessing the logical
parent segment through its logical path.

When a logical parent segment is accessed through the logical child, the logical
child is concatenated with both the data from its logical parent segment and any
data the user has chosen to associate with this pairing (intersection data) in a
single segment I/O area, like this:

ITEM

VENDOR

SHIPMENT

DISBURSE

PATIENT

ILLNESS

TREATMNT

Figure 62. Patient and item hierarchies

302 Application Programming

LL is the length field of the logical parent if this segment is a variable-length
segment.

How logical relationships affect your programming
The calls you issue to process segments in logical relationships are the same calls
that you use to process other segments. However, the processing is different
depending on how the logical segment looks in your I/O area, what the DB PCB
mask contains after a retrieve call, and how you can replace, delete, and insert
physical and logical parent segments.

Because it is possible to access segments in logical relationships through the logical
path or the physical path, the segments must be protected from being updated by
unauthorized programs.

When DBAs define logical relationships, they define a set of rules that determine
how the segments can be deleted, replaced, and inserted. Defining these rules is a
database design decision. If your program processes segments in logical
relationships, the DBA (or the person at your installation responsible for database
design) should tell you:
v What segments look like in your I/O area when you retrieve them
v Whether your program is allowed to update and insert segments
v What to do if you receive a DX, IX, or RX status code

The requirements for inserting a logical child segment are:
v In load mode, the logical child can be inserted only under its physical parent.

You do not supply the logical parent in the I/O area.
v In update mode, the format of the logical child is different, depending on

whether it is accessed from its physical parent or from its logical parent.
– If accessed from its physical parent, the logical child's format is the

concatenated key of the logical parent followed by intersection data.
– If accessed from its logical parent, the logical child's format is the

concatenated key of the physical parent, followed by intersection data.
v The logical child can be inserted or replaced, depending on the insert rule for

the logical or physical parent. Unless the insert rule of the logical or physical
parent is PHYSICAL, the logical or physical parent must be supplied in the I/O
area following the logical child.

Related concepts:
“Multiple qualification statements” on page 186

Status codes for logical relationships
These status codes apply specifically to segments that are involved in logical
relationships.

Concatenated key Data(LL)Intersection data

Logical child Logical parent

Offset

Figure 63. Concatenated segment

Chapter 18. Secondary indexing and logical relationships 303

These are not all of the status codes that you can receive when processing a logical
child segment or a physical or logical parent. If you receive one of these status
codes, it means that you are trying to update the database in a way that you are
not allowed to. Check with the DBA or person responsible for implementing
logical relationships at your installation to find out what the problem is.

DX IMS did not delete the segment because the physical delete rule was
violated. If the segment is a logical parent, it still has active logical
children. If the segment is a logical child, it has not been deleted through
its logical path.

IX You tried to insert either a logical child segment or a concatenated
segment. If it was a logical child segment, the corresponding logical or
physical parent segment does not exist. If it was a concatenated segment,
either the insert rule was physical and the logical or physical parent does
not exist, or the insert rule is virtual and the key of the logical or physical
parent in the I/O area does not match the concatenated key of the logical
or physical parent.

RX The physical replace rule has been violated. The physical replace rule was
specified for the destination parent, and an attempt was made to change its
data. When a destination parent has the physical replace rule, it can be
replaced only through the physical path.

304 Application Programming

Chapter 19. HALDB selective partition processing

You can restrict the processing of DL/I calls to a single HALDB partition or a
range of HALDB partitions by using a DD statement with the ddname DFSHALDB
to pass control statements. DFS HALDB must be provided in the JCL of the batch
job, the BMP (Batch Message Processing dependent online region), or the JBP (Java
Batch Processing dependent online region).

Control Statements for HALDB selective partition processing

►► HALDB PCB= (nnnn ,ppppppp)
dddddddd NUM=yyy

►◄

Each HALDB control statement must have a PCB keyword that contains the
required parameters. The required parameters for an individual control statement
must be on one line; no continuation is allowed. The input can consist of multiple
HALDB control statements. There should be no duplication of DB PCB numbers.
In the event of a duplication, the control statement that has been read the most
recently overrides the previous statement.

Any HALDB control statement that is syntactically correct results in an entry
within a table. The maximum number of entries in the table is 20. All subsequent
statements that are read, even though syntactically correct, are ignored and result
in a U0201 abend, unless a statement is a duplicate of an entry that is already in
the table.

Parameter descriptions for HALDB selective partition processing

nnnn
The DB PCB number as the relative number of the DB PCB defined in the PSB.

dddddddd
The DB PCB label or name.

ppppppp
The partition name. This parameter is required.

NUM=yyy
The range of consecutive partitions that this PCB is restricted to using, starting
with the named partition. The range of consecutive partitions is defined as the
partition selection order, which is the next partition selected starting from the
target partition named in the DFSHALDB statement. The next partition is
determined using either the high keys defined for the HALDB or the
processing order defined by the partition selection exit. This parameter is
optional.

The following examples show how to use HALDB selective partition processing
statements.

DFSHALDB for single partition restriction
HALDB PCB=(4,POHIDKA)
HALDB PCB=(PCBNUM2,POHIDJA)

© Copyright IBM Corp. 1974, 2015 305

DFSHALDB for range partition restriction
HALDB PCB=(3,PVHDJ5A,NUM=4)
HALDB PCB=(PCBNUM7,PVHDJ5B,NUM=3)

DFSHALDB for independent processing of partitions
PRINT NOGEN
PCB TYPE=DB,DBDNAME=G1CSTP,PROCOPT=A,KEYLEN=100,PCBNAME=XXCSTP
SENSEG NAME=CUSTOMER
SENSEG NAME=DISTRICT,PARENT=CUSTOMER
SENSEG NAME=CUSTLOCN,PARENT=CUSTOMER
SENSEG NAME=ADDRLINE,PARENT=CUSTLOCN
SENSEG NAME=CUSTORDN,PARENT=CUSTLOCN
SENSEG NAME=CUSTINVN,PARENT=CUSTOMER
SENSEG NAME=PAYMENTS,PARENT=CUSTOMER
SENSEG NAME=ADJUSTMT,PARENT=CUSTOMER

PCB TYPE=DB,DBDNAME=G1CSTP,PROCOPT=A,KEYLEN=100,PCBNAME=IICSTP,
PROCSEQ=CSTCY02

SENSEG NAME=CUSTOMER

PSBGEN LANG=ASSEM,PSBNAME=G1ACSTP,CMPAT=YES
END

Report generated for HALDB selective partition processing

When you use HALDB selective partition processing, a report called “HALDB
Selective Partition Processing” is generated in the SYSHALDB data set. This report
shows the control statements that have been issued and the reason for accepting or
rejecting each statement. Control statements that have been validated and accepted
are shown as “Syntactically correct.” Other messages that might appear for
syntactically correct statements, and their accompanying messages, are shown in
the following table:

Table 43. Messages provided in the report generated for HALDB selective partition
processing

Message Explanation

Duplicate, overrides previous statement A HALDB statement for the same PCB was
already found. The current statement
overrides the previous HALDB statement.

Ignored, number of valid statements exceeds
20

More than 20 HALDB statements were
provided, but only 20 statements are
allowed. Reduce the number of HALDB
statements to 20 or fewer, and run the job
again. This message results in an abend
U0201.

NUM parameter must be non-zero numeric The partition range specified in the NUM
keyword must be a non-zero value from 1 to
999.

NUM value exceeds three digits The partition range specified in the NUM
keyword must be a non-zero value from 1 to
999.

An equal sign must follow NUM keyword An equal sign must follow the NUM
keyword in the HALDB statement. Add an
equal sign to the HALDB statement.

306 Application Programming

Table 43. Messages provided in the report generated for HALDB selective partition
processing (continued)

Message Explanation

The NUM keyword is missing A comma was found after the partition
name, but the NUM keyword was not
present. Either verify the syntax of the
positional parameters in the HALDB
statement, or add the NUM keyword and
the range of partitions for the restriction.

NUM parameter is missing The NUM keyword was found, but the
NUM parameter value was not present.
Either verify the syntax of the positional
parameters in the HALDB statement, or add
the NUM keyword and the range of
partitions for the restriction.

For HALDB control statements that are not syntactically correct (statements that
are processed and rejected), the messages and explanations that are issued are
shown in the following table:

Table 44. Messages provided in the report generated for syntactically incorrect HALDB
statements

Message Explanation

No HALDB statement type The DFSHALDB data set did not contain a
HALDB statement. Add a HALDB statement
to prevent this error.

A space must follow HALDB statement type The HALDB statement requires a space after
HALDB and before the PCB keyword.

PCB keyword missing The required keyword PCB was not found.
The PCB keyword must be present to
process the HALDB statement successfully.

Equal sign must follow PCB keyword An equal sign did not follow the PCB
keyword. The equal sign must follow the
PCB keyword to process the HALDB
statement successfully.

Open parenthesis must follow equal sign An open parenthesis did not follow PCB=.
The open parenthesis must follow the PCB=
to process the HALDB statement
successfully.

Second parameter may be missing The HALDB partition must be provided.
Either add the partition name, or verify that
the syntax of the positional parameters is
correct.

First parameter exceeds four digits The DB PCB number cannot exceed a
four-digit value. Change the DB PCB
number to the correct DB PCB number.

Delimiter is not a comma A comma is missing between parameter
values. The comma is used as a delimiter for
the positional parameters. Either add the
comma, or verify that the syntax of the
positional parameters is correct.

Chapter 19. HALDB selective partition processing 307

Table 44. Messages provided in the report generated for syntactically incorrect HALDB
statements (continued)

Message Explanation

Partition name must start with an alpha The HALDB partition name must begin with
a alphabetic character. Add the partition
name or verify the syntax of the positional
parameters is correct.

Delimiter is not a close parenthesis A closing parenthesis is missing from the
HALDB statement. Add a closing
parenthesis around the PCB parameters.

Partition name exceeds seven characters The HALDB partition name must be seven
or fewer characters. Either add the partition
name, or verify that the syntax of the
positional parameters is correct.

Invalid character in partition name The HALDB partition name contains an
invalid character. Either add the partition
name, or verify that the syntax of the
positional parameters is correct.

Statement contains all spaces The HALDB statement is missing. Add a
valid HALDB statement.

Invalid statement input A HALDB statement was found, but it does
not appear to be complete. Verify the syntax
of the HALDB statement and the positional
parameters specified.

Space must follow close parenthesis A space must follow the closing parenthesis.
Add a space after the closing parenthesis.

First parameter missing The PCB number or label is missing. Either
add the PCB name or label, or verify that
the syntax of the positional parameters is
correct.

Comma and part name missing Only the PCB number or label was provided
in the HALDB statement. Either add the
partition name, or verify that the syntax of
the positional parameters is correct.

Partition name is missing The HALDB partition name must be
provided in the HALDB statement. Either
add the partition name, or verify that the
syntax of the positional parameters is
correct.

Partition name starts with numeric The HALDB partition name must begin with
an alphabetic character. Either add the
partition name, or verify that the syntax of
the positional parameters is correct.

First parameter must not be zero The PCB number must be a non-zero
number. Add a non-zero number for the DB
PCB number.

Comment statement An asterisk was found in column one of the
HALDB statement. This statement was
skipped and considered a comment.

After all of the statements are validated, the job abnormally terminates with an
abend code of U0201.

308 Application Programming

Chapter 20. Processing GSAM databases

GSAM databases are available to application programs that can run as batch
programs in batch message processing (BMP) regions, transaction-oriented BMPs,
or Java batch processing (JBP) regions.

If your application program accesses GSAM databases, as you design your
program consider that:
v An IMS program can retrieve records and add records to the end of the GSAM

database, but the program cannot delete or replace records in the database.
v You use separate calls to access GSAM databases. (Additional checkpoint and

restart considerations are involved in using GSAM.)
v Your program must use symbolic CHKP and XRST calls if it uses GSAM. Basic CHKP

calls cannot checkpoint GSAM databases.
v When an IMS program uses a GSAM data set, the program treats a GSAM data

set like a sequential non-hierarchic database. The z/OS access methods that
GSAM can use are BSAM on direct access, unit record, and tape devices; and
VSAM on direct-access storage. VSAM data sets must be non-keyed,
non-indexed, entry-sequenced data sets (ESDS) and must reside on DASD.
VSAM does not support temporary, SYSIN, SYSOUT, and unit-record files.

v Because GSAM is a sequential non-hierarchic database, it has no segments, keys,
or parentage.

Java application programs running in JBP regions can access GSAM databases by
using the IMS Java dependent region resource adapter.
Related concepts:
“Data areas in GSAM databases” on page 245
Related reference:
“Accessing GSAM data from a JBP application” on page 732

Accessing GSAM databases
The calls you use to access Generalized Sequential Access Method (GSAM)
databases are different from those you use to access other IMS databases, and you
can use GSAM databases for input and output.

For example, your program can read input from a GSAM database sequentially
and then load another GSAM database with the output data. Programs that
retrieve input from a GSAM database usually retrieve GSAM records sequentially
and then process them. Applications that send output to a GSAM database must
add output records to the end of the database as the program processes the
records. You cannot delete or replace records in a GSAM database, and any records
that you add must go at the end of the database.

PCB masks for GSAM databases
For the most part, you process GSAM databases in the same way that you process
other IMS databases. You use calls that are very similar to DL/I calls to
communicate your requests. GSAM describes the results of those calls in a GSAM
DB PCB.

© Copyright IBM Corp. 1974, 2015 309

Calls to GSAM databases can use either the AIBTDLI or the PCB interface.

The DB PCB mask for a GSAM database serves the same purpose as it does for
other IMS databases. The program references the fields of the DB PCB through the
GSAM DB PCB mask. The GSAM DB PCB mask must contain the same fields as
the GSAM DB PCB and must be of the same length.

Some differences exist between a DB PCB for a GSAM database and one for other
IMS databases. Some of the fields are different, and the GSAM DB PCB has one
field that the other PCBs do not. Because GSAM is not a hierarchical database,
some fields in a PCB mask for other IMS databases do not have meanings in a
GSAM PCB mask. The fields that are not used when you access GSAM databases
are:
v The second field: segment level number
v The sixth field: segment name
v The eighth field: number of sensitive segments

Even though GSAM does not use these fields, you must define them in the order
and length shown in the following table in the GSAM DB PCB mask.

When you code the fields in a DB PCB mask, name the area that contains all the
fields as you do for a DB PCB. The entry statement associates each DB PCB mask
in your program with a DB PCB in your program's PSB based on the order of the
PCBs in the PSB. The entry statement refers to the DB PCB mask in your program
by the name of the mask or by a pointer.

When you code the entry statement in:
v COBOL, Java, Pascal, C, and assembler language programs, the entry statement

must list the names of the DB PCB masks in your program.
v PL/I programs, the entry statement must list the pointers to the DB PCB masks

in your program.

The first PCB name or pointer in the entry statement corresponds to the first PCB.
The second name or pointer in the entry statement corresponds to the second PCB,
and so on.

Table 45. GSAM DB PCB mask

Descriptor Byte length DB/DC DBCTL DCCTL DB
batch

TM
batch

Database name1 8 X X X X X

Segment level number2 2 N/A N/A N/A N/A N/A

Status code3 2 X X X X X

Processing options4 4 X X X X X

Reserved for IMS5 4 X X X X X

Segment name6 8 N/A N/A N/A N/A N/A

Length of key feedback
area and
undefined-length
records area7

4 X X X X X

Number of sensitive
segments8

4 N/A N/A N/A N/A N/A

310 Application Programming

Table 45. GSAM DB PCB mask (continued)

Descriptor Byte length DB/DC DBCTL DCCTL DB
batch

TM
batch

Key feedback area9 8 or 12 for
large data
sets.

X X X X X

Length of
undefined-length
records10

4 X X X X X

Note:

1. Database Name. The name of the GSAM DBD. This field is 8 bytes and
contains character data.

2. Segment Level Number. Not used by GSAM, but you must code it. It is 2
bytes.

3. Status Code. IMS places a two-character status code in this field after each
call to a GSAM database. This code describes the results of the call. IMS
updates this field after each call and does not clear it between calls. The
application program should test this field after each call to find out whether
the call was successful. If the call was completed successfully, this field
contains blanks.

4. Processing Options. This is a 4-byte field containing a code that tells IMS the
types of calls this program can issue. It is a security mechanism in that it can
prevent a particular program from updating the database, even though the
program can read the database. This value is coded in the PROCOPT
parameter of the PCB statement when generating the PSB for the application
program. The value does not change. For GSAM, the values are G, GS, L, or
LS.

5. Reserved for IMS. This 4-byte field is used by IMS for internal linkage. It is
not used by the application program.

6. Segment Name. This field is not used by GSAM, but it must be coded as part
of the GSAM DB PCB mask. It is 8 bytes.

7. Length of Key Feedback Area and Undefined-Length Records Area. This is a
4-byte field that contains the decimal value of 12 (or 16 for large format data
sets). This is the sum of the lengths of the Key Feedback Area and
Undefined-Length Records Area.

8. Number of Sensitive Segments. This field is not used by GSAM, but it
should be coded as part of the GSAM DB PCB mask. This field is 4 bytes.

9. Key Feedback Area. After a successful retrieval call, GSAM places the address
of the record that is returned to your program in this field. This is called a
record search argument (RSA). You can use it later if you want to retrieve that
record directly by including it as one of the parameters on a GU call. This field
is 8 bytes for basic format data sets or 12 bytes for large format data sets.

10. Undefined-Length Records Area. If you use undefined-length records
(RECFM=U), the length in binary of the record you are processing is passed
between your program and GSAM in this field. This field is 4 bytes long.
When you issue a GU or GN call, GSAM places the binary length of the
retrieved record in this field. When you issue an ISRT call, put the binary
length of the record you are inserting in this field before issuing the ISRT call.

Related concepts:
“AIBTDLI interface” on page 245

Chapter 20. Processing GSAM databases 311

“GSAM record formats” on page 314

Retrieving and inserting GSAM records
GSAM records can be retrieved sequentially or directly. You can also add GSAM
records to a new data set or add new records to the end of an existing data set in
the database.

To retrieve GSAM records sequentially, use the GN call. The only required
parameters are the GSAM PCB and the I/O area for the segment. To process the
whole database, issue the GN call until you get a GB status code in the GSAM PCB.
This status code means that you have reached the end of the database. GSAM
automatically closes the database when you reach the end of it. To add records to a
new data set or to add new records to the end of an existing data set in the
database, use the ISRT call. GSAM adds the records sequentially in the order in
which you supply them.

You can retrieve records directly from a GSAM database by supplying a record
search argument (RSA) to the GSAM database. An RSA is like a segment search
argument (SSA), but it contains the exact address of the record that you want to
retrieve. The specific contents and format of the RSA depend on the access method
that GSAM is using. For BSAM tape data sets and VSAM data sets, the RSA
contains the relative byte address (RBA). For BSAM disk data sets, the RSA
contains the disk address and uses the relative track and record format.

You can change your application programs to accommodate for extra 4 bytes when
retrieving a record for a large format data set by using the INIT call with an I/O
area containing the character string of RSA12. The INIT RSA12 call is coded in a
GSAM application program before any calls to the GSAM database are coded.
When a GSAM application issues the INIT RSA12 call, it tells IMS that the
program can accept a 12-byte RSA when retrieving a record for large format data
sets. The INIT RSA12 call must be issued by any application that uses large format
data sets. Failure to issue the INIT RSA12 call for large format data sets might
cause an unexpected result. In the absence of an INIT RSA12 call, IMS continues to
pass back an 8-byte RSA when retrieving a record for a basic format data set.

The following table provides more details about the format of the RSA for basic
format data sets:

Table 46. Format of the RSA for basic format data sets

Position Address

Positions 1-4 v BSAM (DASD) relative track and record
(TTRZ) for the block in the buffer.

v BSAM RBA.

v VSAM RBA.

Position 5 Relative data set of the concatenated data set.
The first data set number is 1.

Position 6 Relative volume of the data set. The first
volume of data set is 1.

Positions 7 and 8 The current displacement.

The following table provides more details about the format of the RSA for large
format data sets:

312 Application Programming

Table 47. Format of the RSA for large format data sets

Position Address

Positions 1-4 v BSAM (DASD) relative track and record
(TTTR) for the block in the buffer.

v BSAM RBA.

Position 5 Zone byte

Position 6 Relative data set of the concatenated data set.
The first data set number is 1.

Position 7 Relative volume of the data set. The first
volume of data set is 1.

Positions 8-10 Null bytes. Not used.

Positions 11-12 The current displacement.

Before you can supply an RSA in a GU call to a GSAM database, that RSA must
have previously been returned to you as a result of a GN or ISRT call. For GSAM to
return an RSA, the GN or ISRT call must be issued with a fourth parameter that
points to an 8-byte (basic format data set) or 12-byte (large format data set) RSA
save area in your program. Save this RSA until you want to retrieve that particular
record.

To retrieve that particular record, issue a GU call for the record and specify the
address of its RSA as a fourth parameter of the GU call. GSAM returns the record to
the I/O area that you named as one of the call parameters.

Restriction: Retrieve records directly from a GSAM database on DASD only. When
using buffered I/O, buffer definitions for the output PCB may affect performance.

Resetting the position in a GSAM Database

You can use the GU call to reset the position in the GSAM database.

You can reset the position to the start of the GSAM database or to a specific
segment in the GSAM database:
v To reset the position to the start of the GSAM database using basic format data

sets, issue a GU call with an RSA that consists of a fullword with a binary value
of 1, followed by a fullword with a binary value of 0.

v To reset the position to the start of the GSAM database using large format data
sets, issue a GU call with an RSA that consists of a fullword with a binary value
of 1, followed by two fullwords with a binary value of 0.

v To reset the position to a specific segment in the GSAM database, issue a GU call
with an RSA that contains the saved RSA value from a prior ISRT or GN call for
that segment.

Related reference:
“GSAM coding considerations” on page 316

INIT call (Application Programming APIs)

Explicit open and close calls to GSAM
IMS opens the GSAM data set when the first call is made and closes the data set
when the application program terminates. Therefore, the application program does
not usually need to make explicit open or close calls to GSAM.

Chapter 20. Processing GSAM databases 313

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_hinitcall.htm#ims_hinitcall

However, explicit OPEN and CLSE calls are useful if:
v the application program loads a GSAM data set, and then in the same step reads

the data set using GSAM (for example, to sort the data set). The application
program should issue the GSAM CLSE call after the load is complete.

v the GSAM data set is an output data set, and it is possible that when the
program executes it does not make GSAM ISRT calls. A data set is not created.
Subsequent attempts to read the nonexistent data set (using GSAM or not) will
likely result in an error. To avoid this situation, explicitly open the data set. DL/I
closes the data set when the step terminates. Closing the data set prevents the
possibility of attempting to read an empty data set.

v the GSAM data set is an output data set, and data exists beyond the EOF
address in the dataset control block (DSCB). The previous job/step may have
ended abnormally before the DSCB could be updated. If the program is
restarted, but does not make GSAM ISRT calls, the EOF will not be updated at
job/step termination when DL/I closes the data set. This could strand any data
that exists past the EOF address. To avoid this situation, explicitly open the data
set so that the DSCB can be updated with the correct EOF address.

The explicit OPEN or CLSE call need not include an I/O area parameter. Depending
on the processing option of the PCB, the data set is opened for input or output.
You can specify that an output data set contain either ASA or machine control
characters. Including an I/O area parameter in the call and specifying OUTA in the
I/O area indicates ASA control characters. Specifying OUTM specifies machine
control characters.

GSAM record formats
GSAM records are nonkeyed. For variable-length records you must include the
record length as the first 2 bytes of the record. Undefined-length records, like
fixed-length records, contain only data (and control characters, if needed).

If you use undefined-length records, record length is passed between your
program and GSAM in the 4-byte field that follows the key feedback area of the
GSAM DB PCB. It is called the undefined-length records area. When you issue an
ISRT call, supply the length. When you issue a GN or GU call, GSAM places the
length of the returned record in this field. The advantage of using
undefined-length records is that you do not need to include the record length at
the beginning of the record, and records do not need to be of fixed length. The
length of any record must be less than or equal to the block size (BLKSIZE) and
greater than 11 bytes (an z/OS convention).

If you are using VSAM, you can use blocked or unblocked fixed-length or
variable-length records. If you are using BSAM, you can use blocked or unblocked
fixed-length, variable-length, or undefined-length records. Whichever you use, be
sure to specify this on the RECFM keyword in the DATASET statement of the
GSAM DBD. You can override this in the RECFM statement of the DCB parameter
in the JCL. You can also include carriage control characters in the JCL for all
formats.
Related concepts:
“PCB masks for GSAM databases” on page 309
“Origin of GSAM data set characteristics” on page 317

314 Application Programming

|
|
|
|
|
|
|

GSAM I/O areas
If you provide an optional I/O area, it must contain one of these values.
v INP for an input data set
v OUT for an output data set
v OUTA for an output data set with ASA control characters
v OUTM for an output data set with machine control characters

For GN, ISRT, and GU calls, the format of the I/O area depends on whether the
record is fixed-length, undefined-length (valid only for BSAM), or variable-length.
For each kind of record, you have the option of using control characters.

The formats of an I/O area for fixed-length or undefined-length records are:
v With no control characters, the I/O area contains only data. The data begins in

byte 0.
v With control characters, the control characters are in byte 0 and the data begins

in byte 1.

If you are using undefined-length records, the record length is passed between
your program and GSAM in the PCB field that follows the key feedback area.
When you are issuing an ISRT call, supply the length. When you are issuing a GN
or GU call, GSAM places the length of the returned record in this field. This length
field is 4 bytes long.

The formats for variable-length records differ because variable-length records
include a length field, which other records do not have. The length field is 2 bytes.
Variable-length I/O areas, like fixed-length and undefined-length I/O areas, can
have control characters.
v Without control characters, bytes 0 and 1 contain the 2-byte length field, and the

data begins in byte 2.
v With control characters, bytes 0 and 1 still contain the length field, but byte 2

contains the control characters, and the data starts in byte 3.

GSAM status codes
Your program should test for status codes after each GSAM call, just as it does
after each DL/I or system service call.

If, you find that you have an error and terminate your program after checking the
status codes, be sure to note the PCB in error before you terminate. The GSAM
PCB address is helpful in determining problems. When a program that uses GSAM
terminates abnormally, GSAM issues PURGE and CLSE calls internally, which changes
the PCB information.

Status codes that have specific meanings for GSAM are:

AF GSAM detected a BSAM variable-length record with an invalid format.
Terminate your program.

AH You have not supplied an RSA for a GU call.

AI There has been a data management OPEN error.

AJ One of the parameters on the RSA that you supplied is invalid.

AM You have issued an invalid request against a GSAM database.

Chapter 20. Processing GSAM databases 315

AO An I/O error occurred when the data set was accessed or closed.

GB You reached the end of the database, and GSAM has closed the database.
The next position is the beginning of the database.

IX You issued an ISRT call after receiving an AI or AO status code. Terminate
your program.

Symbolic CHKP and XRST with GSAM
To checkpoint GSAM databases, use symbolic CHKP and XRST calls.

By using GSAM to read or write the data set, symbolic CHKP and XRST calls can be
used to reposition the data set at the time of restart, enabling you to make your
program restartable. When you use an XRST call, IMS repositions GSAM databases
for processing. CHKP and XRST calls are available to application programs that can
run as batch programs, batch-oriented BMPs, or transaction-oriented BMPs.

Restriction: When restarting GSAM databases:
v You cannot use temporary data sets with a symbolic CHKP or XRST call.
v A SYSOUT data set at restart time may give duplicate output data.
v You cannot restart a program that is loading a GSAM or VSAM database.
v The GSAM database data set must have the same data set format (BASIC or

LARGE) as when the symbolic CHKP call was issued.

When IMS restores the data areas specified in the XRST call, it also repositions any
GSAM databases that your program was using when it issued the symbolic CHKP
call. If your program was loading GSAM databases when the symbolic CHKP call
was issued, IMS repositions them (if they are accessed by BSAM). If you make a
copy of the GSAM data set for use as input to the restart process, ensure that the
short blocks are written to the new data set as short blocks, for example, using
IEBGENER with RECFM=U for SYSUT1. You can also do the restart using the
original GSAM data set.

During GSAM XRST processing, a check is made to determine if the GSAM output
data set to be repositioned is empty, and if the abending job had previously
inserted records into the data set.

GSAM coding considerations
The calls your program uses to access GSAM databases are not the same as the
DL/I calls. The system service calls that you use with GSAM are symbolic CHKP
and XRST.

The following table summarizes GSAM database calls. The five calls you can use
to process GSAM databases are:
v CLSE

v GN

v GU

v ISRT

v OPEN

316 Application Programming

The COBOL, PL/I, Pascal, C, and assembler language call formats and parameters
for these calls are the same and are described in the following table. GSAM calls
do not differ significantly from DL/I calls, but GSAM calls must reference the
GSAM PCB, and they do not use SSAs.

Java application programs running in Java batch processing (JBP) regions can
access GSAM databases by using the IMS Java dependent region resource adapter.

Table 48. Summary of GSAM calls

Call Formats Meaning Use Options Parameters

CLSE Close Explicitly closes GSAM
database

None function, gsam pcb

GNbb Get Next Retrieves next sequential
record

Can supply
address for RSA to
be returned

function, gsam pcb, i/o
area [,rsa name]

GUbb Get Unique Establishes position in
database or retrieves a
unique record

None function, gsam pcb, i/o
area, rsa name

ISRT Insert Adds new record at end of
database

Can supply
address for RSA to
be returned

function, gsam pcb, i/o
area [,rsa name]

OPEN Open Explicitly opens GSAM
database

Can specify
printer or punch
control characters

function, gsam pcb [, open
option]

Related reference:
“Accessing GSAM data from a JBP application” on page 732

Origin of GSAM data set characteristics
For an input data set, the record format (RECFM), logical record length (LRECL),
and block size (BLKSIZE) are based on the input data set label.

If this information is not provided by a data set label, the DD statement or the
DBD specifications are used. The DD statement has priority.

An output data set can have the following characteristics:
v Record format
v Logical record length
v Block size
v Other JCL DCB parameters
v DNS type

Specify the record format on the DATASET statement of the GSAM DBD. The
options are:
v V for variable
v VB for variable blocked
v F for fixed
v FB for fixed blocked
v U for undefined

Chapter 20. Processing GSAM databases 317

The V, F, or U definition applies and is not overridden by the DCB=RECFM=
specification on the DD statement. However, if the DD RECFM indicates blocked
and the DBD does not, RECFM is set to blocked. If the DD RECFM of A or M
control character is specified, it applies as well.

Unless an undefined record format is used, specify the logical record using the
RECORD= parameter of the DATASET statement of DBDGEN, or use
DCB=LRECL=xxx on the DD statement. If the logical record is specified on both,
the DD statement has priority. Refer to the following table for the maximum record
length

Table 49. BSAM and VSAM logical record lengths for GSAM data sets by record format

Record Format BSAM logical record length VSAM logical record length

Fixed/Fixed Block 32760 bytes 32760 bytes

Variable/Variable Blocked 32756 bytes 32756 bytes

Undefined 32760 bytes not supported

Specify block size using the BLOCK= or SIZE= parameter of the DATASET
statement of DBDGEN, or use DCB=BLKSIZE=xxx on the DD statement. If block
size is specified on both, the DD statement has priority. If the block size is not
specified by the DBD or the DD statement, the system determines the size based
on the device type, unless the undefined record format is used.

The other JCL DCB parameters that can be used, include:
v CODE
v DEN
v DNSTYPE
v TRTCH
v MODE
v STACK
v PRTSP, which can be used if RECFM does not include A or M
v DCB=BUFNO=X, which, when used, causes GSAM to use X number of buffers

Restriction: Do not use BFALN, BUFL, BUFOFF, FUNC, NCP, and KEYLEN.
Related concepts:
“GSAM record formats” on page 314

DD statement DISP parameter for GSAM data sets
The DD statement DISP parameter varies, depending on whether you are creating
input or output data sets and how you plan to use the data sets.

Attention: Specifying the DISP=OLD or DISP=SHR parameter for a normal start
with non-empty data sets will overwrite the existing records from the beginning of
the data set.
v For input data sets, use the DISP=OLD parameter.
v For output data sets, consider the following options:

– To create an output data set allocated by the DD statement, set DISP=NEW.
– To add new records to an empty data set when performing normal start or a

restart after failure, set DISP=MOD, DISP=SHR, or DISP=OLD.

318 Application Programming

– When restarting the step, set DISP=OLD for existing data sets and
DISP=MOD for empty data sets.

– To add new records to an existing non-empty data set when performing a
restart after failure, set DISP=MOD, DISP=SHR, or DISP=OLD. These
parameters add new records from the restart point on the existing data set.

– To add new records to the end of an existing non-empty data set when
performing normal start, set DISP=MOD.

Extended checkpoint restart for GSAM data sets
If you are using extended checkpoint restart for GSAM data sets, these
recommendations may apply.
v Do not use passed data sets.
v Do not use backward references to data sets in previous steps.
v Do not use DISP=MOD to add records to an existing tape data set.
v Do not use DISP=DELETE or DISP=UNCATLG.
v Use DFSMS striped data sets under the following conditions:

– When the data sets is managed by SMS.
– When the data sets are likely to exceed the system extent limit for volumes.

v Additionally, keep in mind that:
– No attempt is made to reposition a SYSIN, SYSOUT, or temporary data set.
– No attempt is made to reposition any of the concatenated data sets for a

concatenated DD statement if any of the data sets are a SYSIN or SYSOUT.
– If you are using concatenated data sets, specify the same number and

sequence of data sets at restart time and checkpoint time.
– GSAM/VSAM load mode restrictions apply to both non-striped and striped

data sets.
– If the PSB contains an open GSAM VSAM output data set when the symbolic

checkpoint call is issued, the system returns an AM status code in the
database PCB as a warning. This means that the data set is not repositioned
at restart and the checkpoint has completed normally.

– If an ISRT call is issued after a CLSE call and the GSAM data set is defined as
DISP=OLD, all CHKP calls made prior to the CLSE call will contain invalid
reposition information. Ensure a CHKP call is issued after a CLSE all when
using DISP=OLD to avoid an abend U0271 after an extended restart (XRST).

Copying GSAM data sets between checkpoint and restart

To position GSAM data sets when restarting non-striped GSAM DASD data sets,
use the relative track and record format (TTRZ or TTTRZ for large format data
sets).

GSAM uses the TTRZ or TTTRZ on the volume to position non-striped GSAM
DASD data sets when restarting. For a tape data set, the relative record on the
volume is used. The relative record on the tape volume cannot be changed.

To copy non-striped DASD data sets between checkpoint and restart:
v Copy the data set to the same device type.
v Avoid any reblocking by using the undefined record format (RECFM=U) for

both the input and the output data set.

Each copied volume contains the same number of records as the original volumes.

Chapter 20. Processing GSAM databases 319

Note: GSAM uses the relative block number (RBN) to reposition striped DASD
data sets. When data sets that are managed by SMS are used with GSAM
databases, you cannot control how each volume is copied. After the data set is
copied, unlike with non-striped DASD data sets, you do not need to ensure that
the TTRZ or the TTTRZ of the restart record is unchanged.

Converting data sets from non-striped data sets to striped data
sets

Convert GSAM/BSAM non-striped data sets to striped data sets before you must
perform an extended restart when a system allocation limit is exceeded or a system
X'37' error condition occurs. Non-striped data sets that are not managed by SMS
extend beyond their initial primary or secondary allocation only by volume, but
with non-striped GSAM/BSAM multiple volume data sets that are managed by
SMS, the resulting new space allocation takes effect for all of the volumes in the
data set.

If you copy non-striped data sets that are managed by SMS after you change the
space allocation values, the number of records in the new volumes will be different
from the number of records in the old volume. The new primary and secondary
allocation values are used with non-striped data sets. As the data is copied, all of
the space that is allocated on the new volume is used before the data is copied to
the next volume.

If an error condition (system X'37' or system allocation limit exceeded) occurs
during the processing of a GSAM/BSAM non-striped data set, and the data set is
converted to a striped data set after the error occurs, a restart after failure will not
complete successfully. Because the issued checkpoint saved a TTRZ or a TTTRZ
value in the log record for repositioning, the log record for striped data sets will be
used by GSAM restart after failure, which requires a relative block number (RBN)
to perform the repositioning.

Concatenated data sets used by GSAM
GSAM can use concatenated data sets, which may be on unlike device types, such
as DASD and tape, or on different DASD devices. Logical record lengths and block
sizes can differ, and it is not required that the data set with the largest block size
be concatenated first.

The maximum number of concatenated data sets for a single DD statement is 255.
The number of buffers determined for the first of the concatenated data sets is
used for all succeeding data sets. Generation data groups can result in
concatenated data sets.

Specifying GSAM data set attributes
When specifying GSAM data set attributes, the following settings are
recommended.
v On the DBD, specify RECFM. (It is required.)
v On the DATASET statement, specify the logical record length using RECORD=.

If the data set can become larger than 65535 tracks on a DASD volume and you
want the data set to not span multiple volumes, specify the DSNTYPE=LARGE
parameter.

v On the DD statement, do not specify LRECL, RECFM, or BLKSIZE. The system
determines block size, with the exception of RECFM=U. The system determines
logical record length from the DBD.

320 Application Programming

v For the PSB, specify PROCOPT=LS for output and GS for input. If you include
S, GSAM uses multiple buffers instead of a single buffer for improved
performance.

IMS will add 2 bytes to the record length value specified in the DBD in order to
accommodate the ZZ field that is needed to make up the BSAM RDW. Whenever
the database is GSAM or BSAM and the records are variable (V or VB), IMS will
add 2 bytes to the record length value in the GSAM records passed by the
application. Such addition allows IMS to accommodate the ZZ field that makes up
the BSAM RDW (Record Descriptor Word).

Example of GSAM or BSAM where the records are variable
//IDASD DD DUMMY

//ODASD DD UNIT=SYSDA,VOL=SER=000000,DISP=(,KEEP),
// SPACE=(TRK,(5,1)),DSN=GSAM.VARIABLE1,
// DCB=(RECFM=VB,BLKSIZE=32760,LRECL=32756)
//SYSIN DD *,DCB=BLKSIZE=80
S 1 1 1 1 1 DBDNAME
L ISRT
L V8187 DATA 1ST RECORD LOADED TO GSAM <---RDW
L ISRT
L V8187 DATA 2ND RECORD LOADED TO GSAM
L ISRT
L V8187 DATA 3RD RECORD LOADED TO GSAM
L ISRT
L V8187 DATA 4TH RECORD LOADED TO GSAM

In the above example, four GSAM records (IMS segment) can be contained in one
32756 byte (MVS) record.

DLI, DBB, and BMP region types and GSAM
To access GSAM databases, IMS builds its DLI control blocks using PSB and DBD
information from PSBLIB, DBDLIB and ACBLIB. The source of the PSB and DBD
information depends on the region type.

For DLI offline batch regions, IMS obtains PSB and DBD information from PSBLIB
and DBDLIB. For DBB offline batch regions, IMS database management obtains
PSB and DBD information from ACBLIB. For online batch regions (BMPs), IMS
builds its DLI control blocks with information from ACBLIB. If an application is
scheduled in a BMP region and the PSB associated with the application contains
one or more GSAM PCBs, IMS scheduling obtains PSB information from ACBLIB
and PSBLIB. In this case, the PSB in ACBLIB and PSBLIB must be the same. GSAM
database management does not obtain PSB and DBD information from ACBLIB.
Instead, GSAM database management obtains PSB and DBD information from
PSBLIB and DBDLIB.

When you initialize a DLI, DBB or BMP region using GSAM, you must include an
//IMS DD and GSAM DD statements. When DBB or BMP regions are not using
GSAM, //IMS DD statements do not need to be included. To load PSBs and DBDs
and build GSAM control blocks, you must include an //IMS DD statement. In the
following figure, an example of the //IMS DD statement with data sets that are
larger than 65535 tracks is shown.

Figure 64. //IMS DD statement example

Chapter 20. Processing GSAM databases 321

//STEP EXEC PGM=DFSRRC00,PARM=[BMP|DBB|DLI],...’
//STEPLIB DD DSN=executionlibrary-name,DISP=SHR
// DD DSN=pgmlib-name,DISP=SHR
//IMS DD DSN=psblib-name,DISP=SHR
// DD DSN=dbdlib-name,DISP=SHR
//IMSACB DD DSN=acblib-name,disp=shr (required for DBB)
//SYSPRINT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//ddnamex DD (add DD statements for required GSAM databases)
//ddnamex DD (add DD statements for non-GSAM IMS databases

for DLI/DBB)
//ddnamex DD DSNTYPE=LARGE,...

.

.

.
/*

322 Application Programming

Chapter 21. Processing Fast Path databases

You can write application programs to access Fast Path databases, including main
storage databases and data entry databases.

The two kinds of Fast Path databases are:
v Main storage databases (MSDBs), which are available in a DB/DC environment,

and contain only root segments in which you store data that you access most
frequently.

v Data entry databases (DEDBs) are hierarchic databases that can have as many as
15 hierarchic levels and as many as 127 segment types. DEDBs are available to
both IMS users and CICS users with DBCTL.

Restriction: This DEDB information applies to CICS users with DBCTL. CICS
users can access MSDBs in DBCTL in read mode, but update mode is not
supported.

VSO considerations

VSO is transparent to the processing of an application. Where the data resides is
immaterial to the application.

Data locking for MSDBs and DEDBs

All MSDB calls, including the FLD call, can lock the data at the segment level. The
lock is acquired at the time the call is processed and is released at the end of the
call. All DEDB calls, with the exception of HSSP calls, are locked at the VSAM CI
level. For single-segment, root-only, fixed-length VSO areas, if you specify
PROCOPT R or G, the application program can obtain segment-level locks for all
calls. If you specify any other PROCOPT, the application program obtains VSAM
CI locks.

Segment-level locking (SLL) provides a two-tier locking scheme. First, a share
(SHR) lock is obtained for the entire CI. Then, an exclusive (EXCL) segment lock is
obtained for the requested segment. This scheme allows for contention detection
between SLL users of the CI and EXCL requestors of the CI. When contention
occurs between an existing EXCL CI lock user and a SHR CI lock requestor, the
SHR CI lock is upgraded to an EXCL CI lock. During the time that this EXCL CI
lock is held, subsequent SHR CI lock requests must wait until the EXCL CI is
released at the next commit point.

DEDB FLD calls are not locked at call time. Instead, the lock is acquired at a
commit point.

During sync-point processing, the lock is re-acquired (if not already held), and the
changes are verified. Verification failure results in the message being reprocessed
(for message-driven applications) or an FE status code (for non-message-driven
applications). Verification can fail if the segment used by the FLD call has been
deleted or replaced before a sync-point.

Segment retrieval for a FLD call is the same as for a GU call. An unqualified FLD call
returns the first segment in the current area, just as an unqualified GU call does.

© Copyright IBM Corp. 1974, 2015 323

After the FLD call is processed, all locks for the current CI are released if the
current CI is unmodified by any previous call.

When a compression routine is defined on the root segment of a DEDB with a
root-only structure, and when that root segment is a fixed-length segment, its
length becomes variable after being compressed. To replace a compressed segment,
you must perform a delete and an insert. In this case, segment level control and
locking will not be available.
Related concepts:

Data entry databases (Database Administration)

Main storage databases (MSDBs) (Database Administration)

High-speed sequential processing (HSSP) (Database Administration)

Fast Path database calls
Use Fast Path database calls in your application programs to access Fast Path
databases.

The following table summarizes the database calls you can use with Fast Path
databases.

Table 50. Summary of Fast Path database calls.

Function Code

Types of MSDBs:

DEDBs
Nonterminal-

Related
Terminal-

Related Fixed

Terminal-
Related

Dynamic

DEQ X

FLD X X X X

GU, GHU X X X X

GN, GHN X X X X

GNP, GHNP
DLET

X X

ISRT X X

POS X

REPL X X X X

RLSE X

DL/I calls to DEDBs can include the same number of SSAs as existing levels in the
hierarchy (a maximum of 15). They can also include command codes and multiple
qualification statements.

Restriction:

v Fast Path ignores command codes that are used with sequential dependent
segments.

v If you use a command code that does not apply to the call you are using, Fast
Path ignores the command code.

v If you use F or L in an SSA for a level greater than the established parent, Fast
Path ignores the F or L command code.

324 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_dataentrydbs.htm#ims_dataentrydbs
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_mainstoragedbs.htm#ims_mainstoragedbs
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_hssp.htm#ims_hssp

v DL/I calls to DEDBs cannot include the independent AND, which is used only
with secondary indexing.

Calls to DEDBs can use all command codes. Only calls to DEDBs that use subset
pointers can use the R, S, Z, W, and M command codes. The following table shows
which calls you can use with these command codes.

Table 51. Subset pointer command codes and calls

Command
Code DLET GU GHU GN GHN

GNP
GHNP ISRT REPL

M X X X X X

R X X X X

S X X X X X

W X X X X X

X X X X X X X

Main storage databases (MSDBs)
MSDBs contain only root segments. Each segment is like a database record,
because the segment contains all of the information about a particular subject.

In a DL/I hierarchy, a database record is made up of a root segment and all its
dependents. For example, in the medical hierarchy, a particular PATIENT segment
and all the segments underneath that PATIENT segment comprise the database
record for that patient. In an MSDB, the segment is the whole database record. The
database record contains only the fields that the segment contains. MSDB segments
are fixed length.

The two kinds of MSDBs are terminal related and non-terminal related. In
terminal-related MSDBs, each segment is owned by one logical terminal. The
segment that is owned can be updated only by that terminal. Related MSDBs can
be fixed or dynamic. You can add segments to and delete segments from dynamic
related MSDBs. You cannot add segments to or delete segments from fixed related
MSDBs.

In the second kind of MSDB, called non-terminal related (or nonrelated) MSDBs,
the segments are not owned by logical terminals.

Restrictions on using calls for MSDBs
To retrieve segments from an MSDB, you can issue Get calls just as you do to
retrieve segments from other IMS databases. Because MSDBs contain only root
segments, you only use GU and GN calls (and GHU and GHN calls when you plan to
update a segment). If the segment name field in the SSA contains *MYLTERM, the
GU, GHU, and FLD calls return the LTERM-owned segment, and the remainder of the
SSA is ignored.

When you are processing MSDBs, you should consider the following differences
between calls to MSDBs and to other IMS databases:
v You can use only one SSA in a call to an MSDB.
v MSDB calls cannot use command codes.
v MSDB calls cannot use multiple qualification statements (Boolean operators).

Chapter 21. Processing Fast Path databases 325

v The maximum length for an MSDB segment key is 240 bytes (not 255 bytes, as
in other IMS databases).

v If the SSA names an arithmetic field (types P, H, or F) as specified in the
database description (DBD), the database search is performed using arithmetic
comparisons (rather than the logical comparisons that are used for DL/I calls).

v If a hexadecimal field is specified, each byte in the database field is represented
in the SSA by its two-character hexadecimal representation. This representation
makes the search argument twice as long as the database field.
Characters in hexadecimal-type SSA qualification statements are tested for
validity before translation to the database format. Only numerals 0 through 9
and letters A through F are accepted.

v Terminal-related and non-terminal-related LTERM-keyed MSDBs are not
supported for ETO or LU 6.2 terminals. Attempted access results in no data
being retrieved and an AM status code. See IMS Version 14 Communications and
Connections for more information on ETO and LU 6.2.

v MSDBs cannot be shared among IMS subsystems in a sysplex group. When
using the Fast Path Expedited Message Handler (EMH), terminal related and
non-terminal related with terminal key MSDBs can only be accessed by static
terminals. These static terminals run transactions with Sysplex Processing Code
(SPC) of Locals Only as specified in DBFHAGU0 (Input Edit Router exit
routine).

The restrictions above do not apply to CICS users.

Data entry databases (DEDBs)
A DEDB contains a root segment and as many as 127 dependent segment types.
One of these can be a sequential dependent; the other 126 are direct dependents.
Sequential dependent segments are stored in chronological order. Direct dependent
segments are stored hierarchically.

DEDBs can provide high data availability. Each DEDB can be partitioned, or
divided into multiple areas. Each area contains a different collection of database
records. In addition, you can make as many as seven copies of each area data set.
If an error exists in one copy of an area, application programs continue to access
the data by using another copy of that area. Use of the copy of an area is
transparent to the application program. When an error occurs to data in a DEDB,
IMS does not stop the database. IMS makes the data in error unavailable but
continues to schedule and process application programs. Programs that do not
need the data in error are unaffected.

DEDBs can be shared among application programs in separate IMS systems.
Sharing DEDBs is virtually the same as sharing full-function databases, and most
of the same rules apply. IMS systems can share DEDBs at the area level (instead of
at the database level as with full-function databases), or at the block level.

Related reading: For more information on DEDB data sharing, see the explanation
of administering IMS systems that share data in IMS Version 14 System
Administration.

Updating segments: REPL, DLET, ISRT, and FLD
Three of the calls that you can use to update an MSDB or DEDB are the same ones
that you use to update other IMS databases: REPL, DLET, and ISRT.

326 Application Programming

You can issue a REPL call to a related MSDB or nonrelated MSDB, and you can
issue any of the three calls for non-terminal-related MSDBs (without
terminal-related keys) or DEDBs. When you issue REPL or DLET calls against an
MSDB or DEDB, you must first issue a Get Hold call for the segment you want to
update, just as you do when you replace or delete segments in other IMS
databases.

One call that you can use against MSDBs and DEDBs that you cannot use against
other types of IMS databases is the Field (FLD) call, which enables you to access
and change the contents of a field within a segment. The FLD call has two types:
v FLD/VERIFY

This type of call compares the value of the field in the target segment to the
value you supply in the FSA.

v FLD/CHANGE

This type of call changes the value of the field in the target segment in the way
that you specify in the FSA. A FLD/CHANGE call is only successful if the previous
FLD/VERIFY call is successful.

The FLD call does in one call what a Get Hold call and a REPL call do in two calls.
For example, using the ACCOUNT segment shown in the topic “Account Segment
in a Nonrelated MSDB”, a bank would need to perform the following processing
to find out whether a customer could withdraw a certain amount of money from a
bank account:
1. Retrieve the segment for the customer's account.
2. Verify that the balance in the account is more than the amount that the

customer wants to withdraw.
3. Update the balance to reflect the withdrawal if the amount of the balance is

more than the amount of the withdrawal.

Without using the FLD call, a program would issue a GU call to retrieve the
segment, then verify its contents with program logic, and finally issue a REPL call
to update the balance to reflect the withdrawal. If you use the FLD call with a root
SSA, you can retrieve the desired segment. The FLD call has the same format as
SSAs for other calls. If no SSA exists, the first segment in the MSDB or DEDB is
retrieved. You use the FLD/VERIFY to compare the BALANCE field to the amount of
the withdrawal. A FLD/CHANGE call can update the BALANCE field if the
comparison is satisfactory.

The segment retrieved by a FLD call is the same as can be retrieved by a GHU call.
After the FLD call, the position is lost. An unqualified GN call after a FLD call returns
the next segment in the current area.

Restriction: Do not concurrently delete or replace a call with length change in the
following circumstances:
v FLD call to any DEDB AREA
v GU call with VIEW=MSDB or VIEW=MSDBL to Root Only DEDB AREA

The application will ABEND U1026 or some segments may be skipped on a GN call.

Checking the contents of a field: FLD/VERIFY
A FLD/VERIFY call compares the contents of a specified field in a segment to the
value that you supply. The way that a FLD/VERIFY call compares the two depends
on the operator you supply.

Chapter 21. Processing Fast Path databases 327

|
|

|

|

|

When you supply the name of a field and a value for comparison, you can
determine if the value in the field is:
v Equal to the value you have supplied
v Greater than the value you have supplied
v Greater than or equal to the value you have supplied
v Less than the value you have supplied
v Less than or equal to the value you have supplied
v Not equal to the value you have supplied

After IMS performs the comparison that you have asked for, it returns a status
code (in addition to the status code in the PCB) to tell you the results of the
comparison.

You specify the name of the field and the value that you want its value compared
to in a field search argument, or FSA. The FSA is also where IMS returns the status
code. You place the FSA in an I/O area before you issue a FLD call, and then you
reference that I/O area in the call—just as you do for an SSA in a DL/I call. An
FSA is similar to an SSA in that you use it to give information to IMS about the
information you want to retrieve from the database. An FSA, however, contains
more information than an SSA. The table below shows the structure and format of
an FSA.

Table 52. FSA structure

FSA Component Field Length

FLD NAME 8

SC 1

OP 1

FLD VALUE Variable

CON 1

The five fields in an FSA are:

Field Name (FLD Name)
This is the name of the field that you want to update. The field must be
defined in the DBD.

Status Code (SC)
This is where IMS returns the status code for this FSA. If IMS successfully
processes the FSA, it returns a blank status code. If IMS fails to process the
FSA, it returns a FE status code to the PCB to indicate a nonblank status code
in the FSA and returns a nonblank FSA status code. The FSA status codes that
IMS might return to you on a FLD/VERIFY call are:

B The length of the data supplied in the field value is invalid, or the
segment length of the data in the database is too small to contain the
field length specified in the DBD.

D The verify check is unsuccessful. In other words, the answer to your
query is no.

E The field value contains invalid data. The data you supplied in this
field is not the same type of data that is defined for this field in the
DBD.

H The requested field is not found in the segment.

328 Application Programming

Operator (OP)
This tells IMS how you want the two values compared. For a FLD/VERIFY call,
you can specify:

E Verify that the value in the field is equal to the value you have
supplied in the FSA.

G Verify that the value in the field is greater than the value you have
supplied in the FSA.

H Verify that the value in the field is greater than or equal to the value
you have supplied in the FSA.

L Verify that the value in the field is less than the value you have
supplied in the FSA.

M Verify that the value in the field is less than or equal to the value you
have supplied in the FSA.

N Verify that the value in the field is not equal to the value you have
supplied in the FSA.

Field Value (FLD Value)
This area contains the value that you want IMS to compare to the value in the
segment field. The data that you supply in this area must be the same type of
data in the field you have named in the first field of the FSA. The five types of
data are: hexadecimal, packed decimal, alphanumeric (or a combination of data
types), binary fullword, and binary halfword. The length of the data in this
area must be the same as the length that is defined for this field in the DBD.

Exceptions:

v If you are processing hexadecimal data, the data in the FSA must be in
hexadecimal. This means that the length of the data in the FSA is twice the
length of the data in the field in the database. IMS checks the characters in
hexadecimal fields for validity before that data is translated to database
format. (Only 0 to 9 and A to F are valid characters.)

v For packed-decimal data, you do not need to supply the leading zeros in the
field value. This means that the number of digits in the FSA might be less
than the number of digits in the corresponding database field. The data that
you supply in this field must be in a valid packed-decimal format and must
end in a sign digit.

When IMS processes the FSA, it does logical comparisons for alphanumeric
and hexadecimal fields; it does arithmetic comparisons for packed decimal and
binary fields.

Connector (CON)
If this is the only or last FSA in this call, this area contains a blank. If another
FSA follows this one, this area contains an asterisk (*). You can include several
FSAs in one FLD call, if all the fields that the FSAs reference are in the same
segment. If you get an error status code for a FLD call, check the status codes
for each of the FSAs in the FLD call to determine where the error is.

When you have verified the contents of a field in the database, you can change the
contents of that field in the same call. To do this, supply an FSA that specifies a
change operation for that field.

Changing the contents of a field: FLD/CHANGE
To indicate to IMS that you want to change the contents of a particular field, use
an FSA, just as you do in a FLD/VERIFY call

Chapter 21. Processing Fast Path databases 329

. The difference is in the operators that you can specify and the FSA status codes
that IMS can return to you after the call. To use FLD/CHANGE:
v You specify the name of the field that you want to change in the first field of the

FSA (Field Name).
v You specify an operator in the third field of the FSA (Operator), which indicates

to IMS how you want to change that field.
v You specify the value that IMS must use to change the field in the last area of

the FSA (Field Value).

By specifying different operators in a FLD/CHANGE call, you change the field in the
database in these ways:
v Add the value supplied in the FSA to the value in the field.
v Subtract the value supplied in the FSA from the value in the field.
v Set the value in the database field to the value supplied in the FSA.

You code these operators in the FSA with these symbols:
v To add: +
v To subtract: -
v To set the field equal to the new value: =

You can add and subtract values only when the field in the database contains
arithmetic (packed-decimal, binary-fullword, or binary-halfword) data.

The status codes you can receive in a FLD/CHANGE FSA are:

A Invalid operation; for example, you specified the + operator for a field that
contains character data.

B Invalid data length. The data you supplied in the FSA is not the length
that is defined for that field in the DBD.

C You attempted to change the key field in the segment. Changing the key
field is not allowed.

E Invalid data in the FSA. The data that you supplied in the FSA is not the
type of data that is defined for this field in the DBD.

F You tried to change an unowned segment. This status code applies only to
related MSDBs.

G An arithmetic overflow occurred when you changed the data field.

H The requested field was not found in the segment.

Example of using FLD/VERIFY and FLD/CHANGE
Using the bank account segment from the "Bank Account Example" database,
assume that a customer wants to withdraw $100 from a checking account. The
checking account number is 24056772. To find out whether the customer can
withdraw this amount, you must check the current balance. If the current balance
is greater than $100, you want to subtract $100 from the balance, and add 1 to the
transaction count in the segment.

You can do all of this processing by using one FLD call and three FSAs. The three
FSAs are described:
1. Verify that the value in the BALANCE field is greater than or equal to $100. For

this verification, you specify the BALANCE field, the H operator for greater

330 Application Programming

than or equal to, and the amount. The amount is specified without a decimal
point. Field names less than eight characters long must be padded with trailing
blanks to equal eight characters. You also have to leave a blank between the
field name and the operator for the FSA status code. This FSA looks like this:
BALANCE��
H10000*

The last character in the FSA is an asterisk, because this FSA will be followed
by other FSAs.

2. Subtract $100 from the value in the BALANCE field if the first FSA is
successful. If the first FSA is unsuccessful, IMS does not continue processing. To
subtract the amount of the withdrawal from the amount of the balance, you use
this FSA:
BALANCE��
-10000*

Again, the last character in the FSA is an asterisk, because this FSA is followed
by a third FSA.

3. Add 1 to the transaction count for the account. To do this, use this FSA:
TRANCNT��
001�

In this FSA, the last character is a blank (�), because this is the last FSA for this
call.
When you issue the FLD call, you do not reference each FSA individually; you
reference the I/O area that contains all of them.

Commit-point processing in MSDBs and DEDBs
Your existing application programs can use either the MSDB commit view or the
default DEDB commit view.

MSDB commit view

When you update a segment in an MSDB, IMS does not apply your updates
immediately. Updates do not go into effect until your program reaches a commit
point.

As a result of the way updates are handled, you can receive different results if you
issue the same call sequence against a full-function database or a DEDB and an
MSDB. For example, if you issue GHU and REPL calls for a segment in an MSDB,
and then issue another Get call for the same segment in the same commit interval,
the segment that IMS returns to you is the “old” value, not the updated one. If,
however, you issue the same call sequence for a segment in a full-function
database or DEDB, the second Get call returns the updated segment.

When the program reaches a commit point, IMS also reprocesses the FLD
VERIFY/CHANGE call. If the VERIFY test passes, the change is applied to the
database. If the VERIFY test fails, the changes made since the previous commit
point are undone, and the transaction is reprocessed.

Chapter 21. Processing Fast Path databases 331

DEDBs with MSDB commit view

To use the MSDB commit view for DEDBs, specify VIEW=MSDB on the PCB
statement; if you do not specify VIEW=MSDB, the DEDB uses the default DEDB
commit view. So no changes to any existing application programs are required in
order to migrate your MSDBs to DEDBs.

Assume that you specify VIEW=MSDB in the PCB and an application program issues
GHU and REPL calls to a DEDB followed by another GHU call for the segment in the
same commit interval. Then the application program receives the old value of the
data and not the new value from the REPL call. If you do not specify VIEW=MSDB,
your application program receives the new updated values of the data, just as you
expect for a DEDB or other DL/I database.

You can specify VIEW=MSDB for any DEDB PCB. If it is specified for a non-DEDB
database, you receive message DFS0904 during ACBGEN.

If you issue a REPL call with a PCB that specifies VIEW=MSDB, the segment must
have a key. This requirement applies to any segment in a path if command code
'D' is specified. Otherwise, the AM status code is returned. See IMS Version 14
Messages and Codes, Volume 4: IMS Component Codes for information about that
status code.

The following code shows an example of a PCB that specifies the VIEW option.

Sample PCB specifying View=MSDB
PCB , *00000100

TYPE=DB, *00000200
NAME=DEDBJN21, *00000300
PROCOPT=A, *00000400
KEYLEN=30, *00000500
VIEW=MSDB, *00000600
POS=M 00000700

Related reference:
“Issuing checkpoints” on page 287
“Commit-point processing in a DEDB” on page 350

Processing DEDBs (IMS and CICS with DBCTL)
You can use subset pointers, secondary indexes, the POS call, data locking, and the
P and H processing options in your application program to process DEDBs.

Processing Fast Path DEDBs with subset pointer command
codes

Subset pointers and the command codes you use with them are optimization tools
that significantly improve the efficiency of your program when you need to
process long segment chains.

Subset pointers are a means of dividing a chain of segment occurrences under the
same parent into two or more groups or subsets. You can define as many as eight
subset pointers for any segment type. You then define the subset pointers from
within an application program. Each subset pointer points to the start of a new
subset. For example, in the following topic, suppose you define one subset pointer
that divides the last three segment occurrences from the first four. Your program
can then refer to that subset pointer through command codes and directly retrieve

332 Application Programming

the last three segment occurrences.

You can use subset pointers at any level of the database hierarchy, except at the
root level. If you try to use subset pointers at the root level, they are ignored.

The following figures show some of the ways you can set subset pointers. Subset
pointers are independent of one another, which means that you can set one or
more pointers to any segment in the chain. For example, you can set more than
one subset pointer to a segment, as shown in the following figure.

You can also define a one-to-one relationship between the pointers and the
segments, as shown in the following figure.

Figure 65. Processing a long chain of segment occurrences with subset pointers

Figure 66. Examples of setting subset pointers

Chapter 21. Processing Fast Path databases 333

The following figure shows how the use of subset pointers divides a chain of
segment occurrences under the same parent into subsets. Each subset ends with
the last segment in the entire chain. For example, the last segment in the subset
that is defined by subset pointer 1 is B7.

Before you use subset pointers

For your program to use subset pointers, the pointers must be defined in the DBD
for the DEDB and in your program's PSB:
v In the DBD, you specify the number of pointers for a segment chain. You can

specify as many as eight pointers for any segment chain.
v In the PSB, you specify which pointers your program is to use. Define this on

the SENSEG statement. (Each pointer is defined as an integer from 1 to 8.) Also,
indicate on the SENSEG statement whether your program can set the pointers it
uses. If your program has read sensitivity, it cannot set pointers but can only

Figure 67. Additional examples of setting subset pointers

Figure 68. How subset pointers divide a chain into subsets

334 Application Programming

retrieve segments using subset pointers that are already set. If your program has
update sensitivity, it can also update subset pointers by using the S, W, M, and
Z command codes.

After the pointers are defined in the DBD and the PSB, an application program can
set the pointers to segments in a chain. When an application program finishes
executing, the subset pointers used by that program remain as they were set by the
program; they are not reset.

Designating subset pointers

To use subset pointers in your program, you must know the numbers for the
pointers as they were defined in the PSB. When you use the subset pointer
command codes, specify the number of each subset pointer you want to use
followed by the command code. For example, you use R3 to indicate that you
want to retrieve the first segment occurrence in the subset defined by subset
pointer 3. No default exists, so if you do not include a number between 1 and 8,
IMS considers your SSA invalid and returns an AJ status code.

Subset pointer command codes

To take advantage of subsets, application programs use five command codes. The
R command code retrieves the first segment in a subset. The following 4 command
codes, which are explained in the topic "DEDB command codes for DL/I" in IMS
Version 14 Application Programming APIs, redefine subsets by modifying the subset
pointers:

Z Sets a subset pointer to 0.

M Sets a subset pointer to the segment following the current segment.

S Unconditionally sets a subset pointer to the current segment.

W Conditionally sets a subset pointer to the current segment.

Before your program can set a subset pointer, it must establish a position in the
database. A call must be fully satisfied before a subset pointer is set. The segment a
pointer is set to depends on your current position at the completion of the call. If a
call to retrieve a segment is not completely satisfied and a position is not
established, the subset pointers remain as they were before the call was made. You
can use subset pointer command codes in either an unqualified SSA or a qualified
SSA. To use a command code in a call with an unqualified SSA, use the command
code along with the number of the subset pointer you want, after the segment
name. This is shown in the following figure.

Table 53. Unqualified SSA with subset pointer command code

Seg Name * Cmd Code Ssptr. b

8 1 Variable Variable 1

To use a subset pointer command code with a qualified SSA, use the command
code and subset pointer number immediately before the left parenthesis of the
qualification statement, as shown in the following figure.

Table 54. Qualified SSA with subset pointer command code

Seg Name * Cmd Code Ssptr. (Fld Name R.O. Fld Value)

8 1 Variable Variable 1 8 2 Variable 1

Chapter 21. Processing Fast Path databases 335

Inserting segments in a subset

When you use the R command code to insert an unkeyed segment in a subset, the
new segment is inserted before the first segment occurrence in the subset.
However, the subset pointer is not automatically set to the new segment
occurrence.

For example, the following call inserts a new B segment occurrence in front of
segment B5, but does not set subset pointer 1 to point to the new B segment
occurrence:
ISRT Abbbbbbb
(Akeybbbb=bA1)
Bbbbbbbb
*R1

To set subset pointer 1 to the new segment, you use the S command code along
with the R command code, as shown in the following example:
ISRT Abbbbbbb
(Akeybbbb=bA1)
Bbbbbbbb

*R1S1

If the subset does not exist (subset pointer 1 is set to 0), the segment is added to
the end of the segment chain.

Deleting the segment pointed to by a subset pointer

If you delete the segment pointed to by a subset pointer, the subset pointer points
to the next segment occurrence in the chain. If the segment you delete is the last
segment in the chain, the subset pointer is set to 0.

Combining command codes

You can use the S, M, and W command codes with other command codes, and you
can combine subset pointer command codes with each other, as long as they do
not conflict. For example, you can use R and S together, but you cannot use S and
Z together because their functions conflict. If you combine command codes that
conflict, IMS returns an AJ status code to your program.

You can use one R command code for each SSA and one update command code
(Z, M, S, or W) for each subset pointer.
Related concepts:
“SSAs and command codes” on page 189
“Calls with dependent segments for DEDBs” on page 351

Subset pointer status codes
If you make an error in an SSA that contains subset pointer command codes, IMS
can return either of these status codes to your program.

AJ The SSA used an R, S, Z, W, or M command code for a segment that does
not have subset pointers defined in the DBD.

The subset command codes included in the SSA are in conflict. For
example, if one SSA contains an S command code and a Z command code
for the same subset pointer, IMS returns an AJ status code. S indicates that
you want to set the pointer to current position; Z indicates that you want
to set the pointer to 0. You cannot use these command codes in one SSA.

336 Application Programming

The SSA includes more than one R command code.

The pointer number following a subset pointer command code is invalid.
You either did not include a number, or you included an invalid character.
The number following the command code must be between 1 and 8.

AM The subset pointer referenced in the SSA is not specified in the program's
PSB. For example, if your program's PSB specifies that your program can
use subset pointers 1 and 4, and your SSA references subset pointer 5, IMS
returns an AM status code.

Your program tried to use a command code that updates the pointer (S, W,
or M), but the program's PSB did not specify pointer-update sensitivity.

Your program attempted to open a GSAM database without specifying an
IOAREA.

Processing DEDBs with a secondary index
Application programs can process a secondary index for DEDB databases of either
HISAM or SHISAM database structures.

A HISAM secondary index database or a SHISAM secondary index database offers
sequential key secondary index support.

A DEDB database with sequential dependent (SDEP) segments can have a
secondary index database. SDEP segments cannot be used as an index field.
Therefore, a SDEP segment cannot have LCHILD or XDFLD statements defined
under its SEGM statement. Because SDEP segments are transient data and they are
deleted using SDEP SCAN and SDEP DELETE utilities, Fast Path secondary index
support for SDEP segments is restricted; that is, a SDEP segment cannot be a target
segment or a source segment for a secondary index database. When the target
segment is a root segment, SDEP segments can be returned for a DEDB database
that is accessed through its alternate sequence.

Fast Path secondary indexing supports both unique and non-unique keys. A
HISAM secondary index database offers unique and non-unique key support, and
a SHISAM secondary index offers unique key support only.

A HISAM secondary index database supports both unique and non-unique keys.
For a HISAM secondary index database, the non-unique key support is provided
using an ESDS overflow data set. Duplicate keys are stored in Last-In First-Out
(LIFO) order. The first inserted duplicate key is stored in the KSDS data set and
the remaining duplicate keys are stored in the ESDS overflow data set in LIFO
order.

The target segment is in the primary DEDB database. The target segment is the
segment that an application program needs to retrieve. The target segment can be
at any one of the 15 levels in a primary DEDB database. SDEP segments cannot be
a target segment or a source segment for a secondary index database.

There are a maximum of 32 secondary indexes per segment and 255 secondary
indexes per DEDB database.

A Fast Path secondary index database can be accessed as:
v Its own database.

Chapter 21. Processing Fast Path databases 337

v A secondary index to its primary DEDB database, with an option to have single
(the default) or multiple (by DEDB implementation only) secondary index
segments.

v Fast Path secondary index user partitions.
v An option to suppress index maintenance for BMP applications.
v An option to access Fast Path secondary index user partition databases as one

logical separate database.

Fast Path secondary indexes provide support for boolean qualification that are
similar to full-function DL/I calls. The boolean operators supported are:
v Logical AND (coded * or &)
v Logical OR (coded + or |)

Restrictions

The restrictions that apply to processing DEDBs with a secondary index are:
v A DEDB database with sequential dependent (SDEP) segments can have a

secondary index database, but SDEP segments cannot be used as an index field.
Therefore, a SDEP segment cannot have LCHILD or XDFLD statements defined
under its SEGM statement. Because SDEP segments are transient data and they
are deleted using SDEP SCAN and SDEP DELETE utilities, Fast Path secondary
index support for SDEP segments is restricted; that is, a SDEP segment cannot
be a target segment or a source segment for a secondary index database.

v Fast Path secondary indexing does not support shared secondary indexes.
Multiple secondary index segments support is only for DEDB implementation,
and is not the same as shared secondary indexes support.

v A Fast Path secondary index database supports only symbolic pointers. There is
no direct pointer support. Using symbolic pointers for indexed segments, a Fast
Path secondary index database is not impacted when its primary DEDB database
is reorganized.

v A qualified GU/GN segment name with SSA using the primary key field for
target=root segment is supported when a primary DEDB database is accessed
through its secondary index using a PCB with the PROCSEQD= parameter.

v A qualified GU/GN segment name with SSA using the primary key field for
target=dependent segment is not supported. An AC status code is returned for
the qualified Get call when a primary DEDB database is accessed through its
secondary index using a PCB with the PROCSEQD= parameter.

v The independent AND (#) boolean operator is not supported.
v No boolean support is provided for SSAs with XDFLD and fields from the target

segment. Boolean support is only for XDFLDs.

Example 1 of accessing a primary DEDB database that uses a
Fast Path secondary index

DL/I calls to access COURSE segment on a primary DEDB database through its
secondary index using GU and GN DL/I calls. For simplicity, assume that there is
only one segment instance for each dependent segment.

PCB2NDX is the PCB with the PROCSEQD= parameter defined to use the Fast
Path secondary index database, NAMESXDB. The COURSE segment is the target
segment and it is a root segment. The source segment is the same as the target
segment.

338 Application Programming

PCB2NDX
PCB TYPE=DB,DBDNAME=EDUCDB,PROCOPT=GR,KEYLEN=100,

PROCSEQD=NAMESXDB
SENSEG NAME=COURSE,PARENT=0 <<- (target seg=root)
SENSEG NAME=CLASS,PARENT=COURSE
SENSEG NAME=INSTRUCT,PARENT=CLASS
SENSEG NAME=STUDENT,PARENT=CLASS
PSBGEN PSBNAME=NAMEXPSB,LANG=COBOL
END

PCB PCB2NDX
GU COURSE(NAMEINDX=CHEMISTRY)
GN COURSE

GU COURSE returns the COURSE segment for CHEMISTRY in the primary DEDB
database using the secondary index key NAMEINDX=CHEMISTRY.

The key of the pointer segment, CHEMISTRY, is returned in the key feedback area.

GN COURSE returns the COURSE segment in the primary DEDB database that is
pointed by the next pointer segment after segment CHEMISTRY in the Fast Path
secondary index database, NAMESXDB.

The key of the next pointer segment after CHEMISTRY (the next sequential key
after the secondary index key CHEMISTRY) in the Fast Path secondary index
database, NAMESXDB, is returned in the key feedback area.

Example 2 of accessing a primary DEDB database that uses a
Fast Path secondary index

DL/I calls to access COURSE segment on a primary DEDB database through its
secondary index using GU and GN DL/I calls. For simplicity, assume that there is
only one segment instance for each dependent segment.

PCB2NDX is the PCB with the PROCSEQD= parameter defined to use the Fast
Path secondary index database, NAMESXDB. The COURSE segment is the target
segment and it is a root segment. The source segment is the same as the target
segment.
PCB PCB2NDX
GU COURSE(NAMEINDX=CHEMISTRY)
GN 1st GN
GN 2nd GN
GN 3rd GN
GN 4th GN

GU COURSE returns the COURSE segment for CHEMISTRY in the primary DEDB
database using the secondary index key NAMEINDX=CHEMISTRY.

The key of the pointer segment, CHEMISTRY, is returned in the key feedback area.

The first GN call returns the segment of the DEDB inverted structure of the
CHEMISTRY COURSE segment in the primary DEDB database. Because the
COURSE segment is the target segment and it is a root segment, all segments in
the physical structure are accessible as defined in PCB PCB2INDX. GN returns the
CLASS segment in the database record under the CHEMISTRY COURSE segment
that was retrieved by the GU call in the primary DEDB database.

The key of the pointer segment, CHEMISTRY, concatenated with the key of the
CLASS segment under the CHEMISTRY COURSE segment, is returned in the key
feedback area.

Chapter 21. Processing Fast Path databases 339

The second GN call returns the INSTRUCT segment in the database record under
the CHEMISTRY COURSE segment

The key of the pointer segment, CHEMISTRY, concatenated with the key of the
CLASS segment and the key of the INSTRUCT segment under the CHEMISTRY
COURSE segment, is returned in the key feedback area.

The third GN call returns the STUDENT segment in the database record under the
CHEMISTRY COURSE segment.

The key of the pointer segment, CHEMISTRY, concatenated with the key of the
CLASS segment and the key of the STUDENT segment under the CHEMISTRY
COURSE segment, is returned in the key feedback area.

Because the STUDENT segment is the last segment in the COURSE database
record in the primary DEDB database, the fourth GN call returns the COURSE
segment in the primary DEDB database using the next secondary index key after
the CHEMISTRY segment in the secondary index database, NAMESXDB.

The key of the next pointer segment after CHEMISTRY (the next sequential key
after the secondary index key CHEMISTRY) in the Fast Path secondary index
database, NAMESXDB, is returned in the key feedback area.

Example 3 of accessing a primary DEDB database that uses a
Fast Path secondary index

DL/I calls to access COURSE segment on a primary DEDB database through its
secondary index using GU and GNP DL/I calls. For simplicity, assume that there is
only one segment instance for each dependent segment.

PCB2NDX is the PCB with the PROCSEQD= parameter defined to use the Fast
Path secondary index database, NAMESXDB. The COURSE segment is the target
segment and it is a root segment. The source segment is the same as the target
segment.
PCB PCB2NDX
GU COURSE(NAMEINDX=CHEMISTRY)
GNP 1st GNP
GNP 2nd GNP
GNP 3rd GNP
GNP 4th GNP

GU COURSE returns the COURSE segment for CHEMISTRY in the primary DEDB
database using the secondary index key NAMEINDX=CHEMISTRY.

The key of the pointer segment, CHEMISTRY, is returned in the key feedback area.

The first GNP call returns the first segment under the DEDB inverted structure of
the CHEMISTRY COURSE segment in the primary DEDB database. Because the
COURSE segment is the target segment and it is a root segment, all segments in
the physical structure are accessible as defined in PCB2INDX. GNP returns the
CLASS segment in the database record under the CHEMISTRY COURSE segment
that was retrieved by the GU call in the primary DEDB database.

The key of the pointer segment, CHEMISTRY, concatenated with the key of the
CLASS segment under the CHEMISTRY COURSE segment, is returned in the key
feedback area.

340 Application Programming

The second GNP call returns the INSTRUCT segment in the database record under
the CHEMISTRY COURSE segment.

The key of the pointer segment, CHEMISTRY, concatenated with the key of the
CLASS segment and the key of the INSTRUCT segment under the CHEMISTRY
COURSE segment, is returned in the key feedback area.

The third GNP call returns the STUDENT segment in the database record under
the CHEMISTRY COURSE segment.

The key of the pointer segment, CHEMISTRY, concatenated with the key of the
CLASS segment and the key of the STUDENT segment under the CHEMISTRY
COURSE segment, is returned in the key feedback area.

Since the STUDENT segment is the last segment in the COURSE database record
in the primary DEDB database, the fourth GNP call returns a GE status code.

Example 4 of accessing a primary DEDB database that uses a
Fast Path secondary index

DL/I calls to access INSTRUCT segment on a primary DEDB database through its
secondary index using GU and GN DL/I calls. For simplicity, assume that there is
only one segment instance for each dependent segment.

PCB3NDX is the PCB with the PROCSEQD= parameter defined to use the Fast
Path secondary index database, INSTSXDB. The CLASS segment is the target
segment and it is not a root segment. The source segment (INSTRUCT segment) is
not the same as the target segment (CLASS segment).

Although there are multiple LCHILD/XDFLD pairs in the CLASS SEGM
statement, only one is used in this example.

DBDGEN excerpt for CLASS and INSTRUCT SEGM statements in the EDUCDB
DEDB DBD:
SEGM NAME=CLASS,BYTES=50,PARENT=COURSE
FIELD NAME=(CLASSNO,SEQ,U),BYTES=4,START=7
FIELD NAME=CLASNAME,BYTES=10,START=15

LCHILD NAME=(CLASXSEG,CLASSCDB),PTR=SYMB
XDFLD NAME=CLASINDX,SRCH=CLASNAME

LCHILD NAME=(INSTXSEG,INSTSXDB),PTR=SYMB
XDFLD NAME=INSTINDX,SEGMENT=INSTRUCT,SRCH=INSTNAME
SEGM NAME=INSTRUCT,BYTES=50,PARENT=CLASS
FIELD NAME=(INSTNO,SEQ,U),BYTES=6,START=1
FIELD NAME=INSTPHNO,BYTES=10,START=11
FIELD NAME=INSTNAME,BYTES=20,START=21

...

PSBGEN Definition for PCB3NDX:

When the target segment is not a root segment, all direct parents of the target
segment from the root segment must be defined in the PCB with the PROCSEQD
parameter. Only the direct parents segments along the physical path from the root
segment to the target segment and all child segments of the target segment are
accessible when the target segment is not a root segment. All sibling segments of
CLASS are not accessible. The coding sequence of the mandatory SENSEGs must

Chapter 21. Processing Fast Path databases 341

be in the sequence of the physical path of the segments (for example, from the
physical root to the target) even though the segments are retrieved always in
logical sequence (for example, from the target or logical root to the physical root).
PCB3NDX
PCB TYPE=DB,DBDNAME=EDUCDB,PROCOPT=GR,KEYLEN=100,

PROCSEQD=INSTSXDB
SENSEG NAME=COURSE,PARENT=0 <<- mandatory SENSEG
SENSEG NAME=CLASS,PARENT=COURSE <<- mandatory SENSEG (target seg)
SENSEG NAME=INSTRUCT,PARENT=CLASS <<- optional SENSEG
PSBGEN PSBNAME=NAMEXPSB,LANG=COBOL
END

PCB PCB3NDX
GU CLASS (INSTINDX=TOMJONES)
GN 1st GN
GN 2nd GN
GN 3rd GN

GU CLASS returns the CLASS segment for the instructor teaching the class, in the
primary DEDB database using the secondary index key INSTINDX=TOMJONES.

The key of the pointer segment, TOMJONES, is returned in the key feedback area.

The first GU call returns the target segment of the primary DEDB database.
Because the target segment (CLASS) is not a root segment, the subsequent GN
returns the next segment in the DEDB inverted structure of the CLASS segment
retrieved by the GU call in the primary DEDB database. For example, GN returns
the COURSE segment which is a direct physical parent and also a logical child of
the CLASS segment teaching the CHEMISTRY COURSE segment in the DEDB
inverted structure.

The key of the pointer segment, TOMJONES, concatenated with the key of the
COURSE segment, is returned in the key feedback area.

The second GN call returns the INSTRUCT segment in the database record, which
is a logical child of the CLASS segment and a logical sibling of the COURSE
segment in the DEDB inverted structure.

The key of the pointer segment, TOMJONES, concatenated with the key of the
INSTRUCT segment is returned in the key feedback area.

Because no child or sibling segment is defined for the INSTRUCT segment in PCB
PCB3NDX, the third GN call returns the CLASS segment in the primary DEDB
database using the next segment in the secondary index database after
INSTINDX=TOMJONES.

The key of the next pointer segment after TOMJONES (the next sequential key
after the secondary index key TOMJONES) in the Fast Path secondary index
database, INSTSXDB, is returned in the key feedback area.

Example 5 of accessing a primary DEDB database that uses a
Fast Path secondary index

DL/I calls to access INSTRUCT segment on a primary DEDB database through its
secondary index using GU and GNP DL/I calls. For simplicity, assume that there is
only one segment instance for each dependent segment.

342 Application Programming

PCB3NDX is the PCB with the PROCSEQD= parameter defined to use the Fast
Path secondary index database, INSTSXDB. The CLASS segment is the target
segment and it is not a root segment. The source segment (INSTRUCT segment) is
not the same as the target segment (CLASS segment).

Although there are multiple LCHILD/XDFLD pairs in the CLASS SEGM
statement, only one is used in this example.

DBDGEN excerpt for CLASS and INSTRUCT SEGM statements in the EDUCDB
DEDB DBD:
...
SEGM NAME=CLASS,BYTES=50,PARENT=COURSE
FIELD NAME=(CLASSNO,SEQ,U),BYTES=4,START=7)
FIELD NAME=CLASNAME,BYTES=10,START=15

LCHILD NAME=(CLASXSEG,CLASSXDB),PTR=SYMB
XDFLD NAME=CLASINDX,SRCH=CLASNAME

LCHILD NAME=(INSTXSEG,INSTSXDB),PTR=SYMB
XDFLD NAME=INSTINDX,SEGMENT=INSTRUCT,SRCH=INSTNAME

SEGM NAME=INSTRUCT,BYTES=50,PARENT=CLASS
FIELD NAME=(INSTNO,SEQ,U),BYTES=6,START=1
FIELD NAME=INSTPHNO,BYTES=10,START=11
FIELD NAME=INSTNAME,BYTES=20,START=21

...

PSBGEN Definition for PCB3NDX:

When the target segment is not a root segment, all direct parents of the target
segment from the root segment must be defined in the PCB with the PROCSEQD
parameter. Only the direct parents segments along the physical path from the root
segment to the target segment and all child segments of the target segment are
accessible when the target segment is not a root segment.
PCB3NDX
PCB TYPE=DB,DBDNAME=EDUCDB,PROCOPT=GR,KEYLEN=100,

PROCSEQD=INSTSXDB
SENSEG NAME=COURSE,PARENT=0
SENSEG NAME=CLASS,PARENT=COURSE <<-- Target segment
SENSEG NAME=INSTRUCT,PARENT=CLASS
PSBGEN PSBNAME=NAMEXPSB,LANG=COBOL
END

PCB PCB3NDX
GU CLASS(INSTINDX=TOMJONES)
GNP 1st GNP
GNP 2nd GNP
GNP 3rd GNP

GU CLASS returns the CLASS segment for the instructor teaching the particular
class in the primary DEDB database using the secondary index key
INSTINDX=TOMJONES.

The key of the pointer segment, TOMJONES, is returned in the key feedback area.

The first GU call returns the CLASS segment of the DEDB. Because the target
segment (CLASS) is not a root segment, the first GNP returns the next segment in

Chapter 21. Processing Fast Path databases 343

the DEDB inverted structure. For example, the first GNP returns the COURSE
segment which is a direct physical parent, but a direct logical child, of the CLASS
segment in the DEDB inverted structure.

The key of the pointer segment, TOMJONES, concatenated with the key of the
COURSE segment, is returned in the key feedback area.

The second GNP call returns the INSTRUCT segment in the database record,
which is a logical child of CLASS and a logical sibling of the COURSE segment in
the inverted DEDB structure hierarchy.

The key of the pointer segment, TOMJONES, concatenated with the key of the
INSTRUCT segment is returned in the key feedback area.

Because there is no child or sibling segment defined for the INSTRUCT segment in
PCB PCB3NDX, the third GNP call under the CLASS segment with the secondary
index key of TOMJONES returns a GE status code.

Example 6 of accessing a primary DEDB database that uses a
Fast Path secondary index

DL/I calls to access CLASS segment on a primary DEDB database through its
secondary index using GU and GN DL/I calls. For simplicity, assume that there is
only one segment instance for each dependent segment.

PCB4NDX is the PCB with the PROCSEQD= parameter defined to use the Fast
Path secondary index database, CLASSXDB. The CLASS segment is the target
segment and it is not a root segment. The source segment is the same as the target
segment.

PSBGEN Definition for PCB4NDX:

When the target segment is not a root segment, all direct parents of the target
segment from the root segment must be defined in the PCB with the PROCSEQD
parameter. Only the direct parents segments along the physical path from the root
segment to the target segment and all child segments of the target segment are
accessible when the target segment is not a root segment.
PCB4NDX
PCB TYPE=DB,DBDNAME=EDUCDB,PROCOPT=GR,KEYLEN=100,

PROCSEQD=CLASSXDB
SENSEG NAME=COURSE,PARENT=0
SENSEG NAME=CLASS,PARENT=COURSE <<-- Target segment
SENSEG NAME=INSTRUCT,PARENT=CLASS
SENSEG NAME=STUDENT,PARENT=CLASS
PSBGEN PSBNAME=NAMEXPSB,LANG=COBOL
END

PCB PCB4NDX
GU CLASS(CLASINDX=CHEM1A)
GN 1st GN
GN 2nd GN
GN 3rd GN
GN 4th GN

GU CLASS returns the CLASS segment for the class name, CHEM1A, in the
primary DEDB database using the secondary index key INSTINDX=CHEM1A.

The key of the pointer segment, CHEM1A, is returned in the key feedback area.

344 Application Programming

The first GN call returns the COURSE segment of the DEDB inverted structure of
the CHEM1A CLASS segment in the primary DEDB database. Because the CLASS
segment is the target segment and it is not a root segment, GN returns the next
segment in the DEDB inverted structure of the CLASS segment retrieved by the
GU call in the primary DEDB database. GN returns the COURSE segment for
CHEMISTRY which is a direct parent of the CHEM1A CLASS segment in the
DEDB inverted structure.

The key of the pointer segment, CHEM1A, concatenated with the primary key of
the COURSE segment, is returned in the key feedback area.

The second GN call returns the INSTRUCT segment in the database record under
CHEM1A CLASS segment.

The key of the pointer segment, CHEM1A, concatenated with the key of the
INSTRUCT segment under the CHEM1A CLASS segment, is returned in the key
feedback area.

The third GN call returns the STUDENT segment in the database record under
CHEM1A CLASS segment.

The key of the pointer segment, CHEM1A, concatenated with the key of the
STUDENT segment under the CHEM1A CLASS segment, is returned in the key
feedback area.

Because the STUDENT segment is the last segment for the CLASS segment in the
database record, the fourth GN call returns the CLASS segment in the primary
DEDB database using the next secondary index key after the CHEM1A segment in
the secondary index database, CLASINDX.

The key of the next pointer segment after CHEM1A (the next sequential key after
the secondary index key CHEM1A) in the Fast Path secondary index database,
CLASSXDB, is returned in the key feedback area.

Example 7 of accessing a primary DEDB database that uses a
Fast Path secondary index

DL/I calls to access class name on a primary DEDB database through its secondary
index using GU and GN DL/I calls. For simplicity, assume that there is only one
segment instance for each dependent segment.

PCB4NDX is the PCB with the PROCSEQD= parameter defined to use the Fast
Path secondary index database, CLASSXDB. The CLASS segment is the target
segment and it is a not root segment. The source segment is the same as the target
segment.
PCB PCB4NDX
GU CLASS(CLASINDX=CHEM1A)
GN CLASS

GU CLASS returns the CLASS segment for CHEM1A in the primary DEDB
database using the secondary index key NAMEINDX=CHEM1A.

The key of the pointer segment, CHEM1A, is returned in the key feedback area.

Chapter 21. Processing Fast Path databases 345

GN CLASS returns the CLASS segment in the primary DEDB database that is
pointed to by the next pointer segment after segment CHEM1A in the Fast Path
secondary index database, CLASSXDB.

The key of the next pointer segment after CHEM1A (the next sequential key after
the secondary index key CHEM1A) in the Fast Path secondary index database,
CLASSXDB, is returned in the key feedback area.

Example 8 of accessing a primary DEDB database that uses a
Fast Path secondary index

DL/I calls to access the class name on a primary DEDB database through its
secondary index using GU and GN DL/I calls and C command code. For
simplicity, assume that there is only one segment instance for each dependent
segment.

PCB4NDX is the PCB with the PROCSEQD= parameter defined to use the Fast
Path secondary index database, CLASSXDB. The CLASS segment is the target
segment and it is a not root segment. The source segment is the same as the target
segment.
PCB PCB4NDX
GU INSTRUCT *C (CHEM1AI12345)
GN 1st GN
GN 2nd GN

GU INSTRUCT returns the INSTRUCT segment for instructor number, I12345,
under the CLASS segment for class name, CHEM1A.

The key of the pointer segment, CHEM1A, concatenated with the key of
INSTRUCT segment, I12345, is returned in the key feedback area.

The first GN call returns the STUDENT segment of the DEDB inverted structure of
the CHEM1A CLASS segment in the primary DEDB database. Because the CLASS
segment is the target segment and it is not a root segment, GN returns the next
segment in the DEDB inverted structure of the INSTRUCT segment retrieved by
the GU call in the primary DEDB database. GN returns the STUDENT segment
which is a child segment of the CHEM1A CLASS segment in the DEDB inverted
structure.

The key of the pointer segment, CHEM1A, concatenated with the key of the
STUDENT segment, is returned in the key feedback area.

Because the STUDENT segment is the last segment for the CLASS segment in the
database record, the second GN call returns the CLASS segment in the primary
DEDB database using the next secondary index key after the CHEM1A segment in
the secondary index database, CLASINDX.

The key of the next pointer segment after CHEM1A (the next sequential key after
the secondary index key CHEM1A) in the Fast Path secondary index database,
CLASSXDB, is returned in the key feedback area.

346 Application Programming

Example 9 of accessing a primary DEDB database that uses a
Fast Path secondary index

DL/I call to insert an INSTRUCT segment on a primary DEDB database through
its secondary index for the CLASS segment with a secondary index key of
CHEM1A.

PCB4NDX is the PCB with the PROCSEQD= parameter defined to use the Fast
Path secondary index database, CLASSXDB. The CLASS segment is the target
segment and it is a not root segment. The source segment is the same as the target
segment.
PCB4INDX
ISRT CLASS(CLASINDX = CHEM1A)

INSTRUCT I23456 JOHN SMITH

The ISRT call inserts an INSTRUCT segment with the key of I23456 under the
CLASS segment with a secondary index key of CHEM1A

The key of the pointer segment, CHEM1A, concatenated with the key of the
INSTRUCT segment, I23456, is returned in the key feedback area.
Related concepts:

Creating secondary indexes (Database Administration)
Related tasks:

Adding a secondary index to a DEDB (Database Administration)

Retrieving location with the POS call (for DEDB only)
Use the POS (Position) call to retrieve the location of a specific sequential
dependent segment; retrieve the location of the last-inserted sequential dependent
segment, its time stamp, and the IMS ID; or retrieve the time stamp of a sequential
dependent or Logical Begin. You can also use the POS call to tell the amount of
unused space within each DEDB area. For example, you can use the information
that IMS returns for a POS call to scan or delete the sequential dependent
segments for a particular time period.

The topic "POS Call" in IMS Version 14 Application Programming APIs explains how
you code the POS call and what the I/O area for the POS call looks like. If the area
that the POS call specifies is unavailable, the I/O area is unchanged, and the FH
status code is returned.

Locating a specific sequential dependent

When you have position on a particular root segment, you can retrieve the position
information and the area name of a specific sequential dependent of that root. If
you have a position established on a sequential dependent segment, the search
starts from that position. IMS returns the position information for the first
sequential dependent segment that satisfies the call. To retrieve this information,
issue a POS call with a qualified or unqualified SSA containing the segment name
of the sequential dependent. Current position after this kind of POS call is the same
place that it would be after a GNP call.

After a successful POS call, the I/O area contains:

LL A 2-byte field giving the total length of the data in the I/O area, in binary.

Chapter 21. Processing Fast Path databases 347

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_secindexes.htm#ims_secindexes
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_addsecindex_existingdedb.htm#ims_addsecindex_existingdedb

Area Name
An 8-byte field giving the ddname from the AREA statement.

Position
An 8-byte field containing the position information for the requested
segment.

Exception: If the sequential dependent segment that is the target of the POS
call is inserted in the same synchronization interval, no position
information is returned. Bytes 11-18 contain X'FF'. Other fields contain
normal data.

Unused CIs
A 4-byte field containing the number of unused CIs in the sequential
dependent part.

Unused CIs
A 4-byte field containing the number of unused CIs in the independent
overflow part.

Locating the last inserted sequential dependent segment

You can also retrieve the position information for the most recently inserted
sequential dependent segment of a given root segment. To do this, you issue a POS
call with an unqualified or qualified SSA containing the root segment as the
segment name. Current position after this type of call follows the same rules as
position after a GU call.

You can also retrieve the position of the SDEP, its time stamp, and the ID of the
IMS that owns the segment. To do this, you issue a POS call with a qualified SSA
and provide the keyword PCSEGTSP in position one of the I/O area as input to the
POS call. The keyword requests the POS call to return the position of the SDEP, its
time stamp, and the ID of the IMS that owns the segment.

Requirement: The I/O area must be increased in size to 42 bytes to allow for the
added data being returned. The I/O area includes a 2-byte LL field that is not
shown in the following table. This LL field is described after the following table.

Table 55. Qualified POS call: keywords and map of I/O area returned

Keyword word 0 word 1 word 2 word 3 word 4 word 5 word 6 word 7 word 8 word 9

<null> Field 1 Field 2 Field 3 Field 4 N/A N/A

PCSEGTSP Field 1 Field 2 Field 5 Field 6 Field 7

Field 1 Area name

Field 2 Sequential dependent location from qualified SSA

Field 3 Unused CIs in sequential dependent part

Field 4 Unused CIs in independent overflow part

Field 5 Committed sequential dependent segment time stamp

Field 6 IMS ID

Field 7 Pad

After a successful POS call, the I/O area contains:

LL (Not shown in table) A 2-byte field, in binary, containing the total length of
the data in the I/O area.

348 Application Programming

(Field 1)

Area Name
An 8-byte field giving the ddname from the AREA statement.

(Field 2)

Position
An 8-byte field containing the position information for the most
recently inserted sequential dependent segment. This field contains
zeros if no sequential dependent exists for this root.

Sequential dependent location from qualified SSA
IMS places two pieces of data in this 8-byte field after a successful
POS call. The first 4 bytes contain the cycle count, and the second 4
bytes contain the VSAM RBA.

If the sequential dependent segment that is the target of the POS
call is inserted in the same synchronization interval, no position
information is returned. Bytes 11-18 contain X'FF'. Other fields
contain normal data.

(Field 3)

Unused CIs in sequential dependent part
A 4-byte field containing the number of unused control intervals in
the sequential dependent part.

(Field 4)

Unused CIs in independent overflow part
A 4-byte field containing the number of unused control intervals in
the independent overflow part.

(Field 5)

Committed Sequential Dependent Segment Time Stamp
An 8-byte field containing the time stamp that corresponds to the
SDEP segment located by the qualified POS call.

(Field 6)

IMS ID
Identifies the IMS that owns the CI where the SDEP segment was
located.

(Field 7)

Pad An 8-byte pad area to align the I/O area on a double word
boundary. No data is returned to this field.

Identifying free space

To retrieve the area name and the next available position within the sequential
dependent part from all online areas, you can issue an unqualified POS call. This
type of call also retrieves the unused space in the independent overflow and
sequential dependent parts.

After a unsuccessful unqualified POS call, the I/O area contains the length (LL),
followed by the same number of entries as existing areas within the database. Each
entry contains the fields shown below:

Area Name
An 8-byte field giving the ddname from the AREA.

Chapter 21. Processing Fast Path databases 349

Position
An 8-byte field with binary zeros.

Unused SDEP CIs
A 4-byte field with binary zeros.

Unused IOV CIs
A 4-byte field with two binary zeros followed by a bad status code.

Commit-point processing in a DEDB
IMS retains database updates in processor storage until the program reaches a
commit point. IMS saves updates to a DEDB in Fast Path buffers. The database
updates are not applied to the DEDB until after the program has successfully
completed commit-point processing.

Unlike Get calls to an MSDB, however, a Get call to an updated segment in a
DEDB returns the updated value, even if a commit point has not occurred.

When a BMP is processing DEDBs, it must issue a CHKP or SYNC call to do
commit-point processing before it terminates. Otherwise, the BMP abnormally
terminates with abend U1008.
Related concepts:
“Commit-point processing in MSDBs and DEDBs” on page 331

P processing option
If the P processing option is specified in the PCB for your program, a GC status
code is returned to your program whenever a call to retrieve or insert a segment
causes a unit of work (UOW) boundary to be crossed.

Related reading: For more information on the UOW for DEDBs, see IMS Version 14
Database Administration.

Although crossing the UOW boundary probably has no particular significance for
your program, the GC status code indicates that this is a good time to issue either
a SYNC or CHKP call. The advantages of issuing a SYNC or CHKP call after your
program receives a GC status code are:
v Your position in the database is retained. Issuing a SYNC or CHKP call normally

causes position in the database to be lost, and the application program must
reestablish position before it can resume processing.

v Commit points occur at regular intervals.

When a GC status code is returned, no data is retrieved or inserted. In your
program, you can either:
v Issue a SYNC or CHKP call, and resume database processing by reissuing the call

that caused the GC status code.
v Ignore the GC status code, and resume database processing by reissuing the call

that caused the status code.
Related concepts:
“Calls with dependent segments for DEDBs” on page 351

H processing option
If the H processing option has been specified in the PCB for your call program, a
GC status code is returned whenever a call to retrieve or insert a segment causes a

350 Application Programming

unit of work (UOW) or an area boundary to be crossed. The program must cause a
commit process before any other calls can be issued to that PCB.

If a commit process is not caused, an FR status code results (total buffer allocation
exceeded), and all database changes for this synchronization interval are “washed”
(sync-point failure).

A GC status code is returned when crossing the area boundary so that the
application program can issue a SYNC or CHKP call to force cleanup of resources
(such as buffers) that were obtained in processing the previous area. This cleanup
might cause successive returns of a GC status code for a GN or GHN call, even if a
SYNC or CHKP call is issued appropriately for the previous GC status code.

When an application is running HSSP and proceeding through the DEDB AREA
sequentially, a buffer shortage condition may occur due to large IOV chains. In this
case, a FW status code is returned to the application. Usually, the application issues
a commit request and position is set to the next UOW. However, this does not
allow the previous UOW to finish processing. In order to finish processing the
previous UOW, you can issue a commit request after the FW status code is
received and set the position to remain in the same UOW. You must also reposition
the application to the position that gave the FW status code. The following shows
an example of the command sequence and corresponding application responses.

GN root1
GN root2
GN root3
GN root4 /*FW status code received*/
CHKP
GN SSA=(root4) root4 /*User reposition prior to CHKP*/
GN root5

Calls with dependent segments for DEDBs
You can issue DL/I calls against direct and sequential dependent segments for
DEDBs.

The DL/I calls that you can issue against a root segment are: GU, GN (GNP has no
meaning for a root segment), DLET, ISRT, and REPL. You can issue all DL/I calls
against a direct dependent segment, and you can issue Get and ISRT calls against
sequential dependents segments.

Direct dependent segments

DL/I calls to direct dependents include the same number of SSAs as existing levels
in the hierarchy (a maximum of 15). They can also include command codes and
multiple qualification statements. The same rules apply to using command codes
on DL/I calls to DEDBs as to full-function databases.

If you use the D command code in a call to a DEDB, the P processing option need
not be specified in the PCB for the program. The P processing option has a
different meaning for DEDBs than for full-function databases.

Some special command codes can be used only with DEDBs that use subset
pointers. Your program uses these command codes to read and update the subset
pointers.

Chapter 21. Processing Fast Path databases 351

Sequential dependent segments

Because sequential dependents are stored in chronological order, they are useful in
journaling, data collection, and auditing application programs. You can access
sequential dependents directly. However, sequential dependents are normally
retrieved sequentially using the Database Scan utility.

Restriction: When processing sequential dependent segments:
v You can only use the F command code with sequential dependents; IMS ignores

all other command codes.
v You cannot use Boolean operators in calls to sequential dependents.

Related reading: For more information about the utility, see IMS Version 14
Database Utilities.
Related concepts:
“Processing Fast Path DEDBs with subset pointer command codes” on page 332
Related reference:
“P processing option” on page 350

DEDB DL/I calls to extract DEDB information
DL/I calls can be issued to obtain structural information about Data Entry
Databases (DEDBs). Any application that can issue DL/I calls can take advantage
of these DL/I calls.

There are two basic call types:
v The first type returns the minimum I/O area length required for a specific type

'2' DL/I call.
v The second type returns specific information about the specified DEDB.

Each of these DL/I calls uses a call interface block called the Input Output Input
Area (IOAI), a telecommunication program PCB (TP PCB), and specific calls that
require an I/O area. Some required initialization of the IOAI is common for all
calls and some initialization is specific to an individual call. The IOAI and the I/O
area must be obtained in key 8 storage.

The following table describes the DL/I calls to extract DEDB information.

Table 56. DEDB DL/I Calls

DL/I Call Description

AL_LEN Returns the minimum length of the I/O area
that is required for an AREALIST call.

DI_LEN Returns the minimum length of the I/O area
that is required for an DEDBINFO call.

DS_LEN Returns the minimum length of the I/O area
required for a DEDBSTR call.

AREALIST Returns a list of areas that are part of the
specified DEDB, with each area mapped by
DBFCDAL1.

DEDBINFO Returns DEDB information from the DMCB,
mapped by DBFCDDI1.

352 Application Programming

Table 56. DEDB DL/I Calls (continued)

DL/I Call Description

DEDBSTR Returns a list of segments and a segment
data for DEDB with each segment mapped
by DBFCDDS1.

The DL/I call that use the standard interface with register 1 must point to
IOAI_CA.

The following figure shows the IOAI structure.
starting
offset note

IOAI_START DS 0F
IOAI_NAME DC CL4’IOAI’ 0 *1
IOAI_#FPU DC CL4’#FPU’ 4 *1
IOAI_#FPI DC CL8’#FPUCDPI’ 8 *1
IOAI_SUBC DC CL8’ ’ 10 *1
*
IOAI_BLEN DC A(0) 18 *1
IOAI_ILEN DC A(0) 1C *1
IOAI_IOAREA DC A(0) 20 *1
*
IOAI_CALL DC A(0) 24 *1
IOAI_PCBI DC A(0) 28 *1
IOAI_IOAI DC A(0) 2C *1
*
IOAI_DLEN DC A(0) 30 *2
IOAI_STATUS DC CL2’ ’ 34 *2
IOAI_B_LEVEL DC XL2’0’ 36 *2
IOAI_STATUS_RC DC A(0) 38 *2
IOAI_USERVER DC A(0) 3C *1
IOAI_IMSVER DC A(0) 40 *2
*
IOAI_IMSLEVEL DC A(0) 44 *2
*
IOAI_APPL_NAME DC CL8’ ’ 48 *1
IOAI_USERDATA DC CL8’ ’ 50 *1
IOAI_TIMESTAMP DC CL8’ ’ 58 *2
* input words.
IOAI_IN0 DC A(0) 60 *3
IOAI_IN1 DC A(0) 64 *3
IOAI_IN2 DC A(0) 68 *3
IOAI_IN3 DC A(0) 6C *3
IOAI_IN4 DC A(0) 70 *3
* feedback words
IOAI_FDBK0 DC A(0) 74 *2
IOAI_FDBK1 DC A(0) 78 *2
IOAI_FDBK2 DC A(0) 7C *2
IOAI_FDBK3 DC A(0) 80 *2
IOAI_FDBK4 DC A(0) 84 *2
* workareas.
IOAI_WA0 DC A(0) 88 *4
IOAI_WA1 DC A(0) 8C *4
IOAI_WA2 DC A(0) 90 *4
IOAI_WA3 DC A(0) 94 *4
IOAI_WA4 DC A(0) 98 *4
*

DS 20F’0’ 9C for future expansion
IOAI_END_CHAR DC CL4’IEND’ EC *1
IOAI_LEN len(DBFIOAI) = x’F0’ bytes

Note:

Chapter 21. Processing Fast Path databases 353

1. The user is responsible for initializing these fields.
2. IMS uses these fields to return data to the caller. Which fields contain returned

data depends on the DL/I call and are documented in the section on the
specific call types.

3. May be used to pass additional data on the DL/I call, as documented under
each DL/I call.

4. These fields are unchanged, and can be used as work areas by the application.

The fields in the following table must be initialized for all of the following DL/I
calls.

Table 57. Field initialization for DEDB DL/I calls

Field Description

IOAI_NAME The characters 'IOAI' identifying this block.

IOAI_#FPU The characters '#FPU' Indicating this is a
#FPU call.

IOAI_#FPI The characters '#FPUCDPI' indicating this is
a subset call.

IOAI_SUBC The DL/I call: AL_LEN, AREALIST,
DS_LEN, DEDBSTR, DI_LEN or DEDBINFO.

IOAI_BLEN The total length of the IOAI (x'F0').

IOAI_CALL Address of IOAI_#FPU.

IOAI_PCBI Address of the TPCB.

IOAI_IOAI Address of this block. The user must set the
high order bit on to indicate the end of the
DL/I list.

IOAI_USERVER Call version number. Defaults to one. This is
the version number of a specific call. This
field will be updated in the future if a
specific call is altered such that the
application must be sensitive to the changes.

IOAI_END_CHAR The chars 'IEND' identifying the end of
block.

The following fields are initialized for specific DL/I calls. If a specific call does not
need an I/O area, these fields are ignored.

Table 58. Fields initialized for specific DEDB DL/I calls

Field Description

IOAI_ILEN The total length of the I/O area, including
prefix and suffix.

IOAI_IOAREA Address of the I/O area.

I/O Area 1st word: The I/O area length (same as
IOAI_ILEN). Last word: X'FFFFFFFF', which
is an 'end of I/O area' marker.

IOAI_IN0 -> IOAI_IN4 Five input words that might be required.

The following fields are updated by IMS for all the DEDB DL/I call types.

354 Application Programming

Table 59. Fields updated by IMS for all DL/I call types

Field Description

IOAI_DLEN The length of the output data that is
returned by IMS. This field is informational
only.

IOAI_STATUS A 2-byte status code.

IOAI_STATUS_RC A return code if needed.

IOAI_IMSVER The maximum version of this call.

IOAI_IMSLEVEL The IMS level.

The following fields might be updated by specific DL/I calls.

Table 60. Fields updated by specific DL/I calls

Field Description

I/O Area 1st word: unchanged. Data: see specific call
types. Last word: potentially changed.

IOAI_FDBK0 -> IOAI_FDBK4 Five output words which may return data as
documented by specific calls.

DBFCDAL1 mapping: offset
CDAL_START DS 0F
CDAL_ARNM DS CL8 00 Area name
CDAL_FLGS DS 0XL4 08 Flag Bytes
CDAL_FLG1 DS XL1 08 Flags for area status:
CDAL_F1OP EQU X’01’ - Area is opened
CDAL_F1BK EQU X’02’ - Temporary bit for backout
CDAL_F1UT EQU X’04’ - Utility active on this area
CDAL_F1ER EQU X’08’ - Error recovery needed
CDAL_F1AF EQU X’80’ - Sequential dep. part full
CDAL_F1EP EQU X’40’ - I/O error
CDAL_F1ST EQU X’20’ - Area stop request
CDAL_F1RE EQU X’10’ - Area restart request
CDAL_FLG2 DS XL1 09 Reserved for Flag Byte #2
CDAL_FLG3 DS XL1 0A Reserved for Flag Byte #3
CDAL_FLG4 DS XL1 0B Reserved for Flag Byte #4

DS 1F 0C for growth
CDAL_LEND DS 0F End of area list entry
CDAL_LEN EQU *-&AA._START; Len of area list entry

DBFCDDI0 mapping: offset
CDDI_START DS 0D
CDDI_DBNM DS CL8 00 Database name
CDDI_ANR DS H 08 Number of areas defined
CDDI_HSLV DS H 0A Max SEGM level in the DB
CDDI_SGNR DS H 0C Highest valid SEGM code
CDDI_SEGL DS H 0E Maximum IOA length
CDDI_HBLK DS F 10 Number of anchor blocks
CDDI_RMNM DS CL8 14 Randomizing module name
CDDI_RMEP DS F 1C Randomizing module entry point

DS 8F 20 Reserved
DS 0D Align on double word boundary

CDDI_LEN EQU *-&AA._START; Length of this area (x’40’)

DBFCDDS1 mapping: offset
CDDS_START DS 0F
CDDS_GNAM DS CL8 00 SEGMENT NAME
CDDS_GDOF DS H 08 OFFSET FROM START SEQ TO DATA
CDDS_MAX DS H 0A MAX SEG LEN
CDDS_MIN DS H 0C MIN SEG LEN
CDDS_DBOF DS H 0E OFFSET TO SEG ENTRIES
CDDS_NRFLD DS FL1 10 NUMBER OF FIELDS IN SEG

Chapter 21. Processing Fast Path databases 355

CDDS_SC DS FL1 11 SEGMENT CODE
CDDS_PREF DS H 12 POINTER OFFSET IN PARENT PREF
CDDS_FLG1 DS X 14 FLAG BYTE
CDDS_FL1K EQU X’80’ KEY SEGMENT
CDDS_FL1S EQU X’40’ SEQUENTIAL DEP SEGMENT
CDDS_FL1P EQU X’20’ PCL POINTER TO PARENT
CDDS_FISRT DS X 15 INSERT RULES
CDDS_PARA DS H 16 OFFSET TO PARENT SEGMENT
CDDS_SBLP DS F 18 SIBLING POINTER
CDDS_LEVL DS XL1 1C SEGMENT LEVEL
CDDS_KEYL DS XL1 1D KEY LENGTH - 1
CDDS_KDOF DS H 1E OFFSET TO KEY FIELD IN SEGMENT
CDDS_RSRVE DS XL4 20 FOR USE IN UMDR0 | RESERVED
CDDS_CMPC DS A 24 A(CMPC)
CDDS_FLG2 DS XL1 28 FLAG BYTE 2 (fixed length)

DS XL3 29 FOR GROWTH
DS 5F 2C for growth

CDDS_END DS 0F END
CDDS_LEN EQU *-&AA._START; len of SDB entry

The following status codes are specific to these new DL/I calls.

Table 61. Status codes for specific DEDB DL/I calls

Status Code Description

AA Invalid #FPU/#FPUCDPI call.

AB Getmain error.

AC DEDB name not found.

AD The I/O area was not long enough to
contain the data.

AE IOAI_LEN was zeros. It must be filled by
the caller.

AF The I/O area address was not passed in by
IOAI_IOAREA.

AG The IOAI does not point to itself,
IOAI_IOAI.

AH The IOAI did not contain 'IOAI'.

AI The I/O area length in the I/O area does
not match IOAI.

AJ The I/O area did not contain the end-of-list
marker.

AK The IOAI did not have end-of-block marker
'IEND'.

AL IOAI_BLEN is not correct.

AM DEDB not passed in via the IOAI on the
#FPUCDPI call.

AL_LEN Call
The AL_LEN call returns the minimum length of the I/O area required for an
AREALIST call.

Input

IOAI
Formatted and filled out as documented above.

356 Application Programming

IOAI_IN0
Points to storage containing the DEB name.

Output

IOAI_STATUS
Call status, ' ' means successful.

IOAI_FDBK0
The minimum length of the I/O area.

IOAI_FDBK1
The number of AREAS in this DEDB.

DI_LEN Call
Return the minimum length of the I/O area required for an DEDBINFO call.

Input

IOAI
Formatted and filled out as documented above.

IOAI_IN0
Points to storage containing the DEB name.

Output

IOAI_STATUS
Call status, ' ' means successful.

IOAI_FDBK0
The minimum length of the I/O area.

DS_LEN Call
Return the minimum length of the I/O area required for a DEDBSTR call.

Input

IOAI
Formatted and filled out as documented above.

IOAI_IN0
Points to storage containing the DEB name.

Output

IOAI_STATUS
Call status, ' ' means successful.

IOAI_FDBK0
The minimum length of the I/O area.

IOAI_FDBK1
The number of SEGMENTS in this DEDB.

AREALIST Call
The AREALIST call returns a list of areas that are part of the specified DEDB, with
each area mapped by DBFCDAL1.

Chapter 21. Processing Fast Path databases 357

Input

IOAI
Formatted and filled out as documented above.

IOAI_IN0
Points to storage containing the DEB name.

I/O Area
Formatted as documented above.

Output

IOAI_STATUS
Call status, ' ' means successful.

IOAI_FDBK0
The minimum length of the I/O area.

IOAI_FDBK1
The number of AREAS in this DEDB.

The I/O Area

0 4 8 C 14 len-4
______________________________________//_____________________

I/O	offset	data	DEDB	area list	end of data
area	to	length	name	using DBFCDAL1	marker
len	data			control blocks	x’EEEEEEEE’
______________________________________//_____________________

len:4 4 4 8 variable 4

DEDBINFO Call
Return DEDB information from the DMCB, mapped by DBFCDDI1.

Input

IOAI
Formatted and filled out as documented above.

IOAI_IN0
Points to storage containing the DEB name.

I/O Area
Formatted with length in the first word, and 'FFFFFFFF' as an end of I/O area
marker.

Output

IOAI_FDBK0
The minimum length of the I/O area.

IOAI_FDBK1
The minimum I/O area for the DEDBSTR call.

IOAI_FDBK2
The minimum I/O area for the AREALIST call.

The I/O Area

358 Application Programming

DEDSTR Call
Return a list of segments and segment data for a DEDB with each segment
mapped by DBFCDDS1.

Input

IOAI
Formatted and filled out as documented above.

IOAI_IN0
Points to storage containing the DEB name.

I/O Area
Formatted with length in the first word, and 'FFFFFFFF' as an end of I/O area
marker.

Output

IOAI_STATUS
The minimum length of the I/O area.

IOAI_FDBK0
The minimum I/O area for the DEDBSTR call.

IOAI_FDBK1
The minimum I/O area for the SEGMENTS call.

The I/O Area

0 4 8 C 14 len-4
______________________________________//_____________________

I/O	offset	data	DEDB	segments	end of data
area	to	length	name	in DBFCDDS1	marker
len	data			control blocks	x’EEEEEEEE’
______________________________________//_____________________

len:4 4 4 8 variable 4

Fast Path coding considerations
You can use DL/I calls to access Fast Path databases. You can also use two
additional calls: FLD and POS. The type of Fast Path database that you are
processing determines when you can use each of these calls.

To process MSDBs, you can use these calls:
v For nonterminal-related MSDBs:

FLD

GU and GHU
GN and GHN
REPL

v For terminal-related, fixed MSDBs:

0 4 8 C 14 len-4

I/O	offset	data	DEDB	the DEDB info	end of data
area	to	length	name	using DBFCDDI1	marker
len	data			control block	x’EEEEEEEE’

len:4 4 4 8 len(DBFCDDI1) 4

Chapter 21. Processing Fast Path databases 359

FLD

GU and GHU
GN and GHN
REPL

v For terminal-related, dynamic MSDBs:
DLET

FLD

GU and GHU
GN and GHN
ISRT

REPL

You can use these calls to process a DEDB:
v DEQ

v DLET

v FLD

v GU and GHU
v GN and GHN
v GNP and GHNP
v ISRT

v POS

v REPL

v RLSE

360 Application Programming

Chapter 22. Writing ODBA application programs

By using the ODBA interface, IMS DB databases can be accessed from
environments that are outside the scope of control for IMS, such as DB2 for z/OS
stored procedures.

The ODBA interface is not needed within IMS-controlled regions, such as MPRs,
BMPs, or IFPs, for calls to locally controlled databases.

The z/OS application programs (hereafter called the ODBA application programs)
run in a separate z/OS address space that IMS regards as a separate region from
the control region. The separate z/OS address space hereafter is called the z/OS
application region.

The ODBA interface gains access to IMS DB through the Database Resource
Adapter (DRA). The ODBA application programs (which can access any address
space within the z/OS they are running in) gain access to IMS DB databases
through the ODBA interface. The following figure illustrates this concept and
shows the relationship between the components of this environment.

One z/OS application region can connect to multiple IMS DBs and multiple z/OS
application regions can connect to a single IMS DB. The connection is similar to
that of CICS to DBCTL.

General application program flow of ODBA application programs
An ODBA application program issues calls, including DL/I calls, using the
AERTDLI interface of an application interface block (AIB).

Several conditions must be met for the AIB call to succeed:
1. If an AIB is not passed in the call, a U261 abend is issued.
2. If the AIB that is passed is not valid, a U476 abend is issued.
3. If the AIB that is passed is not large enough (264 bytes), the AIB return and

reason codes are set to X'104' and X'228'.

IMS
database
manager

z/OS
application

region

z/OS

D
R
A

O
D
B
A (DL/I SAS)

IMS
databases

Figure 69. z/OS application region's connection to IMS DB

© Copyright IBM Corp. 1974, 2015 361

4. If the AIB that is passed is not on a fullword boundary, the z/OS system will
return an abend S201.

5. If there are other internal problems with the call, other return and reason codes
are passed back to the z/OS application program. See IMS Version 14 Messages
and Codes, Volume 4: IMS Component Codes for a complete list of these return
and reason codes.

The ODBA application program must link edit with a language module
(DFSCDLI0) or this module can be loaded into the z/OS application region. The
entry point for DFSCDLI0 is AERTDLI.

Restriction: The ODBA interface does not support calls into batch DL/I regions.

The basic program flow for an ODBA application program is:
1. Establish the application execution environment. The application execution

environment must be initialized in the z/OS application region.
To initialize the environment, use either the CIMS INIT call or, if you need to
establish connections to multiple IMS systems, the CIMS CONNECT call.
If you use the INIT subfunction of CIMS you can include a startup table ID in
the optional AIBRSNM2 field of the AIB to connect to the IMS DB system listed
in the startup table. If the AIBRSNM2 field is blank, connect to the IMS DB
when you allocate a PSB.
The form of the connection call is:
CALL AERTDLI parmcount, CIMS, AIB

Where:

CIMS Is the required call function.

AIB Has the following fields:

AIBSFUNC
The subfunction is either INIT or CONNECT. This field is
mandatory.

AIBRSNM1
An optional field that provides an eye catcher identifier of the
application server that is associated with the AIB. This field is 8
bytes.

AIBRSNM2
An optional field for the INIT subfunction in which you can
specify an optional 4-byte startup table ID. The ID is optional if
the call is issued as preconditioning only. If the ID is given, the
z/OS application region connects to the IMS DB specified in
the DBCTLID parameter of the selected startup table. The
AIBRSNM2 field is not supported with the CONNECT
subfunction.

The characteristics of the connection are determined from the DRA startup
table. The startup table name is DFSxxxx0, where xxxx is the startup table ID
that is used in the CIMS and APSB calls. Each startup table defines a
combination of connection attributes, one of which is a subsystem ID of the
IMS DB.
If you use the CONNECT subfunction, the calling application program can
optionally supply its own connection properties table by specifying the address

362 Application Programming

of the table in an entry in the ODBA data store connection table used by the
CONNECT subfunction. The connection properties table is mapped by the
DFSPRP macro.
Related Reading: For more information about building a DRA startup table,
see IMS Version 14 System Definition.

2. Allocate a PSB. The APSB call, introduced for CPIC-driven programs, is used
with the ODBA interface to allocate a PSB for the z/OS application region.
Security is checked before the call can succeed. For more information, see
“Accessing IMS databases through the ODBA interface” in IMS Version 14
Communications and Connections.
The APSB call is in the following form:
CALL AERTDLI parmcount, APSB, AIB

Where:

APSB Is the required call function.

AIB Is the name of the application interface block. The fields in the AIB
must be filled in:

AIBRSNM1
Is the 8-character PSB name.

AIBRSNM2
Is the 4-byte IMS alias name that is used as the startup table
ID.

Several conditions must be met for the allocation request to succeed.
v The PSB must exist and security checking through RACF must succeed.
v An ODBA environment must have been established by either a CIMS INIT

call or a CIMS CONNECT call.
v z/OS Resource Recovery Services (RRS) must be active when the APSB call

is made.
Multiple PSBs can be active at the same time, which is typical for server
environments. No token is specifically provided to identify which PSB is to be
used for a given call to a given IMS DB, so the same AIB must be used for all
calls to the same PSB instance (APSB, DB calls, DPSB). This enables multiple
instances of the same PSB to be in use for the same IMS DB at the same time.
The parallelism is controlled by the thread count specified in the startup table.
The maximum number of threads and dependent regions supported by an IMS
DB instance is 999.

3. Perform DB calls. All DL/I calls, with a few exceptions, are supported through
the AIB. The unsupported calls entail message handling (the IOPCB is available
only for system calls), CKPT, ROLL, ROLB, and INQY PROGRAM. Alternate
destination PCBs cannot be used. Both full-function databases and DEDBs are
available.

4. Commit the changes. Synchronization is performed by issuing the distributed
commit calls, SRRCMIT or ATRCMIT, or possibly their rollback forms of
SRRBACK or ATRBACK. IMS sync-point calls are not allowed. Commit is
effective for all RRS controlled resources in the z/OS task.

5. Deallocate the PSB.
The DPSB call is used when the work unit is complete. In the default case, a
commit call must be issued before a DPSB call can be issued. No DL/I call,
including system service calls, can be made between the commit and the DPSB
call.
The DPSB call is in the following form:

Chapter 22. Writing ODBA application programs 363

CALL AERTDLI parmcount, DPSB, AIB

Where:

DPSB Is the required call function.

AIB Is the name of the application interface block. The following fields in
the AIB must be filled in:

AIBRSNM1
Is the 8-character PSB name.

AIBSFUNC
Is an optional field. Set it to 'PREPbbbb' when you want to
deallocate the PSB before initialization of commit processing
and when the commit processing is provided from outside the
application.

IMS performs phase 1 commit processing and returns control to
the requestor, but holds the in-doubt work until RRS (the
commit manager) requests full commit processing. An example
is in DB2 UDB for z/OS Stored Procedures, whereDB2 for
z/OS initializes commit processing on behalf of the procedure.
See DB2 for z/OS for a discussion of this scenario.

6. Terminate the connection.
The termination call is in the following form:
CALL AERTDLI parmcount, CIMS, AIB

Where:

CIMS Is the required call function.

AIB Is the name of the application interface block. The following fields in
the AIB must be filled in:

AIBSFUNC
Is a mandatory field whose value is TERM or TALL. Use TERM
to sever a single IMS DB connection. Use TALL to sever all
connections for this z/OS application region and remove the
DRA from the address space.

AIBRSNM1
Is an optional field that provides an eye catcher identifier of the
application server associated with the AIB. This field is 8 bytes
in length.

AIBRSNM2
When subfunction equals TERM, provides the 4-byte startup
table ID used in a previous APSB call. This field is not needed
when the subfunction equals TALL.

Server program structure
The commit scope within the z/OS application environment is all the work under
the TCB from which the commit request is made to z/OS Resource Recovery
Services (RRS). Server environments, therefore, need a separate TCB under which
the individual client requests will be managed. Each TCB will map to a PST for
thread handling.

The following figure shows an example TCB structure for a server environment.

364 Application Programming

Each connection to an IMS DB uses a thread under the TCB. When the APSB call is
processed, a context is established and tied to the TCB. At commit time, all
contexts for this TCB are committed or aborted by RRS.

Loading DFSCDLI0 rather than link editing is attractive when the z/OS application
region is a server supporting many clients with many instances of threads
connected with the IMS DBs.

DB2 for z/OS stored procedures use of ODBA
DB2 for z/OS stored procedures connecting to ODBA must run in a z/OS
Workload Manager-managed (WLM-managed) stored procedures address space.

DB2 for z/OS establishes the ODBA environment by specifying either the INIT
subfunction or the CONNECT subfunction of the CIMS call for the stored
procedure address space. If the CIMS INIT call is issued, the connection to a
specific IMS DB occurs when the APSB call is issued. If the CIMS CONNECT call
is used, the connection to one or more IMS DB systems can optionally occur either
when the CIMS CONNECT call is issued or when the APSB call is issued.

Each stored procedure running in the stored procedure address space runs under
its own TCB that is established by DB2 for z/OS when the stored procedure is
initialized. DB2 for z/OS issues the commit call on behalf of the stored procedure
when control is returned to DB2 for z/OS. Only the PREP subfunction of the DPSB
call should be issued by the stored procedures.

Restriction: If stored procedures are nested under a single WLM stored procedure
address space and call IMS ODBA, the ODBA threads will hang.

The following figure illustrates the connection from a DB2 for z/OS stored
procedures address space to an IMS DB subsystem. This connection allows DL/I
data to be presented through an SQL interface, either locally to this DB2 for z/OS
or to DRDA® connected DB2 for z/OS databases.

IMS
atabase
anager

D
M
(DL/I SAS)

z/OS
application

region

z/OS

TCB DFSCDLI0

TCB

D
R
A

PST

PST

PSTTCB

TCB

Figure 70. DRA uses one TCB per thread

Chapter 22. Writing ODBA application programs 365

The following figure illustrates the general relationships involved with using DB2
for z/OS stored procedures and IMS DB together.

Testing an ODBA application program
You should perform a program unit test on your ODBA application program to
ensure that the program correctly handles its input data, processing, and output
data. The amount and type of testing you do depends on the individual program.

Be aware of your established test procedures before you start to test your program.
To begin testing, you need the following items:
v A test JCL statement

z/OS

z/OS
tables

IMS
databases

z/OS
application

region

O
D
B
A

D
R
A

IMS
Database
Manager
(DL/SAS)

Figure 71. DB2 for z/OS stored procedures connection to IMS DB

z/OS

EXEC SQL

Call PGMX

EXEC SQL

Commit

DRDA

client
DB2

Sched

PGMX

Return

values

to

user

PGMX

Call APSB

Call GU DB

Call DPSB PREP

IMS

DB

RRS/MVS

Figure 72. DB2 for z/OS stored procedures relationships

366 Application Programming

v A test database
Always begin testing programs against test-only databases. Do not test programs
against production databases. If the program is faulty it might damage or delete
critical data.

v Test input data
The input data that you use need not be current, but it should be valid data. You
cannot be sure that your output data is valid unless you use valid input data.

The purpose of testing the program is to make sure that the program can correctly
handle all the situations that it might encounter. To thoroughly test the program,
try to test as many of the paths that the program can take as possible. For
example:

Test each path in the program by using input data that forces the program to
execute each of its branches. Be sure that your program tests its error routines.
Again, use input data that will force the program to test as many error conditions
as possible. Test the editing routines your program uses. Give the program as
many different data combinations as possible to make sure it correctly edits its
input data. The following table lists the tools you can use to test Online (IMSDB),
Batch, and BMP programs.

Table 62. Tools you can use for testing your program

Tool Online (IMS DB) Batch BMP

DFSDDLT0 No Yes¹ Yes

DL/I image capture
program

Yes Yes Yes

Note: 1. For call-level programs only. (For a command-level batch program, you
can use DL/I image capture program first, to produce calls for DFSDDLT0).

Tracing DL/I calls with image capture to test your ODBA
program

The DL/I image capture program (DFSDLTR0) is a trace program that can trace
and record DL/I calls issued by batch, BMP, and online (IMS DB environment)
programs. You can produce calls for use as input to DFSDDLT0.

You can use the image capture program to:
v Test your program

If the image capture program detects an error in a call it traces, it reproduces as
much of the call as possible, although it cannot document where the error
occurred, and cannot always reproduce the full SSA.

v Produce input for DFSDDLT0 (DL/I test program)
You can use the output produced by the image capture program as input to
DFSDDLT0. The image capture program produces status statements, comment
statements, call statements, and compare statements for DFSDDLT0. For
example, you can use the image capture program with a ODBA application, to
produce calls for DFSDDLT0.

v Debug your program
When your program terminates abnormally, you can rerun the program using
the image capture program. The image capture program can then reproduce and

Chapter 22. Writing ODBA application programs 367

document the conditions that led to the program failure. You can use the
information in the report produced by the image capture program to find and
fix the problem.

Using image capture with DFSDDLT0 to test your ODBA
program

The image capture program produces the following control statements that you can
use as input to DFSDDLT0.
v Status statements

When you invoke the image capture program, it produces the status statement.
The status statement it produces:
– Sets print options so that DFSDDLT0 prints all call trace comments, all DL/I

calls, and the results of all comparisons
– Determines the new relative PCB number each time a PCB change occurs

while the application program is running
v Comments statement

The image capture program also produces a comments statement when you run
it. The comments statements give:

The time and date IMS started the trace
The name of the PSB being traced

The image capture program also produces a comments statement preceding any
call in which IMS finds an error.

v Call statements
The image capture program produces a call statement for each DL/I call.

v Compare statements
If you specify COMP on the DLITRACE control statement, the image capture
program produces data and PCB comparison statements.

Running image capture online
When you run the image capture program online, the trace output goes to the IMS
log data set. To run the image capture program online, you issue the IMS TRACE
command from the z/OS console.

If you trace a BMP and you want to use the trace results with DFSDDLT0, the
BMP must have exclusive write access to the databases it processes. If the
application program does not have exclusive access, the results of DFSDDLT0 may
differ from the results of the application program.

The following diagram shows TRACE command format:

►►
ON

/ TRACE SET OFF PSB psbname
NOCOMP
COMP

►◄

SET ON|OFF
Turns the trace on or off.

368 Application Programming

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than
one PSB at the same time by issuing a separate TRACE command for each
PSB.

COMP|NOCOMP
Specifies whether you want the image capture program to produce data
and PCB compare statements to be used with DFSDDLT0.

Retrieving image capture data from the log data set
If the trace output is sent to the IMS log data set, you can retrieve it by using
utility DFSERA10 and a DL/I call trace exit routine, DFSERA50.

DFSERA50 deblocks, formats, and numbers the image capture program records to
be retrieved. To use DFSERA50, you must insert a DD statement defining a
sequential output data set in the DFSERA10 input stream. The default ddname for
this DD statement is TRCPUNCH. The card must specify BLKSIZE=80.

Examples: You can use the following examples of DFSERA10 input control
statements in the SYSIN data set to retrieve the image capture program data from
the log data set:
v Print all image capture program records:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X

v Print selected image capture program records by PSB name:
Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,

VALUE=psbname, COND=E

v Format image capture program records (in a format that can be used as input to
DFSDDLT0):

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,OFFSET=25,FLDTYP=C

VALUE=psbname,FLDLEN=8,DDNAME=OUTDDN,COND=E

The DDNAME= parameter is used to name the DD statement used by
DFSERA50. The data set defined on the OUTDDN DD statement is used instead
of the default TRCPUNCH DD statement. For this example, the DD appears as:

//OUTDDN DD ...,DCB=(BLKSIZE=80),...

Requests for monitoring and debugging your ODBA program
To debug your ODBA program, you can issue the statistics (STAT) or log (LOG)
request.

You can use the following two requests to help you in debugging your program:
v The statistics (STAT) request retrieves database statistics. STAT can be issued

from both call- and command-level programs.
v The log (LOG) request makes it possible for the application program to write a

record on the system log. You can issue LOG as a command or call in a batch
program; in this case, the record is written to the IMS log. You can issue LOG as
a call or command in an online program in the IMS DB environment; in this
case, the record is written to the IMS DB log.

Chapter 22. Writing ODBA application programs 369

What to do when your ODBA program terminates abnormally
Whenever your program terminates abnormally, you can take some actions to
simplify the task of finding and fixing the problem. ODBA does not issue any
return or reason codes. Most non-terminating errors for ODBA application
programs are communicated in AIB return and reason codes. You can record as
much information as possible about the circumstances under which the program
terminated abnormally. In addition, you can check for certain initialization and
execution errors.

Recommended actions after an abnormal termination of an
ODBA program
The suggestions given here are some common guidelines on what you should do if
your program terminates abnormally.
v Document the error situation to help in investigating and correcting it. Some of

the information that can be helpful include:
– The program's PSB name
– The call function
– The terminal ID (online programs only)
– The contents of the AIB or the PCB
– The contents of the I/O area when the problem occurred
– If a database request was executing, the SSAs or SEGMENT and WHERE

options, if any, the request used
– The date and time of day

v When your program encounters an error, it can pass all the required error
information to a standard error routine.

v You can send a message to the system log by issuing a LOG request.

Diagnosing an abnormal termination of an ODBA program
If your program does not run correctly when you are testing it or when it is
running, you need to isolate the problem. The problem might be anything from a
programming error (for example, an error in the way you coded one of your
requests) to a system problem.

You can check for the following errors when your program fails to run, terminates
abnormally, or gives incorrect results.

ODBA initialization errors

Before your program receives control, IMS must have correctly loaded and
initialized the PSB and DBDs used by your application program. Often, when the
problem is in this area, you need a system programmer or DBA (or your
equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that
they generate.

ODBA running errors

If you do not have any initialization errors, check the following in your program:
1. The output from the compiler. Make sure that all error messages have been

resolved.
2. The output from the binder:
v Are all external references resolved?

370 Application Programming

v Have all necessary modules been included?
v Was the language interface module correctly included?

3. Your JCL. Is the information that described the files that contain the databases
correct? If not, check with your DBA.

Chapter 22. Writing ODBA application programs 371

372 Application Programming

Chapter 23. Programming with the IMS support for DRDA

IMS provides an implementation of the Distributed Relational Database
Architecture™ (DRDA) protocol that you can use to write your own IMS Connect
TCP/IP client applications.

DRDA is an open architecture that enables communication between applications
and database systems on disparate platforms. Details about using the DRDA
protocol to perform database access operations are in the open specifications for
DRDA. The following information describes only the IMS-specific extensions
provided by the IMS support for DRDA.

To use the IMS support for DRDA, you must create the DRDA client driver (DRDA
source server). No additional software needs to be installed or configured on the
client system. The DRDA target server consists of IMS Connect and the Open
Database Manager (ODBM) running with IMS in z/OS.

The IMS support for DRDA includes support for both application-directed
transaction demarcation (local) and XA-enabled (global) transactions.

IMS does not support the following DRDA functions:
v Multi-row input
v Client reroute
v Security plugin

The IMS support for DRDA is based on the DRDA Version 4 technical standard.
The DRDA specification is documented by the Open Group Consortium at
www.opengroup.org.

Server compatibility checking

All communication between a source and target DRDA server begins with
initialization and security. In the initialization flow, the DRDA client issues the
EXCSAT command and an EXCSATRD data object is sent back from the DRDA
target server.

In the IMS support for DRDA implementation, the EXCSATRD reply data object
includes a Server Release Level (SRVRLSLV) parameter. The SRVRLSLV parameter
is a string that specifies the version number of the distributed database
management (DDM) language recognized by the IMS Connect and ODBM server
components. This string is used by the client to perform server compatibility
checking to ensure that both IMS Connect and ODBM understand any codepoints
that the client sends. The DDM version numbering is specific to the IMS support
for DRDA. All compatibility checking for the IMS support for DRDA is done based
on the SRVRLSLVL parameter.

Important: The SRVRLSLV parameter value sent back from the target server in
response to the EXCSAT command is OD-ICON 1 OD-ODBM 1.

Updating the source server with the latest maintenance release of IMS without
applying the same maintenance release to all your IMS Connect or ODBM
installations may cause the source server to be out of synchronization with the

© Copyright IBM Corp. 1974, 2015 373

target server. To prevent this possibility, the server compatibility check allows the
connection to be made only if the IMS support for DRDA target server recognizes
the DDM version level that is used by the source server.

How IMS data is mapped to the DRDA protocol

In a database query operation with the IMS support for DRDA, a row is defined as
the concatenation of an instance of the aibdbpcbStream data structure plus all of
the requested fields within an IMS hierarchic path. An aibdbpcbStream instance is
a concatenation of an instance of the aibStream data structure followed by an
instance of the dbpcbStream data structure. The requested fields are represented by
the RTRVFLD objects sent with an OPNQRY command. The concatenation of the
aibdbpcbStream instance and data fields represents a single row in a query row
set.

The IMS support for DRDA supports only flexible blocking, where each query
block can be a different size, depending on the size of the row or result set being
returned. The specified query block size is used as an initial size, and the query
block can expand beyond that size, if necessary, to complete the fetch operation.

In the IMS support for DRDA implementation, data is returned from the DRDA
target server in byte stream format, and the client is responsible for data type
processing.
Related concepts:

Overview of the CSL Open Database Manager (System Administration)

IMS Connect support for access to IMS DB (Communications and Connections)

Related reference:

DRDA DDM command architecture reference (Application Programming APIs)

DDM commands for data operations with the IMS support for DRDA
Use the distributed database management (DDM) commands provided by the IMS
support for DRDA for singleton and batch data operations.

Before accessing the database, you need to first establish a database connection by
issuing an ACCRDB command from your DRDA client application and
successfully receive an ACCRDBRM data object back from the DRDA target server.

After the connection is established, you can issue DDM commands to access data
from your DRDA client application.
v To retrieve data, issue an OPNQRY command.
v To insert, update, or delete data, issue an EXCSQLIMM command.

Data operations can be in singleton or batch operations. Specify the type of data
operation by setting the Byte String Data Representation (BYTSTRDR) parameter in
the DLIFUNC command object that is chained to the DDM command.

The following table shows the DDM commands that the DRDA client issues for
data operations with the IMS support for DRDA.

374 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/system_intro/ims_odbmoverview.htm#ims_ie0c1om1001260
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_ct_odb_support.htm#ims_connect_odb_support
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_ddm_architecture.htm#drdaddmcommands

Table 63. DDM commands for data operations with the IMS support for DRDA

Data operation DDM command
BYTSTRDR parameter value for
DLIFUNC command object

Insert data EXCSQLIMM ISRT

Retrieve data - DL/I Get
Hold Unique

OPNQRY GHU

Retrieve data - DL/I Get
Unique

OPNQRY GU

Retrieve data - DL/I Get
Hold Next

OPNQRY GHN

Retrieve data - DL/I Get
Next

OPNQRY GN

Retrieve data - DL/I Get
Hold Next Within Parent

OPNQRY GHNP

Retrieve data - DL/I Get
Next Within Parent

OPNQRY GNP

Update data EXCSQLIMM REPL

Delete data EXCSQLIMM DLET

The following table shows the DDM commands that the DRDA client issues for
batch data operations with the IMS support for DRDA.

Table 64. DDM commands for batch data operations with the IMS support for DRDA

Batch data operation DDM command
BYTSTRDR parameter value for
DLIFUNC command object

Retrieve data OPNQRY RETRIEVE

Update data EXCSQLIMM UPDATE

Delete data EXCSQLIMM DELETE

Related reference:

DRDA DDM command architecture reference (Application Programming APIs)

Chapter 23. Programming with the IMS support for DRDA 375

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_ddm_architecture.htm#drdaddmcommands

376 Application Programming

Part 3. Application programming for IMS TM

IMS provides support for writing application programs to access IMS transactions.

© Copyright IBM Corp. 1974, 2015 377

378 Application Programming

Chapter 24. Defining application program elements for IMS TM

You can write application programs to communicate with the IMS Transaction
Manager using DL/I calls in assembler language, C, COBOL, Java, Pascal, or PL/I.

Formatting DL/I calls for language interfaces
When you use DL/I calls in assembler language, C language, COBOL, Pascal, or
PL/I, you must call the DL/I language interface to initiate the functions specified
with the DL/I calls.

IMS offers several interfaces for DL/I calls:
v A language-independent interface for any programs that are Language

Environment conforming (CEETDLI)
v Language-specific interfaces for all supported languages (xxxTDLI)
v A non-language-specific interface for all supported languages (AIBTDLI)

Java makes use of the all three DL/I language interfaces, but the usage is internal
and no calls are necessary to initiate the functions specified with the DL/I calls.
Related concepts:
Chapter 38, “IMS solutions for Java development overview,” on page 603

Application programming for assembler language
Application programs in assembly language use the following format, parameters,
and DL/I calls to communicate with the IMS Transaction Manager.

In assembler language programs, all DL/I call parameters that are passed as
addresses can be passed in a register, which, if used, must be enclosed in
parentheses.

Format

►►
(1)

CALL ASMTDLI,(function)
parmcount, ,i/o_pcb A

B
,alternate_pcb

A
C

AIBTDLI,(function,aib)
parmcount, A

B
C

,
VL

►◄

© Copyright IBM Corp. 1974, 2015 379

A:

,i/o_area
,mod_name
,token
,options_list

,feedback area

B:

,i/o_area_ length,i/o_area

▼ ,area_length,area

C:

,destination_name
,options_list

,feedback_area

Notes:

1 Assembler language programs must use either parmcount or VL.

Parameters

parmcount
Specifies the address of a 4-byte field in user-defined storage that contains the
number of parameters in the parameter list that follows parmcount. Assembler
language application programs must use either parmcount or VL.

function
Specifies the address of a 4-byte field in user-defined storage that contains the
call function to be used. The call function must be left-justified and padded
with blanks. For example, (GU�� is a call function.

i/o pcb
Specifies the address of the I/O program communication block (PCB). The I/O
PCB address is the first address passed on entry to the application program in
the PCB list, given the following circumstances:
v A program executing in DLI or database management batch (DBB) regions

where CMPAT=YES is coded on the PSB.
v Any program executing in batch message processing program (BMP),

message processing program (MPP), or IMS Fast Path (IFP) regions
regardless of the CMPAT= value.

alternate pcb
Specifies the address of the alternate PCB to be used for the call. The PCB
address must be one of the PCB addresses passed on entry to the application
program in the PCB list.

aib
Specifies the address of the application interface block (AIB) in user-defined
storage.

380 Application Programming

i/o area
Specifies the address of the I/O area in user-defined storage used for the call.
The I/O area must be large enough to contain the returned data.

i/o area length
Specifies the address of a 4-byte field in user-defined storage that contains the
I/O area length (specified in binary).

area length
Specifies the address of a 4-byte field in user-defined storage that contains the
length (specified in binary) of the area immediately following it in the
parameter list. Up to seven area length/area pairs can be specified.

area
Specifies the address of the area in user-defined storage to be checkpointed. Up
to seven area length/area pairs can be specified.

token
Specifies the address of a 4-byte field in user-defined storage that contains a
user token.

options list
Specifies the address of the options list in user-defined storage that contains
processing options used with the call.

feedback area
Specifies the address of the feedback area in user-defined storage that receives
information about options list processing errors.

mod name
Specifies the address of an 8-byte area in user-defined storage that contains the
user-defined MOD name used with the call. The mod name parameter is used
only with MFS.

destination name
Specifies the address of an 8-byte field in user-defined storage that contains the
name of the logical terminal or transaction code to which messages resulting
from the call are sent.

VL Signifies the end of the parameter list. Assembler language programs must use
either parmcount or VL.

Example DL/I call formats

DL/I AIBTDLI interface:
CALL AIBTDLI,(function,aib,i/o area),VL

DL/I language-specific interface:
CALL ASMTDLI,(function,i/o pcb,i/o area),VL

Related concepts:
“AIBTDLI interface” on page 245
Related reference:

DL/I calls for transaction management (Application Programming APIs)

DL/I calls for IMS TM system services (Application Programming APIs)

Chapter 24. Defining application program elements for IMS TM 381

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfortm2.htm#ims_dlicallsfortm2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfortmsysservcices.htm#ims_dlicallsfortmsysservcices

Application programming for C language
Application programs in C use the following format, parameters, and DL/I calls to
communicate with the IMS Transaction Manager.

Format

►► rc=CTDLI(function);
parmcount, ,i/o_pcb

A
B

,alt_pcb
A
C

rc=AIBTDLI(parmcount,function,aib);
A
B
C

D

►◄

A:

,i/o_area
,mod_name
,token
,options_list

, feedback_area

B:

▼,i/o_area_length,i/o_area
,area_length,area

C:

,destination_name
,options_list

,feedback_area

D:

CEETDLI(function);
parmcount, ,i/o_pcb

A
B

,alt_pcb
A
C

,aib
A
B
C

382 Application Programming

Parameters

rr Receives the DL/I status or return code. It is a 2-character field shifted into the
2 lower bytes of an integer variable (int). If the status or return code is two
blanks, 0 is placed in the field. You can test the rc parameter with an if
statement; for example, if (rc == ’IX’). You can also use rc in a switch
statement. You can choose to ignore the value placed in rc and use the status
code returned in the program communication block (PCB) instead.

parmcount
Specifies the name of a fixed-binary (31) variable in user-defined storage that is
a pointer to the number of parameters in the parameter list that follows
parmcount. The parmcount field is a pointer to long.

function
Specifies the name of a character (4) variable, left-justified, in user-defined
storage, which contains the call function to be used. The call function must be
padded with blanks. For example, (GU�� is a call function.

i/o pcb
Specifies the address of the I/O PCB. The I/O PCB address is the first address
passed on entry to the application program in the PCB list, given the following
circumstances:
v A program executing in DLI or database management batch (DBB) regions

where CMPAT=YES is coded on the PSB.
v Any program executing in batch message processing program (BMP),

message processing program (MPP), or IMS Fast Path (IFP) regions
regardless of the CMPAT= value.

alternate pcb
Specifies the name of a pointer variable that contains the address of the I/O
PCB or alternate PCB to be used for the call. The PCB address must be one of
the PCB addresses passed on entry to the application program in the PCB list.

aib
Specifies the name of the pointer variable that contains the address of the
structure that defines the application interface block (AIB) in user-defined
storage.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character
string that defines the I/O area in user-defined storage to be used for the call.
The I/O area must be large enough to contain the returned data.

i/o area length
Specifies the name of a fixed-binary (31) variable in user-defined storage that
contains the I/O area length.

area length
Specifies the name of a fixed-binary (31) variable in user-defined storage that
contains the length of the area immediately following it in the parameter list.
Up to seven area length/area pairs can be specified.

area
Specifies the name of the pointer variable that contains the address of the
structure that defines the user-defined storage to be checkpointed. Up to seven
area length/area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that
contains a user token.

Chapter 24. Defining application program elements for IMS TM 383

options list
Specifies the name of the pointer variable that contains the address of the
structure that defines the user-defined storage that contains processing options
used with the call.

feedback area
Specifies the name of the pointer variable that contains the address of the
structure that defines the user-defined storage that receives information about
options list processing errors.

mod name
Specifies the name of a character (8) variable in user-defined storage that
contains the user-defined MOD name used with the call. The mod name
parameter is used only with MFS.

destination name
Specifies the name of a character (8) variable in user-defined storage that
contains the name of the logical or terminal transaction code to which
messages resulting from the call are sent.

I/O area

In C language, the I/O area can be of any type, including structure or array. The
ceetdli declarations in leawi.h and the ctdli declarations in ims.h do not have any
prototype information, so no type checking of the parameters is done. The I/O
area can be auto, static, or allocated (with malloc or calloc). Give special
consideration to C-strings because DL/I does not recognize the C convention of
terminating strings with nulls (’\0’). Instead of using the strcpy and strcmp
functions, you might want to use the memcpy and memcmp functions.

Example DL/I call formats

DL/I CEEDTLI interface:
#include <leawi.h>
ceetdli(function,aib,i/o_area)

DL/I AIBTDLI interface:
int rc;...
rc = aibtdli(parmcount,function,aib,i/o_area)

DL/I language-specific interface:
#include <ims.h>
int rc;...
rc = ctdli(function,i/o_pcb,i/o_area)

Related concepts:
“AIBTDLI interface” on page 245
Related reference:

DL/I calls for transaction management (Application Programming APIs)

DL/I calls for IMS TM system services (Application Programming APIs)

Application programming for COBOL
Application programs in COBOL use the following format, parameters, and DL/I
calls to communicate with the IMS Transaction Manager.

384 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfortm2.htm#ims_dlicallsfortm2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfortmsysservcices.htm#ims_dlicallsfortmsysservcices

Format

►► CALL 'CBLTDLI'USING function
parmcount, ,i/o_pcb

A
B

,alt_pcb
A
C

'AIBTDLI'USING function , aib
parmcount, A

B
C

'CEETDLI'USING function
parmcount, ,i/o_pcb

A
B

,alt_pcb
A
C

,aib
A
B
C

. ►◄

A:

,i/o area
,mod_name
,token
,options_list

,feedback_area

B:

▼,i/o_area_length,i/o_area
,area_length,area

C:

,destination_name
,options_list

,feedback_area

Parameters

parmcount
Specifies the identifier of a usage binary (4) byte data item in user-defined
storage that contains the number of parameters in the parameter list that
follows parmcount.

function
Specifies the identifier of a usage display (4) byte data item, left-justified, in

Chapter 24. Defining application program elements for IMS TM 385

user-defined storage, which contains the call function to be used. The call
function must be padded with blanks. For example, (GUbb) is a call function.

i/o pcb
Specifies the address of the I/O program communication block (PCB). The I/O
PCB address is the first address passed on entry to the application program in
the PCB list, given the following circumstances:
v A program executing in DLI or database management batch (DBB) regions

where CMPAT=YES is coded on the PSB.
v Any program executing in batch message processing program (BMP),

message processing program (MPP), or IMS Fast Path (IFP) regions
regardless of the CMPAT= value.

alternate pcb
Specifies the identifier of the I/O PCB or alternate PCB group item from the
PCB list that is passed to the application program on entry. This identifier is
used for the call.

aib
Specifies the identifier of the group item that defines the application interface
block (AIB) in user-defined storage.

i/o area
Specifies the identifier of a group item, table, or usage display data item that
defines the I/O area to be used for the call. The I/O area must be large
enough to contain the returned data.

i/o area length
Specifies the identifier of a usage binary (4) byte data item in user-defined
storage that contains the I/O area length.

area length
Specifies the identifier of a usage binary (4) byte data item in user-defined
storage that contains the length of the area immediately following it in the
parameter list. Up to seven area length/area pairs can be specified.

area
Specifies the identifier of the group item that defines the area to be
checkpointed. Up to seven area length/area pairs can be specified.

token
Specifies the identifier of a usage display (4) byte data item that contains a
user token.

options list
Specifies the identifier of the group item that defines the user-defined storage
that contains processing options used with the call.

feedback area
Specifies the identifier of the group item that defines the user-defined storage
that receives information about options list processing errors.

mod name
Specifies the identifier of a usage display (8) byte data item in user-defined
storage that contains the user-defined MOD name used with the call.

destination name
Specifies the identifier of a usage display (8) byte data item that contains the
name of the logical terminal or transaction code to which messages resulting
from the call are sent.

386 Application Programming

Example DL/I call formats

DL/I CEETDLI interface:
CALL ’CEETDLI’ USING function, aib,i/o area.

DL/I AIBTDLI interface:
CALL ’AIBTDLI’ USING function, aib,i/o area.

DL/I language-specific interface:
CALL ’CBLTDLI’ USING function, i/o pcb, i/o area.

Related concepts:
“AIBTDLI interface” on page 245
Related reference:

DL/I calls for transaction management (Application Programming APIs)

DL/I calls for IMS TM system services (Application Programming APIs)

Java application programming for IMS
IMS provides support for developing applications using the Java programming
language.

You can write Java applications to access IMS databases and process IMS
transactions by using the drivers and resource adapters of the IMS solutions for
Java development.

Application programming for Pascal
Application programs in Pascal use the following format, parameters, and DL/I
calls to communicate with the IMS Transaction Manager.

Format

►►
(1)

PASTDLI (A
, VAR i/o_pcb

B
C

, VAR alt_pcb
B
D

AIBTDLI (A , VAR aib ,
B
C
D

) ; ►◄

A:

CONST function
CONST parmcount ,

Chapter 24. Defining application program elements for IMS TM 387

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfortm2.htm#ims_dlicallsfortm2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfortmsysservcices.htm#ims_dlicallsfortmsysservcices

B:

, VAR i/o_area
, VAR mod_name
, CONST token
, VAR options_list

, VAR feedback_area

C:

, VAR i/o_area_length , VAR i/o_area

▼ , VAR area_length , area

D:

, VAR destination_name
, VAR options_list

, VAR feedback_area

Notes:

1 For AIBTDLI, parmcount is required for applications.

Parameters

parmcount
specifies the address of a fixed-binary (31) variable in user-defined storage that
contains the number of parameters in the parameter list that follows parmcount.

function
Specifies the name of a character (4) variable, left-justified, in user-defined
storage, which contains the call function to be used. The call function must be
padded with blanks. For example, (GUbb) is a call function.

i/o pcb
Specifies the address of the program communication block (I/O PCB). The I/O
PCB address is the first address passed on entry to the application program in
the PCB list, given the following circumstances:
v A program executing in DLI or database management batch (DBB) regions

where CMPAT=YES is coded on the PSB.
v Any program executing in batch message processing program (BMP),

message processing program (MPP), or IMS Fast Path (IFP) regions
regardless of the CMPAT= value.

alternate pcb
Specifies the name of a pointer variable that contains the address of the I/O
PCB defined in the call procedure statement.

aib
Specifies the name of a pointer variable that contains the address of the
structure that defines the application interface block (AIB) in user-defined
storage.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character

388 Application Programming

string that defines the I/O area in user-defined storage to be used for the call.
The I/O area must be large enough to contain the returned data.

i/o area length
Specifies the name of a fixed-binary (31) variable in user-defined storage that
contains the I/O area length.

area length
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the length (specified in binary) of the area immediately following it in
the parameter list. Up to seven area length/area pairs can be specified.

area
Specifies the name of a pointer variable that contains the address of the
structure that defines the area in user-defined storage to be checkpointed. Up
to seven area length/area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that
contains a user token.

options list
Specifies the name of a pointer variable that contains the address of the
structure that defines the user-defined storage that contains processing options
used with the call.

feedback area
Specifies the name of the pointer variable that contains the address of the
structure that defines the user-defined storage that receives information about
options list processing errors.

mod name
Specifies the name of a character (8) variable in user-defined storage that
contains the user-defined MOD name used with the call.

destination name
Specifies the name of a character (8) variable in user-defined storage that
contains the name of the logical terminal or transaction code to which
messages resulting from the call are sent.

Example DL/I call formats

DL/I AIBTDLI interface:
AIBTDLI(CONST function,

VAR aib,
VAR I/O area);

DL/I language-specific interface:
PASTDLI(CONST function,
area VAR I/O PCB

VAR I/O area);

Related concepts:
“AIBTDLI interface” on page 245
Related reference:

DL/I calls for transaction management (Application Programming APIs)

DL/I calls for IMS TM system services (Application Programming APIs)

Chapter 24. Defining application program elements for IMS TM 389

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfortm2.htm#ims_dlicallsfortm2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfortmsysservcices.htm#ims_dlicallsfortmsysservcices

Application programming for PL/I
Application programs in PL/I use the following format, parameters, and DL/I
calls to communicate with the IMS Transaction Manager.

Format

►► CALL PLITDLI (parmcount , function
, i/o_pcb

A
B

, alt pcb
A
C

AIBTDLI (parmcount , function , aib
A
B
C

CEETDLI (parmcount , function
, i/o_pcb

A
B

, alt_pcb
A
C

, aib
A
B
C

) ; ►◄

A:

, i/o_area
, mod_name
, token
, options_list

, feedback_area

B:

, i/o_area_length , i/o_area

▼ , area_length , area

C:

, destination_name
, options_list

, feedback_area

390 Application Programming

Parameters

parmcount
Specifies the name of a fixed-binary (31-byte) variable that contains the number
of arguments that follow parmcount.

function
Specifies the name of a character (4-byte) variable, left justified, blank padded
character string that contains the call function to be used. For example, (GU��
is a call function.

i/o pcb
Specifies the address of the program communication block (I/O PCB). The I/O
PCB address is the first address passed on entry to the application program in
the PCB list, given the following circumstances:
v A program executing in DLI or DBB regions where CMPAT=YES is coded on

the PSB.
v Any program executing in batch message processing program (BMP),

message processing program (MPP), or IMS Fast Path (IFP) regions
regardless of the CMPAT= value.

alternate pcb
Specifies the structure associated with the I/O PCB or alternate PCB to be used
for the call. This structure is based on a PCB address that must be one of the
PCB addresses passed on entry to the application program.

aib
Specifies the name of the structure that defines the application interface block
(AIB).

i/o area
Specifies the name of the I/O area used for the call. The I/O area must be
large enough to contain the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the I/O area length (specified in binary).

area length
Specifies the name of a fixed binary (31) variable that contains the length
(specified in binary) of the area immediately following it in the parameter list.
Up to seven area length/area pairs can be specified.

area
Specifies the name of the area to be checkpointed. Up to seven area
length/area pairs can be specified.

token
Specifies the name of a character (4) variable that contains a user token.

options list
Specifies the name of a structure that contains processing options used with
the call.

feedback area
Specifies the name of a structure that receives information about options list
processing errors.

mod name
Specifies the name of a character (8) variable character string containing the
user-defined MOD name used with the call.

Chapter 24. Defining application program elements for IMS TM 391

destination name
Specifies the name of a character (8) variable character string containing the
logical terminal or transaction code to which messages resulting from the call
are sent.

Example DL/I call formats

DL/I CEETDLI interface:
%INCLUDE CEEIBMAW;
CALL CEETDLI (function, i/o pcb, i/o area);

DL/I AIBTDLI interface:
CALL AIBTDLI (parmcount, function, aib, i/o area);

DL/I language-specific interface:
CALL PLITDLI (parmcount, function, i/o pcb, i/o area);

Relationship of calls to PCB types
The following table shows the relationship of DL/I calls to I/O and alternate
program communication blocks (PCBs).

The PCB can be specified as a parameter in the call list, or in the AIB, depending
on which xxxTDLI interface is used:

Table 65. Call relationship to PCBs and AIBs.

Call I/O PCBs ALT PCBs

APSB 1

AUTH X

CHKP (basic) X

CHKP (symbolic) X

CHNG 2 X

CMD X

DPSB 1

GCMD X

GN X

GSCD X

GU X

INIT X

INQY X X

ISRT X X

LOG X

PURG X X

ROLB X

ROLS X

ROLL 1

SETO X X

SETS X

392 Application Programming

Table 65. Call relationship to PCBs and AIBs (continued).

Call I/O PCBs ALT PCBs

SETU X

SYNC X

XRST X

Notes:

1. This call is not associated with a PCB.
2. The alternate PCB used by this call must be modifiable.

Specifying the I/O PCB mask
After your program issues a call with the I/O program communications block
(PCB), IMS returns information about the results of the call to the I/O PCB. To
determine the results of the call, your program must check the information that
IMS returns.

Issuing a system service call requires an I/O PCB. Because the I/O PCB resides
outside your program, you must define a mask of the PCB in your program to
check the results of IMS calls. The mask must contain the same fields, in the same
order, as the I/O PCB. Your program can then refer to the fields in the PCB
through the PCB mask.

An I/O PCB contains the fields listed in the following table. The table describes
these fields, their lengths, and which environments are applicable for each field.

Table 66. I/O PCB mask

Descriptor Byte
Length

DB/DC DBCTL DCCTL DB Batch TM Batch

Logical terminal
name 1

8 X X

Reserved for IMS 2 2 X X

Status code 3 2 X X X X X

4-byte Local date and
time 4

Date 2 X X

Time 2 X X

Input message
sequence number 5

4 X X

Message output
descriptor name 6

8 X X

Userid 7 8 X X

Group name 8 8 X X

12-Byte Time Stamp 9

Date 4 X X

Time 6 X X

UTC Offset 2 X X

Userid Indicator10 1 X X

Chapter 24. Defining application program elements for IMS TM 393

Table 66. I/O PCB mask (continued)

Descriptor Byte
Length

DB/DC DBCTL DCCTL DB Batch TM Batch

Reserved for IMS2 3

Note:

1. Logical Terminal Name

This field contains the name of the terminal that sent the message. When your
program retrieves an input message, IMS places the name of the logical
terminal that sent the message in this field. When you want to send a message
back to this terminal, you refer to the I/O PCB when you issue the ISRT call,
and IMS takes the name of the logical terminal from the I/O PCB as the
destination.

2. Reserved for IMS

These fields are reserved.
3. Status Code

IMS places the status code describing the result of the DL/I call in this field.
IMS updates the status code after each DL/I call that the program issues. Your
program should always test the status code after issuing a DL/I call.
The three status code categories are:
v Successful status codes or status codes with exceptional but valid

conditions. This category does not contain errors. If the call was completely
successful, this field contains blanks. Many of the codes in this category are
for information only. For example, a QC status code means that no more
messages exist in the message queue for the program. When your program
receives this status code, it should terminate.

v Programming errors. The errors in this category are usually ones that you
can correct. For example, an AD status code indicates an invalid function
code.

v I/O or system errors.
For the second and third categories, your program should have an error
routine that prints information about the last call that was issued program
termination. Most installations have a standard error routine that all
application programs at the installation use.

4. Local Date and Time

The current local date and time are in the prefix of all input messages except
those originating from non-message-driven BMPs. The local date is a
packed-decimal, right-aligned date, in the format yyddd. The local time is a
packed-decimal time in the format hhmmsst. The current local date and time
indicate when IMS received the entire message and enqueued it as input for
the program, rather than the time that the application program received the
message. To obtain the application processing time, you must use the time
facility of the programming language you are using.
For a conversation, for an input message originating from a program or for a
message received using Multiple System Coupling (MSC), the time and date
indicate when the original message was received from the terminal.

Note: Be careful when comparing the local date and time in the I/O PCB
with the current time returned by the operating system. The I/O PCB date
and time may not be consistent with the current time. It may even be greater
than the current time for the following reasons:

394 Application Programming

v The time stamp in the I/O PCB is the local time that the message was
received by IMS. If the local time was changed after the message arrived, it
is possible for the current time to appear to be earlier than the I/O PCB
time. This effect would be likely to occur in the hour immediately after the
fall time change, when the clock is set back by one hour.

v The time stamp in the I/O PCB is derived from an internal IMS time stamp
stored with the message. This internal time stamp is in Coordinated
Universal Time (UTC), and contains the time zone offset that was in effect
at the time the message was enqueued. This time zone offset is added to
the UTC time to obtain the local time that is placed in the I/O PCB.
However, the time zone offset that is stored is only fifteen minutes. If the
real time zone offset was not an integer multiple of fifteen minutes, the
local time passed back in the I/O PCB will differ from the actual time by
plus or minus 7.5 minutes. This could cause the I/O PCB time to be later
than the current time. See IMS Version 14 Operations and Automation for
further explanation.

Concerns about the value in the local time stamp in the I/O PCB can be
reduced by using the extended time stamp introduced in IMS V6. The system
administrator can choose the format of the extended time stamp to be either
local time or UTC. In some situations, it may be advantageous for the
application to request the time in UTC from the operating system and
compare it to the UTC form of the extended time stamp. This is an option
available in installations where there is no ETR to keep the IMS UTC offset in
sync with the z/OS UTC offset over changes in local time.

5. Input Message Sequence Number

The input message sequence number is in the prefix of all input messages
except those originating from non-message-driven BMPs. This field contains
the sequence number IMS assigned to the input message. The number is
binary. IMS assigns sequence numbers by physical terminal, which are
continuous since the time of the most recent IMS startup.

6. Message Output Descriptor Name

You only use this field when you use MFS. When you issue a GU call with a
message output descriptor (MOD), IMS places its name in this area. If your
program encounters an error, it can change the format of the screen and send
an error message to the terminal by using this field. To do this, the program
must change the MOD name by including the MOD name parameter on an
ISRT or PURG call.
Although MFS does not support APPC, LU 6.2 programs can use an interface
to emulate MFS. For example, the application program can use the MOD
name to communicate with IMS to specify how an error message is to be
formatted.
Related reading: For more information on the MOD name and the LTERM
interface, see IMS Version 14 Communications and Connections.

7. Userid

The use of this field is connected with RACF signon security. If signon is not
active in the system, this field contains blanks.
If signon is active in the system, the field contains one of the following:
v The user's identification from the source terminal.
v The LTERM name of the source terminal if signon is not active for that

terminal.

Chapter 24. Defining application program elements for IMS TM 395

v The authorization ID. For batch-oriented BMPs, the authorization ID is
dependent on the value specified for the BMPUSID= keyword in the
DFSDCxxx PROCLIB member:
– If BMPUSID=USERID is specified, the value from the USER= keyword

on the JOB statement is used.
– If USER= is not specified on the JOB statement, the program's PSB name

is used.
– If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at

all, the program's PSB name is used.
Related Reading: For more information about authorizing resource use
in a dependent region, see IMS Version 14 System Administration.

8. Group Name

The group name, which is used by DB2 to provide security for SQL calls, is
created through IMS transactions.
Three instances that apply to the group name are:
v If you use RACF and signon on your IMS system, the RACROUTE SAF

(extract) call returns an eight-character group name.
v If you use your own security package on your IMS system, the RACROUTE

SAF call returns any eight-character name from the package and treats it as
a group name. If the RACROUTE SAF call returns a return code of 4 or 8, a
group name was not returned, and IMS blanks out the group name field.

v If you use LU 6.2, the transaction header can contain a group name.
Related reading: See IMS Version 14 Communications and Connections for
more information on LU 6.2.

9. 12-Byte Time Stamp

This field contains the current date and time fields, but in the IMS internal
packed-decimal format. The time stamp has the following parts:

Date yyyydddf

This packed-decimal date contains the year (yyyy), day of the year
(ddd), and a valid packed-decimal + sign such as (f).

Time hhmmssthmiju

This packed-decimal time consists of hours, minutes, and seconds
(hhmmss) and fractions of the second to the microsecond (thmiju). No
packed-decimal sign is affixed to this part of the time stamp.

UTC Offset
aqq$

The packed-decimal UTC offset is prefixed by 4 bits of attributes (a). If
the 4th bit of (a) is 0, the time stamp is UTC; otherwise, the time
stamp is local time. The control region parameter, TSR=(U/L), specified
in the DFSPBxxx PROCLIB member, controls the representation of the
time stamp with respect to local time versus UTC time.

The offset value (qq$) is the number of quarter hours of offset to be
added to UTC or local time to convert to local or UTC time
respectively.

The offset sign ($) follows the convention for a packed-decimal plus or
minus sign.

Field 4 on the I/O PCB Mask always contains the local date and time.
For a description of field 4, see the notes for the previous table.

396 Application Programming

Related reading: For a more detailed description of the internal
packed-decimal time-format, see IMS Version 14 System Utilities.

10. Userid Indicator

The Userid Indicator is provided in the I/O PCB and in the response to the
INQY call. The Userid Indicator contains one of the following:
v U - The user's identification from the source terminal during signon
v L - The LTERM name of the source terminal if signon is not active
v P - The PSBNAME of the source BMP or transaction
v O - Other name
The value contained in the Userid Indicator field indicates the contents of the
userid field.

Related concepts:
“Results of a message: I/O PCB” on page 412

Specifying the alternate PCB mask
An alternate program communication block (PCB) mask contains three fields.

The following table describes these fields, the field length, and in which
environment the field applies.

Table 67. Alternate PCB mask

Descriptor Byte Length DB/DC DBCTL DCCTL DB
Batch

TM
Batch

Logical terminal name 1 8 bytes X X

Reserved for IMS 2 2 bytes X X

Status code 3 2 bytes X X

Note:

1. Logical Terminal Name

This field contains the name of the logical terminal, LU 6.2 descriptor or the
transaction code to which you want to send the message.
Related reading: For more information on LU 6.2, see IMS Version 14
Communications and Connections.

2. Reserved for IMS

This 2-byte field is reserved.
3. Status Code

This field contains the 2-byte status code that describes the results of the call
that used this PCB most recently.

Related concepts:
“Sending messages to other terminals and programs” on page 422

Specifying the AIB mask
The AIB is used by your program to communicate with IMS, when your
application does not have a program communication block (PCB) address or the
call function does not use a PCB.

The application program can use the returned PCB address, when available, to
inspect the status code in the PCB and to obtain any other information needed by

Chapter 24. Defining application program elements for IMS TM 397

the application program. The AIB mask enables your program to interpret the
control block defined. The AIB structure must be defined in working storage, on a
fullword boundary, and initialized according to the order and byte length of the
fields as shown in the following table. The table's notes describe the contents of
each field.

Table 68. AIB fields

Descriptor Byte Length DB/DC DBCTL DCCTL DB
Batch

TM
Batch

AIB identifier 1 8 X X X X X

DFSAIB allocated
length 2

4 X X X X X

Subfunction code 3 8 X X X X X

Resource name 14 8 X X X X X

Reserved 1 5 8

Resource name 2 6 8

Maximum output area
length 7

4 X X X X X

Output area length
used 8

4 X X X X X

AIBRSFLD 9 4

Reserved 2 10 8

Return code 11 4 X X X X X

Reason code 12 4 X X X X X

Error code extension 13 4 X X

Resource address 14 4 X X X X X

Reserved 3 15 40

Note:

1. AIB Identifier (AIBID)

This 8-byte field contains the AIB identifier. You must initialize AIBID in your
application program to the value DFSAIB�� before you issue DL/I calls. This
field is required. When the call is completed, the information returned in this
field is unchanged.

2. DFSAIB Allocated Length (AIBLEN)

This field contains the actual 4-byte length of the AIB as defined by your
program. You must initialize AIBLEN in your application program before you
issue DL/I calls. The minimum length required is 128 bytes. When the call is
completed, the information returned in this field is unchanged. This field is
required.

3. Subfunction Code (AIBSFUNC)

This 8-byte field contains the subfunction code for those calls that use a
subfunction. You must initialize AIBSFUNC in your application program
before you issue DL/I calls. When the call is completed, the information
returned in this field is unchanged.

4. Resource Name (AIBRSNM1)

398 Application Programming

This 8-byte field contains the name of a resource. The resource varies
depending on the call. You must initialize AIBRSNM1 in your application
program before you issue DL/I calls. When the call is complete, the
information returned in this field is unchanged. This field is required.
For PCB related calls where the AIB is used to pass the PCB name instead of
passing the PCB address in the call list, this field contains the PCB name. The
PCB name for the I/O PCB is IOPCB�� The PCB name for other types of
PCBs is defined in the PCBNAME= parameter in PSBGEN.

5. Reserved 1

This 16-byte field is reserved.
6. Resource name 2

This 8-byte field is reserved.
7. Maximum Output Area Length (AIBOALEN)

This 4-byte field contains the length of the output area in bytes that was
specified in the call list. You must initialize AIBOALEN in your application
program for all calls that return data to the output area. When the call is
completed, the information returned in this area is unchanged.

8. Used Output Area Length (AIBOAUSE)

This 4-byte field contains the length of the data returned by IMS for all calls
that return data to the output area. When the call is completed this field
contains the length of the I/O area used for this call.

9. Reserved 2

This 8-byte field is reserved.
The first four bytes are used by the ICAL call to specify the time to wait for
the synchronous call process to complete (AIBRSFLD).

10. Return code (AIBRETRN)

When the call is completed, this 4-byte field contains the return code.
11. AIBRSFLD

This 4-byte field contains a resource information. The usage of this field varies
depending on the call.

12. Reason Code (AIBREASN)

When the call is completed, this 4-byte field contains the reason code.
13. Error Code Extension (AIBERRXT)

This 4-byte field contains additional error information depending on the
return code in AIBRETRN and the reason code in AIBREASN.

14. Resource Address (AIBRSA1)

When the call is completed, this 4-byte field contains call-specific information.
For PCB related calls where the AIB is used to pass the PCB name instead of
passing the PCB address in the call list, this field returns the PCB address.

15. Reserved 3

This 40-byte field is reserved.

Specifying the I/O areas
Use an I/O area to pass segments between the application program and IMS.

What the I/O area contains depends on the type of call you are issuing:
v When you retrieve a segment, IMS places the segment you requested in the I/O

area.

Chapter 24. Defining application program elements for IMS TM 399

v When you add a new segment, you first build the new segment in the I/O area.
v Before modifying a segment, your program must first retrieve it. When you

retrieve the segment, IMS places the segment in an I/O area.

The format of the record segments you pass between your program and IMS can
be fixed length or variable length. Only one difference is important to the
application program: a message segment containing a 2-byte length field (or 4
bytes for the PLITDLI interface) at the beginning of the data area of the segment.

The I/O area for IMS calls must be large enough to hold the largest segment your
program retrieves from or sends to IMS.

If your program issues any Get or ISRT calls that use the D command code, the
I/O area must be large enough to hold the largest path of segments that the
program retrieves or inserts.

AIBTDLI interface
Use AIBTDLI as the interface between your application program and IMS.

Restriction: No fields in the AIB can be used by the application program except as
defined by IMS.

When you use the AIBTDLI interface, you specify the program communication
block (PCB) requested for the call by placing the PCB name (as defined by
PSBGEN) in the resource name field of the AIB. You do not specify the PCB
address. Because the AIB contains the PCB name, your application program can
refer to the PCB name rather than the PCB address. Your application program does
not need to know the relative PCB position in the PCB list. At completion of the
call, the AIB returns the PCB address that corresponds to the PCB name passed by
the application program.

The names of DB PCBs and alternate PCBs are defined by the user during
PSBGEN. All I/O PCBs are generated with the PCB name ��� For a generated
program specification block (GPSB), the I/O PCB is generated with the PCB name
IOPCB���, and the modifiable alternate PCB is generated with the PCB name
TPPCB1��.

The ability to pass the PCB name means that you do not need to know the relative
PCB number in the PCB list. In addition, the AIBTDLI interface enables your
application program to make calls on PCBs that do not reside in the PCB list. The
LIST= keyword, which is defined in the PCB macro during PSBGEN, controls
whether the PCB is included in the PCB list.

The AIB resides in user-defined storage that is passed to IMS for DL/I calls that
use the AIBTDLI interface. Upon call completion, IMS updates the AIB. Allocate at
least 128 bytes of storage for the AIB.
Related concepts:
“PCB masks for GSAM databases” on page 309
Related reference:
“Application programming for PL/I” on page 390
“Application programming for Pascal” on page 387
“Application programming for C language” on page 382
“Application programming for assembler language” on page 379

400 Application Programming

“Assembler language application programming” on page 213

Specifying language-specific entry points
IMS gives control to an application program through an entry point. Use the
correct format for coding entry statements in assembler language, C language,
COBOL, Pascal, and PL/I.

Your entry point must refer to the program communication blocks (PCBs) in the
order in which they are defined in the PSB.

IMS passes the PCB pointers to a PL/I program differently than it passes them to
an assembler language, C language, COBOL, Java, or Pascal program. In addition,
Pascal requires that IMS pass an integer before passing the PCB pointers. IMS uses
the LANG keyword or the PSBGEN statement of PSBGEN to determine the type of
program to which it is passing control. Therefore, you must be sure that the
language specified during PSBGEN is consistent with the language of the program.

Application interfaces that use the AIB structure (AIBTDLI or CEETDLI) use the
PCB name rather than the PCB structure and do not require the PCB list to be
passed at entry to the application program.

When you code each DL/I call, you must provide the PCB you want to use for
that call. For all IMS TM application programs, the list of PCBs the program can
access is passed to the program at its entry point.

Assembler language

You can use any name for the entry statement to an assembler language DL/I
program. When IMS passes control to the application program, register 1 contains
the address of a variable-length fullword parameter list. Each word in the list
contains the address of a PCB. Save the parameter list address before you
overwrite the contents of register 1. IMS sets the high-order byte of the last
fullword in the list to X'80' to indicate the end of the list. Use standard z/OS
linkage conventions with forward and backward chaining.

C language

When IMS passes control to your program, it passes the addresses, in the form of
pointers, for each of the PCBs your program uses. The usual argc and argv
arguments are not available to a program invoked by IMS. The IMS parameter list
is made accessible by using the __pcblist macro. You can directly reference the
PCBs by __pcblist[0], __pcblist[1], or you can define macros to give these more
meaningful names. I/O PCBs must be cast to get the proper type:
(IO_PCB_TYPE *)(__pcblist[0])

The entry statement for a C language program is the main statement.
#pragma runopts(env(IMS),plist(IMS))
#include <ims.h>

main()
{...
}

Chapter 24. Defining application program elements for IMS TM 401

The env option specifies the operating environment in which your C language
program is to run. For example, if your C language program is invoked under IMS
and uses IMS facilities, specify env(IMS). The plist option specifies the format of
the invocation parameters received by your C language program when it is
invoked. When your program is invoked by a system support services program
such as IMS, the format of the parameters passed to your main program must be
converted into the C language format: argv, argc, and envp. To do this conversion,
you must specify the format of the parameter list received by your C language
program. The ims.h include file contains declarations for PCB masks.

You can finish program execution in three ways:
v End the main procedure without an explicit return statement.
v Execute a return statement from main.
v Execute an exit or an abort call from anywhere, or alternately issue a longjmp

back to main, and then do a normal return.

One C language program can pass control to another by using the system function.
The normal rules for passing parameters apply. For example, when using the
system function, the argc and argv arguments can be used to pass information. The
initial __pcblist is made available to the invoked program.

COBOL

The procedure statement must refer to the I/O PCB first, then to any alternate PCB
it uses, and finally to the DB PCBs it uses. The alternate PCBs and DB PCBs must
be listed in the order in which they are defined in the PSB.
Procedure division using the PCB-NAME-1 [,...,PCB-NAME-N]

On previous versions of IMS, the using keyword might be coded on the entry
statement to reference PCBs. However, IMS continues to accept such coding on the
entry statement.

Recommendation: Use the procedure statement rather than the entry statement to
reference the PCBs.

Pascal

The entry point must be declared as a REENTRANT procedure. When IMS passes
control to a Pascal procedure, the first address in the parameter list is reserved for
Pascal’s use and the other addresses are the PCBs the program uses. The PCB
types must be defined before this entry statement. The IMS interface routine
PASTDLI must be declared with the GENERIC directive.
procedure ANYNAME(var SAVE: INTEGER;

var pcb1-name: pcb1-name-type[;
...
var pcbn-name: pcbn-name-type]); REENTRANT;

procedure ANYNAME;
(* Any local declarations *)

procedure PASTDLI; GENERIC;
begin

(* Code for ANYNAME *)
end;

402 Application Programming

PL/I

The entry statement can be any valid PL/I name and must appear as the first
executable statement in the program. When IMS passes control to your program, it
passes the addresses of each of the PCBs your program uses in the form of
pointers. When you code the entry statement, make sure you code the parameters
of this statement as pointers to the PCBs, and not the PCB names.
anyname: PROCEDURE (pcb1_ptr [,..., pcbn_ptr]) OPTIONS (MAIN);...
RETURN;

CCETDLI and AIBTDLI interface considerations

The CCETDLI considerations are:
v For PL/I programs, the CEETDLI entry point is defined in the CEEIBMAW

include file. Alternatively, you can declare it yourself. But it must be declared as
an assembler language entry (DCL CEETDLI OPTIONS(ASM);).

v For C language applications, you must specify env(IMS) and plist(IMS); these
specifications enable the application to accept the PCB list of arguments. The
CEETDLI function is defined in <leawi.h>; the CTDLI function is defined in
<ims.h>.

The AIBTDLI considerations are:
v When using the AIBTDLI interface for C/MVS, COBOL, or PL/I language

applications, the language run-time options for suppressing abend interception
(that is, NOSPIE and NOSTAE) must be specified. However, for Language
Environment-conforming applications, the NOSPIE and NOSTAE restriction is
removed.

v The AIBTDLI entry point for PL/I programs must be declared as an assembler
language entry (DCL AIBTDLI OPTIONS(ASM);).

v For C language applications, you must specify env(IMS) and plist(IMS); these
specifications enable the application to accept the PCB list of arguments.

Program communication block (PCB) lists
Use the correct format of program communication block (PCB) lists and generated
program specification block (GPSB) PCB lists in your application program.

PCB list format

This is the format of a PCB:
[IOPCB]
[Alternate PCB ... Alternate PCB]
[DB PCB ... DB PCB]
[GSAM PCB ... GSAM PCB]

Each PSB must contain at least one PCB. An I/O PCB or alternate PCB is required
for transaction management calls, and an I/O PCB is required for most system
service calls. DB PCBs for DL/I databases are used only with the IMS Database
Manager, but can be present even though your program is running under DCCTL
or TM Batch. (A DB PCB can be a full-function PCB, a DEDB PCB, or an MSDB
PCB.) GSAM PCBs can be used with DCCTL or TM batch.

Chapter 24. Defining application program elements for IMS TM 403

Format of a GPSB PCB list

A generated program specification block (GPSB) has the following format:
[IOPCB]
[Alternate PCB]

A GPSB contains only an I/O PCB and one modifiable alternate PCB. It can be
used by all transaction management application programs, and permits access to
the PCBs specified without the need for PSBGEN.

The PCBs in a GPSB have predefined PCB names. The name of the I/O PCB is
IOPCB��. The name of the alternate PCB is TPPCB1��.

PCB summary

I/O PCBs and alternate PCBs can be used in various types of application
programs.

TM Batch Programs
Alternate PCBs are always included in the list of PCBs supplied to the
program by IMS TM. The I/O PCB is always present in the PCB list
regardless of the CMPAT options specified in PSBGEN.

BMPs, MPPs, and IFPs
The I/O PCB is always present in the PCB list and is always the first
address in the list, regardless of the CMPAT options specified in the PSB.
The PCB list always contains the address of the I/O PCB followed by the
addresses of any alternate PCBs, followed by the addresses of the DB
PCBs.

Language environments
IBM Language Environment provides the strategic execution environment for
running your application programs written in one or more high level languages.

It provides not only language-specific run-time support, but also cross-language
run-time services for your applications, such as support for initialization,
termination, message handling, condition handling, storage management, and
National Language Support. Many of Language Environment's services are
accessible explicitly through a set of Language Environment interfaces that are
common across programming languages; these services are accessible from any
Language Environment-conforming program.

Language Environment-conforming programs can be compiled with the following
compilers:
v IBM C++/MVS
v IBM COBOL
v IBM PL/I

The CEETDLI interface to IMS

The language-independent CEETDLI interface to IMS is provided by Language
Environment. It is the only IMS interface that supports the advanced error
handling capabilities provided by Language Environment. The CEETDLI interface
supports the same functionality as the other IMS application interfaces, and it has
the following characteristics:

404 Application Programming

v The parmcount variable is optional.
v Length fields are 2 bytes long.
v Direct pointers are used.

Related reading: For more information about Language Environment, see z/OS
Language Environment Programming Guide.

LANG= option on PSBGEN for PL/I compatibility

For IMS PL/I applications running in a compatibility mode that uses the
PLICALLA entry point, you must specify LANG=PLI on the PSBGEN. Your other
option is to change the entry point and add SYSTEM(IMS) to the EXEC PARM of
the compile step so that you can specify LANG=blank or LANG=PLI on the
PSBGEN. The following table summarizes when you can use LANG=blank and
LANG=PLI.

Table 69. Using LANG= option in a Language Environment for PL/I compatibility

Compile exec statement is
PARM=(...,SYSTEM(IMS)...

Entry point name is PLICALLA
Valid LANG= value

Yes Yes LANG=PLI

Yes No LANG=blank or LANG=PLI

No No Note: Not valid for IMS PL/I
applications

No Yes LANG=PLI

PLICALLA is only valid for PL/I compatibility with Language Environment. If a
PL/I application using PLICALLA entry at bind time is bound using Language
Environment with the PLICALLA entry, the bind will work; however, you must
specify LANG=PLI in the PSB. If the application is re-compiled using PL/I for
z/OS & VM Version 1 Release 1 or later, and then bound using Language
Environment Version 1 Release 2 or later, the bind will fail. You must remove the
PLICALLA entry statement from the bind.

Special DL/I situations for IMS TM programming
Special considerations during application programming for IMS Transaction
Manager include mixed-language programming, using the extended addressing
capabilities of z/OS, COBOL compiler options for preloaded programs, and
considerations for the DCCTL environment.

Mixed-language programming

When an application program uses the Language Environment
language-independent interface, CEETDLI, IMS does not need to know the
language of the calling program.

When the application program calls IMS in a language-dependent interface, IMS
determines the language of the calling program according to the entry name
specified in the CALL statement:
v CALL CBLTDLI indicates the program is in COBOL.
v CALL PLITDLI indicates the program is in PL/I.
v CALL PASTDLI indicates the program is in Pascal.

Chapter 24. Defining application program elements for IMS TM 405

v ctdli(...) indicates the program is in C language.
v CALL ASMTDLI indicates the program is in assembler language.

If a PL/I program calls an assembler language subroutine and the assembler
language subroutine makes DL/I calls by using CALL ASMTDLI, the assembler
language subroutine should use the assembler language calling convention, not the
PL/I convention.

In this situation, where the I/O area uses the LLZZ format, the LL is a halfword,
not the fullword that is used for PLITDLI.

Using Language Environment routine retention

If you run programs in an IMS TM dependent region that requires Language
Environment (such as an IMS message processing region), you can improve
performance if you use Language Environment library routine retention along with
the existing PREINIT feature of IMS TM.

Related reading: For more information about Language Environment, see z/OS
Language Environment Programming Guide.

Using the extended addressing capabilities of z/OS

The two modes inz/OS with extended addressing capabilities are: the addressing
mode (AMODE) and the residency mode (RMODE).

IMS places no constraints on the RMODE and AMODE of an application program.
The program can reside in the extended virtual storage area. The parameters
referenced in the call can also be in the extended virtual storage area.

Related reading: For more information about Language Environment, see z/OS
MVS Programming: Assembler Services Guide.

COBOL compiler options for preloaded programs

If you compile your COBOL program with the COBOL for z/OS & VM compiler
and preload it, you must use the COBOL compiler option RENT. Alternatively, if
you compile your COBOL program with the VS COBOL II compiler and preload it,
you must use the COBOL compiler options RES and RENT.

DCCTL

In a DCCTL environment, the application can only reference the address of an I/O
PCB, alternate PCB, or GSAM PCB. An application program can use a PSB that
contains PCBs referencing databases; however, these PCBs cannot be used during
processing. Entry statements for COBOL, PL/I, C, and Pascal must refer to all
PCBs included in the PSB, including PCBs which you might not be able to process,
as PCBs must be included in the order in which they are listed in the PSB. This
includes all PCBs prior to the last referenced PCB and can include DB PCBs. If you
used a GSAM PCB, all PCBs ahead of it must be referenced.

406 Application Programming

Chapter 25. Message processing with IMS TM

IMS Transaction Manager application programs can be written in assembler
language, C language, COBOL, Pascal, and PL/I to process messages.

How your program processes messages
To retrieve and send messages, an IMS TM application program issues calls to IMS
TM. When your program issues a call to retrieve a message, IMS TM places the
input message in the I/O area you name in the call. Before you issue a call to send
a message, you must build the output message in an I/O area in your program.

Message types
An operator at a terminal can send four kinds of messages to IMS TM.

The destination of an IMS TM message identifies which kind of message is being
sent:
v Another terminal. A logical terminal name in the first 8 bytes means that this is

a message switch destined for another terminal. For a user at a logical terminal
to send a message to another logical terminal, the user enters the name of the
receiving logical terminal followed by the message. The IMS TM control region
routes the message to the specified logical terminal. This kind of message does
not result in the scheduling of any activity in a message processing program
(MPP).

v An application program. A transaction code in the first 8 bytes means that the
message is destined for an application program. IMS TM uses a transaction code
to identify MPPs and transaction-oriented batch message processing programs
(BMPs). To use a particular application program to process requests, the user
enters the transaction code for that application program.

v IMS TM. A “/” (slash) in the first byte means that the message is a command
destined for IMS TM.

v Message switch service. A system service DFSAPPC request is destined for the
message switch service.

An application program can send three kinds of messages:
v Commands. A “/” in the first byte of the message text means that the message is

a command for IMS TM. Programmers design applications to issue commands
when they want a program to perform tasks that an operator at a terminal
usually performs. This is called automated operator interface (AOI) and is
described in IMS Version 14 Communications and Connections and IMS Version 14
Operations and Automation.
Use the CMD call to issue commands. Do not use the ISRT call for issuing
commands, because a message created with ISRT can contain a slash in the first
byte without being a command.

v Messages to logical terminals by specifying a logical terminal name.
v Program-to-program switches using a transaction code.

The messages that your program receives and sends are made up of segments. Use
a GU call to retrieve the first segment of a new message, and use GN calls to retrieve
the remaining segments of the message. The following figure shows three

© Copyright IBM Corp. 1974, 2015 407

messages. Message A contains one segment, message B contains two segments, and
message C contains three segments.

To retrieve message A, you only have to issue a GU call. To retrieve messages B and
C, issue one GU call to retrieve the first segment, then a GN call for each remaining
segment. This assumes that you know how many segments each message contains.
If you do not know this, issue GN calls until IMS TM returns a QD status code,
indicating that all of the segments for that message have been retrieved.

If you inadvertently issues a GU call after retrieving the first segment of the
multi-segment messages, IMS TM returns a QC status code. This status indicates
that no more messages are present, without your program retrieving the additional
segments associated with the message. Data would have been lost without any
indication that it happened.

Input message format and contents
The input message that an application program receives from a terminal or another
program always has these fields: the length field, the ZZ field, the transaction code
field, and the text field.

The tables that follow show the message input layouts. The input message field
names are in the first row of each table. The number below each field name is the
length in bytes that has been defined for that field. The following table shows the
format of an input message for the AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI,
CTDLI, and PASTDLI interfaces. The message is slightly different for the PLITDLI
interface.

Table 70. Input message format

Field Name Field Length

LL 2

ZZ 2

TRANCODE 8

Text Variable

Table 71. Input message format for the PLITDLI interface

Field Name Field Length

LLLL 4

ZZ 2

TRANCODE 8

Text Variable

The contents of the input message fields are:

Message A Message B

Segment B1

Segment B2

Segment A1

Message C

Segment C1

Segment C2

Segment C3

Figure 73. Message segments

408 Application Programming

LL or LLLL
The length field contains the length of the input message segment in binary,
including LL (or LLLL) and ZZ. IMS TM supplies this number in the length
field when you retrieve the input message.

For the AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI
interfaces, define the LL field as 2 bytes long.

For the PLITDLI interface, define the LLLL field as 4 bytes long. The value in
the LLLL field is the input message length minus 2 bytes. For example, if the
text is 12 bytes, then the fullword LLLL contains a value of 24 bytes. This
value is the total of LLLL (4 bytes) + ZZ (2 bytes) + TRANCODE (8 bytes) +
text (12 bytes) - 2 bytes.

ZZ The ZZ field is a 2-byte field that is reserved for IMS TM. Your program does
not modify this field.

TRANCODE
The TRANCODE is the transaction code for the incoming message.

Text
This field contains the message text sent from the terminal to the application
program. The first segment of a message can also contain the transaction code
associated with the program in the beginning of the text portion of the
message. Input messages do not have to include the transaction code, but you
can provide it for consistency.

The text field’s contents in the input message and the formatting of the contents
when your program receives the message depends on the editing routine your
program uses.

Output message format and contents
The format of the output message that you build to send back to a terminal or to
another program is similar to the format of the input message, but the fields
contain different information.

Output messages contain four fields: the length field, the Z1 field, the Z2 field, and
the text field. The following tables show the message output layouts. The output
message field names are in the first row of each table. The number below each
field name is the length in bytes that has been defined for that field. The following
table shows the format of an output message for AIBTDLI, ASMTDLI, CBLTDLI,
CEETDLI, CTDLI, and PASTDLI interfaces. The format for PLITDLI is slightly
different.

Table 72. Output message format

Field Name Field Length

LL 2

Z1 1

Z2 1

Text Variable

Table 73. Output message format for PLITDLI

Field Name Field Length

LLLL 4

Z1 1

Chapter 25. Message processing with IMS TM 409

Table 73. Output message format for PLITDLI (continued)

Field Name Field Length

Z2 1

Text Variable

The contents of the output message fields are:

LL or LLLL
The field length contains the length of the message in binary, including the LL
(or LLLL), Z1, and Z2 fields. For output message segments, supply this length
when you are ready to send the message segment.

For the AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI
interfaces, the LL field must be 2 bytes long. For the PLITDLI interface, the
LLLL field must be 4 bytes long and contain the length of the message
segment, minus 2 bytes.

Z1 The Z1 field is a 1-byte field that must contain binary zeros. It is reserved for
IMS TM.

Z2 The Z2 field is a 1-byte field that can contain special device-dependent
instructions (such as instructions to ring the alarm bell, instructions to
disconnect a switched line, or paging instructions) or device-dependent
information (such as information about structured field data or bypassing
MFS).

If you do not use any of these instructions, the Z2 field must contain binary
zeros. For MFS, this field contains the number of the option that is being used
for this message.

Text
The text portion of the message segment contains the data that you want to
send to the logical terminal or to an application program. (Text messages are
typically EBCDIC characters.) The length of the text depends on the data that
you want to send.

When a message is processed
A program’s response to a message will depend on the type of message the
program receives. A transaction code associates a request for information from a
terminal with the application program that can process and respond to that
request. IMS TM schedules an MPP when there are messages to be processed that
contain the transaction code associated with that MPP.

Example: Suppose you have an MPP that processes the transaction code
“INVINQ” for inventory inquiry. The MPP receives a request from a user at a
terminal for information on the inventory of parts. When the user enters the
transaction code for that application program, IMS TM schedules the application
program that can process the request.

When you enter INVINQ and one or more part numbers, the MPP sends your
program the quantity of each part on hand and the quantity on order.

When you enter INVINQ at the terminal, IMS TM puts the message on the
message queue for the MPP that processes INVINQ. Then, after IMS TM has
scheduled the MPP, the MPP issues GU and GN calls to retrieve the message. To
retrieve the messages from LTERM1, the application program issues a GU for the

410 Application Programming

first segment of a message, then issues GN calls until IMS TM returns a QD status
code. This means that the program has retrieved all of the segments of that
message. The program then processes the request, and sends the output message to
the queue for your logical terminal. (The logical terminal name is in the I/O PCB.)
When the MPP sends the output message, IMS TM sends it to the queue for that
logical terminal, and the message goes to the physical terminal. The following
figure shows the flow of a message between the terminal and the MPP.

The following example shows the calls you use, the status codes, and what the
input and output for the inventory inquiry would look like. To show you how to
use GU and GN to retrieve messages, and how you insert multiple-segment
messages, this example shows messages containing three segments. If input and
output messages in this example were single segment messages, the program
would issue only a GU to retrieve the entire message, and only one ISRT to send the
message.

The message formats shown are examples; not all messages are in this format.
When the program receives the input message in the I/O area, the first field of
each segment contains the length of that segment. This is the LL field in the figure.
For clarity, the figure shows this length in decimal; in the input message, however,
it is in binary. The second field (ZZ) is reserved for IMS TM; it is 2 bytes long. The
text of the message follows the reserved 2 bytes. The first message segment
contains the transaction code in the 8 bytes following the ZZ field. These are the
first 8 bytes of the text portion of the message.

The format of the output messages is the same. You do not need to include the
name of the logical terminal, because it is in the first 8 bytes of the I/O PCB.

PART, QTY, and ON ORDER in the example are headings. These are values that
you can define as constants that you want to appear on the terminal screen. To
include headings in MFS output messages, define them as literals.

Logical Terminal queuePhysical terminal

Transaction queue

Application program

Physical terminal

Figure 74. Transaction message flow

Chapter 25. Message processing with IMS TM 411

Results of a message: I/O PCB
After your program issues a call, IMS TM returns information about the results of
the call in the I/O PCB. To find out about the results of the call, your application
program must check the information that IMS TM returns to the I/O PCB.

When your application program retrieves a message, IMS TM returns this
information about the message to the I/O PCB:
v The name of the terminal that sent the message.
v A 2-character status code describing the results of the call. If the program

receives a status code of QC after issuing a call to retrieve a message, no more
messages are available for the program to process.

v The current date, time, and sequence number for the message.
v The user ID of the person at the terminal or the transaction code for the

program that sent the message.

Because the I/O PCB resides in storage outside of your program, you define a
mask of the PCB in your program based at this address to check the results of IMS
TM calls. The mask contains the same fields in the same order as the I/O PCB.
Related reference:
“Specifying the I/O PCB mask” on page 393

How IMS TM edits messages
When an application program passes messages to and from a terminal, IMS TM
edits the messages before the program receives the message from the terminal and
before the terminal receives the message from the application program.

IMS TM gives you many choices about how you want your messages to appear
both on the terminal screen and in the program's I/O area. You need to know
which editing routines have been specified for your program and how they affect
your programming.

DC calls I/O area Status

code

bb

bb

bb

QD

bb

bb

bb

PART QTY ON ORDER

12X 90 0

72B 41 15

37Y 3 25

LTERM 1

INVINQ PART 12X

PART 72B

PART 37Y

LTERM 1

LLZZ TEXT

1900INVINQ PART 12X

1200PART 72B

1200PART 37Y

LLZZ TEXT

130012X090000

130072B041015

130037Y003025

GU

GN

GN

GN

.

.

.

ISRT

ISRT

ISRT

Figure 75. Inventory inquiry MPP example

412 Application Programming

The three editing routines available to non-LU 6.2 terminals in IMS TM are:

Basic Edit
Performs basic edit functions if you do not use MFS and if the message
does not originate at an LU 6.1 device. You must provide control characters
for some formatting functions.

Intersystem Communication (ISC) Edit
Provides the default edit for messages that originate from an LU 6.1
device. You can enter binary data in addition to text.

Message Format Service (MFS)
Formats messages through control blocks. You define the way the messages
look with the control blocks.

For LU 6.2 devices, use the LU 6.2 Edit exit routine to edit input and output
messages.

Related reading: For more information on LU 6.2, see IMS Version 14
Communications and Connections. For more information on LU 6.2 Edit exit routine,
see IMS Version 14 Exit Routines.

Printing output messages
To print output messages, you must provide the horizontal and vertical control
characters that are necessary to format your output messages.

To print your output at a printer terminal, include these control characters where
necessary within the text of the message:

X'05' Skip to the tab stop, but stay on the same line.

X'15' Start a new line at the left margin.

X'25' Skip to a new line, but stay at the same place horizontally.

If you want to skip multiple lines, you can start a new line (X'15'), then skip as
many lines as necessary (X'25').

Using Basic Edit
If you do not use MFS or an LU 6.1 device, IMS TM does some editing
automatically. The editing IMS TM does to the first message segment is different
from the editing IMS TM does for subsequent message segments.

See IMS Version 14 Communications and Connections for a complete description of
Basic Edit.

Editing input messages

When IMS TM receives the first segment of an input message for your application
program, IMS TM:
v Removes leading and trailing control characters.
v Removes leading blanks.
v Removes backspaces (from a printer terminal).
v Translates to uppercase, if this is specified with the EDIT=UC specification on

the system definition TRANSACT macro.

If the message segment contains a password, IMS TM edits the segment by:

Chapter 25. Message processing with IMS TM 413

v Removing the password and inserting a blank in place of the password.
v Removing the password if the first character of the text is a blank. IMS TM does

not insert the blank.
v Left-justifying the text of the segment.

For subsequent input message segments, IMS TM does not remove leading blanks
from the text of the message. The other formatting features are the same.

Editing output messages

For output messages, Basic Edit:
v Changes nongraphic characters in the output message before the data goes to

the output device.
v Inserts any necessary idle characters after new line, line feed, and tab characters.
v Adds line control characters for the operation of the communication line.

Using Intersystem Communication Edit
Intersystem Communication (ISC) Edit is the default edit for messages from LU 6.1
devices. It is not valid for any other device types. One advantage of using ISC edit
is that IMS TM does not edit the text of a message, allowing you to enter binary
data.

Editing input messages

The editing IMS TM does to input messages depends on whether the Function
Management (FM) header contains the SNA-defined primary resource name (PRN)
parameter. In either case, IMS TM removes the FM header before the input
message is received by the application program.

If the FM header does not contain the PRN parameter:
v IMS TM removes leading control characters and blanks when it receives the first

segment of an input message for your application program.
v If the message segment contains a password, IMS TM removes the password

and inserts a blank where the password was.
v IMS TM does not edit the text of the message (the data following the password).

If the FM header contains the PRN parameter:
v The PRN is treated as the transaction code and is received by your application

program as the first field in the message segment.
v The message segment is not edited by IMS TM.

Editing output messages

ISC edit does not edit output messages.

Using Message Format Service
Format the messages that you send to MPP using the Message Format Service
(MFS). You define the format in control blocks.

The MFS control blocks indicate to IMS TM how you want your input and output
messages arranged:

414 Application Programming

v For input messages, MFS control blocks define how the message that the
terminal sends to your MPP is arranged in the I/O area.

v For output messages, MFS control blocks define how the message that your MPP
sends to the terminal is arranged on the screen or at the printer. You can also
define words or other data that appear on the screen (headings, for example) but
do not appear in the program's I/O area. This data, called a literal, can be a field
in the output message from the application program or a field in the input
message from the terminal.

Terminals and MFS
Whether your program uses MFS depends on the types of terminals and secondary
logical units (SLUs) your network uses. You can bypass MFS formatting of an
output message for a 3270 device or for SLU Type 2 devices. When MFS is
bypassed, you construct the entire 3270 data stream from within your program.

Restriction: MFS cannot be used with LU 6.2 devices (APPC).

Related reading: For more information on LU 6.2 and APPC, see IMS Version 14
Communications and Connections.

Using MFS involves high-level design decisions that are separate from the tasks of
application design and application programming; many installations that use MFS
have a specialist who designs MFS screens and message formats for all
applications that use MFS.

MFS makes it possible for an MPP to communicate with different types of
terminals without having to change the way it reads and builds messages. When
the MPP receives a message from a terminal, the message's format in the MPP I/O
area depends on the MFS options specified and not on what kind of terminal sent
it. MFS shields the MPP from the physical device that is sending the message in
the same way that a DB PCB shields the program from what the data in the
database actually looks like and how it is stored.

MFS input message formats
You define a message to MFS in fields just as you would define fields within a
database segment.

When you define the fields that make up a message segment, you give MFS
information such as:
v The field length
v The fill character used when the length of the input data is less than the length

defined for the field
v Whether the data in the field is left-justified or right-justified
v If the field is truncated, whether it is truncated on the left or right

The order and length of these fields within the message segment depends on the
MFS option that your program is using. You specify the MFS option in the MID.
The decision of which option to use for an application program is based on:
v How complex the input data is
v How much the input data varies
v The language the application program is written in
v The complexity of the application program
v Performance factors

Chapter 25. Message processing with IMS TM 415

The Z2 field in MFS messages contains the MFS formatting option being used to
format the messages to and from your program. If something is wrong in the way
that IMS TM returns the messages to your I/O area, and you suspect that the
problem might be with the MFS option used, you can check this field to see if IMS
TM is using the correct option. A X'00' in this field means that MFS did not format
the message at all.

One way to understand how each of the MFS options formats your input and
output messages is to look at examples of each option.

Example: Suppose that you have defined the four message segments shown in the
following table. Each of the segments contains a 2-byte length field and a 2-byte
ZZ field. The first segment contains the transaction code that the person at the
terminal entered to invoke the application program. The number of bytes defined
for each field appears below the name of the field in the figure.

When you use the PLITDLI interface, you must define the length field as a binary
fullword, LLLL. When you use the AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI,
CTDLI, or PASTDLI interfaces, you must define the length field as a halfword, LL.
The value provided by the PL/I application program must represent the actual
segment length minus 2 bytes. For example, if the output text is 10 bytes, then the
value of the fullword LLLL is 14 and is the sum of the length of LLLL (4 bytes - 2
bytes) + Z1 (1 byte) + Z2 (1 byte) + TEXT (10 bytes).

Table 74. Four-segment message.

Segment Number Field Name Field Length Field Value

1

LL 2 0027

ZZ 2 XXXX

TRANCODE 8 YYYY

Text 5 PATIENT#

Text 10 NAME

2

LL 2 0054

ZZ 2 XXXX

Text 50 ADDRESAF

3

LL 2 0016

ZZ 2 XXXX

Text 6 CHARGES

Text 6 PAYMENTS

4

LL 2 0024

ZZ 2 XXXX

Text 10 TREATMENT

Text 10 DOCTOR

For these examples, assume that:
v The transaction code is defined in the MID as a literal.
v All of the fields are left-justified.
v The fill character is defined as a blank. When the length of the data in a field is

less than the length that has been defined for that field, MFS pads the field with
fill characters. Fill characters can be:

416 Application Programming

– Blanks
– An EBCDIC character
– An EBCDIC graphic character
– A null, specified as X'3F'
When you specify that the fill character is to be a null, MFS compresses the field
to the length of the data if that length is less than the field length.
The fields for segment 4 of the message in the previous table are arranged on
the terminal screen in the format shown in the following figure.
Example: Assume the person enters the name of a patient, and the charges and
payments associated with that patient.

MFS provides three options for message formatting.

MFS option 1

Use this option when the program receives and transmits most of the fields in the
message segments. The way that option 1 formats messages depends on whether
you have defined a null as the fill character for any of the fields in the segment.

If none of the fields in the message were defined as having a fill character of null:
v The program receives all the segments in the message.
v Each segment is the length that was specified for it in the MID.
v Each segment contains all its fields.
v Each field contains data, data and fill characters, or all fill characters.

The following table shows the Option 1 Format of segments received by the
application program.

Table 75. MFS option 1 message format

Segment Number Field Name Field Length Field Value

1

LL 2 0027

Z1 1 XX

Z2 1 01

TRANCODE 8 YYYY

Text 5 blanks

Text 10 MCROSS����

PATIENT#: NAME: MC ROSS

ADDRESAF:

CHARGES: 106.50 PAYMENTS: 90.00

TREATMENT:

DOCTOR:

Figure 76. Terminal screen for MFS example

Chapter 25. Message processing with IMS TM 417

Table 75. MFS option 1 message format (continued)

Segment Number Field Name Field Length Field Value

2

LL 2 0054

Z1 1 XX

Z2 1 01

Text 50 blanks

3

LL 2 0016

Z1 1 XX

Z2 1 01

Text 6 010650

Text 6 009000

4

LL 2 0024

Z1 1 XX

Z2 1 01

Text 10 blanks

Text 10 blanks

The message format for option 1 output messages is the same as the input message
format. The program builds output messages in an I/O area in the format shown
for segment 4 in the previous figure. The program can truncate or omit fields in
one of two ways:
v Inserting a short segment
v Placing a null character in the field

If one or more of the fields are defined as having a null fill character, the message
is different. In this case, the message has these characteristics:
v If a field has been defined as having a fill character of null and the terminal

offers not data, the field is eliminated from the message segment.
v If all of the fields in a segment have a null fill character and none of the fields

contains any literals, the segment is eliminated from the message.
v If only some of the fields in a segment have a null fill character, any field

containing nulls is eliminated from the segment. The relative positions of the
fields remaining within the segments are changed.

v When the length of the data that is received from the originating terminal is less
than the length that is been defined for the field, the field is truncated to the
length of the data.

MFS option 2

Use this option when the program processes multisegment messages where most
of the fields are transmitted but some of the segments are omitted. Option 2
formats messages in the same way that option 1 does, unless the segment contains
no input data from the terminal after IMS TM has removed the literals. If this is
true, and if no additional segments in the message contain input data from the
terminal, IMS TM ends the message. The last segment that the program receives is
the last segment that contains input data from the terminal.

418 Application Programming

Sometimes a segment that does not have any input data from the terminal is
followed by segments that do contain input data from the terminal. When this
happens, MFS gives the program the length field and the Z fields for the segment,
followed by a 1-byte field containing X'3F'. This indicates to the program that this
is a null segment.

If the message segments shown in Table 74 on page 416 are formatted by option 2,
they appear in the format shown in the table below.

Table 76. MFS option 2 message format

Segment Number Field Name Field Length Field Value

1

LL 2 0027

Z1 1 XX

Z2 1 02

TRANCODE 8 YYYY

Text 5 blanks

Text 10 MCROSS����

2

LL 2 0005

Z1 1 XX

Z2 1 02

Text 1 X'3F'

3

LL 2 0016

Z1 1 XX

Z2 1 02

Text 6 010650

Text 6 009000

Segment 2 in the previous table contains only a X'3F' because that segment is null,
but Segment 3 contains data. This message does not contain a segment 4 because it
is null.

MFS option 3

Use this option when the program receives and transmits only a few of the fields
within a segment. When you use option 3, the program receives only those fields
that have been received from the terminal. The program receives only segments
that contain fields received from the originating terminal. Segments and fields can
be of variable length if you have defined option 3 as having a null fill character.

A segment in an option 3 message is identified by its relative segment number—in
other words, what position in the message it occupies. The fields within a segment
are identified by their offset count within the segment.

Example: The NAME field in segment 1 is (MCROSS����. The value 17 is the sum
of the lengths of the fields preceding the NAME field and includes an 8-byte
transaction code and a 5-byte field of blanks. It does not include the 2-byte relative
segment number field (field A in the following table), the 2-byte length field (field
B), or the 2-byte relative offset field (field C).

Chapter 25. Message processing with IMS TM 419

Option 3 messages do not contain literals defined in the MID. This means that the
transaction code is removed from the message, except during a conversation. If the
transaction that the program is processing is a conversational transaction, the
transaction code is not removed from the message. The transaction code still
appears in the scratchpad area (SPA).

Each segment the program receives contains the relative number of this segment in
the message (field A in the following table). In addition, each data field within the
segment is preceded by two fields:
v A 2-byte length field (B). Including the length field itself, the 2-byte relative field

offset, and the data in the field.
v A 2-byte relative field offset (C), giving the field's position in the segment as

defined in the MID.

These two fields are followed by the data field. MFS includes these fields for each
field that is returned to the application program.

If the message segments shown in Table 74 on page 416 are formatted by option 3,
they appear in the format shown in the following table. The notes for the tables
explain the letters A, B, C, and D, which are in the first row of segment 1 and
segment 3.

Table 77. MFS option 3 message format

Segment Number Field Name Field Length Field Value

1

LL 2 0020

Z1 1 XX

Z2 1 03

A 2 0001

B 2 0014

C 2 0017

D 10 MCROSS����

2

LL 2 0000

Z1 1 XX

Z2 1 03

A 2 0003

B 2 0010

C 2 0004

D 6 010650

B 2 0010

C 2 0010

D 6 009000

Notes to the previous table:

v The fields marked A contain the relative segment number. This number gives the
segment's position within the message.

v The fields marked B contain the field length. This length is the sum of the
lengths of B field (2 bytes) + C field (2 bytes) + D field (the length of the data).

420 Application Programming

v The fields marked C contain the relative field offset. This gives each field's
position within the segment.

v The fields marked D contain the data from the terminal. In this example, the fill
character was defined as blank, so the data field is always its defined length.
IMS TM does not truncate it. If you define the fill character as null, the lengths
of the data fields can differ from the lengths defined for them in the segment.
With a null fill character, if the length of the data from the terminal is less than
the length defined for the field, IMS TM truncates the field to the length of the
data. Using a null fill with option 3 reduces the space required for the message
even further.

MFS output message formats
The output message format is used to define what segments and fields MFS will
receive from the application program.

If using option 1 or option 2, the output message format is the same as it is for
input messages. Present all fields and segments to MFS. You can present null
segments. All fields in output messages are fixed length and fixed position. Output
messages do not contain option numbers.

Option 3 output messages are similar to input messages, except that they do not
contain option numbers. The program submits the fields as required in their
segments with the position information.

Using LU 6.2 User Edit exit routine (optional)
This exit routine edits input and output messages from LU 6.2 devices when the
implicit application program interface support is used.

If it is not provided, then messages are presented without modification. IMS does
not invoke the exit for CPI-C driven transactions because IMS does not participate
in the data flows when the application program uses the CPI directly.

The LU 6.2 User Edit exit routine is called once for each message segment or
inbound control flow. You can call the exit routine for data messages and use it to:
v Examine the contents of a message segment.
v Change the contents of a message segment.
v Expand or compact the contents of a message segment.
v Discard a message segment and process subsequent segments, if any.
v Use the Deallocate_Abend command to end the conversation.

For more information on LU 6.2 User Edit exit routine, seeIMS Version 14
Communications and Connections and IMS Version 14 Operations and Automation.

Message processing considerations for DB2
For the most part, the message processing function of a dependent region that
accesses DB2 databases is similar to that of a dependent region that accesses only
DL/I databases.

The method each program uses to retrieve and send messages and back out
database changes is the same. The differences are:
v DL/I statements are coded differently from SQL (structured query language)

statements.

Chapter 25. Message processing with IMS TM 421

v When an IMS TM application program receives control from IMS TM, IMS has
already acquired the resources the program is able to access. IMS TM schedules
the program, although some of the databases are not available. DB2 does not
allocate resources for the program until the program issues its first SQL
statement. If DB2 cannot allocate the resources your program needs, your
program can optionally receive an initialization error when it issues its first SQL
call.

v When an application issues a successful checkpoint call or a successful message
GU call, DB2 closes any cursors that the program is using. This means that your
program should issue its OPEN CURSOR statement after a checkpoint call or a
message GU.

IMS TM and DB2 work together to keep data integrity in these ways:
v When your program reaches a commit point, IMS TM makes any changes that

the program has made to DL/I databases permanent, releases output messages
for their destinations, and notifies DB2 that the program has reached a commit
point. DB2 then makes permanent any changes that the program has made to
DB2 databases.

v When your program terminates abnormally or issues one of the IMS TM
rollback calls (ROLB, ROLS without a token, or ROLL), IMS TM cancels any output
messages your program has produced, backs out changes your program has
made to DL/I databases since the last commit point, and notifies DB2. DB2
backs out the changes that the program has made to DB2 databases since the
last commit point.

Through the Automated Operator Interface (AOI), IMS TM application programs
can issue DB2 commands and IMS TM commands. To issue DB2 commands, the
program issues the IMS TM /SSR command followed by the DB2 command. The
output of the /SSR command is routed to the master terminal operator (MTO).

Sending messages to other terminals and programs
When an application program processes a message from a terminal, it usually
sends the response to the terminal that sent the input message. But sometimes you
might want to send output messages to a terminal other than the originating
terminal, or to other terminals in addition to the originating terminal. You might
also want to send messages to other application programs.

When you use an alternate PCB:
v If you want to send output messages to one alternate destination, define the

alternate PCB for that destination.
v If you want to send output messages to more than one alternate destination, and

you want to be able to change the destination of the alternate PCB, define the
alternate PCB as modifiable during program specification block (PSB)
generation. Then, before you issue the ISRT call, you issue a CHNG call to set the
destination of the alternate modifiable PCB for the destination program or
terminal.
The express alternate PCB is a special kind of alternate PCB that is defined during
PSB generation, by specifying EXPRESS=YES.
When you use an express alternate PCB, messages you send using that PCB are
sent to their final destinations immediately. Messages sent with other PCBs are
sent to temporary destinations until the program reaches a commit point.
Messages sent with express PCBs are sent if the program subsequently
terminates abnormally, or issues one of the rollback calls: ROLL, ROLB, or ROLS.

422 Application Programming

Using an express alternate PCB in this kind of situation is a way to ensure that
the program can notify the person at the terminal, even if abnormal termination
occurs. For all PCBs, when a program abnormally terminates or issues a ROLL,
ROLB, or ROLS call, messages inserted but not made available for transmission are
cancelled, while messages made available for transmission are never cancelled.
For a nonexpress PCB, the message is not made available for transmission to its
destination until the program reaches a commit point. The commit point occurs
when the program terminates, issues a CHKP call, or requests the next input
message and the transaction has been defined with MODE=SNGL.
For an express PCB, when IMS TM knows that it has the complete message, it
makes the message available for transmission to the destination. In addition to
occurring at a commit point, this also occurs when the application program
issues a PURG call using that PCB or requests the next input message.
A PSBGEN can also specify an alternate PCB as an alternate response PCB
defined during PSB generation.

v If you want to send a message to an LU 6.2 device, you can specify the LU 6.2
descriptor name that is associated with that device. IMS internally performs the
uppercase translation of the destination name (CNT or SMB).

Related reference:
“Specifying the alternate PCB mask” on page 397

Sending messages to other terminals
To reply to a different terminal, also use the ISRT call, but use an alternate program
communication block (PCB) instead of the TP PCB.

Just as the TP PCB represents the terminal that sent the message, an alternate PCB
represents the terminal to which you want to send the message.

Single alternate terminal

If you are going to send messages to only one alternate terminal, you can define
the alternate PCB for that terminal during PSB generation. When you define an
alternate PCB for a particular destination, you cannot change that destination
during program execution. Each time you issue an ISRT call that references that
PCB, the message goes to the logical terminal whose name was specified for the
alternate PCB. To send a message to that terminal, place one message segment at a
time in the I/O area, and issue an ISRT call referring to the alternate PCB, instead
of the TP PCB.

Several alternate terminals

To send messages to several terminals, you can define the alternate PCB as
modifiable during PSB generation. Therefore, the alternate PCB represents more
than one alternate terminal. You can change the destination while your program is
running.

Before you can set or change the destination of an alternate PCB, you must
indicate to IMS TM that the message you have been building so far with that PCB
is finished. To do this, issue a PURG call.

PURG allows you to send multiple output messages while processing one input
message. When you do not use PURG, IMS TM groups message segments into a
message and sends them when the program issues a GU for a new message,
terminates, or reaches a commit point. A PURG call tells IMS TM that the message

Chapter 25. Message processing with IMS TM 423

built against this TP PCB or alternate PCB (by issuing one ISRT call per message
segment) is complete. IMS TM collects the message segments that you have
inserted into one PCB as one message and sends it to the destination represented
by the alternate PCB you have referenced.

A PURG call that does not contain the address of an I/O area indicates to IMS TM
that this message is complete. If you include an I/O area in the call, PURG acts as
an ISRT call as well. IMS TM treats the data in the I/O area as the first segment of
a new message. When you include an I/O area on a PURG call, you can also include
a MOD name to change the format of the screen for this message. Although
specifying the MOD name is optional, when you use it, you can specify it only
once per message or in only the first ISRT or PURG that begins the message.

To set the destination of a modifiable alternate PCB during program execution, you
use a CHNG call. When you issue the CHNG call you supply the name of the logical
terminal to which you want to send the message. The alternate PCB you use then
remains set with that destination until you do one of the following:
v Issue another CHNG call to reset the destination.
v Issue another GU to the message queue to start processing a new message. In this

case, the name still appears in the alternate PCB, even though it is no longer
valid.

v Terminate your program. When you do this, IMS TM resets the destination to
blanks.

The first 8 bytes of the alternate PCB contain the name of the logical terminal to
which you want to send the message.

When you issue a CHNG call, give IMS TM the address of the alternate PCB you are
using and the destination name you want set for that alternate PCB.

When you use the PURG call, you give IMS TM only the address of the alternate
PCB. IMS TM sends the message you have built using that PCB.

To indicate an error situation, you can send a message by issuing an ISRT call
followed by a PURG call against an express PCB. These calls send the message to its
final destination immediately.

Example: The program could go through these steps:
1. The program issues a GU call (and GN calls, if necessary) to retrieve an input

message.
2. While processing the message, the program encounters an abnormal situation.
3. The program issues a PURG call to indicate to IMS TM the start of a new

message.
4. The program issues a CHNG call to set the destination of an express PCB to the

name of the originating logical terminal. The program can get this name from
the first 8 bytes of the I/O PCB.

5. The program issues ISRT calls as necessary to send message segments. The ISRT
calls reference the express PCB.

6. The program issues a PURG call referencing the express PCB. IMS TM then
sends the message to its final destination.

7. The program can then terminate abnormally, or it can issue a ROLL, ROLB, or
ROLS call to back out its database updates and cancel the output messages it has
created since the last commit point.

424 Application Programming

If your output messages contained three segments, and you used the PURG call to
indicate the end of a message (and not to send the next message segment), you
could use this call sequence:
CHNG ALTPCB1, LTERMA
ISRT ALTPCB1, SEG1
ISRT ALTPCB1, SEG2
ISRT ALTPCB1, SEG3
PURG ALTPCB1
CHNG ALTPCB1, LTERMB
ISRT ALTPCB1, SEG4
ISRT ALTPCB1, SEG5
ISRT ALTPCB1, SEG6

Sending messages to other IMS application programs
A program-to-program switch occurs when an IMS application running in an IMS
dependent region sends a message to another IMS application running in an IMS
dependent region.

You can issue a program-to-program switch to send and receive messages with any
of the following types of IMS applications:
v message processing program (MPP)
v batch message processing (BMP) program
v Java message processing (JMP) program
v Java batch processing (JBP) program

To send a message to another online program, use an alternate program
communication block (PCB) in a similar way as when sending messages to
alternate terminals. If you send messages to only one application program, then
you can define the alternate PCB with the transaction code for that application
program during PSB generation. If you send messages to more than one
application program, you can define the alternate PCB as modifiable.

If you use an alternate modifiable PCB, IMS TM makes a security check when you
issue the CHNG call to set the destination of the alternate modifiable PCB. The
terminal that enters the transaction code that causes the message switch must be
authorized to enter the transaction code that the CHNG call places in the alternate
modifiable PCB. IMS TM does not check for security when you issue the ISRT call.

When an IMS TM application program issues a CHNG call, the Resource Access
Control Facility (RACF) is invoked and a check is made to determine whether the
originating terminal is authorized for the transaction code that was issued. If,
instead of using the CHNG call, the program issues an ISRT call against a preset
alternate PCB, no security check is made, regardless of the environment.

When you issue a program-to-program message switch, you have the same
considerations as when you communicate with a logical terminal. Keep in mind
the following points:
v Create an I/O area large enough to hold the largest segment that you are

sending.
v Use an alternate PCB, not the TP PCB, to send the message.
v Issue a CHNG call before the ISRT call to place the transaction code of the program

in the first field of the alternate PCB. If the alternate PCB was set to this
transaction code in the PSBGEN, issue the ISRT call.

v IMS TM must know the transaction code. Define it at system definition.

Chapter 25. Message processing with IMS TM 425

v A nonconversational program can do a program-to-program message switch to
another nonconversational program, but not to a conversational program.

v A conversational program can do a program-to-program message switch to
either another conversational program or a nonconversational program.

Open Transaction Manager Access (OTMA) program-to-program switching has the
following restrictions:
v In a shared queues environment that has both synchronous APPC/OTMA

support (AOS=Y on the DFSDCxxx PROCLIB member) and RRS support
(RRS=Y on the startup procedure) enabled, an application program running on a
back-end IMS system that initiates an outbound APPC protected conversation
with another IMS system is restricted to a single program-to-program switch.

v If an application program performs multiple program-to-program switches after
allocating an APPC outbound protected conversation on another IMS system, the
results are unpredictable and can include a WAIT-RRS/PC condition in the
message processing region (MPR).

A message switch to another conversational program transfers the scratchpad area
(SPA) and the responsibility to respond to the originating terminal to the new
application program. A message switch to a nonconversational program does not
change the responsibilities of the conversational program. The conversational
program must still return the SPA to IMS TM (if the SPA has been modified) and
must respond to the originating terminal. The following tables show the format
for an output message to an application program.

Table 78. Message Format for program-to-program message switch for AIBTDLI, ASMTDLI,
CBLTDLI, CEETDLI, CTDLI, and PASTDLI interfaces

Field Name Field Length

LL 2

Z1 1

Z2 1

Text Variable

Table 79. Message format for program-to-program message switch for the PLITDLI interface

Field Name Field Length

LLLL 4

Z1 1

Z2 1

Text Variable

The format is the same as for output messages to terminals. Z1 and Z2 are fields
that must contain binary zeros. These fields are reserved for IMS. The text field
contains the message segment that you want to send to the application program.

If the program that is processing the message expects the transaction code, include
the transaction code of the recipient program as part of the message text of the
first segment of the message, because IMS TM does not automatically include the
transaction code in the first segment of a switched message. Including the
transaction code in the message text of the first segment keeps the first segments of
all messages in the same format, regardless of whether they are sent from
terminals or other programs.

426 Application Programming

Related concepts:
“Passing the conversation to another conversational program” on page 437
Related tasks:
“Program switching in JMP and JBP applications” on page 740

How the VTAM I/O facility affects your VTAM terminal
VTAM terminals can fail to respond to requests sent by IMS. The master terminal
operator or an automated operator interface application program can optionally
activate a “timeout” facility. This allows a message stating a specific amount of
time has passed to be sent to the master terminal operator.

IMS TM can be set up to do one of the following:
v Do nothing, which means that your terminal remains inactive. This is the

default.
v Send a message to the master terminal operator stating that the specified period

of time has passed. The operator can then determine what action, if any, should
be taken.

v Send a message to the master terminal operator stating that the specified period
of time has passed. IMS TM then issues the VTAM VARY NET, INACT command
followed by a VTAM VARY NET, ACT command. If the terminal is defined to IMS
TM as non-shared and operable, and if IMS TM is not shutting down, IMS TM
issues an OPNDST for the terminal.

Restriction: This option does not apply to ISC terminals. If your installation
chooses this option and an ISC terminal times out, a message is sent to the
master terminal stating that the specified period of time has passed. The
operator can determine what action, if any, should be taken.

Communicating with other IMS TM systems using Multiple Systems
Coupling

In addition to communicating with programs and terminals in your IMS TM
system, your program can communicate with terminals and programs in other IMS
TM systems through Multiple Systems Coupling (MSC).

MSC makes this possible by establishing links between two or more separate IMS
TM systems. The terminals and transaction codes within each IMS TM system are
defined as belonging to that system. Terminals and transaction codes within your
system are called “local,” and terminals and transaction codes defined in other IMS
TM systems connected by MSC links are called “remote.”

Related reading: For an overview of MSC, see IMS Version 14 Communications and
Connections.

Implications of MSC for program coding
For the most part, communicating with a remote terminal or program does not
affect how you code your program. MSC handles the message routing between
systems.

For example, if you receive an input message from a remote terminal, and you
want to reply to that terminal, you issue an ISRT call against the I/O PCB—just as
you would reply to a terminal in your system.

Chapter 25. Message processing with IMS TM 427

In the following two situations, MSC might affect your programming:
v When your program needs to know whether an input message is from a remote

terminal or a local terminal. For example, if two terminals in separate IMS TM
systems had the same logical terminal name, your program's processing might
be affected by knowing which system sent the message.

v When you want to send a message to an alternate destination in another IMS
TM system.

Restriction: If a transaction allocated by an LU 6.2 device is destined to a remote
system through MSC links, IMS rejects the transaction with the message
TP_NOT_Avail_No_Retry.

Directed routing makes it possible for your program to find out whether an input
message is from your system or from a remote system, and to set the destination
of an output message for an alternate destination in another IMS TM system. With
directed routing, you can send a message to an alternate destination in another
IMS TM system, even if that destination is not defined in your system as remote.

Restriction: MSC directed routing does not support a program-to-program switch
between conversational transactions.

Related Reading: For more information about LU 6.2 and about MSC directed
routing, see IMS Version 14 Communications and Connections.

Receiving messages from other IMS TM systems
When an application program retrieves an input message, the program can
determine whether the input message is from a terminal or program in its IMS TM
system, or from a terminal or program in another IMS TM system. There might be
situations in which the application program's processing is changed if the input
message is from a remote terminal, rather than from a local terminal.

For example, suppose that your IMS TM system is system A, and that it is linked
to another IMS TM system called system B. MSC links are one-way links. The link
from system A to system B is called LINK1, and the link from system B to system
A is called LINK2. The application program named MPP1 runs in system A. The
logical terminal name of the master terminals in both systems is MASTER. The
following figure shows systems A and B.

If the MASTER terminal in system B sends a message indicating that the system is
shutting down to MPP1 in system A, MPP1 needs to know that the message is
from MASTER in system B and not MASTER in system A.

LINK1

LINK2

MASTER MPP1

SYSTEM B

MASTER

SYSTEM A

Figure 77. MSC example

428 Application Programming

If you have specified ROUTING=YES on the TRANSACT macro during IMS TM
system definition, IMS TM does two things to indicate to the program that the
message is from a terminal in another IMS TM system.

First, instead of placing the logical terminal name in the first field of the I/O PCB,
IMS TM places the name of the MSC logical link in this field. In the example, this
is LINK1. This is the logical link name that was specified on the MSNAME macro
at system definition. However, if the message is subsequently sent back to the
originating system, the originating LTERM name is reinstated in the first field of
the I/O PCB.

Second, IMS TM turns on a bit in the field of the I/O PCB that is reserved for IMS.
This is the second bit in the first byte of the 2-byte field. The following figure
shows the location of this bit within the reserved field.

MPP1 tests this bit to determine if the message is from MASTER in system A. If it
is, MPP1 should terminate immediately. However, if the message is from MASTER
in system B, MPP1 could perform some local processing and send transactions for
system B to a message queue so that those transactions could be processed later
on, when system B is up.

Sending messages to alternate destinations in other IMS TM
systems

To send an output message to an alternate terminal in another IMS TM system,
your system must have an MSC link with the system to which you want to send
the message.

To do this, issue a CHNG call against an alternate PCB and supply the name of the
MSC link (in the example this is LINK1) that connects the two IMS TM systems.

For example, if you were sending a message to TERMINAL 1 in system B after you
received a message from some other terminal, you would first issue this CHNG call:
CHNG altpcb, LINK1

Then issue an ISRT call (or calls) to send the message just as you would send a
message to a local terminal. The following tables show the format of the Direct
Routing Output Message.

Table 80. Directed routing output message format for AIBTDLI, ASMTDLI, CBLTDLI,
CEETDLI, CTDLI, and PASTDLI interfaces

Field Name Field Length

LL 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st byte 2nd byte

Reserved for IMS
2 bytes

Figure 78. Directed routing bit in I/O PCB

Chapter 25. Message processing with IMS TM 429

Table 80. Directed routing output message format for AIBTDLI, ASMTDLI, CBLTDLI,
CEETDLI, CTDLI, and PASTDLI interfaces (continued)

Field Name Field Length

ZZ 2

DESTNAME 1 - 8

b 1

Text Variable

Table 81. Directed routing output message format for the PLITDLI interface

Field Name Field Length

LLLL 4

ZZ 2

DESTNAME 1 - 8

b 1

Text Variable

The field formats in a directed routing output message are listed below:
v The LL and ZZ fields are 2 bytes each (For the PLITDLI interface, use the 4-byte

field LLLL). LL (or LLLL) contains the total length of the message. This is the
sum of all of the fields in the message, including the LL field (and in PL/I,
LLLL contains the total length minus 2). ZZ is reserved for IMS.

v The destination name, DESTNAME, is the name of the logical terminal to which
you are sending the message. This field is from 1 to 8 bytes long and it must be
followed by a blank.
If the destination in the other system is a terminal, IMS TM removes the
DESTNAME from the message. If the destination in the other system is a
program, IMS TM does not remove the DESTNAME.

v The TEXT field contains the text of the message. Its length depends on the
message you are sending.

If your message contains a security violation, MSC detects it in the receiving
system (in this case, system B), and reports it to the person at the originating
terminal (system A).

IMS conversational processing
You can write conversational programs to perform conversational processing with
IMS Transaction Manager.

The difference between a conversational and nonconversational program is:

Conversational program
A message processing program (MPP) that processes transactions made up
of several steps. It does not process the entire transaction at the same time.
A conversational program divides processing into a connected series of
terminal-to-program-to-terminal interactions. You use conversational
processing when one transaction contains several parts.

Nonconversational program
A message processing program that receives a message from a terminal,
processes the request, and sends a message back to the terminal. A

430 Application Programming

conversational program receives a message from a terminal, and replies to
the terminal, but saves the data from the transaction in a scratchpad area
(SPA). Then, when the person at the terminal enters more data, the
program has the data it saved from the last message in the SPA, so it can
continue processing the request without the person at the terminal having
to enter the data again.

A conversational example
The following example shows how to use conversational processing to find out if a
customer can qualify for a car loan.

This inquiry contains two parts. First, you give the name and address of the
person requesting the loan and the number of years for which the person wants
the loan. After you provide this information, IMS TM asks you for the information
on the car: model, year, and cost. You enter this information, IMS TM invokes the
program that processes this information, and the program tells you whether the
loan can be granted.

If you use MFS, the process involves these steps:
1. Enter the format command (/FORMAT) and the MOD name. This tells IMS to

format the screen in the way defined by this message output descriptor (MOD).
If the MOD name is CL, the command is:
/FORMAT CL

IMS TM then takes that MOD from the MFS library and formats your screen in
the way defined by the MOD. When the MOD for the car loan application
formats your screen, it looks like this:
CARLOAN
NAME:
ADDRESS:
YEARS:

The word “CARLOAN” is the transaction code for this application. Each
transaction code is associated with an application program, so when IMS TM
receives the transaction code “CARLOAN”, IMS TM knows what application
program to schedule for this request.

2. Enter the customer's name and address, and the length of the loan. When you
enter this information, your screen looks like this:
CARLOAN
NAME: JOHN EDWARDS
ADDRESS: 463 PINEWOOD
YEARS: 5

3. IMS TM reads the transaction code, CARLOAN, and invokes the program that
handles that transaction code. MFS formats the information from the screen for
the MPP's I/O area by using the DIF and the MID.
When the MPP issues its first call, which is usually a GU for the SPA, IMS TM
clears the SPA to binary zeros and passes it to the application program.

4. Next, the MPP processes the input data from the terminal and does two things.
It moves the data that it will need to save to the SPA, and it builds the output
message for the terminal in the I/O area. The information that the MPP saves
in the SPA is the information the MPP will need when the second part of the
request comes in from the terminal. You do not save information in the SPA
that you can get from the database. In this example, you save the name of the
customer applying for the loan, because if the customer is granted the loan, the
program uses the customer name to locate the information to be updated in the
database.

Chapter 25. Message processing with IMS TM 431

The program then issues an ISRT call to return the SPA to IMS, and another
ISRT call to send the output message to the terminal.
The response that the MPP sends to the terminal gives IMS TM the name of the
MOD to format the screen for the next cycle of the conversation. In that cycle,
you need to supply the model, year, and cost of the car that John Edwards
wants to buy. Your screen looks like this:
MODEL:
YEAR:
COST:

5. IMS TM again uses the device input format (DIF) and message input descriptor
(MID) associated with the transaction code, and sends the information back to
the MPP. The MPP has not been running all this time. when IMS TM receives
the terminal input with the transaction code CARLOAN, IMS TM invokes the
MPP that processes that transaction again for this cycle of the conversation.

6. IMS TM returns the updated SPA to the MPP when the MPP issues a GU, then
returns the message to the MPP when the MPP issues a GN. The MPP does the
required processing (in this case, determining whether the loan can be granted
and updating the database if necessary), and is then ready to end the
conversation. To do this, the MPP blanks out the transaction code in the SPA,
inserts it back to IMS, then sends a message to the terminal saying whether the
loan can be granted.

Conversational structure
Structuring your conversational program depends on the interactions between your
program and the person at the terminal.

Before structuring your program, you need to know:
v What should the program do in an error situation?

When a program in a conversation terminates abnormally, IMS TM backs out
only the last cycle of the conversation. A cycle in a conversation is one
terminal/program interaction. Because the conversation can terminate
abnormally during any cycle, you should be aware of some things you can do to
simplify recovery of the conversation:
– The ROLB or ROLS call can be used in conversational programs to back out

database updates that the program has made since the last commit point.
ROLL can also be used in conversational programs, but terminates the
conversation.

– If possible, updating the database should be part of the last cycle of the
conversation so that you do not have different levels of database updates
resulting from the conversation.

– If your program encounters an error situation and it has to terminate, it can
use an express alternate (program communication block) PCB to send a
message to the originating terminal, and, if desired, to the master terminal
operator.
To do this, the program issues a CHNG call against the express alternate PCB
and supplies the name of the logical terminal from the TP PCB, then an ISRT
call that references that PCB and the I/O area that contains the message. The
program can then issue another CHNG call to set the destination of the express
alternate PCB for the master terminal, and another ISRT call that references
that PCB, and the I/O area that contains the output message.

v Does your application program process each cycle of the conversation?
A conversation can be processed by one or several application programs. If your
program processes each stage of the conversation (in other words, your program

432 Application Programming

processes each input message from the terminal), the program has to know what
stage of the conversation it is processing when it receives each input message.
When the person at the terminal enters the transaction code that starts the
conversation, IMS TM clears the SPA to binary zeros and passes the SPA to the
program when the program issues a GU call. On subsequent passes, however, the
program has to be able to tell which stage of the conversation it is on so that it
can branch to the section of the program that handles that processing.
One technique that the program can use to determine which cycle of the
conversation it is processing is to keep a counter in the SPA. The program
increments this counter at each stage of the conversation. Then, each time the
program begins a new cycle of the conversation (by issuing a GU call to retrieve
the SPA), the program can check the counter in the SPA to determine which
cycle it is processing, then branch to the appropriate section.

v How can your program pass control of the conversation to another conversation
program?
Sometimes it is more efficient to use several application programs to process a
conversation. This does not affect the person at the terminal. It depends on the
processing that is required.
In the car loan example, one MPP could process the first part of the conversation
(processing the name, address, and number of years), and another MPP could
process the second part of the conversation (processing the data about the car
and responding with the status of the loan).
A conversational program can perform two types of program switching:

Deferred program switch
Responds to the originating terminal but causes the next input from the
terminal to go to another conversational program.

Immediate program switch
Passes the conversation directly to another conversational program. The
program passes the SPA (and, optionally, a message) to another
conversational program without responding to the terminal. In this case,
it is the next program's responsibility to respond to the originating
terminal.

A conversational program must:
1. Retrieve the SPA and the message using GU and GN calls.

If your MPP is starting this conversation, test the variable area of the SPA for
zeros to determine if this is the beginning of the conversation. If the SPA
does not contain zeros, it means that you started the conversation earlier and
that you are now at a later stage in the conversation. If this is true, you
would branch to the part of your program that processes this stage of the
conversation to continue the conversation.
If another MPP has passed control to your MPP to continue the conversation,
the SPA contains the data you need to process the message, so you do not
have to test it for zeros. Start processing the message immediately.

2. Process the message, including handling any necessary database access.
3. Send the output message to the terminal by using an ISRT call against the

I/O PCB. This step can follow step 4.
4. Store the data (that your program, or the program that you pass control to,

needs to continue processing) in the SPA using an ISRT call to the I/O PCB.
(This step can precede step 3.) IMS TM determines which segment is the SPA
by examining the ZZZZ field of the segment shown in the tables below.

Chapter 25. Message processing with IMS TM 433

To end the conversation, move blanks to the area of the SPA that contains the
transaction code, and then insert the SPA back to IMS TM by issuing an ISRT
call and referencing the I/O PCB.
If your MPP passes the conversation to another conversational program, the
steps after the program processes the message are somewhat different.
Also, your program should be designed to handle the situation that occurs when
the first GU call to the I/O PCB does not return a message to the application
program. This can happen if the person at the terminal cancels the conversation
by entering the /EXIT command before the program issues a GU call. (This
happens if the message from this terminal was the only message in the message
queue for the program.)

The contents of SPA

The SPA that IMS TM gives your program when you issue a GU contains the four
parts shown in the following tables.

Table 82. SPA format for AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI
interfaces

Field Name Field Length

LL 2

ZZZZ 4

TRANCODE 8

User Work Area Variable

Table 83. SPA format for the PLITDLI interface

Field Name Field Length

LLLL 4

ZZZZ 4

TRANCODE 8

User Work Area Variable

The SPA format fields are:

LL or LLLL
A length field that gives the total length of the SPA. This length includes 2
bytes for the LL field. (For the PLITDLI interface, use a 4-byte field. Its
contents include 4 bytes for LLLL, minus 2.)

ZZZZ
A 4-byte field reserved for IMS TM that your program must not modify.

TRANCODE
The 8-byte transaction code for this conversation.

User Work Area
A work area that you use to save the information that you need to continue
the conversation. The length of this area depends on the length of the data you
want to save. This length is defined at system definition.

When your program retrieves the SPA with a GU to start the conversation, IMS TM
removes the transaction code from the message. In your first message segment,
you receive only the data from the message that the person at the terminal entered.

434 Application Programming

The following list indicates the ways that an application program processes the
SPA. The program must:
v Not modify the first 6 bytes of the SPA (LL and ZZZZ). IMS TM uses these

fields to identify the SPA.
If the program modifies the SPA, the program must return the SPA to IMS TM
(or, for a program switch, to the other program).

v Not return the SPA to IMS TM more than once during one cycle of the
conversation.

v Not insert the SPA to an alternate PCB that represents a nonconversational
transaction code or a logical terminal. The program can use an alternate
response PCB if it represents that same physical terminal as the originating
logical terminal.

Restriction: If you are using MFS, the IMS TM does not always remove the
transaction code.

The appearance of messages in a conversation

Because the first segment contains the SPA, conversational input messages are
made up of at least two segments. The input message starts in the second message
segment.

The input message segment in a conversation contains only the data from the
terminal. During the first step in the conversation, IMS TM removes the transaction
code from the input message and places it in the SPA. When the program issues
the first GU, IMS TM returns the SPA. To retrieve the first message segment, the
program must issue a GN.

The format for the output messages that you send to the terminal is no different
than the format for output messages in nonconversational programs.

Saving information in the SPA

After you have processed the message and are ready to reply to the terminal, you
can save the necessary data in the SPA. The part of the SPA in which you save
data is the work area portion. Use the ISRT call to save data to the work area. This
is a special use of the ISRT call, because you are not sending the SPA to a terminal,
but rather saving it for future use.

If your program processes each stage of the conversation, you just issue an ISRT
call to the I/O PCB and give the name of the I/O area that contains the SPA. For
example:
ISRT I/O PCB, I/O AREA

This returns the updated SPA to IMS TM so that IMS TM can pass it to your
program at the next cycle of the conversation.

If you do not modify the SPA, you do not need to return it to IMS. However, the
SPA will be passed by IMS TM to your program at the next cycle of the
conversation.
Related concepts:
“Conversational processing using ROLB, ROLL, and ROLS” on page 436
“Passing the conversation to another conversational program” on page 437

Chapter 25. Message processing with IMS TM 435

Replying to the terminal
For a conversation to continue, the originating terminal must receive a response to
each of its input messages. The person at the terminal cannot enter any more data
to be processed (except IMS TM commands) until the response has been received
at the terminal.

To continue the conversation, the program must respond to the originating
terminal by issuing the required ISRT calls to send the output message to the
terminal. To send a message to the originating terminal, the ISRT calls must
reference either the TP PCB or an alternate response PCB. Use an alternate
response PCB in a conversation when the terminal you are responding to has two
components—for example, a printer and a punch—and you want to send the
output message to a component that is separate from the component that sent the
input message. If the program references an alternate response PCB, the PCB must
be defined for the same physical terminal as the logical terminal that sent the input
message.

The program can send only one output message to the terminal for each input
message. Output messages can contain multiple segments, but the program cannot
use the PURG call to send multiple output messages. If a conversational program
issues a PURG call, IMS TM returns an AZ status code to the application program
and does not process the call.

Conversational processing using ROLB, ROLL, and ROLS
Issuing a ROLB or ROLS in a conversational program causes IMS TM to back out the
messages that the application program has sent.

If the application program issues a ROLB or ROLS and then reaches a commit point
without sending the required response to the originating terminal, IMS TM
terminates the conversation and sends the message DFS2171I NO RESPONSE
CONVERSATION TERMINATED to the originating terminal.

If you issue ROLL during a conversation, IMS TM backs out the updates and
cancels output messages, but it also terminates the conversation.

Conversational processing for modified message-driven IMS
applications

The following processing considerations apply to modified message-driven IMS
applications issuing the IMS ROLB call that can receive protected input messages
from OTMA or APPC/MVS and issue outbound protected work to other z/OS
Resource Recovery Services (RRS) resource managers:
v If a modified message-driven IMS application program with protected input

issues a ROLB call, the ROLB call is isolated to the IMS application without
affecting the entire protected unit of work. After the ROLB call is issued, the
protected input message remains in process for the IMS application until a
commit point is reached.

v If a modified message-driven IMS application program issues an outbound
protected conversation, the outbound protected conversation is not included in
the ROLB processing (that is, the outbound protected conversation is not backed
out as part of the ROLB call). The modified message-driven IMS application
program is responsible for explicitly cleaning up any outbound protected work
to be backed out.

Related concepts:

436 Application Programming

“Conversational structure” on page 432

Passing the conversation to another conversational program
A conversational program can pass the conversation to another conversational
program in by performing a deferred switch or a immediate switch.

A conversational program can pass the conversation to another conversational
program in two ways:
v A deferred switch.

The program can respond to the terminal but cause the next input from the
terminal to go to another conversational program by:
– Issuing an ISRT call against the I/O PCB to respond to the terminal
– Placing the transaction code for the new conversational program in the SPA
– Issuing an ISRT call referencing the I/O PCB and the SPA to return the SPA to

IMS TM
IMS TM then routes the next input message from the terminal to the program
associated with the transaction code that was specified in the SPA. Other
conversational programs can continue to make program switches by changing
the transaction code in the SPA.

v An immediate switch.
The program can pass the conversation directly to another conversational
program by issuing an ISRT call against the alternate PCB that has its destination
set to the other conversational program.
The first ISRT call must send the SPA to the other program, but the program
passing control can issue subsequent ISRT calls to send a message to the new
program. If the program does this, in addition to routing the SPA to the other
conversational program, IMS TM updates the SPA as if the program had
returned the SPA to IMS. If the program does an immediate switch, the program
cannot also return the SPA to IMS TM or respond to the original terminal.

Restrictions on passing the conversation

These are restrictions that apply to passing the conversation to another
conversational program:
v When an immediate program switch occurs and the MPP receives an XE status

code, the program attempts to insert the SPA to an alternate express PCB.
Remove the EXPRESS=YES option from the PCB or define and use another PCB
that is not express. This restriction prevents the second transaction from
continuing the conversation if the first transaction abends after inserting the
SPA.
The person at the terminal can issue the /SET CONV XX command, where XX is
the program that is to be scheduled in order to process the next step of the
conversation.

v APPC or OTMA protected transactions do not allow immediate program or
deferred program switches. If either of these switches occur, the MPP receives an
X6 status code.

Defining the SPA size

Define the SPA size with the TRANSACT macro. An option to capture truncated
data is also defined with the TRANSACT macro. The format is:
TRANSACT SPA=(size,STRUNC|RTRUNC)

Chapter 25. Message processing with IMS TM 437

The default is to support truncated data (STRUNC). When a conversation is
initially started, and on each program switch, the truncated data option is checked
and set or reset as specified. When the truncated data option is set, it remains set
for the life of the conversation, or until a program switch occurs to a transaction
that specifies that the option be reset.

For example, assume you have three transactions defined as follows:
TRANA SPA=100
TRANB SPA=050
TRANC SPA=150

For TRANC to receive the truncated data (which is the second 50 bytes from
TRANA that TRANB does not receive) from TRANA, one of the following sets of
specifications can be used:
v TRANA - STRUNC or none, TRANB - STRUNC or none, TRANC - STRUNC or

none
v TRANA - RTRUNC, TRANB - STRUNC, TRANC - STRUNC or none

Conversational processing and MSC

If your installation has two or more IMS TM systems, and they are linked to each
other through MSC, a program in one system can process a conversation that
originated in another system.
v If a conversational program in system A issues an ISRT call that references a

response alternate PCB in system B, system B does the necessary verification.
This is because the destination is implicit in the input system. The verification
that system B does includes determining whether the logical terminal that is
represented by the response alternate PCB is assigned to the same physical
terminal as the logical terminal that sent the input message. If it is not, system B
(the originating system) terminates the conversation abnormally without issuing
a status code to the application program.

v Suppose program A processes a conversation that originates from a terminal in
system B. Program A passes the conversation to another conversational program
by changing the transaction code in the SPA. If the transaction code that
program A supplies is invalid, system B (the originating system) terminates the
conversation abnormally without returning a status code to the application
program.

Ending the conversation

To end the conversation, a program blanks out the transaction code in the SPA and
returns it to IMS TM by issuing an ISRT call and referencing the I/O PCB and the
SPA. This terminates the conversation as soon as the terminal has received the
response.

The program can also end the conversation by placing a nonconversational
transaction code in the transaction field of the SPA and returning the SPA to IMS.
This causes the conversation to remain active until the person at the terminal has
entered the next message. The transaction code will be inserted from the SPA into
the first segment of the input message. IMS TM then routes this message from the
terminal to the MPP or BMP that processes the transaction code that was specified
in the SPA.

438 Application Programming

In addition to being ended by the program, a conversation can be ended by the
person at the originating terminal, the master terminal operator, and IMS.
v The person at the originating terminal can end the conversation by issuing one

of several commands:

/EXIT The person at the terminal can enter the /EXIT command by itself, or the
/EXIT command followed by the conversational identification number
assigned by the IMS TM system.

/HOLD
The /HOLD command stops the conversation temporarily to allow the
person at the terminal to enter other transactions while IMS TM holds
the conversation. When IMS TM responds to the /HOLD command, it
supplies an identifier that the person at the terminal can later use to
reactivate the conversation. The /RELEASE command followed by this
identifier reactivates the conversation.

v /START LINE. The master terminal operator can end the conversation by
entering a /START LINE command (without specifying a PTERM) or /START NODE
command for the terminal in the conversation or a /START USER command for a
signed-off dynamic user in conversation.

v IMS TM ends a conversation if, after the program successfully issues a GU call or
an ISRT call to return the SPA, the program does not send a response to the
terminal. In this situation, IMS TM sends the message DFS2171I NO RESPONSE,
CONVERSATION TERMINATED to the terminal. IMS TM then terminates the
conversation and performs commit point processing for the application program.

Related concepts:
“Sending messages to other IMS application programs” on page 425
“Conversational structure” on page 432
Related tasks:
“Deferred program switching for conversational JMP applications” on page 742
“Immediate program switching for JMP and JBP applications” on page 740

Message switching in APPC conversations
With the system service DFSAPPC, you can transfer messages between separate
LU 6.2 devices and between an LU 6.2 device and another terminal supported by
IMS TM. Message delivery with DFSAPPC is asynchronous, so messages are held
on the IMS TM message queue until they can be delivered.

To send a message with DFSAPPC, specify the logical terminal name of an IMS
TM terminal or the Transaction Program (TP) name of an LU 6.2 device.

DFSAPPC format

The message format for DFSAPPC is as follows:
DFSAPPC (options)user_data

DFSAPPC can be coded as follows:

Chapter 25. Message processing with IMS TM 439

►► DFSAPPCb

▼

(LTERM=value)
,

LU=value
MODE=value
TYPE= B

N
SIDE=value
SYNC= N

C
TPN= valueb

►◄

A blank (�) is required between DFSAPPC and the specified options.

Blanks are valid within the specified options except within keywords or values.
Either commas or blanks can be used as delimiters between options, but because
the use of commas is valid, the TP name must be followed by at least one blank.

If an LU 6.2 conversation has not been established from other sources (for example,
during a CPI-C driven application program), DFSAPPC is used to establish the
conversation with a partner LU 6.2 device. If no options are specified with
DFSAPPC, IMS TM default options are used.

Option keywords

LTERM=
Specifies the LTERM name of an IMS TM logical terminal. An LTERM name
can contain up to eight alphanumeric or national (@, $, #) characters. If you
specify LTERM, you cannot specify the other option keywords.

LU=
Specifies the LU name of the partner in an LU 6.2 conversation. The LU name
can contain up to eight alphanumeric or national characters, but the first
character must be a letter or a national character. If both LU and SIDE options
are specified, LU overrides the LU name contained in the side information
entry but does not change that LU name.

If the LU name is a network-qualified name, it can be up to 17 characters long
and consist of the network ID of the originating system, followed by a '.', and
the LU name (for example, netwrkid.luname). The LU name and the network
ID can be up to eight characters long.

MODE=
Specifies the MODE name of the partner in an LU 6.2 conversation. The MODE
name can contain up to eight alphanumeric or national characters, but the first
character must be a letter or a national character. If both MODE and SIDE
option keywords are specified, MODE overrides the MODE name contained in
the side information entry but does not change that MODE name.

TPN=
Specifies the transaction program (TP) name of the partner in an LU 6.2
conversation. The TP name can contain up to 64 characters from the 00640
character set. Because the character set allows commas, at least one blank must
follow the TP name. If both TPN and SIDE option keywords are specified, TPN
overrides the TP name contained in the side information entry but does not
change that name.

440 Application Programming

Related Reading: The CPI Communications Specification describes the 00640
character set, which contains all alphanumeric and national characters and 20
special characters.

SIDE=
Specifies the name of the side information entry for the partner in an LU 6.2
conversation. The side information entry name can contain up to eight
characters from the 01134 character set. If the SIDE option keyword is
specified, it can be overridden with LU, MODE, and TPN option keywords.

Related Reading: The CPI Communications Specification describes the 01134
character set, which contains the uppercase alphabet and the digits, 0-9.

SYNC=N|C
Specifies the synchronization level of the LU 6.2 conversation. N selects none
as the synchronization level, and C selects confirm as the synchronization level.

TYPE=B|M
Specifies the conversation type for the LU 6.2 conversation. B selects a basic
conversation type, and M selects a mapped conversation type.

Processing conversations with APPC
APPC/IMS supports standard, modified, and CPI Communications driven
application programs.

The three types of application programs supported by APPC/IMS
v Standard: No explicit use of CPI Communications facilities.
v Modified: Uses the I/O PCB to communicate with the original input terminal.

Uses CPI Communications calls to allocate new conversations and to send and
receive data.

v CPI Communications driven: Uses CPI Communications calls to receive the
incoming message and to send a reply on the same conversation. Uses the DL/I
APSB call to allocate a PSB to access IMS databases and alternate PCBs.

In the modified or CPI Communications driven application programs, if an APPC
conversation is allocated with SYNCLVL=SYNCPT, z/OS manages the sync-point
process for the APPC conversation participants: the application program and IMS.
Transaction rollback and rescheduling is possible, because IMS issues the SRRCMIT
or SRRBACK calls on behalf of the modified IMS APPC application program. If the
CPI-C driven program is linked with the IMS stub code (DFSCPIR0) as required in
previous releases, IMS also issues the SRRCMIT or SRRBACK calls. If the program
is not linked with the stub code, then IMS is driven by the z/OS sync point
manager when the application issues these calls. With z/OS as the sync point
manager, failures can also be backed out.

You can schedule your standard and modified application programs locally and
remotely using MSC or APPC/MVS. The logic flow for local scheduling differs
from the logic flow for remote scheduling.

Scheduling programs remotely through MSC is not supported if an APPC/MVS
conversation with SYNCLVL=SYNCPT is specified.

Ending the APPC conversation
You can end a conversation using LU 6.2 devices by issuing the CPI-C verb,
DEALLOCATE, or by inserting a blank transaction code into the SPA for IMS
conversational transactions.

Chapter 25. Message processing with IMS TM 441

Restriction: You cannot use the /EXIT command for LU 6.2 conversations.

Several error conditions can exist at the end of an LU 6.2 conversation:
v If your application program sends data to the LU 6.2 device just before

deallocating conversation, IMS TM issues a SENDERROR and SENDDATA of
the DFS1966 error message. This indicates that the transaction ended, but that
the last message could not be delivered. For SENDERROR to be activated,
specify a synchronization level of CONFIRM.

v If IMS TM encounters an error sending output from an IMS TM conversational
transaction to the LU 6.2 device, the output is discarded, and the conversation is
terminated for both IMS TM and LU 6.2.

v If an IMS TM conversational application program abends during an LU 6.2
conversation, a DFS555 error message is sent to the originating LU 6.2 device,
and the conversation is terminated for both IMS TM and LU 6.2.

Coding a conversational program
Before coding a conversational program, you need to obtain the following
information.
v The transaction code to use for a program to which you pass control
v The data that you should save in the SPA
v The maximum length of that data

A SPA contains four fields:
v The 2-byte length field.
v The 4-byte field that is reserved for IMS TM.
v The 8-byte transaction code.
v The work area where you store the conversation data. The length of this field is

defined at system definition.

Standard IMS application programs
Standard IMS application programs use the existing IMS call interface. Application
programs that use the IMS standard API can take advantage of the LU 6.2
protocols.

Standard IMS application programs use a DL/I GU call to get the incoming
transaction. These standard IMS application programs also use DL/I ISRT calls to
generate output messages to the same or different terminals, regardless of whether
LU 6.2 is used. The identical program can work correctly for both LU 6.2 and
non-LU 6.2 terminal types. IMS generates the appropriate calls to APPC/MVS
services.

A non-message-driven BMP is considered a standard IMS application program
when it does not use the explicit API.

When an advanced program-to-program communication (APPC) application
program enters an IMS transaction that executes on a remote IMS, an LU 6.2
conversation is established between the APPC application program and the local
IMS system. The local IMS is considered the partner LU of the LU 6.2
conversation. The transaction is then queued on the remote transaction queue of
the local IMS system. From this point on, the transaction goes through normal

442 Application Programming

MSC processing. After the remote IMS system executes the transaction, the output
is returned to the local IMS system and is then delivered to the originating LU 6.2
application program.

Modified IMS application programs
Modified IMS application programs use a DL/I GU call to get the incoming
transaction. These modified IMS application programs also use DL/I ISRT calls to
generate output messages to the same or different terminals, regardless of whether
LU 6.2 is used.

A non-message-driven BMP is considered a modified standard IMS application
program when it uses the explicit API. Unlike standard IMS application programs,
modified IMS application programs use CPI Communications calls to allocate new
conversations, and to send and receive data. IMS has no direct control of these CPI
Communications conversations.

Modified IMS transactions are indistinguishable from standard IMS transactions
until program execution. In fact, the same application program can be a standard
IMS application on one execution, and a modified IMS application on a different
execution. The distinction is simply whether the application program uses CPI
Communications resources.

Modified IMS programs are scheduled by IMS TM, and the DL/I calls are
processed by the DL/I language interface. The conversation, however, is
maintained by APPC/MVS, and any failures that involve APPC/MVS are not
backed out by IMS TM. The general format of a modified IMS application program
is shown in the following code example.

Restriction: The APPC conversation cannot span sync points. If the conversation is
not deallocated before a sync point is reached, IMS causes the conversation to be
terminated by issuing a clean TP call (ATBCMTP). A new APPC conversation can
be allocated after each sync point.

When an APPC program enters an IMS transaction that executes on a remote IMS
system, an LU 6.2 conversation is established between the APPC program and the
local IMS system. The local IMS system is considered the partner LU of the LU 6.2
conversation. The transaction is then queued on the local IMS system's remote
transaction queue. From this point on, the transaction goes through normal MSC
processing. After the remote IMS system executes the transaction, the output is
returned to the local IMS and is then delivered to the originating LU 6.2 program.

Related Reading: For more information on failure recovery and modified DL/I
application program design, see IMS Version 14 Application Programming APIs.

CPI-C driven application programs
CPI Communications driven application programs are defined only in the
APPC/MVS TP_Profile data set; they are not defined to IMS. Their definition is

v GU IOPCB
ALLOCATE
SEND
RECEIVE
DEALLOCATE

v ISRT IOPCB

Figure 79. General format of a modified DL/I application program

Chapter 25. Message processing with IMS TM 443

dynamically built by IMS when a transaction is presented for scheduling by
APPC/MVS, based on the APPC/MVS TP_Profile definition after IMS restart. The
definition is keyed by TP name. APPC/MVS manages the TP_Profile information.

When a CPI Communications driven transaction program requests a PSB, the PSB
must already be defined to IMS through the APPLCTN macro for system definition
and through PSBGEN or ACBGEN when APPLCTN PSB= is specified. When
APPLCTN GPSB= is specified, a PSBGEN or ACBGEN is not required.

CPI-C driven application programs must begin with the CPI-C verbs, ACCEPT and
RECEIVE, to initiate the LU 6.2 conversation. You can then issue the APSB call to
allocate a PSB for use by the application program. After the APSB call is issued, you
can issue additional DL/I calls using the PCBs that were allocated. You then issue
the SRRCMIT verb to commit changes or the SRRBACK verb to back out changes.
To use SRRCMIT and SRRBACK, your application program must be linked with
DFSCPIR0.

Restriction: The I/O PCB cannot be used for message processing calls by CPI-C
driven application programs. See the description of each call for specific CPI
restrictions.

To deallocate the PSB in use, issue the DPSB call. You can then issue another APSB
call, or use the CPI-C verb, DEALLOCATE, to end the conversation.

CPI-C driven application programs are considered discardable (unless they are
allocated with a SYNCLVL=SYNCPT) by IMS TM and are therefore not recovered
automatically at system failure. If they are allocated with a SYNCLVL=SYNCPT, a
two-phase commit process is used to recover from any failures. The general format
of a CPI-C driven application program is shown in the following code example.

Related concepts:

CPI-C driven application programs (Communications and Connections)

Processing conversations with OTMA
You can run IMS conversational transactions through OTMA.

Refer to IMS Version 14 Communications and Connections.

v ACCEPT
v RECEIVE

– APSB
GU DBPCB
REPL DBPCB
SRRCMIT

– DPSB
v DEALLOCATE

Figure 80. General format of a CPI-C driven application program

444 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_cpic_apps.htm#ims_cpic_apps

Backing out to a prior commit point: ROLL, ROLB, and ROLS calls
When a program determines that some of its processing is invalid, you can use
these calls to remove the effects of its incorrect processing: Roll Back calls ROLL,
ROLS using a database PCB, ROLS with no I/O area or token, and ROLB.

When you issue one of these calls, IMS does the following:
v Backs out the database updates that the program has made since the program’s

most recent commit point.
v Cancels the non-express output messages that the program has created since the

program’s most recent commit point.

The main difference among these calls is that ROLB returns control to the
application program after backing out updates and canceling output messages,
ROLS does not return control to the application program, and ROLL terminates the
program with a user abend code of 0778. ROLB can return to the program the first
message segment since the most recent commit point, but ROLL and ROLS cannot.

The ROLL and ROLB calls, and the ROLS call without a token specified, are valid
when the PSB contains PCBs for Generalized Sequential Access Method (GSAM)
data sets. However, segments inserted in the GSAM data sets since the last commit
point are not backed out by these calls. An extended checkpoint-restart can be used
to reposition the GSAM data sets when restarting.

You can use a ROLS call either to back out to the prior commit point or to back out
to an intermediate backout point established by a prior SETS call. This section
refers only to the form of ROLS that backs out to the prior commit point.
Related concepts:
“Backing out to an intermediate backout point: SETS, SETU, and ROLS” on page
292

Comparison of ROLB, ROLL, and ROLS
The following table provides a comparison of the ROLB, ROLL, and ROLS calls.

Table 84. Comparison of ROLB, ROLL, and ROLS.

Actions taken ROLB ROLL ROLS

Back out database updates since the last
commit point.

X X X

Cancel output messages created since the last
commit point.

X1 X1 X1

Delete the message in process from the queue.
Previous messages (if any) processed since the
last commit point are returned to the queue to
be reprocessed.

X

Return the first segment of the first input
message since the most recent commit point.

X2

3303 abnormal termination and returns the
processed input messages to the message
queue.

X3

778 abnormal termination, no dump. X

No abend; program continues processing. X

Chapter 25. Message processing with IMS TM 445

Notes:

1. ROLB, ROLL, or ROLS cancel output messages sent with an express PCB
unless the program issued a PURG.
For example, if the program issues the following call sequence, MSG1 would be
sent to its destination because the PURG tells IMS that MSG1 is complete and the
I/O area now contains the first segment of the next message (which in this
example is MSG2). MSG2, however, would be canceled:
ISRT EXPRESS PCB, MSG1
PURG EXPRESS PCB, MSG2
ROLB I/O PCB

Because IMS has the complete message (MSG1) and because an express PCB is
being used, the message can be sent before a commit point.

2. Returned only if you supply the address of an I/O area as one of the call
parameters.

3. The transaction is suspended and requeued for subsequent processing.

ROLL
A ROLL call backs out the database updates and cancels any non-express output
messages the program has created since the last commit point. It also deletes the
current input message. Any other input messages processed since the last commit
point are returned to the queue to be reprocessed. IMS then terminates the
program with a user abend code 0778. This type of abnormal termination
terminates the program without a storage dump.

When you issue a ROLL call, the only parameter you supply is the call function,
ROLL.

You can use the ROLL call in a batch program. If your system log is on direct access
storage, and if dynamic backout has been specified through the use of the BKO
execution parameter, database changes since the last commit point will be backed
out. Otherwise they will not be backed out. One reason for issuing ROLL in a batch
program is for compatibility.

After backout is complete, the original transaction is discarded if it is discardable,
and it is not re-executed. IMS issues the APPC/MVS verb ATBCMTP
TYPE(ABEND) specifying the TPI to notify remote transaction programs. Issuing
the APPC/MVS verb causes all active conversations (including any spawned by
the application program) to be DEALLOCATED TYP(ABEND_SVC).

ROLB
The advantage of using ROLB is that IMS returns control to the program after
executing ROLB, so the program can continue processing.

The parameters for ROL are:
v The call function ROLB
v The name of the I/O PCB or AIB

The total effect of the ROLB call depends on the type of IMS application that issued
it.
v For current IMS application programs:

446 Application Programming

After IMS backout is complete, the original transaction is represented to the IMS
application program. Any resources that cannot be rolled back by IMS are
ignored. For example, output sent to an express alternate PCB and a PURG call is
issued before the ROLB.

v For modified IMS application programs:
The same consideration for the current IMS application programs applies. It is
the responsibility of the application program to notify any spawned
conversations that a ROLB was issued.

v For CPI-C driven IMS application programs:
Only IMS resources are affected. All database changes are backed out. Any
messages inserted to nonexpress alternate PCBs are discarded. Also, any
messages inserted to express PCBs that have not had a PURGE call are discarded.
It is the responsibility of the application program to notify the originating
remote program and any spawned conversations that a ROLB call was issued.

In MPPs and transaction-oriented BMPs

If the program supplies the address of an I/O area as one of the ROLB parameters,
the ROLB call acts as a message retrieval call and returns the first segment of the
first input message since the most recent commit point. This is true only if the
program has issued a GU call to the message queue since the last commit point; it if
has not, it was not processing a message when it issued the ROLB call.

If the program issues a GN to the message queue after issuing the ROLB, IMS returns
the next segment of the message that was being processed when ROLB was issued.
If there are no more segments for that message, IMS returns a QD status code.

If the program issues a GU to the message queue after the ROLB call, IMS returns the
first segment of the next message to the application program. If there are no more
messages on the message queue for the program to process, IMS returns a QC
status code to the program.

If you include the I/O area parameter, but you have not issued a successful GU call
to the message queue since the last commit point, IMS returns a QE status code to
your program.

If you do not include the address of an I/O area in the ROLB call, IMS does the
same things for you. If the program has issued a successful GU in the commit
travel, and then issues a GN, IMS returns a QD status code. If the program issues a
GU after the ROLB, IMS returns the first segment of the next message, or a QC status
code if there are no more messages for the program.

If you have not issued a successful GU since the last commit point, and you do not
include an I/O area parameter on the ROLB call, IMS backs out the database
updates and cancels the output messages created since the last commit point.

In batch programs

If your system log is on direct access storage, and if dynamic backout has been
specified through the use of the BKO execution parameter, you can use the ROLB
call in a batch program. The ROLB call does not process messages as it does for
message processing programs (MPPs); it backs out the database updates since the
last commit point and returns control to your program. You cannot specify the
address of an I/O area as one of the parameters on the call; if you do, an AD

Chapter 25. Message processing with IMS TM 447

status code is returned to your program. You must, however, have an I/O PCB for
your program. Specify CMPAT=YES on the CMPAT keyword in the PSBGEN
statement for your program’s PSB.

Related Reading: For more information on using the CMPAT keyword, see IMS
Version 14 System Utilities. For information on coding the ROLB call, see the topic
"ROLB Call" in IMS Version 14 Application Programming APIs.

ROLS
You can use the ROLS call to back out to the prior commit point and return the
processed input messages to IMS for later reprocessing.

In your program, you can either:
v Issue the ROLS call using the I/O PCB but without an I/O area or token in the

call. The parameters for this form of the ROLS call are:
– The call function ROLS
– The name of the I/O PCB or AIB

v Issue the ROLS call using a database PCB that has received one of the
data-unavailable status codes. This has the same result as if unavailable data
were encountered, and the INIT call was not issued. ROLS must be the next call
for that PCB. Intervening calls using other PCBs are permitted.

On a ROLS with a token, message queue repositioning can occur for all non-express
messages including all messages processed by IMS. This processing using
APPC/MVS calls and includes the initial message segments. The original input
transaction can be represented to the IMS application program. Input and output
positioning is determined by the SETS call. This positioning applies to current and
modified IMS application programs but does not apply to CPI-C driven IMS
programs. The IMS application program must notify all remote transaction
programs of the ROLS.

On a ROLS without a token, IMS issues the APPC/MVS verb, ATBCMTP
TYPE(ABEND), specifying the TPI. Issuing this verb causes all conversations
associated with the application program to be DEALLOCATED
TYPE(ABEND_SVC). If the original transaction was entered from an LU 6.2 device
and IMS received the message from APPC/MVS, a discardable transaction is
discarded rather than being placed on the suspend queue like a non-discardable
transaction.

Related Reading: For more information on LU 6.2, see IMS Version 14
Communications and Connections.

The parameters for this form of the ROLS call are:
v The call function, ROLS
v The name of the DB PCB that received the BA or BB status code

In both of the ways to use ROLS calls, the ROLS call causes a 3303 abnormal
termination and does not return control to the application program. IMS keeps the
input message for future processing.

Backing out to an intermediate backout point: SETS/SETU and ROLS
You can use a ROLS call either to back out to an intermediate backout point
established by a prior SETS or SETU call or to back out to the prior commit point.

448 Application Programming

This section refers only to the form of ROLS that backs out to the intermediate
backout point. For information about the other form of ROLS, see 'Backing out to a
prior commit point: ROLL, ROLB, and ROLS calls'.

The ROLS call that backs out to an intermediate point backs out only DL/I changes.
This version of the ROLS call does not affect CICS changes using CICS file control
or CICS transient data.

The SETS and ROLS calls set intermediate backout points within the call processing
of the application program and then backout database changes to any of these
points. Up to nine intermediate backout points can be set. The SETS call specifies a
token for each point. IMS then associates this token with the current processing
point. A subsequent ROLS call, using the same token, backs out all database changes
and discards all non-express messages that were performed following the SETS call
with the same token. The figure below shows how the SETS and ROLS calls work
together.

In addition, to assist the application program in reestablishing other variables
following a ROLS call, user data can be included in the I/O area of the SETS call.
This data is then returned when the ROLS call with the same token is issued.

Backs out
program to
SETS Token=B

Program starts

SETS Token=n

GHU
REPL

ISTR MSG1-Segment 1 to I/O PCB

GHU
DLET

ISTR MSG1-Segment 2 to I/O PCB

SETS Token=B

ROLS Token=B

Figure 81. SETS and ROLS calls working together

Chapter 25. Message processing with IMS TM 449

SETS/SETU

The SETS call sets up to nine intermediate backout points or cancels all existing
backout points. By using the SETS call, you can back out pieces of work. If the
necessary data to complete one piece of work is unavailable, you can complete a
different piece of work and then return to the former piece.

To set an intermediate backout point, issue the call using the I/O PCB and include
an I/O area and a token. The I/O area has the format LLZZ user-data, where LL is
the length of the data in the I/O area including the length of the LLZZ portion.
The ZZ field must contain binary zeros. The data in the I/O area is returned to the
application program on the related ROLS call. If you do not want to save some data
to be returned on the ROLS call, you must set the LL that defines the length of the
I/O area to 4.

For PLITDLI, you must define the LL field as a fullword rather than a halfword as
it is for the other languages. The content of the LL field for PLITDLI is consistent
with the I/O area for other calls using the LLZZ format; that is, the content is the
total length of the area including the length of the 4-byte LL field minus 2.

A 4-byte token associated with the current processing point is also required. This
token can be a new token for this program execution or match a token issued by a
preceding SETS call. If the token is new, no preceding SETS calls are canceled. If the
token matches the token of a preceding SETS call, the current SETS call assumes
that position. In this case, all SETS calls that were issued subsequent to the SETS
call with the matching token are canceled.

The parameters for this form of the SETS call are:
v The call function SETS
v The name of the I/O PCB or AIB
v The name of the I/O area containing the user data
v The name of an area containing the token

For the SETS call format, see the topic 'SETS/SETU Call' in IMS Version 14
Application Programming APIs.

To cancel all previous backout points, the call is issued using the I/O PCB but
does not include an I/O area or a token. When no I/O area is included in the call,
all intermediate backout points set by prior SETS calls are canceled.

The parameters for this form of the SETS call are:
v The call function SETS
v The name of the I/O PCB or AIB

Because it is not possible to back out committed data, commit point processing
causes all outstanding SETS to be canceled.

If PCBs for DEDB, MSDB, and GSAM organizations are in the PSB, or if the
program accesses an attached subsystem, a partial backout is not possible. In that
case, the SETS call is rejected with an SC status code. If the SETU call is used
instead, it is not rejected because of unsupported PCBs, but returns an SC status
code as a warning that the PSB contains unsupported PCBs and the function is not
applicable to these unsupported PCBs.

450 Application Programming

Related Reading: For the status codes that are returned after the SETS call and the
explanation of those status codes and the response required, see IMS Version 14
Application Programming APIs.

ROLS

The ROLS call backs out database changes to a processing point set by a previous
SETS or SETU call, or to the prior commit point and returns the processed input
messages to the message queue.

To back out database changes and message activity that have occurred since a
prior SETS call, you issue the ROLS call using the I/O PCB and specifying an I/O
area and token in the call. If the token does not match a token set by a preceding
SETS call, an error status is returned. If the token does match the token of a
preceding SETS call, the database updates made since this corresponding SETS call
are backed out, and all non-express messages inserted since the corresponding SETS
are discarded. The ROLS call returns blanks if the call is processed, and returns a
status code if an error or warning occurs. If you are using SETU with ROLS and have
an external subsystem, the ROLS call will not be rejected, but an RC status code will
be returned as a warning. All SETS points that were issued as part of the
processing that was backed out are then canceled, and the existing database
position for all supported PCBs is reset. For the ROLS call format, see the topic
"ROLB Call" in IMS Version 14 Application Programming APIs.

The parameters for this form of the ROLS call are:
v The call function ROLS
v The name of the I/O PCB or AIB
v The name of the I/O area to receive the user data
v The name of an area containing the 4-byte token

Related reading: For the status codes that are returned after the ROLS call and the
explanations of those status codes and the response required, see IMS Version 14
Messages and Codes, Volume 4: IMS Component Codes.

Writing message-driven programs
A message-driven program is similar to an MPP: it retrieves messages and
processes them, and it can read and update MSDBs, DEDBs, and full-function
databases.

Message-driven programs can send messages to these destinations:
v The logical terminal that sent the input message, by issuing an ISRT call

referencing the I/O PCB
v A different component of the physical terminal that sent the input message, by

issuing an ISRT call referencing an alternate response PCB
v A different physical terminal from the one that sent the input message, by

issuing an ISRT call referencing an alternate PCB

The message processing functions available to a message-driven program have
some restrictions. These restrictions apply only to messages received or sent by the
I/O PCB. The input message for a message-driven program must be a single
segment message. Therefore, GU is the only call you can use to obtain the input
message. The response message sent by the I/O PCB also must be a single
segment message.

Chapter 25. Message processing with IMS TM 451

The transactions are in the response mode. This means that you must respond
before the next message can be sent. You cannot use SPAs because a
message-driven program cannot be a conversational program.

Not all of the system service calls are available. These system service calls are valid
in a message-driven region:

CHKP (basic)
DEQ

INIT

LOG

SETS

ROLB

ROLS

However, other conditions might restrict their function in this environment. The
options or calls issued using alternate terminal PCBs have no constraints.

Coding DC calls and data areas
The way you code DC calls and data areas depends on the application
programming language you use.

Before coding your program
In addition to the information you need about the database processing that your
program does, you need to know about message processing. Before you start to
code, be sure you are not missing any of this information. Also, be aware of the
standards at your installation that affect your program.

Information you need about your program's design:
v The names of the logical terminals that your program will communicate with
v The transaction codes, if any, for the application program's MPP skeleton to

which your program will send messages
v The DC call structure for your program
v The destination for each output message that you send
v The names of any alternate destinations to which your program sends messages

Information you need about input messages:
v The size and layout of the input messages your program will receive (if

possible)
v The format in which your program will receive the input messages
v The editing routine your program uses
v The range of valid data in input messages
v The type of data that input messages will contain
v The maximum and minimum length of input message segments
v The number of segments in a message

Information you need about output messages:
v The format in which IMS expects to receive output from your application

program MPP skeleton
v The destination for the output messages

452 Application Programming

v The maximum and minimum length of output message segments

MPP code examples
Your MPP application can be written in assembler language, COBOL, C, Pascal,
and PL/I.

In the following code examples, the programs do not have all the processing logic
that a typical MPP has. The purpose of providing these programs is to show you
the basic MPP structure in assembler language, COBOL, C language, Pascal, and
PL/I. All the programs follow these steps:
1. The program retrieves an input message segment from a terminal by issuing a

GU call to the I/O PCB. This retrieves the first segment of the message. Unless
this message contains only one segment, your program issues GN calls to the
I/O PCB to retrieve the remaining segments of the message. IMS places the
input message segment in the I/O area that you specify in the call. In each of
skeleton MPP examples, this is the MSG-SEG-IO-AREA.

2. The program retrieves a segment from the database by issuing a GU call to the
DB PCB. This call specifies an SSA, SSA-NAME, to qualify the request. IMS
places the database segment in the I/O area specified in the call. In this case,
the I/O area is called DB-SEG-IO-AREA.

3. The program sends an output message to an alternate destination by issuing an
ISRT call to the alternate PCB. Before issuing the ISRT call, the program must
build the output message segment in an I/O area, and then the program
specifies the I/O area in the ISRT call. The I/O area for this call is
ALT-MSG-SEG-OUT.

The sample program is simplified for demonstration purposes; for example, the
call to initiate sync point is not shown in the sample program. Include other IMS
calls in a complete application program.

Coding your MPP program in assembler language
The coding conventions of an assembler language MPP are the same as those for a
DL/I assembler program.

An assembler language MPP receives a PCB parameter list address in register 1
when it executes its entry statement. The first address in this list is a pointer to the
TP PCB; the addresses of any alternate PCBs that the program uses come after the
I/O PCB address, and the addresses of the database PCBs that the program uses
follow. Bit 0 of the last address parameter is set to 1.

Coding your MPP program in C language
The program shown below is a skeleton MPP written in C language.

The numbers to the right of the program refer to the notes that follow the
program. All storage areas that are referenced in the parameter list of your C
language application program call to IMS can reside in the extended virtual
storage area.

Skeleton MPP written in C
NOTES

#pragma runopts(env(IMS),plist(IMS)) 1
#include <ims.h>
#include <stdio.h>
/* */
/* ENTRY POINT */
/* */

Chapter 25. Message processing with IMS TM 453

main() { 2
static const char func_GU[4] = "GU "; 3
static const char func_ISRT[4] = "ISRT";

.
#define io_pcb ((IO_PCB_TYPE *)(_pcblist[0])

4
#define alt_pcb (_pcblist[1])
#define db_pcb (_pcblist[2])

.
int rc;

5
.
#define io_pcb ((IO_PCB_TYPE *)(_pcblist[0])

6
#define alt_pcb (_pcblist[1])
#define db_pcb (_pcblist[2])

.
rc = ctdli(func_GU, io_pcb, msg_seg_io_area);

7
.
rc = ctdli(func_GU, db_pcb, db_seg_io_area, ssa_name);

8
.
rc = ctdli(func_ISRT, alt_pcb, alt_msg_seg_out);

9
.

}
10
C language interface
11

Note:

1. The env(IMS) establishes the correct operating environment and the plist(IMS)
establishes the correct parameter list, when invoked under IMS. The ims.h
header file contains declarations for PCB layouts, __pcblist, and the ctdli
routine. The PCB layouts define masks for the DB PCBs that the program uses
as structures. These definitions make it possible for the program to check
fields in the DB PCBs.
The stdio.h header file contains declarations for sprintf, which is useful for
building SSAs.

2. After IMS has loaded the application program's PSB, IMS passes control to the
application program through this entry point.

3. These are convenient definitions for the function codes and could be in one of
your include files.

4. These could be structures, with no loss of efficiency.
5. The return code (status value) from DL/I calls can be returned and used

separately.
6. The C language run-time sets up the __pcblist values. The order in which you

refer to the PCBs must be the same order in which they have been defined in
the PSB: first the TP PCB, then any alternate PCBs that your program uses,
and finally the database PCBs that your program uses.

7. The program issues a GU call to the I/O PCB to retrieve the first message
segment. You can leave out the rc =, and check the status in some other way.

8. The program issues a GU call to the DB PCB to retrieve a database segment.
The function codes for these two calls are identical; the way that IMS
identifies them is by the PCB to which each call refers.

9. The program then sends an output message to an alternate destination by
issuing an ISRT call to an alternate PCB.

454 Application Programming

10. When there are no more messages for the program to process, the program
returns control to IMS by returning from main or by calling exit().

11. IMS provides a language interface module (DFSLI000) that gives a common
interface to IMS. This module must be made available to the application
program at bind time.

Coding your MPP program in COBOL
The program shown below is a skeleton MPP in COBOL that shows the main
elements of an MPP.

The numbers to the right of each part of the program refer to the notes that follow
the program. If you plan to preload your IBM COBOL for z/OS & VM program,
you must use the compiler option RENT. Alternatively, if you plan to preload your
VS COBOL II program, you must use the compiler options RES and RENT.

If you want to use the IBM COBOL for z/OS & VM compiler to compile a
program that is to execute in AMODE(31) on z/OS, you must use the compiler
option RENT. Alternatively, if you want to use the VS COBOL II compiler to
compile a program that is to execute in AMODE(31) on z/OS, you must use the
compiler options RES and RENT. All storage areas that are referenced in the
parameter lists of your calls to IMS can optionally reside in the extended virtual
storage area.

IBM COBOL for z/OS & VM and VS COBOL II programs can coexist in the same
application.

Skeleton MPP written in COBOL
NOTES:

ENVIRONMENT DIVISION.
.
.
.

DATA DIVISION.
WORKING-STORAGE SECTION. 1

77 GU-CALL PICTURE XXXX VALUE ’GU ’.
77 ISRT-CALL PICTURE XXXX VALUE ’ISRT’.
77 CT PICTURE S9(5) COMPUTATIONAL VALUE +4.
01 SSA-NAME.
.
01 MSG-SEG-IO-AREA. 2
.
01 DB-SEG-IO-AREA.
.
01 ALT-MSG-SEG-OUT.
.

LINKAGE SECTION.
01 IO-PCB. 3
.
01 ALT-PCB.
.
01 DB-PCB.
.

PROCEDURE DIVISION USING IO-PCB, ALT-PCB, DB-PCB 4
.
CALL ’CBLTDLI’ USING GU-CALL, IO-PCB, 5

MSG-SEG-IO-AREA.
.
CALL ’CBLTDLI’ USING GU-CALL, DB-PCB, 6

DB-SEG-IO-AREA, SSA-NAME.
.
CALL ’CBLTDLI’ USING ISRT-CALL, ALT-PCB, 7

Chapter 25. Message processing with IMS TM 455

ALT-MSG-SEG-OUT.
.
GOBACK. 8

COBOL LANGUAGE INTERFACE 9

Note:

1. To define each of the call functions that your program uses, use a 77 or 01 level
working-storage statement. Assign the value to the call function in a picture
clause defined as four alphanumeric characters.

2. Use a 01 level working-storage statement for each I/O area that you will use
for message segments.

3. In the linkage section of the program, use a 01 level entry for each PCB that
your program uses. You can list the PCBs in the order that you list them in the
entry statement, but this is not a requirement.

4. On the procedure statement, list the PCBs that your program uses in the order
they are defined in the program's PSB: first the TP PCB, then any alternate
PCBs, and finally the database PCBs that your program uses.

5. The program issues a GU call to the I/O PCB to retrieve the first segment of an
input message.

6. The program issues a GU call to the DB PCB to retrieve the segment that would
be described in the SSA-NAME area.

7. The program sends an output message segment to an alternate destination by
using an alternate PCB.

8. When no more messages are available for your MPP to process, you return
control to IMS by issuing the GOBACK statement.
If you compile all of your COBOL programs in the task with VS COBOL II, you
can use the GOBACK statement with its normal COBOL-defined semantics.
Attention: The STOP RUN and EXIT PROGRAM statements are not
supported. Using these statements might cause unpredictable results or abends.

9. If the COBOL compiler option NODYNAM is specified, you must link edit the
language interface module, DFSLI000, with your compiled COBOL application
program. If the COBOL compiler option DYNAM is specified, do not link edit
DFSLI000 with your compiled COBOL program.

Coding your MPP program in Pascal
The program shown below is a skeleton MPP written in Pascal.

The numbers to the right of the program refer to the notes that follow the
program. All storage areas that are referenced in the parameter list of your Pascal
application program's call to IMS can reside in the extended virtual storage area.

Skeleton MPP written in Pascal
NOTES:

segment PASCIMS; 1
type

CHAR4 = packed array [1..4] of CHAR;2
CHARn = packed array [1..n] of CHAR;
IOPCBTYPE = record 3

(* Field declarations *)
end;

ALTPCBTYPE = record
(* Field declarations *)

end;
DBPCBTYPE = record

(* Field declarations *)
end;

456 Application Programming

procedure PASCIMS (var SAVE: INTEGER; 4
var IOPCB: IOPCBTYPE;
var ALTPCB: ALTPCBTYPE;
var DBPCB: DBPCBTYPE); REENTRANT;

procedure PASCIMS;
type 5
SSATYPE = record

(* Field declarations *)
end;

MSG_SEG_IO_AREA_TYPE = record
(* Field declarations *)

end;

DB_SEG_IO_AREA_TYPE = record
(* Field declarations *)

end;

ALT_MSG_SEG_OUT_TYPE = record
(* Field declarations *)

end;
var 6
MSG_SEG_IO_AREA : MSG_SEG_IO_AREA_TYPE;
DB_SEG_IO_AREA : DB_SEG_IO_AREA_TYPE;
ALT_MSG_SEG_OUT : ALT_MSG_SEG_OUT_TYPE;

const 7
GU = ’GU ’;
ISRT = ’ISRT’;
SSANAME = SSATYPE(...);

procedure PASTDLI; GENERIC; 8
begin
PASTDLI(const GU, 9

var IOPCB,
var MSG_SEG_IO_AREA);

PASTDLI(const GU, 10
var DBPCB,
var DB_SEG_IO_AREA,
const SSANAME);

PASTDLI(const ISRT, 11
var ALTPCB,
var ALT_MSG_SEG_OUT);

end; 12
Pascal language interface 13

Note:

1. Define the name of the Pascal compile unit.
2. Define the data types needed for the PCBs used in your program.
3. Define the PCB data types used in your program.
4. Declare the procedure heading for the REENTRANT procedure called by IMS.

The first word in the parameter list should be an INTEGER, which is reserved
for VS Pascal's use, and the rest of the parameters will be the addresses of the
PCBs received from IMS.

5. Define the data types needed for the SSAs and I/O areas.
6. Declare the variables used for the SSAs and I/O areas.
7. Define the constants (function codes, SSAs, and so forth) used in the PASTDLI

DL/I calls.
8. Declare the IMS interface routine with the GENERIC Directive. GENERIC

identifies external routines that allow multiple parameter list formats. A
GENERIC routine's parameters are “declared” only when the routine is called.

Chapter 25. Message processing with IMS TM 457

9. The program issues a GU call to the I/O PCB to retrieve the first segment of an
input message. The declaration of the parameters in your program might
differ from this example.

10. The program can issue a GU call to a DB PCB to retrieve a database segment.
The function codes for these two calls are identical; the way that IMS
distinguishes between them is by the PCB to which each call refers. The
declaration of the parameters in your program might differ from this example.

11. The program sends an output message segment to an alternate destination by
issuing an ISRT call to an alternate PCB. The declaration of the parameters in
your program might differ from this example.

12. When there are no more messages for your MPP to process, you return control
to IMS by exiting the PASCIMS procedure. You can also code a RETURN
statement to leave at another point.

13. You must bind your program to the IMS language interface module,
DFSLI000, after you have compiled your program.

Coding your MPP program in PL/I
The following program is a skeleton MPP written in PL/I.

The numbers to the right of the program refer to the notes for the program. All
storage areas that are referenced in the parameter list of your PL/I application
program call to IMS can optionally reside in the extended virtual storage area.

If you plan to execute PL/I programs in 31-bit addressing mode, see Enterprise
PL/I for z/OS Programming Guide.

Skeleton MPP written in PL/I
NOTES

/* */
/* ENTRY POINT */
/* */

UPDMAST: PROCEDURE (IO_PTR, ALT_PTR, DB_PTR) 1
OPTIONS (MAIN);

DCL FUNC_GU CHAR(4) INIT(’GU ’); 2
DCL FUNC_ISRT CHAR(4) INIT(’ISRT’);
.
DCL SSA_NAME...;
.
DCL MSG_SEG_IO_AREA CHAR(n); 3
DCL DB_SEG_IO_AREA CHAR(n);
DCL ALT_MSG_SEG_OUT CHAR(n);
.
DCL 1 IO_PCB BASED (IO_PTR),...; 4
DCL 1 ALT_PCB BASED (ALT_PTR),...;
DCL 1 DB_PCB BASED (DB_PTR),...;
.
DCL THREE FIXED BINARY(31) INIT(3); 5
DCL FOUR FIXED BINARY(31) INIT(4);
DCL PLITDLI ENTRY EXTERNAL;
.
CALL PLITDLI (THREE, FUNC_GU, IO_PTR, MSG_SEG_IO_AREA); 6
.
CALL PLITDLI (FOUR, FUNC_GU, DB_PTR, DB_SEG_IO_AREA, 7

SSA_NAME);
.
CALL PLITDLI (THREE, FUNC_ISRT, ALT_PTR, ALT_MSG_SEG_OUT); 8
.
END UPDMAST; 9
PL/I LANGUAGE INTERFACE 10

458 Application Programming

Note:

1. This is the standard entry point to a PL/I Optimizing Compiler MPP. This
statement includes a pointer for each PCB that the MPP uses. You must refer
to the PCBs in the same order as they are listed in the PSB: first the TP PCB,
then any alternate PCBs that your program uses, and finally the database
PCBs that your program uses.

2. The program defines each call function that it uses in its data area. In PL/I,
you define the function codes as character strings and assign the appropriate
values to them.

3. Define PCB Masks as major structures based on the addresses passed in the
PROCEDURE statement. Although not shown in the example, you will code
the appropriate additional fields in the structure, depending on the type of
PCB to which the mask is associated.

4. To define your PCBs, use major structure declarations.
5. PL/I calls have a parameter that is not required in COBOL programs or

assembler language programs. This is the parmcount, and it is always the first
parameter. You define the values that your program will need for the
parmcount in each of its calls. The parmcount gives the number of parameters
that follow parmcount itself.

6. The program issues a GU call to the I/O PCB to retrieve the first message
segment.

7. The program can issue a GU call to a DB PCB to retrieve a database segment.
The function codes for these two calls are identical; the way that IMS
distinguishes between them is by the PCB to which each call refers.

8. The program then sends an output message to an alternate destination by
issuing an ISRT call to an alternate PCB.

9. When there are no more messages for the program to process, the program
returns control to IMS by issuing the END statement or the RETURN
statement.

10. You must bind your program to the IMS language interface module,
DFSLI000, after you have compiled your program.

Message processing considerations for DB2
For the most part, the message processing function of a dependent region that
accesses DB2 databases is similar to that of a dependent region that accesses only
DL/I databases. The method each program uses to retrieve and send messages and
back out database changes is the same.

The differences are:
v DL/I statements are coded differently from SQL (structured query language)

statements.
v When an IMS TM application program receives control from IMS TM, IMS has

already acquired the resources the program is able to access. IMS TM schedules
the program, although some of the databases are not available. DB2 does not
allocate resources for the program until the program issues its first SQL
statement. If DB2 cannot allocate the resources your program needs, your
program can optionally receive an initialization error when it issues its first SQL
call.

v When an application issues a successful checkpoint call or a successful message
GU call, DB2 closes any cursors that the program is using. This means that your
program should issue its OPEN CURSOR statement after a checkpoint call or a
message GU.

Chapter 25. Message processing with IMS TM 459

IMS TM and DB2 work together to keep data integrity in these ways:
v When your program reaches a commit point, IMS TM makes any changes that

the program has made to DL/I databases permanent, releases output messages
for their destinations, and notifies DB2 that the program has reached a commit
point. DB2 then makes permanent any changes that the program has made to
DB2 databases.

v When your program terminates abnormally or issues one of the IMS TM
rollback calls (ROLB, ROLS without a token, or ROLL), IMS TM cancels any output
messages your program has produced, backs out changes your program has
made to DL/I databases since the last commit point, and notifies DB2. DB2
backs out the changes that the program has made to DB2 databases since the
last commit point.

Through the Automated Operator Interface (AOI), IMS TM application programs
can issue DB2 commands and IMS TM commands. To issue DB2 commands, the
program issues the IMS TM /SSR command followed by the DB2 command. The
output of the /SSR command is routed to the master terminal operator (MTO).

460 Application Programming

Chapter 26. IMS Spool API

The IMS Spool API support provides feedback to the application program when
IMS detects errors in the print data set options of the CHNG and SETO calls.

For convenience, your application program can display these errors by sending a
message to an IMS printer or by performing another action that lets you examine
the parameter lists and feedback area without looking at a dump listing. This
information applies only to the calls as they are used with Spool API support.

Managing the IMS Spool API overall design
The IMS Spool API (application programming interface) is an expansion of the IMS
application program interface that allows applications to interface directly to JES
and create print data sets on the job entry subsystem (JES) spool. These print data
sets can then be made available to print managers and spool servers to serve the
needs of the application.

IMS Spool API design
The IMS Spool API design provides the application program with the ability to
create print data sets on the JES spool using the standard DL/I call interface.

The functions provided are:
Definition of the data set output characteristics
Allocation of the data set
Insertion of lines of print into the data set
Closing and deallocation of the data set
Backout of uncommitted data within the limits of the JES interface
Assistance in controlling an in-doubt print data set

The IMS Spool API support uses existing DL/I calls to provide data set allocation
information and to place data into the print data set. These calls are:
v The CHNG call. This call is expanded so that print data set characteristics can be

specified for the print data set that will be allocated. The process uses the
alternate PCB as the interface block associated with the print data set.

v The ISRT call. This call is expanded to perform dynamic allocation of the print
data set on the first insert, and to write data to the data set. The data set is
considered in-doubt until the unit of work (UOW) terminates. If possible, the
sync point process deletes all in-doubt data sets for abending units of work and
closes and deallocates data sets for normally terminating units of work.

v The SETO call. This is a call, SETO (Set Options), introduced by this support. Use
this call to create dynamic output text units to be used with the subsequent CHNG
call. If the same output descriptor is used for many print data sets, the overhead
can be reduced by using the SETO call to prebuild the text units necessary for the
dynamic output process.

© Copyright IBM Corp. 1974, 2015 461

Sending data to the JES spool data sets
Application programs can send data to the JES spool data sets using the same
method that is used to send output to an alternate terminal. Use the DL/I call to
change the output destination to a JES spool data set.

Use the DL/I ISRT or PURG call to insert a message.

The options list parameter on the CHNG and SETO calls contains the data set printer
processing options. These options direct the output to the appropriate IMS Spool
API data set. These options are validated for the DL/I call by the MVSScheduler
JCL Facility (SJF). If the options are invalid, error codes are returned to the
application. To receive the error information, the application program specifies a
feedback area in the CHNG or SETO DL/I call parameter list. If the feedback area is
present, information about the options list error is returned directly to the
application.

IMS Spool API performance considerations
The IMS Spool API interface uses z/OS services within an IMS application while
minimizing the performance impact of the z/OS services on the other IMS
transactions and services.

For this reason, the IMS Spool API support places the print data directly on the JES
spool at insert time instead of using the IMS message queue for intermediate
storage. The processing of IMS Spool API requests is performed under the TCB of
the dependent region to ensure maximum usage of N-way processors. This design
reduces the error recovery and JES job orientation problems.

JES initiator considerations
Because the dependent regions are normally long-running jobs, some of the
initiator or job specifications might must be changed if the dependent region is
using the IMS Spool API.

You might need to limit the amount of JES spool space used by the dependent
region to contain the dynamic allocation and deallocation messages. For example,
you can use the JOB statement MSGLEVEL to eliminate the dynamic allocation
messages from the job log for the dependent region. You might be able to eliminate
these messages for dependent regions executing as z/OS started tasks.

Another initiator consideration is the use of the JES job journal for the dependent
region. If the job step has a journal associated with it, the information for z/OS
checkpoint restart is recorded in the journal. Because IMS dependent regions
cannot use z/OS checkpoint restart, specify JOURNAL=NO for the JES2 initiator
procedure and the JES3 class associated with the dependent regions execution
class. You can also specify the JOURNAL= on the JES3 //*MAIN statement for
dependent regions executing as jobs.

Application managed text units
The application can manage the dynamic descriptor text units instead of IMS. If
the application manages the text units, overhead for parsing and text unit build
can be reduced.

Use the SETO call to have IMS build dynamic descriptor text units. After they are
built, these text units can be used with subsequent CHNG calls to define the print
characteristics for a data set.

462 Application Programming

To reduce overhead by managing the text units, the text units should be used with
several change calls. An example of this is a wait-for-input (WFI) transaction. The
same data set attributes can be used for all print data sets. For the first message
processed, the application uses the SETO call to build the text units for dynamic
descriptors and a subsequent CHNG call with the TXTU= parameter referencing the
prebuilt text units. For all subsequent messages, only a CHNG call using the prebuilt
text units is necessary.

Note: No testing has been done to determine the amount of overhead that might
be saved using prebuilt text units.

BSAM I/O area
The I/O area for spool messages can be very large. It is not uncommon for the
area to be 32 KB in length. To reduce the overhead incurred with moving large
buffers, IMS attempts to write to the spool data set from the application's I/O area.

BSAM does not support I/O areas in 31-bit storage for SYSOUT files. If IMS finds
that the application's I/O area is in 31-bit storage:
v A work area is obtained from 24-bit storage.
v The application's I/O area is moved to the work area.
v The spool data set is written from the work area.

If the application's I/O area can easily be placed in 24-bit storage, the need to
move the I/O area can be avoided and possible performance improvements
achieved.

Note: No testing has been done to determine the amount of performance
improvement possible.

Since a record can be written by BSAM directly from the application's I/O area, the
area must be in the format expected by BSAM. The format must contain:
v Variable length records
v A Block Descriptor Word (BDW)
v A Record Descriptor Word (RDW)

IMS Spool API application coding considerations
Your application can send data to a JES Spool or Print server using a print data set.
You can set options for message integrity and recovering data when failures occur.

Print data formats
The IMS Spool API attempts to provide a transparent interface for the application
to insert data to the JES spool. The data can be in line, page, IPDS, AFPDS, or any
format that can be handled by a JES Spool or Print server that processes the print
data set. The IMS Spool API does not translate or otherwise modify the data
inserted to the JES spool.

Message integrity options
The IMS Spool API provides support for message integrity.

This is necessary because IMS cannot properly control the disposition of a print
data set when:
v IMS abnormal termination does not execute because of a hardware or software

problem.
v A dynamic deallocation error exists for a print data set.

Chapter 26. IMS Spool API 463

v Logic errors are in the IMS code.

In these conditions, IMS might not be able to stop the JES subsystem from printing
partial print data sets. Also, the JES subsystems do not support a two-phase sync
point.

Print disposition

The most common applications using Advanced Function Printing (AFP) are TSO
users and batch jobs. If any of these applications are creating print data sets when
a failure occurs, the partial print data sets will probably print and be handled in a
manual fashion. Many IMS applications creating print data sets can manage partial
print data sets in the same manner. For those applications that need more control
over the automatic printing by JES of partial print data sets, the IMS Spool API
provides the following integrity options. However, these options alone might not
guarantee the proper disposition of partial print data sets. These options are the b
variable following the IAFP keyword used with the CHNG call.

b=0
Indicates no data set protection

This is probably the most common option. When this option is selected, IMS
does not do any special handling during allocation or deallocation of the print
data set. If this option is selected, and any condition occurs that prevents IMS
from properly disposing the print data set, the partial data set probably prints
and must be controlled manually.

b=1
Indicates SYSOUT HOLD protection

This option ensures that a partial print data set is not released for printing
without a JES operator taking direct action. When the data set is allocated, the
allocation request indicates to JES that this print data set be placed in SYSOUT
HOLD status. The SYSOUT HOLD status is maintained for this data set if IMS
cannot deallocate the data set for any reason. Because the print data set is in
HOLD status, a JES operator must identify the partial data set and issue the
JES commands to delete or print this data set.

If the print data set cannot be deleted or printed:
v Message DFS0012I is issued when a print data set cannot be deallocated.
v Message DFS0014I is issued during IMS emergency restart when an in-doubt

print data set is found. The message provides information to help the JES
operator find the proper print data set and effect the proper print
disposition.
Some of the information includes:
– JOBNAME
– DSNAME
– DDNAME
– A recommendation on what IMS believes to be the proper disposition for

the data set (for example, printing or deleting).

By using the Spool Display and Search Facility (SDSF), you can display the
held data sets, identify the in-doubt print data set by DDNAME and
DSNAME, and issue the proper JES command to either delete or release the
print data set.

b=2
Indicates a non-selectable destination

464 Application Programming

This option prevents the automatic printing of partial print data sets. The IMS
Spool API function requests a remote destination of IMSTEMP for the data set
when the data set is allocated. The JES system must have a remote destination
of IMSTEMP defined so that JES does not attempt to print any data sets that
are sent to the destination.

If b=2, the name of the remote destination for the print data set must be
specified in the destination name field of the call parameter list when the CHNG
call is issued. When IMS deallocates the data set at sync point, and the data set
prints, IMS requests that the data set be transferred to the requested final
remote destination.

If the remote destination is not defined to the JES system, a dynamic allocation
failure occurs. Because this remote destination is defined as non-selectable, and
if IMS is unable to deallocate the print data set and control its proper
disposition, the print data set remains associated with remote destination
IMSTEMP when deallocated by z/OS.

When an deallocation error occurs, message DFS0012I is issued to provide
details of the deallocation error and help identify the print data set that
requires operator action. When partial print data sets are left on this special
remote destination, the JES operator can display all the print data sets
associated with this JES destination to locate the data set that requires action.
The b=2 option simplifies the operator's task of locating partial print data sets.

Message options

The third option on the IAPF keyword controls informational messages issued by
the IMS Spool API support. These messages inform the JES operator of in-doubt
data sets that need action.

c=0
Indicates that no DFS0012I or DFS0014I messages are issued for the print data
set. You can specify c=0 only if b=0 is specified.

c=m
Indicates that DFS0012I and DFS0014I messages are issued if necessary. You
can specify c=m or if b=1 or if b=2, it is the default.

Option c does not affect issuing message DFS0013E.

IMS emergency restart

When IMS emergency restart is performed, DFS0014I messages might be issued if
IMS finds that the proper disposition of a print data set is in-doubt, as a result of
the restart. This message is only issued if the message option for the print data set
was requested or c=m on the IAFP variable. When a DFS0014I message is received,
a JES operator might need to find and properly dispose of the print data set. The
DFS0014I message provides a recommended disposition (that is, deletion or
printing).

Destination name (LTERM) usage

The standard CHNG call parameter list contains a destination name field. For
traditional message calls, this field contains the LTERM or transaction code that
becomes the destination of messages sent using this alternate PCB. When ISRT calls
are issued against the PCB, the data is sent to the LTERM or transaction.

Chapter 26. IMS Spool API 465

However, the destination name field has no meaning to the IMS Spool API
function unless b=2 is specified following the IAFP keyword.

When b=2 is specified:
v The name must be a valid remote destination supported by the JES system that

receives the print data sets.
v If the name is not a valid remote destination, an error occurs during dynamic

deallocation.

If any option other than 2 is selected, the name is not used by IMS.

The LTERM name appears in error messages and log records. Use a name that
identifies the routine creating the print data set. This information can aid in
debugging application program errors.

Understanding parsing errors
When you are diagnosing multiple parsing error return codes, the first code
returned is usually the most informative.

Keywords

The CHNG and SETO calls have two types of keywords. The type of keyword
determines what type of keyword validation IMS should perform. The keyword
types are:
v Keywords valid for the calls (for example, IAFP, PRTO, TXTU, and OUTN)
v Keywords valid as operands of the PRTO keyword (for example CLASS and

FORMS).

Incorrectly specified length fields can cause errors when IMS checks for valid
keywords. When IMS is checking the validity of keywords on the CHNG and SETO
calls, one set of keywords is valid. When IMS is checking the validity of keywords
on the PRTO keyword, another set of keywords is valid. For this reason, incorrectly
specified length fields can cause a scan to terminate prematurely, and keywords
that appear to be valid are actually invalid because of where they occur in the call
list. IMS might report that a valid keyword is invalid if it detects a keyword with
an incorrect length field or a keyword that occurs in the wrong place in the call
list.

Status codes

The status code returned for the call can also suggest the location of the error.
Although exceptions exist, generally, an AR status code is returned when the
keyword is invalid for the call. An AS status code is returned when the keyword is
invalid as a PRTO option.

Error codes

This topic contains information on Spool API error codes that your application
program can receive. The topic “Diagnosis examples” contains examples of errors
and the resulting error codes provided to the application program.

Error Code
Reason

(0002) Unrecognized option keyword.

466 Application Programming

Possible reasons for this error are:
v The keyword is misspelled.
v The keyword is spelled correctly but is followed by an invalid delimiter.
v The length specified field representing the PRTO is shorter than the

actual length of the options.
v A keyword is not valid for the indicated call.

(0004) Either too few or too many characters were specified in the option
variable. An option variable following a keyword in the options list for the
call is not within the length limits for the option.

(0006) The length field (LL) in the option variable is too large to be contained in
the options list. The options list length field (LL) indicates that the options
list ends before the end of the specified option variable.

(0008) The option variable contains an invalid character or does not begin with an
alphabetic character.

(000A) A required option keyword was not specified.

Possible reasons for this error are:
v One or more additional keywords are required because one or more

keywords were specified in the options list.
v The specified length of the options list is more than zero but the list

does not contain any options.

(000C) The specified combination of option keywords is invalid. Possible causes
for this error are:
v The keyword is not allowed because of other keywords specified in the

options list.
v The option keyword is specified more than once.

(000E) IMS found an error in one or more operands while it was parsing the print
data set descriptors. IMS usually uses z/OS services (SJF) to validate the
print descriptors (PRTO= option variable). When IMS calls SJF, it requests
the same validation as for the TSO OUTDES command. Therefore, IMS is
insensitive to changes in output descriptors. Valid descriptors for your
system are a function of the MVS release level. For a list of valid
descriptors and proper syntax, use the TSO HELP OUTDES command.

IMS must first establish that the format of the PRTO options is in a format
that allows the use of SJF services. If it is not, IMS returns the status code
AS, the error code (000E), and a descriptive error message. If the error is
detected during the SJF process, the error message from SJF will include
information of the form (R.C.=xxxx,REAS.=yyyyyyyy), and an error
message indicating the error.

Related reading: For more information on SJF return and reason codes, see
z/OS MVS Programming: Authorized Assembler Services Guide .

The range of some variables is controlled by the initialization parameters.
Values for the maximum number of copies, allowable remote destination,
classes, and form names are examples of variables influenced by the
initialization parameters.

Diagnosis examples
The following examples illustrate mistakes that can generate the various spool API
error codes, and diagnosis of the problems.

Chapter 26. IMS Spool API 467

Some length fields are omitted when they are not necessary to illustrate the
example. The feedback and options lists that are shown on multiple lines are
contiguous.

Error code (0002)

Two examples of the error code 0002 are shown in this section.

For the first example the options list contains both the keywords PRTO and TXTU.
The keyword, TXTU, is invalid for the SETO call.
CALL = SETO

OPTIONS LIST = PRTO=04DEST(018),CLASS(A),TXTU=SET1
FEEDBACK = TXTU(0002)
STATUS CODE = AR

For the second example, the length field of the PRTO options is too short to
contain all of the options. This means that IMS finds the COPIES and FORMS
keywords outside the PRTO options list area and indicates that they are invalid on
the CHNG call.
CALL = CHNG

OPTIONS LIST = IAFP=N0M,PRTO=0FDEST(018),LINECT(200),CLASS(A),
COPIES(80),FORMS(ANS)

FEEDBACK = COPIES(0002),FORMS(0002)
STATUS CODE = AR

Error code (0004)

For this example, the operand for the OUTN keyword is 9 bytes long and exceeds
the maximum value for the OUTPUT JCL statement.
CALL = CHNG

OPTIONS LIST = IAFP=N0M,OUTN=OUTPUTDD1
FEEDBACK = OUTN(0004)
STATUS CODE = AR

Error code (0006)

The length of the options list for this call is too short to contain all of the operands
of the PRTO keyword.

This example shows an options list that is X'48' bytes long and is the correct
length. The length field of the PRTO keyword incorrectly indicates a length of
X'5A'. The length of the PRTO options exceeds the length of the entire options list
so IMS ignores the PRTO keyword and scans the rest of the options list for valid
keywords. The feedback area contains the PRTO(0006) code (indicating a length
error) and the (0002) code (indicating that the PRTO keywords are in error). This is
because the keywords beyond the first PRTO keyword, up to the length specified
in the options list length field, have been scanned in search of valid keywords for
the call. The status code of AR indicates that the keywords are considered invalid
for the call and not the PRTO keyword.
CALL = CHNG

0400 05
OPTIONS LIST = 0800IAFP=N0M,PRTO=0ADEST(018),LINECT(200),CLASS(A),

COPIES(3),FORMS(ANS)
FEEDBACK = PRTO(0006),LINECT(0002),CLASS(0002),COPIES(0002),

FORMS(0002)
STATUS CODE = AR

468 Application Programming

Error code (0008)

In this example, the message option of the IAFP keyword is incorrectly specified as
“Z”.
CALL = CHNG

00
OPTIONS LIST = IAFP=N0Z,PRTO=0BDEST(018)
FEEDBACK = IAFP(0008) INVALID VARIABLE
STATUS CODE = AR

Error code (000A)

In this example, the valid keyword TXTU is specified, but the call also requires
that the IAFP keyword be specified if the TXTU keyword is used.
CALL = CHNG

OPTIONS LIST = TXTU=SET1
FEEDBACK = TXTU(000A)
STATUS CODE = AR

Error code (000C)

The AR status code is returned with the (000C) error code. This implies that the
problem is with the call options and not with the PRTO options.

The call options list contains the PRTO and TXTU keywords. These options cannot
be used in the same options call list.
CALL = CHNG

00
OPTIONS LIST = IAFP=A00,PRTO=0BCOPIES(3),TXTU=SET1
FEEDBACK = TXTU(000C)
STATUS CODE = AR

Error code (000E)

In this example, the COPIES parameter has the incorrect value “RG” specified as
one of its operands. The error message indicates that the values for these operands
must be numeric.
CALL = CHNG

01
OPTIONS LIST = IAFP=A00,PRTO=0BCOPIES((3),(8,RG,18,80))
FEEDBACK = PRTO(000E) (R.C.=0004,REAS.=00000204) COPIES/RG VALUE

MUST BE NUMERIC CHARACTERS
STATUS CODE = AS

This example includes an invalid PRTO operand. The resulting reason code of
X'000000D0' indicates that the XYZ operand is invalid.
CALL = CHNG

00
OPTIONS LIST = IAFP=A00,PRTO=0AXYZ(018)
FEEDBACK = PRTO(000E) (R.C.=0004,REAS.=000000D0) XYZ
STATUS CODE = AS

Chapter 26. IMS Spool API 469

Understanding allocation errors
The IMS Spool API interface defers dynamic allocation of the print data set until
data is actually inserted into the data set. Incorrect data set print options on the
CHNG or SETO call can cause errors during dynamic allocation. The print data set
options can be parsed during the processing of the CHNG and SETO calls but some
things, for example the destination name parameter, can be validated only during
dynamic allocation.

If one of the print options is incorrect and dynamic allocation fails when the IMS
performs the first insert for the data set, IMS returns a AX status code to the ISRT
call. IMA also issues message DFS0013E and writes a diagnostic log record (67D0)
that you can use to evaluate the problem. The format of the error message
indicates the type of service that was invoked and the return and reason codes that
were responsible for the error. The error message can indicate these services:

DYN MVS dynamic allocation (SVC99)

OPN MVS data set open

OUT MVS dynamic output descriptors build (SVC109)

UNA MVS dynamic unallocation (SVC99)

WRT MVS BSAM write

If the DFS0013E message indicates an error return code from any of these services,
you should consult the corresponding MVS documentation for more information
on the error code. If the service is for dynamic allocation, dynamic unallocation, or
dynamic output descriptor build, see z/OS MVS Programming: Authorized Assembler
Services Guide for the appropriate return and reason codes.

One common mistake is the use of an invalid destination or selection of integrity
option 2 (non-selectable destination) when the destination of IMSTEMP has not
been defined to JES. If you specify an invalid destination in the destination name
parameter, the call will result in a dynamic unallocation error when IMS
unallocates the print data set.

Understanding dynamic output for print data sets
IMS can use the z/OS services for Dynamic Output (SVC109) for print data sets.
IMS uses this service to specify the attributes provided by the application for the
print data sets being created. The service can be used on the CHNG call with the
PRTO, TXTU, and OUTN options.

Related reading: For more information, see z/OS MVS Programming: Assembler
Services Guide.

CHNG call with PRTO option

When you use the CHNG call and PRTO option, IMS activates SJF to verify the print
options to call z/OS services for Dynamic Output. This creates the output
descriptors that are used when the print data set is allocated. This is the simplest
way for the application to provide print data set characteristics. However, it also
uses the most overhead because parsing must occur for each CHNG call. If your
application is WFI or creates multiple data sets with the same print options, use
another option to reduce the parsing impact. You must specify the IAFP option
keyword with this option.

470 Application Programming

CHNG call with TXTU option

If your application can manage the text units necessary for Dynamic Output, then
you can avoid parsing for many of the print data sets. You can do this in one of
two ways:
v The application can build the text unit in the necessary format within the

application area and pass these text units to IMS with the CHNG call and TXTU
option.

v The application can provide the print options to IMS with a SETO call and
provide a work area for the construction of the text units. After z/OS has
finished parsing and text construction, the work area passed will contain the text
units necessary for Dynamic Output after a successful SETO call. The application
must not relocate this work area because the work area contains address
sensitive information.

Regardless of the method the application uses to manage the text units,
applications that can reuse the text units can often achieve better performance by
using the TXTU option on the CHNG call.

You must specify the IAFP option keyword with this option.

CHNG call with OUTN option

The dependent region JCL can contain OUTPUT JCL statements. If your
application can use this method, you can use the CHNG call and OUTN option to
reference OUTPUT JCL statements. When you use the OUTN option, IMS will
reference the OUTPUT JCL statements at dynamic allocation. JES will obtain the
print data set characteristics from the OUTPUT JCL statement. You must specify
the IAFP option keyword with this option.

Sample programs using the Spool API
The Spool API provides functions that allow an application program to write data
to the IMS Spool using the same techniques for sending data to native IMS
printers.

The Spool API provides functions such as error checking for invalid OUTDES
parameters. Error checking makes application programs more complex. To simplify
these application programs, develop a common routine to manage error
information, then make the diagnostic information from the Spool API available for
problem determination.

The sample programs in this section shows how DL/I calls can be coded to send
data to the IMS Spool. Only the parts of the application program necessary to
understand the DL/I call formats are included. The examples are in assembler
language.

Application PCB structure

The application PCBs are as follows:
I/O PCB
ALTPCB1
ALTPCB2
ALTPCB3

Chapter 26. IMS Spool API 471

ALTPCB4

GU call to I/O PCB

IMS application programs begin with initialization and a call to the I/O PCB to
obtain the input message. The following code example shows how to issue a GU
call to the I/O PCB.

After completing the GU call to the I/O PCB, the application program prepares
output data for the IMS Spool.

Issuing a GU call to the I/O PCB

* ISSUE GU ON IOPCB *

L 9,IOPCB I/O PCB ADDRESS
LA 9,0(9)
MVC FUNC,=CL4’GU’ GU FUNCTION
CALL ASMTDLI,(FUNC,(9),IOA1),VL
BAL 10,STATUS CHECK STATUS

* ADDITIONAL PROGRAM LOGIC HERE
FUNC DC CL4’ ’
IOA1 DC AL2(IOA1LEN),AL2(0)
TRAN DS CL8 TRANSACTION CODE AREA
DATA DS CL5 DATA STARTS HERE

DC 20F’0’
IOA1LEN EQU *-IOA1

CHNG call to alternate PCB

In the same way that other programs specify the destination of the output using
the CHNG call, this program specifies the IMS Spool as the output destination. For a
native IMS printer, the DEST NAME parameter identifies the output LTERM name.
When a CHNG call is issued that contains the IAFP= keyword, the DEST NAME
parameter is used only if integrity option '2' is specified. If option '2' is not
specified, the DEST NAME parameter can be used by the application program to
identify something else, such as the routine producing the change call. The
destination for the print data set is established using a combination of initialization
parameters or OUTDES parameters.

The following code example shows how to issue a CHNG call to the alternate
modifiable PCB.

After the CHNG call is issued, the application program creates the print data set by
issuing ISRT calls.

Issuing a CHNG call to the alternate modifiable PCB

* ISSUE CHNG ON ALTPCB4 *

L 9,ALTPCB4 ALT MODIFIABLE PCB
LA 9,0(9) CLEAR HIGH BYTE/BIT
MVC FUNC,=CL4’CHNG’ CHNG FUNCTION
CALL ASMTDLI,(FUNC,(9),DEST2,OPT1,FBA1),VL
BAL 10,STATUS CHECK STATUS OF CALL

* ADDITIONAL PROGRAM LOGIC HERE
FUNC DC CL4’ ’
DEST2 DC CL8’IAFP1’ LTERM NAME
*

DC C’OPT1’ OPTIONS LIST AREA

472 Application Programming

OPT1 DC AL2(OPT1LEN),AL2(0)
DC C’IAFP=’

OCC DC C’M’ DEFAULT TO MACHINE CHAR
OOPT DC C’1’ DEFAULT TO HOLD
OMSG DC C’M’ DEFAULT TO ISSUE MSG

DC C’,’
DC C’PRTO=’

PRTO1 EQU *
DC AL2(PRTO1LEN)
DC C’COPIES(2),CLASS(T),DEST(RMT003)’

PRTO1LEN EQU *-PRTO1
DC C’ ’

OPT1LEN EQU *-OPT1
*
FBA1 DC AL2(FBA1LEN),AL2(0)

DC CL40’ ’
FBA1LEN EQU *-FBA1

ISRT call to alternate PCB

Once the IMS Spool is specified as the destination of the PCB, ISRT calls can be
issued against the alternate PCB.

The following code example shows how to issue the ISRT call to the alternate
modifiable PCB.

The print data streams can be stored in databases or generated by the application,
depending on the requirements of the application program and the type of data set
being created.

Issuing an ISRT call to the alternate modifiable PCB

* ISSUE ISRT TO ALTPCB4 *

L 9,ALTPCB4 ALT MODIFIABLE PCB
LA 9,0(9) CLEAR HIGH BYTE/BIT
MVC FUNC,=CL4’ISRT’ ISRT FUNCTION
CALL ASMTDLI,(FUNC,(9),IOA2),VL
BAL 10,STATUS CHECK STATUS OF CALL

* ADDITIONAL PROGRAM LOGIC HERE
FUNC DC CL4’ ’
IOA2 DC AL2(IOA2LEN),AL2(0)
IOA21 DC AL2(MSG2LEN),AL2(0)

DC C’ ’ CONTROL CHARACTER
DC C’MESSAGE TO SEND TO IMS SPOOL’

MSG2LEN EQU *-IOA21
IOA2LEN EQU *-IOA2

Program termination

After the calls are issued, the program sends a message back to originating
terminal, issues a GU call to the I/O PCB, or terminates normally.

Chapter 26. IMS Spool API 473

474 Application Programming

Chapter 27. IMS Message Format Service

The IMS Message Format Service (MFS) is a facility of the IMS Transaction
Manager environment that formats messages to and from terminal devices, so that
IMS application programs do not deal with device-specific characteristics in input
or output messages.

In addition, MFS formats messages to and from user-written programs in remote
controllers and subsystems, so that application programs do not deal with
transmission-specific characteristics of the remote controller.

MFS uses control blocks you specify to indicate to IMS how input and output
messages are arranged.
v For input messages, MFS control blocks define how the message sent by the

device to the application program is arranged in the program's I/O area.
v For output messages, MFS control blocks define how the message sent by the

application program to the device is arranged on the screen or at the printer.
Data that appears on the screen but not in the program's I/O area, such as a
literal, can also be defined.

In IMS Transaction Manager systems, data passing between the application
program and terminals or remote programs can be edited by MFS or basic edit.
Whether an application program uses MFS depends on the type of terminals or
secondary logical units (SLUs) your network uses.

Restriction: MFS does not support message formatting for LU 6.2 devices.

Advantages of using MFS
By using MFS, you can simplify the developing and maintaining of
terminal-oriented applications, and improve online performance by using control
blocks for online processing.

Simplify development and maintenance

To simplify IMS application development and maintenance, MFS performs many
common application program functions and gives application programs a high
degree of independence from specific devices or remote programs.

With the device independence offered by MFS, one application program can
process data to and from multiple device types while still using their different
capabilities. Thus, MFS can minimize the number of required changes in
application programs when new terminal types are added.

MFS makes it possible for an application program to communicate with different
types of terminals without having to change the way it reads and builds messages.
When the application receives a message from a terminal, how the message
appears in the program's I/O area is independent of what kind of terminal sent it;
it depends on the MFS options specified for the program. If the next message the
application receives is from a different type of terminal, you do not need to do
anything to the application. MFS shields the application from the physical device

© Copyright IBM Corp. 1974, 2015 475

that is sending the message in the same way that a DB program communication
block (PCB) shields a program from what the data in the database actually looks
like and how it is stored.

Other common functions performed by MFS include left or right justification of
data, padding, exits for validity checking, time and date stamping, page and
message numbering, and data sequencing and segmenting. When MFS assumes
these functions, the application program handles only the actual processing of the
message data.

The following figure shows how MFS can make an application program
device-independent by formatting input data from the device or remote program
for presentation to IMS, and formatting the application program data for
presentation to the output device or remote program.

Improve online performance of a terminal

MFS also improves online performance of a terminal-oriented IMS by using control
blocks designed for online processing. The MFS control blocks are compiled offline,
when the IMS Transaction Manager system is not being executed, from source
language definitions. MFS can check their validity and make many decisions
offline to reduce online processing. In addition, during online processing, MFS uses
look-aside buffering of the MFS control blocks to reduce CPU and channel costs of
input/output activity.

Because MFS control blocks are reentrant and can be used for multiple
applications, online storage requirements are reduced. Optional real storage
indexing and anticipatory fetching of the control blocks can also reduce response
time. Further performance improvements can be gained when IMS is generated for
z/OS, since multiple I/O operations can execute concurrently to load the format
blocks from the MFS format library.

In addition, MFS uses z/OS paging services; this helps to reduce page faults by the
IMS control region task.

MFS can reduce use of communication lines by compressing data and transmitting
only required data. This reduces line load and improves both response time and
device performance.

MFS control blocks
There are four types of MFS control blocks that you specify to format input and
output for the application program and the terminal or remote program.

The four types are:

MFS-supported
device

IMS
application
program

MFS

Device input Input message

Output messageDevice output

Figure 82. Message formatting using MFS

476 Application Programming

Message Output Descriptors (MODs)
Define the layout of messages MFS receives from the application program.

Device Output Formats (DOFs)
Describe how MFS formats messages for each of the devices the program
communicates with.

Device Input Formats (DIFs)
Describe the formats of messages MFS receives from each of the devices
the program communicates with.

Message Input Descriptors (MIDs)
Describe how MFS further formats messages so that the application
program can process them.

Throughout this information, the term “message descriptors” refers to both MIDs
and MODs. The term “device formats” refers to both DIFs and DOFs.

Each MOD, DOF, DIF and MID deals with a specific message. There must be a
MOD and DOF for each unique message a program sends, and a DIF and MID for
each unique message a program receives.

MFS examples
One way to understand the relationship between the MFS control blocks is to look
at a message from the time a user enters it at the terminal to the time the
application program processes the message and sends a reply back to the terminal.
Though MFS can be used with both display terminals and printer devices, for
clarity in this example, a display terminal is being used.

The following figure shows the relationships between the MFS control blocks.

Application
program

MFS

DOF

DIF

DOF MOD

MID

MOD

Message
queue

Format Control
Block Library

IMS

Receive format
Enter data

Receive
output

Request
format

Figure 83. MFS control block relationships

Chapter 27. IMS Message Format Service 477

Looking at payroll records

Suppose your installation has a message processing program used to view
employee payroll records. From a display terminal, issue the IMS format command
(/FORMAT), and the MOD name. This formats the screen in the way defined by
the MOD written by the MFS programmer. When you enter the MOD name, the
screen contains only literals and no output data from the application program. At
this stage, no application program is involved. (For more information about
/FORMAT, see IMS Version 14 Commands, Volume 1: IMS Commands A-M.)

In this example, suppose the name of the MOD that formats the screen for this
application is PAYDAY. Enter this command:
/FORMAT PAYDAY

IMS locates the MFS MOD control block with the name PAYDAY and arranges the
screen in the format defined by the DOF.

The following figure shows how this screen looks.

The DOF defines a terminal format that asks you to give the employee's name and
employee number. PAYUP is the transaction code associated with the application
that processes this information. When you enter the MOD name, the transaction
code is included in the first screen format displayed. This means that you do not
need to know the name of the program that processes the data; you only need the
name of the MOD that formats the screen.

After the screen format is displayed, you can enter the information. There are four
stages to sending a message to the program and receiving the reply:
1. Enter the information at the terminal. For this example, enter the prompted

information.
The following figure shows how this screen looks after information is entered.

EMPLOYEE PAYROLL

FIRST NAME: LAST NAME:
EMPLOYEE NO:

INPUT:

Figure 84. PAYDAY screen, formatted by DOF

EMPLOYEE PAYROLL

FIRST NAME: Joe LAST NAME: Blutzen
EMPLOYEE NO: 60249

INPUT:

Figure 85. PAYDAY screen, with filled input fields

478 Application Programming

2. When IMS receives this data, MFS uses the DIF and the MID control blocks to
translate the data from the way it was entered on the terminal screen to the
way that the application program is expecting to receive it. The DIF control
block tells MFS the format of the data to come in from the terminal. The MID
control block tells MFS how the application program expects to receive the
data. When the application program issues a message call, IMS places the
“translated” message in the program's I/O area.
When the application receives the message in its I/O area, the message looks
like this:
PAYUP JOE BLUTZEN 60249

“PAYUP” is the transaction code. The name of the logical terminal does not
appear in the message itself; IMS places it in the first field of the I/O PCB.

3. The application program processes the message, including any required
database access, and builds the output message in the application program's
I/O area. After retrieving the information from the database, the program
builds the output message segment for the employee, with social security and
rate of pay information. The application program's I/O area contains:
LLZZJOE BLUTZEN 60249532596381150.00

The LL is a 2-byte field in MFS messages that indicates the length of the field.
How the LL field is defined depends on what programming language used to
write the application program. For the AIBTDLI, ASMTDLI, CEETDLI, or
PASTDLI interfaces, the LL field must be defined as a binary half word. For the
PLITDLI interface, the LL field must be defined as a binary fullword. The value
provided in the PLITDLI interface must represent the actual segment length
minus 2 bytes.
The ZZ is a 2-byte length field in MFS messages that contains the MFS
formatting option that is being used to format the messages to and from the
application program. MFS options are discussed in further detail in the topic
"Input Message Formatting Options" in IMS Version 14 Application Programming
APIs.

4. When the application program sends the message back to the terminal, MFS
translates the message again, this time from the application program format to
the format in which the terminal expects the data.
The MOD tells MFS the format that the message will be in when it comes from
the application program's I/O area. The DOF tells MFS how the message is
supposed to look on the terminal screen. MFS translates the message and IMS
displays the translated message on the terminal screen.
The following figure shows how the screen looks.

EMPLOYEE PAYROLL

FIRST NAME: Joe LAST NAME: Blutzen
EMPLOYEE NO: 60249
SOC SEC NO: 532-59-6381
RATE OF PAY: $150.00

INPUT:

Figure 86. PAYDAY screen, output formatted by DOF and displayed

Chapter 27. IMS Message Format Service 479

Listing a subset of employees

Suppose you have an MPP that answers this request:

List the employees who have the skill “ENGINEER” with a skill level of “3.”
List only those employees who have been with the firm for at least 4 years.

To enter the request from a display terminal, issue the format command
(/FORMAT) and the MOD name. This formats the screen in the way defined by
the MOD you supply. When you enter the MOD name, the screen contains only
literals and no output data from an application program. At this stage, an MPP is
not involved. Suppose the name of the MOD that formats the screen for this
request is LE, for “locate employee.” Enter this:
/FORMAT LE

IMS locates the MFS MOD control block with the name LE and arranges your
screen in the format defined by the DOF. Your screen then looks like this:
SKILL
LEVEL
YEARS

LOCEMP

The DOF defines a terminal format that asks you to qualify your request for an
employee by giving the skill, level, and number of years of service of the employee
you want. LOCEMP is the transaction code that is associated with the MPP that
can process this request. When you enter the MOD name, the transaction code is
included in the first screen format that is displayed for you. This means that you
do not need the name of the program that processes your request; you only need
the name of the MOD that formats the screen.

After the screen format is displayed, you can enter your request. There are four
stages in sending a message to the program and receiving the reply.
1. Enter the information at the terminal. In this example, enter the values of the

qualifications that IMS has given you on the screen: the skill is “eng”
(engineer), the skill level is “3,” and the number of years with the firm is “4”.
After you enter your request, your screen contains this data:
SKILL ENG
LEVEL 3
YEARS 4

LOCEMP

2. When IMS receives this data, MFS uses the DIF and the MID control blocks to
translate the data from the way you entered it on the terminal screen to the
way that the application program is expecting to receive it. The DIF control
block tells MFS how the data is going to come in from the terminal. The MID
control block tells MFS how the application program is expecting to receive the
data. When the application program issues a GU call to the I/O PCB, IMS places
the “translated” message in the program's I/O area.
When the MPP receives the message in its I/O area, the message looks like
this:

LOCEMP ENG0304
“LOCEMP” is the transaction code. The name of the logical terminal does not
appear in the message itself; IMS places it in the first field of the I/O PCB.

3. The MPP processes the message, including any required database access, and
builds the output message in the MPP's I/O area.

480 Application Programming

Suppose more than one employee meets these qualifications. The MPP can use
one message segment for each employee. After retrieving the information from
the database, the program builds the output message segment for the first
employee. The program's I/O area contains:
LLZZJONES,CE 3294

When the program sends the second segment, the I/O area contains:
LLZZBAKER,KT 4105

4. When the application program sends the message back to the terminal, MFS
translates the message again, this time from the application program format to
the format in which the terminal expects the data.
The MOD tells MFS the format that the message will be in when it comes from
the application program's I/O area. The DOF tells MFS how the message is
supposed to look on the terminal screen. MFS translates the message and IMS
displays the translated message on the terminal screen. The screen then
contains the following data:
SKILL ENG
NAME NO
JONES,CE 3294
BAKER,KT 4105

Related concepts:
“Relationship between MFS control blocks and screen format”

Relationship between MFS control blocks and screen format
Use the control blocks in the MFS source language to define the formats that you
see at the device.

The standard way for an end-user or operator to receive an initial format is to
request it with a /FORMAT command, specifying the name of a MOD. In the
following code example, the label on the MOD is PAYDAY. This MOD contains the
parameter SOR=PAYF, which points to a device output format, or DOF, with the
same label.

The initial DOF also becomes the format for device input. Therefore, if you specify
DIV TYPE=INOUT in the DOF, a device input format (DIF) is also generated. In
the sample code, PAYF is both a DOF and a DIF, since it also describes the format
of the next input. The final output message can be displayed with a format that is
specified for output only and no DIF is generated.

Both the MOD and the MID point to the same DOF, thus establishing the
relationship between device-related and message-related control blocks.

For output, MFS moves fields defined in a MOD to fields on the screen defined by
a DOF. When a field definition is coded (MFLD) in a MOD, it is given a label. The
same label is used in the coding of the device field (DFLD) in the DOF, defining
where the field appears on the screen.

MFS moves data fields from output messages to screen fields; this is referred to as
mapping. For input, MFS moves modified screen fields to data fields in the input
message for the program by mapping identically labeled fields in the DIF and
MID.

For more detailed information on specifying these control blocks, see IMS Version
14 Database Utilities.

Chapter 27. IMS Message Format Service 481

The MFS control blocks are generated from the source statements like those in the
following code example during execution of the MFS Language utility. The control
blocks are stored in the various MFS libraries.

The sample code is designed for a 3270 display.

Sample MFS control block coding

DOF/DIF
PAYF FMT

DEV TYPE=(3270,2),FEAT=IGNORE,DSCA=X’00A0’
DIV TYPE=INOUT
DPAGE CURSOR=((5,15))
DFLD ’**********************’,POS=(1,21)
DFLD ’* EMPLOYEE PAYROLL *’,POS=(2,21)
DFLD ’**********************’,POS=(3,21)
DFLD ’FIRST NAME:’,POS=(5,2)

FNAME DFLD POS=(5,15),LTH=16
DFLD ’LAST NAME:’,POS=(5,36)

LNAME DFLD POS=(5,48),LTH=16
DFLD ’EMPLOYEE NO:’,POS=(7,2)

EMPNO DFLD POS=(7,16),LTH=6
DFLD ’SOC SEC NO:’,POS=(9,2)

SSN DFLD POS=(9,15),LTH=11
DFLD ’RATE OF PAY: $’,POS=(11,2)

RATE DFLD POS=(11,17),LTH=9
DFLD ’INPUT:’,POS=(16,2)

INPUT DFLD POS=(16,10),LTH=30
FMTEND

MID
PAYIN MSG TYPE:INPUT,SOR=(PAYF,IGNORE)

SEG
MFLD ’PAYUP ’ SUPPLIES TRANCODE
MFLD LNAME,LTH=16
MFLD FNAME,LTH=16
MFLD EMPNO,LTH=6
MFLD SSN,LTH=11
MFLD RATE,LTH=9
MFLD INPUT,LTH=30,JUST=R,FILL=C’0’
MSGEND

MOD
PAYDAY MSG TYPE:OUTPUT,SOR=(PAYF,IGNORE)

SEG
MFLD LNAME,LTH=16
MFLD FNAME,LTH=16
MFLD EMPNO,LTH=6
MFLD SSN,LTH=11
MFLD RATE,LTH=9
MFLD INPUT,LTH=30,JUST=R,FILL=C’0’
MSGEND

Related reference:
“MFS examples” on page 477

Overview of MFS components
IMS Message Format Service (MFS) components include three utilities, a message
editor, and two pool managers.

482 Application Programming

MFS utilities

You can use the MFS utilities for multiple service and generation purposes:
v MFS Device Characteristics Table utility (DFSUTB00): Define new screen sizes in

a descriptor member of the IMS.PROCLIB library without completing an IMS
system definition.

v MFS Language utility (DFSUPAA0): Create and store the MFS control blocks.
v MFS Service utility (DFSUTSA0): Control and maintain MFS intermediate text

blocks and control blocks after they are processed and stored by the MFS
Language utility (DFSUPAA0).

In addition to the using the MFS utilities to update MFS libraries, you can also use
the IMS online change function. You can modify control block libraries while the
IMS control region is executing.

MFS message editor

Use the MFS message editor to formats messages according to the control block
specifications generated by the MFS Language utility from control statement
definitions that you enter.

MFS pool managers

You can customize the functions of the following MFS pool managers:
v MFS pool manager: MFS tries to minimize I/O to the format library by keeping

referenced blocks in storage. This storage is managed by the MFS pool manager.
You can use the INDEX function of the MFS Service utility to customize this
function by constructing a list of the directory addresses for specified format
blocks. This list eliminates the need for IMS to read the data set directory before
it fetches a block.

v MFSTEST pool manager: If you use the MFSTEST facility, MFS control blocks are
managed by the MFSTEST pool manager. The communication line buffer pool
space allowed for MFS testing is specified during system definition, but the
space can be changed when the IMS control region is initialized. This space
value is the maximum amount used for MFSTEST blocks at any one time. The
space value is not a reserved portion of the pool.

Related concepts:

The online change function (System Administration)

MFS components (Communications and Connections)

Use of the message format buffer pool (System Definition)
Related reference:

MFS Language utility (DFSUPAA0) (System Utilities)

MFS Service utility (DFSUTSA0) (System Utilities)

MFS Device Characteristics Table utility (DFSUTB00) (System Utilities)

Chapter 27. IMS Message Format Service 483

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/system_admin/ims_olc_overt.htm#ims_olc_overt
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_msgedtfmt_mfscomps.htm#ims_msgedtfmt_mfscomps
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_ie0i2mfs1000587.htm#ie0i2mfs1000587
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_mfslang.htm#ims_mfslang
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_dfsutsa0.htm#ims_dfsutsa0
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_dfsutb00.htm#ims_dfsutb00

Devices and logical units that operate with MFS
In addition to 3270 devices, MFS operates with the 3600 and 4700 Finance
Communication System (FIN), the 3770 Data Communication System, the 3790
Communication System, and with Secondary Logical Unit (SLU) types 1, 2, 6, and
P. Network Terminal Option (NTO) devices are supported as secondary logical unit
type 1 consoles.

The following table shows which devices or logical units can be defined for MFS
operation in the IMS system by their number (3270, for example), and which can
be defined by the type of logical unit to which they are assigned (SLU 1, for
example).

Although the 3600 devices are included in the FIN series, you can specify them
with their 36xx designations; MFS messages use the FIxx designations regardless of
which form of designation you specify. In general, however, application designers
and programmers using this information need to know only how the devices they
are defining control blocks for have been defined to the IMS system in their
installation.

Table 85. Terminal devices that operate with MFS.

Device

Devices
defined by

number1
NTO

devices2 SLU 1 SLU 2 SLU P LU 6.1

3180 X 3 X 3

3270 X 3 X 3

3290 X 3 X 3

5550 X 3 TYPE:
3270-An

3270-Ann

3270 printers; 5553, 5557 X 3 COMPTn=
MFS-SCS1

3730 X

3767 COMPTn=
MFS-SCS1

3770 console, printers,
print data set

COMPTn=
MFS-SCS1

X

3770 readers, punches,
transmit data set

COMPTn=
MFS-SCS2

X

3790 print data set (bulk) COMPTn=
MFS-SCS1

COMPTn=
MFS-SCS1
DPM-An

3790 transmit data set COMPTn=
MFS-SCS2

3790 attached 3270 X 3

6670

8100 X

8100 attached 3270 X X 3

8100 attached Series/1 X

8100 attached S/32 X

484 Application Programming

Table 85. Terminal devices that operate with MFS (continued).

Device

Devices
defined by

number1
NTO

devices2 SLU 1 SLU 2 SLU P LU 6.1

8100 attached S/34 X

8100 attached S/38 X

Finance X COMPTn=
MFS-SCS1
DPM-An

TTY X

3101 X

Other systems (IMS to
IMS or IMS to other)

COMPTn=
DPM=Bn

Notes:

1. With options= (...,MFS,...) in the TERMINAL or TYPE macro.
2. Defined with UNITYPE= on the TYPE macro and PU= on the TERMINAL

macro.
3. Defaults to operate with MFS.

Logical units are defined by logical unit type or logical unit type with COMPTn=
or TYPE= in the TERMINAL macro or ETO logon descriptor. The LU 6.1 definition
refers to ISC subsystems.

The definition for SLU 1 can specify an MFS operation with SNA character strings
(SCS) 1 or 2. SCS1 designates that messages are sent to a printer or the print data
set or received from a keyboard in the 3770 Programmable or 3790 controller disk
storage; SCS2 designates that messages are sent to or received from card I/O or a
transmit data set.

Terminals defined as SLU 2 have characteristics like the 3270, and like the 3270,
can be defined to operate with MFS. In general, a 3290 terminal operates like a
3270 terminal, and references to 3270 terminals in this information are applicable to
3290 devices. However, 3290 partitioning and scrolling support is provided only
for 3290 devices defined to IMS as SLU 2.

Generally, the 3180 and 5550 terminals operate like a 3270 terminal, and references
to 3270 terminals also apply to these devices. Likewise, the 5553 and 5557 printer
devices operate like a 3270P.

Restriction: 5550 Kanji support is provided only for the 5550 terminal defined as
an SLU 2 and for the 5553 and 5557 defined as SCS1 printers.

If IMS is to communicate with the user-written remote program in a 3790 or an
FIN controller, the device must be defined as an SLU P. Definitions for SLU P must
specify MFS operation as either MFS-SCS1 or DPM-An, where DPM means
distributed presentation management and An is a user-assigned number (A1
through A15).

Chapter 27. IMS Message Format Service 485

Most of the MFS formatting functions currently available to other devices, except
specific device formatting, are available to the user-written program. Under user
control, these formatting functions (such as paging) can be divided between MFS
and the remote program.

Using distributed presentation management (DPM)
With distributed presentation management (DPM), formatting functions usually
performed by MFS are distributed between MFS and a user-written program for
SLU P devices or ISC nodes. If the 3790 or FIN controller has previously been
defined to IMS by unit number, some changes must be made to convert to DPM.

With DPM, the physical terminal characteristics of the secondary logical unit do
not have to be defined to MFS. MFS has to format only the messages for
transmission to the user program in the remote controller or ISC node, which must
assume responsibility for completing the device formatting, if necessary, and
present the data to the physical device it selects.

For remote programs using DPM, the data stream passing between MFS and the
remote programs can be device independent. The messages from the IMS
application program can include some device control characters. If so, the IMS
application program and the data stream to the remote program might lose their
device independence.

If IMS is to communicate with other subsystems (such as IMS, CICS or
user-written), the other subsystem must be defined as an ISC subsystem.
Definitions for ISC must:
v Specify MFS operation as DPM-Bn, where Bn is a user-assigned number (B1

through B15).
v Define TYPE:LUTYPE6 on the TERMINAL macro during system definition.

DPM with ISC provides:
v Output paging on demand that allows paging to be distributed between IMS

and another system
v Automatically paged output that allows MFS pages to be transmitted to another

system without intervening paging requests
v Transaction routing that allows application programs to view the routing

information when it is provided in the input message

486 Application Programming

Chapter 28. Callout requests for services or data

IMS applications can issue callout requests for services or data, and optionally
receive responses back in the same or a different transaction, through IMS Connect
and OTMA. The request for services or data is a callout request.

If the IMS application, after issuing the request, waits for a response in the
dependent region, the request is a synchronous callout request. If the IMS application
terminates after the request is issued and does not wait for a response in the
dependent region, the request is an asynchronous callout request. IMS applications
can also issue synchronous callout requests to an IMS transaction with a
synchronous program switch request.

Each type of request is processed as follows:

Synchronous callout request
An IMS application program that runs in an IMS dependent region issues
a DL/I ICAL call and waits in the dependent region to process the
response. The application program can use the optional control data area of
the DL/I ICAL call to pass routing, security, or other data to IMS Connect
and its clients. When the DL/I ICAL call is issued, IMS generates a
correlation token for synchronous callout requests. This correlation token is
included with the callout request and must be returned to IMS with the
response to route the response back to the requesting IMS application
program.

Asynchronous callout request
An IMS application program that runs in an IMS dependent region inserts
the callout request to an ALTPCB queue (the ISRT ALTPCB call) and then
terminates to free the dependent region. IMS does not generate a
correlation token for asynchronous callout requests. If a response to the
callout request is required, the correlation of the response to the callout
request must be managed by the IMS application program. When IMS
receives a response to an asynchronous callout request, IMS processes the
response as a new transaction.

Synchronous program switch request
A synchronous program switch uses the ICAL call, but the request is
routed to an IMS transaction rather than an external server. Synchronous
program switch requests do not use a correlation token because IMS
automatically correlates the response back to the waiting application
program.

The following table summarizes the differences among synchronous callout
requests, asynchronous callout requests, and synchronous program switch requests.

Table 86. Comparison of synchronous and asynchronous callout requests

Callout process
Synchronous callout
request

Asynchronous callout
request

Synchronous program
switch request

Placing the request in the
OTMA hold queue

The requesting IMS
application issues an ICAL
call with or without control
data.

The requesting IMS
application issues an ISRT
ALTPCB call.

The requesting IMS
application issues an ICAL
call.

© Copyright IBM Corp. 1974, 2015 487

|
|
|
|
|
|
|
|
|

|
|
|
|

Table 86. Comparison of synchronous and asynchronous callout requests (continued)

Callout process
Synchronous callout
request

Asynchronous callout
request

Synchronous program
switch request

Status of the IMS
application after the request
is issued

The application waits in the
dependent region for the
response. Dependent
regions are blocked.

The application terminates. The application waits in the
dependent region for the
response. Dependent
regions are blocked.

Message processing
handling

The message processing is
handled by IMS OTMA.

The message processing is
handled by the IMS
message queue.

The message processing is
handled by the IMS
message queue.

Response handling The response is correlated
back to the requesting IMS
application, based on the
correlation token, during
the same unit of work.

If there is a response, the
requesting or a different
IMS application must be
coded to handle the
response that is returned in
a different transaction. The
unit of work for the
transaction has to commit
for the asynchronous output
to flow.

The response is returned to
the requesting IMS
application in the same unit
of work. However, the
target transaction executes
in a separate unit of work,
so it is not eligible for
two-phase commit and it is
not part of the RRS commit
scope for the original
application.

Related reference:

ICAL call (Application Programming APIs)

Callout request approaches
You can issue a callout request to IMS Enterprise Suite SOAP Gateway, IMS TM
Resource Adapter, IBM MQ, to your own user-supplied IMS Connect client
applications, or to another IMS application program.

For synchronous callout requests, you can optionally include control data in a
callout message. By using control data, you can pass the URL for the port, UUID,
user token, security information, or any other information to the IMS Connect and
its client.

Using SOAP Gateway

Use SOAP Gateway to issue callout requests from IMS applications to any generic
web service.

SOAP Gateway enables IMS applications as either web service providers or
consumers. SOAP Gateway supports both asynchronous and synchronous callout
approaches for IMS applications as web service consumers. Tooling support for
SOAP Gateway is available in Rational® Developer for System z® for generating
the required web service artifacts based on connection and interaction information
for communicating with IMS Connect, and the language structure of the IMS
applications. SOAP Gateway also provides a deployment utility to support the
deployment of IMS applications as either providers or consumers of web services.

For SOAP Gateway messages, you can specify an XML converter name in the
control data by using the tags <DFSCNVTR>CONVERTER_NAME</DFSCNVTR>. The
converter name and the tags must be in uppercase EBCDIC. If the converter name
is present, it overrides the current converter name that IMS Connect would have
used to process the message. As soon as the converter name is extracted, no

488 Application Programming

|
|
|
|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_icalcalltm.htm#ims_icalcalltm

further scanning of the tags will take place for that message. The tags that contain
the XML converter name are not removed from the control data and are sent to
SOAP Gateway with any other tags that are present in the control data.

The following example illustrates control data area with two control data items:
Total Length = 4 + 10 + 8 + 11 + 4 + 9 + 25 + 10 = 81 = X’51’

AIBOPLEN = X’00000051’

Control Data = X’00000021’ <DFSCNVTR>CONVERT1</DFSCNVTR> X’00000030’
<USERTAG>USER DATA CAN BE ANYTHING</USERTAG>

For more information about enabling IMS application callout through SOAP
Gateway, see Enabling an IMS application as a web service consumer.

Using IMS TM Resource Adapter

Use IMS TM Resource Adapter Version 10 or later to issue synchronous or
asynchronous callout requests from IMS applications to any message-driven bean
(MDB), Enterprise JavaBeans (EJB) component, Java EE (previously known as J2EE)
application, or web service.

IMS TM Resource Adapter enables Java EE applications to access IMS transactions
over the Internet, as well as to issue callout requests to external Java EE
applications from IMS applications that run in IMS dependent regions. The IMS
TM Resource Adapter includes a runtime component for WebSphere Application
Server. Tooling support for the IMS TM Resource Adapter is available in IBM
Rational Application Developer for WebSphere Software, as well as various
Rational and WebSphere integrated development environments (IDEs) that include
the J2EE Connector (J2C) wizard.

For more information about callout support in IMS TM Resource Adapter, see
Callout programming models.

Using IBM MQ

You can write applications that make asynchronous callout requests to other
applications via IBM MQ. You must configure the IBM MQ to IMS bridge.

You must also create a destination descriptor for IBM MQ with TYPE=MQSERIES.
You can either add the descriptor to the DFSYDTx member of the IMS PROCLIB
data set, or add it with the CREATE OTMADESC command. The OTMA routing
exits (DFSYPRX0 and DFSYDRU0) are not required.

The destination descriptor type for IBM MQ includes parameters that you can use
to customize the fields of the MQMD data structure. The MQMD structure controls
how IBM MQ processes messages that use the descriptor.

Using a user-written IMS Connect TCP/IP application

You can write your own IMS Connect TCP/IP applications or use a
vendor-supplied solution that uses TCP/IP and the IMS Connect protocol to
retrieve callout requests. Your custom IMS Connect client application must issue a
RESUME TPIPE call to an OTMA routing destination, also known as a transaction
pipe (tpipe), that is defined in an OTMA destination descriptor. This tpipe holds
the callout requests. Your custom IMS Connect TCP/IP application must poll the
tpipe to retrieve the callout requests.

Chapter 28. Callout requests for services or data 489

|
|
|

|

|
|
|
|
|
|

|

http://www-01.ibm.com/support/knowledgecenter/SS9NWR_3.2.0/com.ibm.ims.soap32.doc/sgw_serviceconsumer.htm
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.etools.ims.tmra.doc/topics/cimscallout.htm

Using IMS synchronous program switch requests

You can use the ICAL call to send a request to another IMS application by creating
a destination descriptor with TYPE=IMSTRAN. This type of callout request is a
synchronous program switch.

The IMSTRAN descriptor type specifies the destination transaction, and can also be
used to create a late response message queue. You can either add the descriptor to
the DFSYDTx member of the IMS PROCLIB data set, or add it with the CREATE
OTMADESC command. Multiple synchronous program switch requests can be
chained together if the destination application also issues an ICAL call for
synchronous program switch.

OTMA is not required to use the ICAL call for synchronous program switching.
You must define an OTMA destination descriptor for the destination transaction,
but IMS schedules the transaction whether or not OTMA is active.

Control data is not supported for synchronous program switch requests.

Using the Java dependent region resource adapter

The Java dependent region resource adapter supports the Java Message Service
(JMS) interface that can be used by Java applications for the same functionality in
Java dependent regions.

IMS™ provides a set of Java™ APIs called the IMS Java dependent region resource
adapter to develop Java applications to run on the IMS Java dependent regions.

The IMS Java dependent region resource adapter provides Java application
programs running in JMP or JBP regions with similar DL/I functionality to that
provided in message processing program (MPP) and non-message driven BMP
regions, such as:
v Accessing IMS message queues to read and write messages
v Performing program switches
v Commit and rollback processing
v Accessing GSAM databases
v Database recovery (CHKP/XRST)

IMS transactions written in Java and leveraging the IMS Universal Java dependent
region (JDR) resource adapter can issue ICAL calls that include control data. The
JDR resource adapter invokes the Universal Drivers C library (DFSCLIBU) through
Java Native Interface (JNI) calls to issue the calls from C to the AIBTDLI interface
with the ICAL information.

Use the IMS Java dependent region resource adapter together with the type-2 IMS
Universal JDBC driver or type-2 IMS Universal DL/I driver to perform database
operations, including GSAM database access.
Related concepts:

Callout requests from IMS application programs (Communications and
Connections)

OTMA destination descriptors (Communications and Connections)
Related reference:

490 Application Programming

|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_otma_callout_config_overview.htm#ims_otma_callout_config_overview
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_otma_callout_config_overview.htm#ims_otma_callout_config_overview
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_otma_admin_006.htm#ims_otma_admin_006

DFSYDTx member of the IMS PROCLIB data set (System Definition)

ICAL call (Application Programming APIs)

Resume tpipe protocol
The resume tpipe protocol retrieves asynchronous and synchronous callout
messages from IMS.

An IMS Connect client signals how long to wait for output from IMS by specifying
an IRM timeout value with the IRM_TIMER field. The IRM timeout value affects
the RESUME TPIPE call that is sent to IMS Connect and the ACK or NAK
response message that is sent to IMS Connect.

When you use IMS TM Resource Adapter or IMS Enterprise Suite SOAP Gateway
to handle the callout request from your IMS application, the communication with
IMS Connect is handled for you.

Both the IMS TM Resource Adapter and SOAP Gateway listen for synchronous
callout requests by continuously issuing the RESUME TPIPE call to IMS Connect.
If a callout request message is on the tpipe queue, OTMA sends the callout request
to IMS Connect, IMS Connect processes the message, converting the message to
XML if necessary (for SOAP Gateway if using the IMS Connect XML adapter
function), and then sends the message to the IMS TM Resource Adapter or SOAP
Gateway.

If you have a custom IMS Connect client, you must code the client to issue a
RESUME TPIPE call to retrieve the callout messages

Resume tpipe security

You can protect callout messages from unauthorized use of the RESUME TPIPE
call by using either the Resource Access Control Facility (RACF), the OTMA
Resume TPIPE Security user exit (OTMARTUX), or both.

When security is enabled, the user ID that issues the RESUME TPIPE call must be
authorized to access the tpipe name that is contained in the RESUME TPIPE call
message before any messages are sent to an OTMA client.

The security checking performed by RACF and the security checking performed by
the OTMARTUX user exit are optional. If both RACF and the OTMARTUX are
used, RACF is called first before giving control to the OTMARTUX user exit, in
which case, the OTMARTUX user exit can override RACF, depending on your
needs.

Implementing the synchronous callout function
To issue a synchronous callout request from your IMS application, issue the ICAL
call and specify the OTMA descriptor name.

The ICAL call can also be issued through a REXXTDLI call, or from a Java
application that runs in a JMP or JBP region. Optionally, you can also specify a
timeout value (the maximum time to wait for the response to return).

Chapter 28. Callout requests for services or data 491

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_dfsydtx_proclib.htm#ims_dfsydtx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_icalcalltm.htm#ims_icalcalltm

Input and output messages from IMS can be 32 KB or larger per segment for a
synchronous callout request. However, the maximum segment size is 32 KB for a
synchronous program switch request.

The following diagram shows the message flow of the synchronous callout
function. The request starts with an IMS application that issues an ICAL call. The
response is returned to the requesting IMS application.

You can make concurrent ICAL calls from your IMS applications that are routed to
the same or different IMS Connect destinations. By using the RESUME TPIPE call
and the send-only protocol, the synchronous callout function allows the requests to
be sent and the responses to be received in different connections and threads. You
can have one connection for retrieving the callout requests and use other
connections to return the response messages simultaneously.

A correlation token is created by IMS to correlate the response message back to the
correct IMS transaction instance. The capability of having different threads and
connections for pulling callout requests and for returning response messages
provides maximum concurrency.

WebSphere
Application

Server

User-written
IMS Connect client

application
(such as SAP)

IMS TM
Resource
Adapter

IMS

IMS application

ICAL call with
SENDRECV
subfunction

OTMA
descriptor

IMS
Connect

Send flow

Receive flow

EJB/MDB

IMS2 IMS1

Web service
provider
(such as
Microsoft

.NET)

IMS Enterprise
Suite

SOAP Gateway

Target IMS transaction
for synchronous
program switch

Target IMS transaction
for synchronous
program switch

Figure 87. Message flow of the synchronous callout function

492 Application Programming

Correlation tokens are not used for synchronous program switch requests.

Your application can make an ICAL call with the RECEIVE subfunction code to get
the complete response data for a previously incomplete ICAL call with the
SENDRECV subfunction code. However, your application cannot retrieve the
complete response data with a RECEIVE subfunction call after issuing a
subsequent call with the SENDRECV subfunction. Issuing a subsequent ICAL call
with the SENDRECV subfunction code clears the ICAL response buffer in the IMS
control region for the previous ICAL call.

The following high-level steps provide an overview of implementing and
deploying your synchronous callout application and function.
1. Create or modify an IMS application for the ICAL call.
2. Define the OTMA destination descriptor for one of the following callout request

approaches:
v Send the callout request to an external application viaIMS Enterprise

SuiteIMS TM Resource Adapter.
v Send the callout request to an external application viaIMS Enterprise Suite

SOAP Gateway.
v Send the callout request to a user-written IMS Connect client application.
v Send a synchronous program switch request to another IMS application.

The destination descriptor can be defined in the DFSYDTx member of the
IMS.PROCLIB data set, or with the CREATE OTMADESC command.

3. Restart IMS for the newly defined OTMA descriptor. This step is not required if
the descriptor was dynamically added with the CREATE OTMADESC
command.

4. Run the IMS application that was created or modified in step 1 to issue the
synchronous callout request.

The IMS application receives the response message from the synchronous callout
target. If the response message does not fit in the allocated response area, the
application can expand the available response data area and then issue an ICAL
call with the RECEIVE subfunction code to get the complete response.

Example COBOL program implementation of the synchronous
callout function

To issue the ICAL call in a COBOL program, use the CALL statement.
CALL ’AIBTDLI’ USING ICAL, AIB, CA-REQUEST, SCA-RESPONSE.

The following example demonstrates the required AIB field declaration for the
ICAL call in the COBOL program. A complete COBOL example (with part name
DFSSSCBL) is provided with the callout IVP sample in the SDFSSMPL sample
library.
01 AIB.

02 AIBRID PIC x(8) VALUE ’DFSAIB ’.
02 AIBRLEN PIC 9(9) USAGE BINARY.
02 AIBSFUNC PIC x(8) VALUE ’SENDRECV’.
02 AIBRSNM1 PIC x(8) VALUE ’OTMDEST1’.
02 AIBRSNM2 PIC x(8).
02 AIBRESV1 PIC x(8).
02 AIBOALEN PIC 9(9) USAGE BINARY VALUE 28.
02 AIBOAUSE PIC 9(9) USAGE BINARY VALUE 30.
02 AIBRSFLD PIC 9(9) USAGE BINARY VALUE 5000.
02 AIBRESV2 PIC x(8).

Chapter 28. Callout requests for services or data 493

02 AIBRETRN PIC 9(9) USAGE BINARY.
02 AIBREASN PIC 9(9) USAGE BINARY.
02 AIBERRXT PIC 9(9) USAGE BINARY.

...

The following example shows the CA-REQUEST and SCA-RESPONSE declarations
in the COBOL program.
* ICAL Request Area
01 CA-REQUEST.

02 CA-MESSAGE PIC X(45) VALUE SPACES.

* ICAL Response Area
01 SCA-RESPONSE.

02 SCA-MESSAGE PIC X(100) VALUE SPACES.

Related concepts:

OTMA destination descriptors (Communications and Connections)
Related tasks:

Modifying an IMS application for callout requests
“Issuing synchronous callout requests from a Java dependent region” on page 736
Related reference:

ICAL call (Application Programming APIs)

Examples of DL/I call functions (Application Programming APIs)

Callout programming models

Control data in synchronous callout requests
When the DL/I ICAL call is used for synchronous callout requests, IMS application
programs can specify the endpoint information or other routing specification for
the callout message in the control data area of the ICAL call during run time when
they issue the call.

IMS application programs can make a synchronous callout request by using the
ICAL DL/I call. The ICAL call sends a callout request to an IMS Connect client
application and receives a response. The routing specification of a callout message
is defined in the message’s application interface block (AIB) and an OTMA
destination descriptor. You can define up to 4095 destination descriptors in a
DFSYDTx member of the IMS PROCLIB data set. When there are thousands of
callout end points for the messages, using a limited number of OTMA destination
descriptor entries for routing specification creates a challenge. Additionally, there is
no easy way to include multiple Universally Unique Identifiers (UUID), SOAP
headers, security token, or even user-provided routing information in the callout
message.

To solve this problem, the ICAL call format accepts optional control data, which can
be the URL for a port, UUID, user token, security information, or any other
information. By using the control data field, IMS application programs can specify
the routing information or other control data at run time when they issue the ICAL
call.

The control data can consist of 1 to many control data items so that a number of
services or operations can be specified on the same synchronous callout call. Each
control data item starts with 4 bytes length field followed by a tag, data, and an
end tag.

494 Application Programming

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_otma_admin_006.htm#ims_otma_admin_006
http://www-01.ibm.com/support/knowledgecenter/SS9NWR_3.2.0/com.ibm.ims.soap32.doc/sgw_modifyimsapp.htm
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_icalcalltm.htm#ims_icalcalltm
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallfunctionsexmp.htm#ims_dlicallfunctionsexmp
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.etools.ims.tmra.doc/topics/cimscallout.htm

The ICAL control data can consist of one to many control data items so that a
number of services or operations can be specified on the same ICAL call. Each
control data item starts with a 4-byte length field followed by a tag, data, and the
end tag. Tags can be of any length. The start tag consists of a less than sign (<), the
tag name, and a greater than sign (>). The end tag consists of a less than sign (<), a
slash (/), the tag name that matches the start tag), and a greater than sign (>).

The format of a control data item in ICAL control data is as follows:
LLLL <tag1> data1 </tag1> { LLLL <tag2> data2 </tag2> ... }

An IBM-initiated control data item starts with DFS in the tag, such as <DFSCNVTR>.

The tag name and data contents are treated as binary data and passed "as is" to the
target client. The <, /, and > signs, and IBM-initiated control data tag names,
which begin with DFS, must be EBCDIC.

OTMA does the “well-form” checking for the control data to make sure that it
follows the supported format with the correct length. The total length of the
control data with control data items needs to be specified in the AIBOPLEN field
in the AIB. OTMA puts the control data in front of the application data and update
the OTMA prefix to indicate the number of segments of control data in the
application data section for a callout message. The OTMA resume tpipe protocol
command supports the callout with control data option.

The IMS Connect user message exits look for a flag in the IRM that indicates
whether the client supports control data. If a flag is set, an appropriate flag is set
in the state data section of the OTMA headers for the resume tpipe. Upon
receiving the message that contains control data from IMS, the user message exits
extract the control data from the application data section of the message and build
a segment similar to the callout correlation token segment. This is done for
messages other than IMS TM Resource Adapter messages for IMS Connect. The
resulting message from the user message exit will then be transmitted to the client
by IMS Connect.

IMS TM Resource Adapter can send to IMS Connect the OTMA header for the
resume tpipe with a flag to support control data. The output message that is sent
to IMS TM Resource Adapter contains the control data at the beginning of the
application data section of the message.

If you are using SOAP Gateway, you can use control data to specify the name of
the XML converter you would like to use to process the request. In the control
data, use the <DFSCNVTR> tags to specify an XML converter name.

The IMS Java dependent region (JDR) support provides an API for control data of
the ICAL call.

The control data is designed for a callout request for an outbound message. The
control data in a response message is not supported.

Implementing the asynchronous callout function
To issue an asynchronous callout request from your IMS application, issue the ISRT
ALTPCB call and specify the OTMA destination descriptor name or the DFSYPRX0
and DFSYDRU0 routing exit routines.

Chapter 28. Callout requests for services or data 495

|
|
|
|
|
|

|

|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

Any response to the callout request that is returned to IMS is handled as a new
incoming transaction. If there is a response, the requesting application or a
different IMS application must be coded to handle the response that is returned in
a separate transaction.

Unlike synchronous callout requests, asynchronous callout requests do not require
the IMS application program that issues the request to wait for a response in the
dependent region. After it issues an asynchronous callout request, the application
program can terminate and free the dependent region. Any response to the callout
request that is returned to IMS is handled as a new incoming transaction and IMS
schedules a new application program instance to process it.

If an asynchronous callout request generates a response, however, the benefit
gained by freeing dependent regions might be offset by the additional complexity
of managing the response. For asynchronous callout responses, your installation is
responsible for developing the method for correlating the response to the original
request. For synchronous callout requests, IMS manages that correlation.

The following high-level steps provide an overview of implementing and
deploying your asynchronous callout application and function.
1. Plan for the correlation of asynchronous callout responses.
2. Create or modify an IMS application to issue an ISRT ALTPCB call for

asynchronous callout requests.
3. Define the callout routing information. There are two options to define the

required information:
v Define an OTMA routing descriptor.
v Code the DFSYPRX0 and DFSYDRU0 exit routines.

You can use either the routing descriptor, the exit routines, or a combination of
both to specify how the callout request is routed.

4. Optional: Restart IMS for the newly defined OTMA descriptor. A restart is
required only if you create or modify an OTMA routing descriptor in the
DFSYDTx member of the IMS.PROCLIB data set. You do not need to restart
IMS if you use the CREATE OTMADESC or UPDATE OTMADESC commands.

5. Run the IMS application that issues the callout request. The IMS application is
usually triggered through an initiating client, such as a terminal, or an IMS
Connect or OTMA client.

Related concepts:

Asynchronous callout request (Communications and Connections)

OTMA destination descriptors (Communications and Connections)
Related reference:

OTMA User Data Formatting exit routine (DFSYDRU0) (Exit Routines)

OTMA Destination Resolution user exit (OTMAYPRX) (Exit Routines)

496 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_otma_asynchcallout.htm#ims_otma_asynchcallout
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_otma_admin_006.htm#ims_otma_admin_006
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/ims_dfsydru0.htm#ims_dfsydru0
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/ims_dfsyprx0.htm#ims_dfsyprx0

Part 4. Application programming for EXEC DLI

IMS provides support for writing applications to access IMS resources using EXEC
DLI.

© Copyright IBM Corp. 1974, 2015 497

498 Application Programming

Chapter 29. Writing your application programs for EXEC DLI

You can write programs in assembler language, COBOL, PL/I, C, and C++ that
execute EXEC DLI commands to access IMS.

Programming guidelines
Use the following guidelines to write efficient and error-free EXEC DL/I programs.

The number, type, and sequence of the DL/I requests your program issues affect
the efficiency of your program. A program that is poorly designed runs if it is
coded correctly. The suggestions that follow can help you develop the most
efficient design possible for your application program. Inefficiently designed
programs can adversely affect performance and are hard to change. Being aware of
how certain combinations of commands or calls affects performance helps you to
avoid these problems and design a more efficient program.

After you have a general sequence of calls mapped out for your program, use
these guidelines to improve the sequence. Usually an efficient sequence of requests
causes efficient internal DL/I processing.
v Use the simplest call. Qualify your requests to narrow the search for DL/I, but

do not use more qualification than required.
v Use the request or sequence of requests that gives DL/I the shortest path to the

segment you want.
v Use the fewest number of requests possible in your program. Each DL/I request

your program issues uses system time and resources. You may be able to
eliminate unnecessary calls by:
– Using path requests if you are replacing, retrieving, or inserting more than

one segment in the same path. If you are using more than one request to do
this, you are issuing unnecessary requests.

– Changing the sequence so that your program saves the segment in a separate
I/O area, and then gets it from that I/O area the second time it needs the
segment. If your program retrieves the same segment more than once during
program execution, you are issuing an unnecessary request.

– Anticipating and eliminating needless and nonproductive requests, such as
requests that result in GB, GE, and II status codes. For example, if you are
issuing GNs for a particular segment type and you know how many
occurrences of that segment type exist, do not issue the GN that results in a GE
status code. You can keep track of the number of occurrences your program
retrieves, and then continue with other processing when you know you have
retrieved all the occurrences of that segment type.

– Issuing an insert request with a qualification for each parent instead of
issuing Get requests for the parents to make sure that they exist. When you
are inserting segments, you cannot insert dependents unless the parents exist.
If DL/I returns a GE status code, at least one of the parents does not exist.

v Keep the main section of the program logic together. For example, branch to
conditional routines, such as error and print routines, in other parts of the
program, instead of having to branch around them to continue normal
processing.

© Copyright IBM Corp. 1974, 2015 499

v Use call sequences that make good use of the physical placement of the data.
Access segments in hierarchical sequence as much as possible. Avoid moving
backward in the hierarchy.

v Process database records in order of the key field of the root segments. (For
HDAM databases, this order depends on the randomizing routine that is used.
Check with your DBA for this information.)

v Try to avoid constructing the logic of the program and the structure of
commands or calls in a way that depends heavily on the database structure.
Depending on the current structure of the hierarchy reduces the program's
flexibility.

Coding a program in assembler language
The following sample assembler language program shows how the different parts
of a command-level program fit together, and how the EXEC DLI commands are
coded in a CICS online program.

Except for a few commands, this program applies to batch, BMP, and CICS
programs. Any differences are highlighted in the notes for the sample assembler
code. The numbering on the right of the sample code references these notes.
*ASM XOPTS(CICS,DLI)
* ▌1▐
R2 EQU 2
R3 EQU 3
R4 EQU 4
R11 EQU 11
R12 EQU 12
R13 EQU 13
DFHEISTG DSECT
SEGKEYA DS CL4
SEGKEYB DS CL4 ▌2▐
SEGKEYC DS CL4
SEGKEY1 DS CL4
SEGKEY2 DS CL4
CONKEYB DS CL8
SEGNAME DS CL8
SEGLEN DS H
PCBNUM DS H
AREAA DS CL80
AREAB DS CL80 ▌3▐
AREAC DS CL80
AREAG DS CL250
AREASTAT DS CL360
* COPY MAPSET
*

* INITIALIZATION
* HANDLE ERROR CONDITIONS IN ERROR ROUTINE ▌4▐
* HANDLE ABENDS (DLI ERROR STATUS CODES) IN ABEND ROUTINE
* RECEIVE INPUT MESSAGE

*
SAMPLE DFHEIENT CODEREG=(R2,R3),DATAREG=(R13,R12),EIBREG=R11 ▌5▐
*

EXEC CICS HANDLE CONDITION ERROR(ERRORS) ▌6▐
*

EXEC CICS HANDLE ABEND LABEL(ABENDS) ▌6▐
*

EXEC CICS RECEIVE MAP (’SAMPMAP’) MAPSET(’MAPSET’) ▌6▐
* ANALYZE INPUT MESSAGE AND PERFORM NON-DLI PROCESSING
*

* SCHEDULE PSB NAMED ’SAMPLE1’

500 Application Programming

*

EXEC DLI SCHD PSB(SAMPLE1) ▌7▐
BAL R4,TESTDIB CHECK STATUS

*

* RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDENTS

*

MVC SEGKEYA,=C’A300’ ▌8▐
EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA) X

SEGLENGTH(80) WHERE(KEYA=SEGKEYA) FIELDLENGTH(4)
BAL R4,TESTDIB CHECK STATUS

GNPLOOP EQU *
EXEC DLI GNP USING PCB(1) INTO(AREAG) SEGLENGTH(250)
CLC DIBSTAT,=C’GE’ LOOK FOR END ▌9▐
BE LOOPDONE DONE AT ’GE’
BAL R4,TESTDIB CHECK STATUS
B GNPLOOP

LOOPDONE EQU *
*

* INSERT NEW ROOT SEGMENT

*

MVC AREAA,=CL80’DATA FOR NEW SEGMENT INCLUDING KEY’
EXEC DLI ISRT USING PCB(1) SEGMENT(SEGA) FROM(AREAA) X

SEGLENGTH(80)
BAL R4,TESTDIB CHECK STATUS

*

* RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM

*

MVC SEGKEYA,=C’A200’
MVC SEGKEYB,=C’B240’
MVC SEGKEYC,=C’C241’
EXEC DLI GU USING PCB(1) X

SEGMENT(SEGA) WHERE(KEYA=SEGKEYA) X▌10▐
FIELDLENGTH(4) X
INTO(AREAA) X
SEGLENGTH(80) X
SEGMENT(SEGB) WHERE(KEYB=SEGKEYB) FIELDLENGTH(4) X
INTO(AREAB) X
SEGLENGTH(80) X
SEGMENT(SEGC) WHERE(KEYC=SEGKEYC) FIELDLENGTH(4) X
INTO(AREAC) X
SEGLENGTH(80)

BAL R4,TESTDIB
* UPDATE FIELDS IN THE 3 SEGMENTS

EXEC DLI REPL USING PCB(1) X
SEGMENT(SEGA) FROM(AREAA) SEGLENGTH(80) X
SEGMENT(SEGB) FROM(AREAB) SEGLENGTH(80) X
SEGMENT(SEGC) FROM(AREAC) SEGLENGTH(80)

BAL R4,TESTDIB CHECK STATUS
*

* INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT

*

MVC AREAC,=CL80’DATA FOR NEW SEGMENT INCLUDING KEY’
MVC CONKEYB,=C’A200B240’
EXEC DLI ISRT USING PCB(1) X

SEGMENT(SEGB) KEYS(CONKEYB) KEYLENGTH(8) X
SEGMENT(SEGC) FROM(AREAC) SEGLENGTH(80)

BAL R4,TESTDIB CHECK STATUS
*

Chapter 29. Writing your application programs for EXEC DLI 501

* RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY
* AND THEN DELETE IT AND ITS DEPENDENTS

*

MVC CONKEYB,=C’A200B230’
EXEC DLI GU USING PCB(1) X

SEGMENT(SEGB) X
KEYS(CONKEYB) KEYLENGTH(8) X
INTO(AREAB) SEGLENGTH(80)

BAL R4,TESTDIB CHECK STATUS
EXEC DLI DLET USING PCB(1) X

SEGMENT(SEGB) SEGLENGTH(80) FROM(AREAB)
BAL R4,TESTDIB CHECK STATUS

*

* RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY,
* OBJECT SEGMENT WITH WHERE OPTION USING A LITERAL,
* AND THEN SET PARENTAGE
*
* USE VARIABLES FOR PCB INDEX, SEGMENT NAME, AND SEGMENT LENGTH

*

MVC CONKEYB,=C’A200B230’
MVC SEGNAME,=CL8’SEGA’
MVC SEGLEN,=H’80’
MVC PCBNUM,=H’1’
EXEC DLI GU USING PCB(PCBNUM) X

SEGMENT((SEGNAME)) X
KEYS(CONKEYB) KEYLENGTH(8) SETPARENT X
SEGMENT(SEGC) INTO(AREAC) SEGLENGTH(SEGLEN) X
WHERE(KEYC=’C520’)

BAL R4,TESTDIB CHECK STATUS
*

* RETRIEVE DATABASE STATISTICS

*

EXEC DLI STAT USING PCB(1) INTO(AREASTAT) X
VSAM FORMATTED LENGTH(360)

BAL R4,TESTDIB CHECK STATUS
*

* RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS

*

MVC SEGKEY1,=C’A050’
MVC SEGKEY2,=C’A150’
EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA) X

SEGLENGTH(80) FIELDLENGTH(4,4,4,4) X
WHERE(KEYA > SEGKEY1 AND KEYA < SEGKEY2
KEYA > ’A275’ AND KEYA < ’A350’)

BAL R4,TESTDIB CHECK STATUS
*

* TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED

*

EXEC DLI TERM ▌11▐
*

* SEND OUTPUT MESSAGE

*

EXEC CICS SEND MAP(’SAMPMAP’) MAPSET(’MAPSET’) ▌6▐
EXEC CICS WAIT TERMINAL

*

502 Application Programming

* COMPLETE TRANSACTION AND RETURN TO CICS

*

EXEC CICS RETURN ▌12▐
*

* CHECK STATUS IN DIB

*
TESTDIB EQU *

CLC DIBSTAT,=C’ ’ IS STATUS BLANK ▌13▐
BER R4 YES - RETURN

* HANDLE DLI STATUS CODES REPRESENTING EXCEPTIONAL CONDITIONS
*

BR R4 RETURN
ERRORS EQU *
* HANDLE ERROR CONDITIONS
*
ABENDS EQU *
* HANDLE ABENDS INCLUDING DLI ERROR STATUS CODES
*

END

Notes for the sample assembler code:

▌1▐For a CICS online program containing EXEC DLI commands, you must
specify the DLI and CICS options. For a batch or BMP program containing
EXEC DLI, you must specify only the DLI option.
▌2▐For reentry, define each of the areas the program uses—I/O areas, key
feedback areas, and segment name areas in DFHEISTG.
▌3▐Define an I/O area for each segment you retrieve, add, or replace (in a
single command).
▌4▐For a batch or BMP program containing EXEC DLI, you must save registers
on entry and restore registers on exit according to z/OS register-saving
conventions.
▌5▐In a batch or BMP program, aDFHEIRET with an optional DFHEIENT saves
the registers on entry. Do not specify the EIBREG parameter in a batch
program.
▌6▐Do not code EXEC CICS commands in a batch or BMP program.
▌7▐In a CICS online program, use the SCHD PSB command to obtain a PSB for
the use of your program. Do not schedule a PSB in a batch or BMP program.
▌8▐This GU command retrieves the first occurrence of SEGA with a key of A300.
You do not have to provide the KEYLENGTH or SEGLENGTH options in an
assembler language program.
▌9▐This GNP command retrieves all dependents under segment SEGA. The GE
status code indicates that no more dependents exist.
▌10▐This GU command is an example of a path command. Use a separate I/O
area for each segment you retrieve.
▌11▐In a CICS online program, the TERM command terminates the PSB
scheduled earlier. You do not terminate the PSB in a batch or BMP program.
▌12▐For a batch or BMP program, code RCREG parameter instead of EXEC
CICS RETURN. The RCREG parameter identifies a register containing the
return code.
▌13▐After issuing each command, you should check the status code in the DIB.

Chapter 29. Writing your application programs for EXEC DLI 503

Coding a program in COBOL
The following sample COBOL program shows how the different parts of a
command-level program fit together, and how the EXEC DLI commands are coded
in a CICS online program.

Except for a few commands, this program applies to batch, BMP, and CICS
programs. Any differences are highlighted in the notes for the sample COBOL
code. The numbering on the right of the sample code references the notes.
CBL LIB,APOST,XOPTS(CICS,DLI) IDENTIFICATION DIVISION.

PROGRAM-ID. SAMPLE. ▌1▐
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

.* SOURCE-COMPUTER. IBM-370.

.* OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 SEGKEYA PIC X(4).
77 SEGKEYB PIC X(4). ▌2▐
77 SEGKEYC PIC X(4).
77 SEGKEY1 PIC X(4).
77 SEGKEY2 PIC X(4).
77 SEGKEY3 PIC X(4).
77 SEGKEY4 PIC X(4).
77 CONKEYB PIC X(8).
77 SEGNAME PIC X(8).
77 SEGLEN COMP PIC S9(4).
77 PCBNUM COMP PIC S9(4).
01 AREAA PIC X(80).

* DEFINE SEGMENT I/O AREA
01 AREAB PIC X(80).
01 AREAC PIC X(80). ▌3▐
01 AREAG PIC X(250).
01 AREASTAT PIC X(360).

* COPY MAPSET.
PROCEDURE DIVISION.

*
* ***
* INITIALIZATION
* HANDLE ERROR CONDITIONS IN ERROR ROUTINE
* HANDLE ABENDS (DLI ERROR STATUS CODES) IN ABEND ROUTINE
* RECEIVE INPUT MESSAGE
* ***
*

EXEC CICS HANDLE CONDITION ERROR(ERRORS) END-EXEC. ▌4▐
*

EXEC CICS HANDLE ABEND LABEL(ABENDS) END-EXEC. ▌4▐
*

EXEC CICS RECEIVE MAP (’SAMPMAP’) MAPSET(’MAPSET’) END-EXEC. ▌4▐
* ANALYZE INPUT MESSAGE AND PERFORM NON-DLI PROCESSING
*
* ***
* SCHEDULE PSB NAMED ’SAMPLE1’
* ***
*

EXEC DLI SCHD PSB(SAMPLE1) END-EXEC.
PERFORM TEST-DIB THRU OK. ▌5▐

*
* ***
* RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDENTS
* ***
*

MOVE ’A300’ TO SEGKEYA.
EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)

SEGLENGTH(80) WHERE(KEYA=SEGKEYA) ▌6▐
FIELDLENGTH(4)

504 Application Programming

END-EXEC.
PERFORM TEST-DIB THRU OK.

GNPLOOP.
EXEC DLI GNP USING PCB(1) INTO(AREAG) SEGLENGTH(250)
END-EXEC.
IF DIBSTAT EQUAL TO ’GE’ THEN GO TO LOOPDONE.
PERFORM TEST-DIB THRU OK.
GO TO GNPLOOP.

LOOPDONE.
*

* ***
* INSERT NEW ROOT SEGMENT
* ***
*

MOVE ’DATA FOR NEW SEGMENT INCLUDING KEY’ TO AREAA.
EXEC DLI ISRT USING PCB(1) SEGMENT(SEGA) FROM(AREAA)

SEGLENGTH(80) END-EXEC.
PERFORM TEST-DIB THRU OK.

*
* ***
* RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM
* ***
*

MOVE ’A200’ TO SEGKEYA.
MOVE ’B240’ TO SEGKEYB.
MOVE ’C241’ TO SEGKEYC.
EXEC DLI GU USING PCB(1)

SEGMENT(SEGA) WHERE(KEYA=SEGKEYA) FIELDLENGTH(4) ▌7▐
INTO(AREAA)
SEGLENGTH(80)

SEGMENT(SEGB) WHERE(KEYB=SEGKEYB) FIELDLENGTH(4)
INTO(AREAB)
SEGLENGTH(80)

SEGMENT(SEGC) WHERE(KEYC=SEGKEYC) FIELDLENGTH(4)
INTO(AREAC)
SEGLENGTH(80)

END-EXEC.
PERFORM TEST-DIB THRU OK.

* UPDATE FIELDS IN THE 3 SEGMENTS
EXEC DLI REPL USING PCB(1)

SEGMENT(SEGA) FROM(AREAA) SEGLENGTH(80)
SEGMENT(SEGB) FROM(AREAB) SEGLENGTH(80)
SEGMENT(SEGC) FROM(AREAC) SEGLENGTH(80)

END-EXEC.
PERFORM TEST-DIB THRU OK.

*
* ***
* INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT
* ***
*

MOVE ’DATA FOR NEW SEGMENT INCLUDING KEY’ TO AREAC.
MOVE ’A200B240’ TO CONKEYB.
EXEC DLI ISRT USING PCB(1)

SEGMENT(SEGB) KEYS(CONKEYB) KEYLENGTH(8)
SEGMENT(SEGC) FROM(AREAC) SEGLENGTH(80)

END-EXEC.
PERFORM TEST-DIB THRU OK.

*
* ***
* RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY
* AND THEN DELETE IT AND ITS DEPENDENTS
* ***
*

MOVE ’A200B230’ TO CONKEYB.
EXEC DLI GU USING PCB(1)

SEGMENT(SEGB)
KEYS(CONKEYB) KEYLENGTH(8)

Chapter 29. Writing your application programs for EXEC DLI 505

INTO(AREAB) SEGLENGTH(80)
END-EXEC.
PERFORM TEST-DIB THRU OK.
EXEC DLI DLET USING PCB(1)
SEGMENT(SEGB) SEGLENGTH(80) FROM(AREAB) END-EXEC.

PERFORM TEST-DIB THRU OK.
*

* ***
* RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY,
* OBJECT SEGMENT WITH WHERE OPTION,
* AND THEN SET PARENTAGE
*
* USE VARIABLES FOR PCB INDEX, SEGMENT NAME, AND SEGMENT LENGTH
* ***
*

MOVE ’A200B230’ TO CONKEYB.
MOVE ’C520’ TO SEGKEYC.
MOVE ’SEGA’ TO SEGNAME.
MOVE 80 TO SEGLEN.
MOVE 1 TO PCBNUM.
EXEC DLI GU USING PCB(PCBNUM)
SEGMENT((SEGNAME))

KEYS(CONKEYB) KEYLENGTH(8) SETPARENT
SEGMENT(SEGC) INTO(AREAC) SEGLENGTH(SEGLEN)

WHERE(KEYC=SEGKEYC) FIELDLENGTH(4) END-EXEC.
PERFORM TEST-DIB THRU OK.

*
* ***
* RETRIEVE DATABASE STATISTICS
* ***
*

EXEC DLI STAT USING PCB(1) INTO(AREASTAT)
VSAM FORMATTED LENGTH(360) END-EXEC.

PERFORM TEST-DIB THRU OK.
*
* ***
* RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS
* ***
*

MOVE ’A050’ TO SEGKEY1.
MOVE ’A150’ TO SEGKEY2.
MOVE ’A275’ TO SEGKEY3.
MOVE ’A350’ TO SEGKEY4.
EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)

SEGLENGTH(80) FIELDLENGTH(4,4,4,4)
WHERE(KEYA > SEGKEY1 AND KEYA < SEGKEY2 OR

KEYA > SEGKEY3 AND KEYA < SEGKEY4)
END-EXEC.
PERFORM TEST-DIB THRU OK.

*
* ***

* TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED
* ***
*

EXEC DLI TERM END-EXEC. ▌8▐
*
* ***
* ***
* SEND OUTPUT MESSAGE
* ***
*

EXEC CICS SEND MAP(’SAMPMAP’) MAPSET(’MAPSET’) END-EXEC.
EXEC CICS WAIT TERMINAL END-EXEC.

*
* ***
* COMPLETE TRANSACTION AND RETURN TO CICS
* ***

506 Application Programming

*
EXEC CICS RETURN END-EXEC.

*
* ***
* CHECK STATUS IN DIB
* ***
*
TEST-DIB.

IF DIBSTAT EQUAL TO ’ ’ THEN GO TO OK.
OK. ▌9▐
ERRORS.
* HANDLE ERROR CONDITIONS
ABENDS.
* HANDLE ABENDS INCLUDING DLI ERROR STATUS CODES

Notes for the sample COBOL code:

▌1▐For a CICS online program containing EXEC DLI commands, you must
specify the DLI and CICS options. For a batch or BMP program containing
EXEC DLI, you must specify only the DLI option.
▌2▐ Define each of the areas the program uses—I/O areas, key feedback areas,
and segment name areas—as 77- or 01-level working storage entries.
▌3▐Define an I/O area for each segment you retrieve, add, or replace (in a
single command).
▌4▐Do not code EXEC CICS commands in a batch or BMP program.
▌5▐For CICS online programs, you use a SCHD PSB command to obtain a PSB.
You do not schedule a PSB in a batch or BMP program.
▌6▐This GU command retrieves the first occurrence of SEGA with a key of A300.
KEYLENGTH and SEGLENGTH are optional for IBM COBOL for z/OS & VM
(and VS COBOL II). For COBOL V4 and OS/VS COBOL, KEYLENGTH and
SEGLENGTH are required.
▌7▐This GU command is an example of a path command. You must use a
separate I/O area for each segment you retrieve.
▌8▐For a CICS online program, the TERM command terminates the PSB
scheduled earlier. You do not terminate the PSB in a batch or BMP program.
▌9▐After issuing each command, you should check the status code in the DIB.

Coding a program in PL/I
The following sample PL/I program shows how the different parts of a
command-level program fit together, and how the EXEC DLI commands are coded
in a CICS online program.

Except for a few commands, this program applies to batch, BMP, and CICS
programs. Any differences are highlighted in the notes for the sample PL/I code.
The numbering on the right of the sample code references those notes.
*PROCESS INCLUDE,GN,XOPTS(CICS,DLI); ▌1▐
SAMPLE: PROCEDURE OPTIONS(MAIN);
DCL SEGKEYA CHAR (4);
DCL SEGKEYB CHAR (4); ▌2▐
DCL SEGKEYC CHAR (4);
DCL SEGKEY1 CHAR (4);
DCL SEGKEY2 CHAR (4);
DCL SEGKEY3 CHAR (4);
DCL SEGKEY4 CHAR (4);
DCL CONKEYB CHAR (8);
DCL SEGNAME CHAR (8);
DCL PCBNUM FIXED BIN (15);
DCL AREAA CHAR (80);

Chapter 29. Writing your application programs for EXEC DLI 507

/* DEFINE SEGMENT I/O AREA */
DCL AREAB CHAR (80);
DCL AREAC CHAR (80); ▌3▐
DCL AREAG CHAR (250);
DCL AREASTAT CHAR (360);

%INCLUDE MAPSET
/* */
/* */
/* ** */
/* INITIALIZATION */
/* HANDLE ERROR CONDITIONS IN ERROR ROUTINE */
/* HANDLE ABENDS (DLI ERROR STATUS CODES) IN ABEND PROGRAM */
/* RECEIVE INPUT MESSAGE */
/* ** */
/* */
EXEC CICS HANDLE CONDITION ERROR(ERRORS); ▌4▐
/* */
EXEC CICS HANDLE ABEND PROGRAM(’ABENDS’); ▌4▐
/* */
EXEC CICS RECEIVE MAP (’SAMPMAP’) MAPSET(’MAPSET’); ▌4▐
/* ANALYZE INPUT MESSAGE AND PERFORM NON-DLI PROCESSING */
/* */
/* ** */
/* SCHEDULE PSB NAMED ’SAMPLE1’ */
/* ** */
/* */
EXEC DLI SCHD PSB(SAMPLE1);
CALL TEST_DIB; ▌5▐

/* *** */
/* RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDENTS */
/* *** */
/* */
SEGKEYA = ’A300’;
EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)
WHERE(KEYA=SEGKEYA); ▌6▐
CALL TEST_DIB;

GNPLOOP:
EXEC DLI GNP USING PCB(1) INTO(AREAG); ▌7▐
IF DIBSTAT = ’GE’ THEN GO TO LOOPDONE;
CALL TEST_DIB;
GO TO GNPLOOP;

LOOPDONE:
/* */
/* ** */
/* INSERT NEW ROOT SEGMENT */
/* ** */
/* */
AREAA = ’DATA FOR NEW SEGMENT INCLUDING KEY’;
EXEC DLI ISRT USING PCB(1) SEGMENT(SEGA) FROM(AREAA);
CALL TEST_DIB;
/* */
/* *** */
/* RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM */
/* *** */
/* */
SEGKEYA = ’A200’;
SEGKEYB = ’B240’;
SEGKEYC = ’C241’;
EXEC DLI GU USING PCB(1)

SEGMENT(SEGA) WHERE(KEYA=SEGKEYA) ▌8▐
INTO(AREAA)

SEGMENT(SEGB) WHERE(KEYB=SEGKEYB)
INTO(AREAB)

SEGMENT(SEGC) WHERE(KEYC=SEGKEYC)
INTO(AREAC);

CALL TEST_DIB;

508 Application Programming

/* UPDATE FIELDS IN THE 3 SEGMENTS */
EXEC DLI REPL USING PCB(1)
SEGMENT(SEGA) FROM(AREAA)
SEGMENT(SEGB) FROM(AREAB)
SEGMENT(SEGC) FROM(AREAC);

CALL TEST_DIB;
/* */
/* *** */
/* INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT */
/* *** */
/* */
AREAC = ’DATA FOR NEW SEGMENT INCLUDING KEY’;
CONKEYB = ’A200B240’;
EXEC DLI ISRT USING PCB(1)
SEGMENT(SEGB) KEYS(CONKEYB)
SEGMENT(SEGC) FROM(AREAC);

CALL TEST_DIB;
/* */
/* ** */
/* RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY */
/* AND THEN DELETE IT AND ITS DEPENDENTS */
/* ** */
/* */
CONKEYB = ’A200B230’;
EXEC DLI GU USING PCB(1)
SEGMENT(SEGB)

KEYS(CONKEYB)
INTO(AREAB);

CALL TEST_DIB;
EXEC DLI DLET USING PCB(1)
SEGMENT(SEGB) FROM(AREAB);

CALL TEST_DIB;
/* */

/* *** */
/* RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY, */
/* OBJECT SEGMENT WITH WHERE OPTION */
/* AND THEN SET PARENTAGE */
/* */
/* USE VARIABLES FOR PCB INDEX, SEGMENT NAME */
/* *** */
/* */
CONKEYB = ’A200B230’;
SEGNAME = ’SEGA’;
SEGKEYC = ’C520’;
PCBNUM = 1;
EXEC DLI GU USING PCB(PCBNUM)
SEGMENT((SEGNAME))

KEYS(CONKEYB) SETPARENT
SEGMENT(SEGC) INTO(AREAC)

WHERE(KEYC=SEGKEYC);
CALL TEST_DIB;
/* */
/* *** */
/* RETRIEVE DATABASE STATISTICS */
/* *** */
/* */
EXEC DLI STAT USING PCB(1) INTO(AREASTAT) VSAM FORMATTED;
CALL TEST_DIB;
/* */
/* ** */
/* RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS */
/* ** */
/* */
SEGKEY1 = ’A050’;
SEGKEY2 = ’A150’;
SEGKEY3 = ’A275’;
SEGKEY4 = ’A350’;

Chapter 29. Writing your application programs for EXEC DLI 509

EXEC DLI GU USING PCB(1) SEGMENT(SEGA) INTO(AREAA)
WHERE(KEYA &Ar; SEGKEY1 AND KEYA &Al; SEGKEY2 OR

KEYA &Ar; SEGKEY3 AND KEYA &Al; SEGKEY4);
CALL TEST_DIB;
/* */
/* *** */
/* TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED */
/* *** */
/* */

EXEC DLI TERM;
▌9▐

/* */
/* *** */
/* SEND OUTPUT MESSAGE */
/* *** */
/* */
EXEC CICS SEND MAP(’SAMPMAP’) MAPSET(’MAPSET’); ▌4▐
EXEC CICS WAIT TERMINAL;
/* */
/* *** */
/* COMPLETE TRANSACTION AND RETURN TO CICS */
/* *** */
/* */
EXEC CICS RETURN; ▌4▐
/* */
/* ** */
/* CHECK STATUS IN DIB */
/* ** */
/* */

TEST_DIB: PROCEDURE;
IF DIBSTAT = ’ ’ RETURN; ▌10▐

/* HANDLE DLI STATUS CODES REPRESENTING EXCEPTIONAL CONDITIONS */
/* */

OK:
END TEST_DB;
ERRORS:

/* HANDLE ERROR CONDITIONS */
/* */

END SAMPLE;

Notes to the sample PL/I code:

▌1▐For a CICS online program containing EXEC DLI commands, you must
specify the DLI and CICS options. For a batch or BMP program containing
EXEC DLI, you must specify only the DLI option.
▌2▐Define, in automatic storage, each of the areas; I/O areas, key feedback
areas, and segment name areas.
▌3▐Define an I/O area for each segment you retrieve, add, or replace in a single
command.
▌4▐Do not code EXEC CICS commands in a batch or BMP program.
▌5▐For CICS online programs, you use a SCHD PSB command to obtain a PSB.
You do not schedule a PSB in a batch or BMP program.
▌6▐This GU command retrieves the first occurrence of SEGA with a key of A300.
Notice that you do not need to include the KEYLENGTH and SEGLENGTH
options.
▌7▐This GNP command retrieves all dependents under segment SEGA. TheGE
status code indicates that no more dependents exist.
▌8▐This GU command is an example of a path command. You must use a
separate I/O area for each segment you retrieve.

510 Application Programming

▌9▐For a CICS online program, the TERM command terminates the PSB
scheduled earlier. You do not terminate the PSB in a batch or BMP program.
▌10▐After issuing each command, you should check the status code in the DIB.

Coding a program in C
the following sample C program shows how the different parts of a
command-level program fit together, and how the EXEC DLI commands are coded
in a CICS online program.

Except for a few commands, this program applies to batch, BMP, and CICS
programs. Any differences are highlighted in the notes for the sample C code. The
numbering on the right of the sample code references those notes.
#include < string.h> ▌1▐
#include < stdio.h > ▌2▐

char DIVIDER[120] = "---\
--";
char BLANK[120] = " \

\0";
char BLAN2[110] = " \

\0";
char SCHED[120] = "Schedule PSB(PC3COCHD) " ▌3▐
char GN1[120] = "GN using PCB(2) Segment(SE2ORDER) check dibstat \

is blank";
char GNP1[120] = "GNP using PCB(2) check dibstat = GK or blank \

(or GE for last GNP)";
char GU1[120] = "GU using PCB(2) Segment(SE2ORDER) where(\

FE2OGREF=000000’’) check dibstat blank";
char GU2[120] = "GU using PCB(2) Segment(SE2ORDER) where(\

FE2OGREF=000999’’) check dibstat blank";
char REP1[120] = "REPLACE using PCB(2) Segment(SE2ORDER) check \

dibstat is blank";
char DEL1[120] = "DELETE using PCB(2) Segment(SE2ORDER) check \

dibstat is blank";
char INS1[120] = "INSERT using PCB(2) Segment(SE2ORDER) where\

(FE2OGREF=’’000999’’) check dibstat is blank";
char TERM[120] = "TERM - check dibstat is blank";
char STAT[120] = "STAT USING PCB(2) VSAM FORMATTED";
char DATAB[6] = "000999";
char DATAC[114] = " REGRUN TEST INSERT NO1.";
char START[120] = "PROGXIV STARTING";
char OKMSG[120] = "PROGXIV COMPLETE";
int TLINE = 120;
int L11 = 11;
int L360 = 11;
struct {

char NEWSEGB[6];
char NEWSEGC[54];

} NEWSEG;
char OUTLINE[120]; ▌4▐
struct {

char OUTLINA[9];
char OUTLINB[111];

} OUTLIN2;
struct {

char OUTLINX[9];
char OUTLINY[6];
char OUTLINZ[105];

} OUTLIN3;
char GUIOA[60];
char GNIOA[60];
struct {

char ISRT1[6];
char ISRT2[54];

Chapter 29. Writing your application programs for EXEC DLI 511

} ISRTIOA;
struct {

char REPLIO1[6];
char REPLIO2[54];

} REPLIOA;
struct {

char DLET1[6];
char DLET2[54];

} DLETIOA;
struct {

char STATA1[120];
char STATA2[120];
char STATA3[120];

} STATAREA;
struct {

char DHPART[2];
char RETCODE[2]

} DHABCODE;

main()
{

EXEC CICS ADDRESS EIB(dfheiptr); ▌5▐
strcpy(OUTLINE,DIVIDER);
SENDLINE();
strcpy(OUTLINE,START);
SENDLINE();

/* */
/* SCHEDULE PSB */
/* */

strcpy(OUTLINE,SCHED);
SENDLINE();
EXEC DLI SCHEDULE PSB(PC3COCHD); ▌6▐
SENDSTAT();
TESTDIB();

/* */
/* ISSUE GU REQUEST */
/* */

strcpy(OUTLINE,GU1);
SENDLINE();
EXEC DLI GET UNIQUE USING PCB(2) ▌7▐

SEGMENT(SE2ORDER)
WHERE(FE2OGREF>="000000")
INTO(&GUIOA) SEGLENGTH(60);

strcpy(OUTLIN2.OUTLINA,"SE2ORDER=");
strcpy(OUTLIN2.OUTLINB,GUIOA);
SENDLIN2();
SENDSTAT();
TESTDIB();

/* */
/* ISSUE GNP REQUEST */
/* */

do {
strcpy(OUTLINE,GNP1);
SENDLINE();
EXEC DLI GET NEXT IN PARENT USING PCB(2) ▌8▐

INTO(&GNIOA) SEGLENGTH(60);
strcpy(OUTLIN2.OUTLINA,"SEGMENT=");
strcpy(OUTLIN2.OUTLINB,GNIOA);
SENDLIN2();
SENDSTAT();
if (strncmp(dibptr->dibstat,"GE",2) != 0) ▌9▐

TESTDIB();
} while (strncmp(dibptr->dibstat,"GE",2) != 0);
/* */
/* ISSUE GN REQUEST */
/* */

strcpy(OUTLINE,GN1);

512 Application Programming

SENDLINE();
EXEC DLI GET NEXT USING PCB(2)

SEGMENT(SE2ORDER) ▌10▐
INTO(&GNIOA) SEGLENGTH(60);

strcpy(OUTLIN2.OUTLINA,"SE2ORDER=");
strcpy(OUTLIN2.OUTLINB,GNIOA);
SENDLIN2();
SENDSTAT();
TESTDIB();

/* */
/* INSERT SEGMENT */
/* */

strcpy(OUTLINE,INS1);
SENDLINE();
strcpy(NEWSEG.NEWSEGB,DATAB); ▌11▐
strcpy(NEWSEG.NEWSEGC,DATAC);
strcpy(ISRTIOA.ISRT1,NEWSEG.NEWSEGB);
strcpy(ISRTIOA.ISRT2,NEWSEG.NEWSEGC);
strcpy(OUTLIN3.OUTLINX,"ISRT SEG=");
strcpy(OUTLIN3.OUTLINY,ISRTIOA.ISRT1);
strcpy(OUTLIN3.OUTLINZ,ISRTIOA.ISRT2);
SENDLIN3();
EXEC DLI ISRT USING PCB(2)

SEGMENT(SE2ORDER)
FROM(&ISRTIOA) SEGLENGTH(60);

SENDSTAT();
if (strncmp(dibptr->dibstat,"II",2) == 0)

strncpy(dibptr->dibstat," ",2);
TESTDIB();

/* */
/* ISSUE GN REQUEST */
/* */

strcpy(OUTLINE,GN1);
SENDLINE();
EXEC DLI GET NEXT USING PCB(2) ▌12▐

SEGMENT(SE2ORDER)
INTO(&GNIOA) SEGLENGTH(60);

strcpy(OUTLIN2.OUTLINA,"SE2ORDER=");
strcpy(OUTLIN2.OUTLINB,GNIOA);
SENDLIN2();
SENDSTAT();
TESTDIB();

/* */
/* GET INSERTED SEGMENT TO BE REPLACED */
/* */

strcpy(OUTLINE,GU2);
SENDLINE();
EXEC DLI GET UNIQUE USING PCB(2) ▌13▐

SEGMENT(SE2ORDER)
WHERE(FE2OGREF="000999")
INTO(&ISRTIOA) SEGLENGTH(60);

strcpy(OUTLIN3.OUTLINX,"ISRT SEG=");
strcpy(OUTLIN3.OUTLINY,ISRTIOA.ISRT1);
strcpy(OUTLIN3.OUTLINZ,ISRTIOA.ISRT2);
SENDLIN3();
SENDSTAT();
TESTDIB();

/* */
/* REPLACE SEGMENT */
/* */

strcpy(OUTLINE,REP1);
SENDLINE();
strcpy(REPLIOA.REPLIO1,DATAB); ▌14▐
strcpy(REPLIOA.REPLIO2,"REGRUN REPLACED SEGMENT NO1.");
strcpy(OUTLIN3.OUTLINX,"REPL SEG=");
strcpy(OUTLIN3.OUTLINY,REPLIOA.REPLIO1);
strcpy(OUTLIN3.OUTLINZ,REPLIOA.REPLIO2);

Chapter 29. Writing your application programs for EXEC DLI 513

SENDLIN3();
EXEC DLI REPLACE USING PCB(2)

SEGMENT(SE2ORDER)
FROM(&REPLIOA) SEGLENGTH(60);

SENDSTAT();
TESTDIB();

/* */
/* ISSUE GN REQUEST */
/* */

strcpy(OUTLINE,GN1);
SENDLINE();
EXEC DLI GET NEXT USING PCB(2) ▌15▐

SEGMENT(SE2ORDER)
INTO(&GNIOA) SEGLENGTH(60);

strcpy(OUTLIN2.OUTLINA,"SE2ORDER=");
strcpy(OUTLIN2.OUTLINB,GNIOA);
SENDLIN2();
SENDSTAT();
TESTDIB();

/* */
/* GET REPLACED SEGMENT */
/* */

strcpy(OUTLINE,GU2);
SENDLINE();
EXEC DLI GET UNIQUE USING PCB(2) ▌16▐

SEGMENT(SE2ORDER)
WHERE(FE2OGREF="000999")
INTO(&REPLIOA) SEGLENGTH(60);

strcpy(OUTLIN3.OUTLINX,"REPL SEG=");
strcpy(OUTLIN3.OUTLINY,REPLIOA.REPLIO1);
strcpy(OUTLIN3.OUTLINZ,REPLIOA.REPLIO2);
SENDLIN3();
SENDSTAT();
TESTDIB();

/* */
/* ISSUE DELETE REQUEST */
/* */

strcpy(OUTLINE,DEL1);
SENDLINE();
strcpy(DLETIOA.DLET1,REPLIOA.REPLIO1); ▌17▐
strcpy(DLETIOA.DLET2,REPLIOA.REPLIO2);
strcpy(OUTLIN3.OUTLINX,"DLET SEG=");
strcpy(OUTLIN3.OUTLINY,DLETIOA.DLET1);
strcpy(OUTLIN3.OUTLINZ,DLETIOA.DLET2);
SENDLIN3();
EXEC DLI DELETE USING PCB(2)

SEGMENT(SE2ORDER)
FROM(&DLETIOA) SEGLENGTH(60);

SENDSTAT();
TESTDIB();

/* */
/* ISSUE STAT REQUEST */
/* */

strcpy(OUTLINE,STAT);
SENDLINE();
EXEC DLI STAT USING PCB(2) ▌18▐

VSAM FORMATTED
INTO(&STATAREA);

SENDSTT2();
TESTDIB();

/* */
/* ISSUE TERM REQUEST */
/* */

strcpy(OUTLINE,TERM);
SENDLINE();
EXEC DLI TERM; ▌19▐
SENDSTAT();

514 Application Programming

TESTDIB();
strcpy(OUTLINE,DIVIDER);
SENDLINE();
SENDOK();

/* */
/* RETURN TO CICS */
/* */

EXEC CICS RETURN;
}

/* */
/* */
/* */

SENDLINE()
{

EXEC CICS SEND FROM(OUTLINE) LENGTH(120); ▌20▐
EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OUTLINE) LENGTH(TLINE);
strcpy(OUTLINE,BLANK);
return;

}

SENDLIN2()
{

EXEC CICS SEND FROM(OUTLIN2) LENGTH(120);
EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OUTLIN2) LENGTH(TLINE);
strcpy(OUTLIN2.OUTLINA,BLANK,9);
strcpy(OUTLIN2.OUTLINB,BLANK,111);
return;

}

SENDLIN3()
{

EXEC CICS SEND FROM(OUTLIN3) LENGTH(120);
EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OUTLIN3) LENGTH(TLINE);
strcpy(OUTLIN3.OUTLINX,BLANK,9);
strcpy(OUTLIN3.OUTLINY,BLANK,6);
strcpy(OUTLIN3.OUTLINZ,BLANK,105);
return;

}

SENDSTAT()
{

strncpy(OUTLIN2.OUTLINA,BLANK,9);
strncpy(OUTLIN2.OUTLINB,BLAN2,110);
strcpy(OUTLIN2.OUTLINA," DIBSTAT=");
strcpy(OUTLIN2.OUTLINB,dibptr->dibstat);
EXEC CICS SEND FROM(OUTLIN2) LENGTH(11);
EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OUTLIN2) LENGTH(L11);
strcpy(OUTLINE,DIVIDER);
SENDLINE();
return;

}

SENDSTT2()
{

strncpy(OUTLIN2.OUTLINA,BLANK,9);
strncpy(OUTLIN2.OUTLINB,BLAN2,110);
strcpy(OUTLIN2.OUTLINA," DIBSTAT=");
strcpy(OUTLIN2.OUTLINB,dibptr->dibstat);
EXEC CICS SEND FROM(STATAREA) LENGTH(360);
EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(STATAREA)

LENGTH(L360);
return;

}

SENDOK()
{

EXEC CICS SEND FROM(OKMSG) LENGTH(120);

Chapter 29. Writing your application programs for EXEC DLI 515

EXEC CICS WRITEQ TD QUEUE("PRIM") FROM(OKMSG) LENGTH(TLINE);
return;

}

TESTDIB() ▌21▐
{

if (strncmp(dibptr->dibstat," ",2) == 0)
return;

else if (strncmp(dibptr->dibstat,"GK",2) == 0)
return;

else if (strncmp(dibptr->dibstat,"GB",2) == 0)
return;

else if (strncmp(dibptr->dibstat,"GE",2) == 0)
return;

else
{

EXEC CICS ABEND ABCODE("PETE"); ▌22▐
EXEC CICS RETURN;

}
return;

}

Notes for the sample C code:

▌1▐You must include a standard header file string.h to gain access to string
manipulation facilities.
▌2▐You must include standard header file stdio.h to access the standard I/O
library.
▌3▐Define DL/I messages.
▌4▐Define the I/O areas.
▌5▐Program start.
▌6▐Define PSB PC3COCHD.
▌7▐Issue the first command. Retrieves the first occurrence of segment
SE2ORDER and puts it into array OUTLIN2.
▌8▐Issue the GNP command to get the next segment and put it into array
OUTLIN2.
▌9▐GE status codes indicate no more segments to get.
▌10▐Get next segment SE2ORDER and put it into the array OUTLIN2.
▌11▐Insert segment into array OUTLIN3.
▌12▐Issue GN to retrieve next segment and put it into array OUTLIN2.
▌13▐Get next segment that will be replaced and put it into OUTLIN3.
▌14▐Replace the segment and put it into array OUTLIN3.
▌15▐Get next segment and put it into array OUTLIN2.
▌16▐Get the replaced segment and put it into array OUTLIN3.
▌17▐Issue DELETE command after putting content of segment into array
OUTLIN3.
▌18▐Issue STAT REQUEST command.
▌19▐Issue TERM command.
▌20▐Output processing.
▌21▐Check return code.
▌22▐Do not code EXEC CICS commands in a batch or BMP program.

516 Application Programming

Preparing your EXEC DLI program for execution
You must translate, compile, and bind your EXEC DLI program before it can be
executed.

You can use CICS-supplied procedures to translate, compile, and bind your
program. The procedure you use depends on the type of program (batch, BMP, or
CICS online) and the language it is written in (COBOL, PL/I, or assembler
language).

The steps for preparing your program for execution are as follows:
1. Run the CICS command language translator to translate the EXEC DLI and

EXEC CICS commands. COBOL, PL/I, and assembler language programs have
separate translators.

2. Compile your program.
3. Bind:
v An online program with the appropriate CICS interface module
v A batch or BMP program with the IMS interface module.

Translator, compiler, and binder options required for EXEC
DLI

To execute your EXEC DLI program, you must set the required translator, compile,
and binder options.

Translator options required for EXEC DLI

Even when you use the CICS-supplied procedures for preparing your program,
you must supply certain translator options.

For a CICS online program containing EXEC DLI commands, you must specify the
DLI and CICS options. For a batch or BMP program containing EXEC DLI
commands, you must specify the DLI option.

You can also specify the options on the EXEC job control statement that invokes
the translator; if you use both methods, the CBL and *PROCESS statement
overrides those in the EXEC statement. For more information on the translator
options, see CICS Transaction Server for z/OS CICS Application Programming Guide.

You must ensure that the translator options you use in a COBOL program do not
conflict with the COBOL compiler options.

Compiler options required for EXEC DLI

To compile your batch COBOL program, you may have to use different compiler
options, depending on which COBOL compiler was chosen. For information on
which compiler options should be used for a CICS program, see CICS Transaction
Server for z/OS CICS Application Programming Guide.

Binder options required for EXEC DLI

If the compiler being used supports it, you can link a program written with EXEC
commands as AMODE(31) RMODE(ANY).

Chapter 29. Writing your application programs for EXEC DLI 517

518 Application Programming

Chapter 30. Defining application program elements

Define application program elements by using the EXEC DLI commands with the
application interface block (AIB) and DL/I interface block (DIB), and by defining
feedback and I/O areas.

Specifying an application interface block (AIB)
EXEC DLI commands can use the AIB interface.

For example, using the AIB interface, the format for the GU command would be
EXEC DLI GU AIB(aib), instead of EXEC DLI GU USING PCB(n) using the PCB format.

With IBM CICS Transaction Server for z/OS, the EXEC DLI commands are
supported in the AIB format (as well as the PCB format). The AIB-only commands
ICMD, RCMD, and GMSG are supported by using the EXEC DLI interface.

The CICS EDF (Execution Diagnostic Facility) debugging transaction supports AIB
EXEC DLI requests, just as it handles PCB type requests.

AIB mask

The AIB mask must be supplied by the application and referenced in the EXEC call
instead of the PCB number (for example, EXEC DLI GU AIB(aib)).

The DIBSTAT field is set with a valid STATUS code when AIBRETRN =
X'00000000' or X'00000900'. Applications should test AIBRETRN for any other
values and respond accordingly.

CICS restrictions with AIB support

Restrictions due to function shipping include:
v The AIBLEN field must be between 128 and 256 bytes. 128 bytes is

recommended.
v LIST=NO must not be specified on any PCBs in the PSB.
Related reference:
Chapter 31, “EXEC DLI commands for an application program,” on page 525

Specifying the DL/I interface block (DIB)
Each time your program executes a DL/I command, DL/I returns a status code
and other information to your program through the DL/I interface block (DIB),
which is a subset of IMS PCB. Your program should check the status code to make
sure the command executed successfully.

Each program's working storage contains its own DIB. The contents of the DIB
reflect the status of the last DL/I command executed in that program. If the
information in your program's DIB is required by another program used by your
transaction, you must pass the information to that program.

To access fields in the DIB, use labels that are automatically generated in your
program by the translator.

© Copyright IBM Corp. 1974, 2015 519

Restriction: These labels are reserved; you must not redefine them.

In your COBOL, PL/I, assembler language, and C programs, some variable names
are mandatory.

For a COBOL program:
DIBVER PICTURE X(2)
DIBSTAT PICTURE X(2)
DIBSEGM PICTURE X(8)
DIBSEGLV PICTURE X(2)
DIBKFBL PICTURE S9(4) COMPUTATIONAL
DIBDBDNM PICTURE X(8)
DIBDBORG PICTURE X(8)

DIBVER CHAR(2)
DIBSTAT CHAR(2)
DIBSEGM CHAR(8)
DIBSEGLV CHAR(2)
DIBKFBL FIXED BINARY (15,0)
DIBDBDNM CHAR(8)
DIBDBORG CHAR(8)

For an assembler language program:
DIBVER CL2
DIBSTAT CL2
DIBSEGM CL8
DIBSEGLV CL2
DIBKFBL H
DIBDBDNM CL8
DIBDBORG CL8

For a C program:
unsigned char dibver {2} ;
unsigned char dibstat {2} ;
unsigned char dibsegm {8} ;
unsigned char dibfic01 ;
unsigned char dibfic02 ;
unsigned char dibseglv {2} ;
signed short int dibkfbl ;
unsigned char dibdbdnm {8} ;
unsigned char dibdborg {8} ;
unsigned char dibfic03 {6} ;

The following notes explain the contents of each variable name. The name in
parenthesis is the label used to access the contents.
1. Translator Version (DIBVER)

This is the version of the DIB format your program is using. (DIBVER is used
for documentation and problem determination.)

2. Status Codes (DIBSTAT)

DL/I places a 2-character status code in this field after executing each DL/I
command. This code describes the results of the command.
After processing a DL/I command, DL/I returns control to your program at
the next sequential instruction following the command. The first thing your
program should do after each command is to test the status code field and take
appropriate action. If the command was completely successful, this field
contains blanks.
The status codes that can be returned to this field (they are the only status
codes returned to your program) are:

�� (Blanks) The command was completely successful.

520 Application Programming

BA For GU, GN, GNP, DLET, REPL, and ISRT commands. Data was unavailable.

BC For DLET, REPL, and ISRT commands. A deadlock was detected.

FH For GU, GN, GNP, DLET, REPL, ISRT, POS, CHKP, and SYMCHKP commands. The
DEDB was inaccessible.

FW For GU, GN, GNP, DLET, REPL, ISRT, and POS commands. More buffer space
is required than normally allowed.

GA For unqualified GN and GNP commands. DL/I returned a segment, but
the segment is at a higher level in the hierarchy than the last segment
that was returned.

GB For GN commands. DL/I reached the end of the database trying to
satisfy your GN command and did not return a segment to your
program's I/O area.

GD For ISRT commands. The program issued an ISRT command that did
not have SEGMENT options for all levels above that of the segment
being inserted.

GE For GU, GN, GNP, ISRT, and STAT commands. DL/I was unable to find the
segment you requested, or one or more of the parents of the segment
you are trying to insert.

GG For Get commands. DL/I returns a GG status code to a program with a
processing option of GOT or GON when the segment that the program
is trying to retrieve contains an invalid pointer.

GK For unqualified GN and GNP commands. DL/I returned a segment that
satisfies an unqualified GN or GNP request, but the segment is of a
different segment type (but at the same level) than the last segment
returned.

II For ISRT commands. The segment you are trying to insert already exists
in the database. This code can also be returned if you have not
established a path for the segment before trying to insert it. The
segment you are trying to insert might match a segment with the same
key in another hierarchy or database record.

LB For load programs only after issuing a LOAD command. The segment
you are trying to load already exists in the database. DL/I returns this
status code only for segments with key fields.

NI For ISRT and REPL commands. The segment you are trying to insert or
replace requires a duplicate entry to be inserted in a secondary index
that does not allow duplicate entries. This status code is returned for
batch programs that write log records to direct access storage. If a CICS
program that does not log to disk encounters this condition, the
program (transaction) is abnormally terminated.

TG For TERM commands. The program tried to terminate a PSB when one
was not scheduled.

The listed status codes (DIBSTAT) indicate exceptional conditions, and are the
only status codes returned to your program. All other status codes indicate
error conditions and cause your transaction or batch program to abnormally
terminate. If you want to pass control to an error routine from your CICS
program, you can use the CICS HANDLE ABEND command; the last 2 bytes of the
abend code are the IMS status code that caused the abnormal termination. For

Chapter 30. Defining application program elements 521

more information on the HANDLE ABEND command, see the application
programming reference manual for your version of CICS. Batch BMP programs
abend with abend 1041.

3. Segment Name (DIBSEGM)

This is the name of the lowest-level segment successfully accessed. When a
retrieval is successful, this field contains the name of the retrieved segment. If
the retrieval is unsuccessful, this field contains the last segment, along the path
to the requested segment, that satisfies the command.
After issuing an XRST command, this field is either set to blanks (indicating a
successful normal start), or a checkpoint ID (indicating the checkpoint ID from
which the program was restarted).
You should test this field after issuing any of the following commands:
v GN
v GNP
v GU
v ISRT
v LOAD
v RETRIEVE
v XRST

4. Segment Level Number (DIBSEGLV)

This is the hierarchic level of the lowest-level segment retrieved. When IMS DB
retrieves the segment you have requested, IMS DB places, in character format,
the level number of that segment in this field. If you are issuing a path
command, IMS DB places the number of the lowest-level segment retrieved. If
IMS DB is unable to find the segment you have requested, it gives the level
number of the last segment it encountered that satisfied your command. This is
the lowest segment on the last path that IMS DB encountered while searching
for the segment you requested.
You should test this field after issuing any of the listed commands:
v GN
v GNP
v GU
v ISRT
v LOAD
v RETRIEVE

5. Key Feedback Length (DIBKFBL)

This is a halfword field that contains the length of the concatenated key when
you use the KEYFEEDBACK option with get commands. If your key feedback
area is not long enough to contain the concatenated key, the key is truncated,
and this area indicates the actual length of the full concatenated key.

6. Database Description Name (DIBDBDNM)

This is the fullword field that contains the name of the DBD. The DBD is the
DL/I control block that contains all information used to describe a database.
The DIBDBDNM field is returned only on a QUERY command.

7. Database Organization (DIBDBORG)

This is the fullword field that names the type of database organization (HDAM,
HIDAM, HISAM, HSAM, GSAM, SHSAM, INDEX, or DEDB) padded to the
right with blanks. The DIBDBORG field is returned only on a QUERY command.

522 Application Programming

Defining a key feedback area
To retrieve the concatenated key of a segment, you must define an area into which
the key is placed.

The concatenated key returned is that of the lowest-level segment retrieved. (The
segment retrieved is indicated in the DIB by the DIBSEGM and DIBSEGLV fields.)

Specify the name of the area using the KEYFEEDBACK option on a GET
command.

A concatenated key is made up of the key of a segment, plus the keys for all of its
parents. For example, say you requested the concatenated key of the ILLNESS
segment for January 2, 1988, for patient number 05142. 0514219880102 would be
returned to your key feedback field. This number includes the key field of the
ILLNESS segment, ILLDATE, concatenated to the key field of the PATIENT
segment, PATNO.

If you define an area that is not long enough to contain the entire concatenated
key, the key is truncated.

Defining I/O areas
Use I/O areas to pass segments back and forth between your program and the
database.

The contents of an I/O area depends on the kind of command you are issuing:
v When you retrieve a segment, DL/I places the segment you requested in the

I/O area.
v When you add a new segment, you build the new segment in the I/O area

before issuing an ISRT command.
v Before you modify a segment, you first retrieve the segment into the I/O area

then issue the DLET or REPL command.

Restriction: The I/O area must be long enough to contain the longest segment you
retrieve from or add to the database. (Otherwise, you might experience storage
overlap.) If you are retrieving, adding, or replacing multiple segments in one
command, you must define an I/O area for each segment.

As an example of what a segment looks like in your I/O area, say that you
retrieved the ILLNESS segment for Robert James, who came to the clinic on March
3, 1988. He was treated for strep throat. The data returned to your I/O area would
look like this:
19880303STREPTHROA

COBOL I/O area

The I/O area in a COBOL program should be defined as a 01 level working
storage entry. You can further define the area with 02 entries.
IDENTIFICATION DIVISION....
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INPUT-AREA.

02 KEY PICTURE X(6).
02 FIELD PICTURE X(84).

Chapter 30. Defining application program elements 523

PL/I I/O area

In PL/I, the name for the I/O area used in the DL/I call can be the name of a
fixed-length character string, a major structure, a connected array, or an adjustable
character string.

Restriction: The PL/I I/O area cannot be the name of a minor structure or a
character string with the attribute VARYING. If you want to define it as a minor
structure, you can use a pointer to the minor structure as the parameter.

Your program should define the I/O area as a fixed-length character string and
pass the name of that string, or define it in one of the other ways described
previously and then pass the pointer variable that points to that definition. If you
want to use substructures or elements of an array, use the DEFINED or BASED
attribute.
DECLARE 1 INPUT_AREA,

2 KEY CHAR(6),
2 FIELD CHAR(84);

Assembler language I/O area

The I/O area in an assembler language program is formatted as follows:

IOAREA DS 0CL90
KEY DS CL6
FIELD DS CL84

524 Application Programming

Chapter 31. EXEC DLI commands for an application program

The EXEC DLI commands in your application program is used together with a
program specification block (PSB) and different kinds of program communication
blocks (PCBs).
Related reference:
“Specifying an application interface block (AIB)” on page 519

PCBs and PSB
A program specification block (PSB) used in a DBCTL environment can contain
I/O PCBs, alternate PCBs, database PCBs (DB PCB), or GSAM PCBs.

I/O PCB

In a DBCTL environment, an I/O PCB is needed to issue DBCTL service requests.
Unlike the other types of PCB, it is not defined with PSB generation, but if the
application program is using an I/O PCB, this has to be indicated in the PSB
scheduling request.

Alternate PCB

An alternate PCB defines a logical terminal and can be used instead of the I/O
PCB when it is necessary to direct a response to a terminal. Alternate PCBs appear
in PSBs used in a CICS-DBCTL environment, but are used only in an IMS DC
environment. CICS applications using DBCTL cannot successfully issue commands
that specify an alternate PCB, an MSDB PCB, or a GSAM PCB. However, a PSB
that contains PCBs of these types can be scheduled successfully in a CICS-DBCTL
environment.

Alternate PCBs are included in the PCB address list returned to a call level
application program. In an EXEC DLI application program, the existence of
alternate PCBs in the PSB affects the PCB number used in the PCB keyword.

DB PCB

A DB PCB is the PCB that defines an application program's interface to a database.
One DB PCB is needed for each database view used by the application program. It
can be a full-function PCB, a DEDB PCB, or an MSDB PCB.

GSAM PCB

A GSAM PCB defines an application program's interface for GSAM operations.

When using DBCTL, a CICS program receives, by default, a DB PCB as the first
PCB in the parameter list passed to it after scheduling. However, when your
application program can handle an I/O PCB, you indicate this using the
SYSSERVE keyword on the SCHD command. The I/O PCB is then the first PCB in
the parameter address list passed back to your application program.

© Copyright IBM Corp. 1974, 2015 525

I/O PCBs and alternate PCBs in various types of application
programs

DB batch programs

Alternate PCBs are always included in the list of PCBs supplied to the program by
DL/I irrespective of whether you have specified CMPAT=Y. The I/O PCB is
returned depending on the CMPAT option.

If you specify CMPAT=Y, the PCB list contains the address of the I/O PCB,
followed by the addresses of any alternate PCBs, followed by the addresses of any
DB PCBs.

If you do not specify CMPAT=Y, the PCB list contains the addresses of any
alternate PCBs followed by the addresses of the DB PCBs.

BMP programs, MPPs, and IFPs

I/O PCBs and alternate PCBs are always passed to BMP programs. I/O PCBs and
alternate PCBs are also always passed to MPPs and to IFP application programs.

The PCB list contains the address of the I/O PCB, followed by the addresses of
any alternate PCBs, followed by the addresses of the DB PCBs.

CICS programs with DBCTL

The first PCB always refers to the first DB PCB whether you specify the SYSSERVE
keyword.

The following table summarizes the I/O PCB and alternate PCB information. The
first column lists different DB environments, the second and third column specify
if the I/O PCB or alternate PCB, respectively, is valid in the specified environment.

Table 87. Summary of PCB information

Environment
EXEC DLI: I/O PCB count
included in PCB(n)

EXEC DLI: Alternate PCB
count included in PCB(n)

CICS DBCTL1 No No

CICS DBCTL2 No No

BMP Yes Yes

Batch3 No Yes

Batch4 Yes Yes

Notes:

1. SCHD command issued without the SYSSERVE option.
2. SCHD command issued with the SYSSERVE option for a CICS DBCTL

command or for a function-shipped command which is satisfied by a remote
CICS system using DBCTL.

3. CMPAT=N specified on the PSBGEN statement.
4. CMPAT=Y specified on the PSBGEN statement.

Format of a PSB

The following is the format of a PSB.

526 Application Programming

[IOPCB]
[Alternate PCB ... Alternate PCB]
[DBPCB ... DBPCB]
[GSAMPCB ... GSAMPCB]

Each PSB must contain at least one PCB. The I/O PCB must be addressable in
order to issue a system service command. An alternate PCB is used only for IMS
online programs, which can run only with the Transaction Manager. Alternate
PCBs can be present even though your program does not run under the
Transaction Manager. A DB PCB can be a full-function PCB, a DEDB PCB, or an
MSDB PCB.

Chapter 31. EXEC DLI commands for an application program 527

528 Application Programming

Chapter 32. Recovering databases and maintaining database
integrity

You can issue these commands to recover data accessed by your program and
maintain data integrity.
v The Basic Checkpoint command, CHKP, which you can use to issue checkpoints

from a batch or BMP program
v The Symbolic Checkpoint command, SYMCHKP, which you can use to issue

checkpoints from a batch or BMP program and to specify data areas that can be
restored when you restart your program

v The Extended Restart command, XRST, which you can use along with symbolic
checkpoints to start or restart your batch or BMP program

v The rollback commands, ROLL and ROLB, which you can use to dynamically back
out database changes from a batch or BMP program

v The managing-backout-points commands, SETS and ROLS, which you can use to
set multiple backout points and then return to these points later

v The Dequeue command, DEQ, which releases previously reserved segments

To use any of the commands, you must have defined an I/O PCB for your
program, except for the DEDB DEQ calls, which are issued against a DEDB PCB.

Issuing checkpoints in a batch or BMP program
The two kinds of commands that allow you to make checkpoints are: the CHKP, or
Basic Checkpoint command, and the SYMCHKP, or Symbolic Checkpoint command.

Batch programs can use either the Symbolic Checkpoint or the Basic Checkpoint
command.

Both checkpoint commands make it possible for you to commit your program's
changes to the database and to establish places from which the batch or BMP
program can be restarted, in cases of abnormal termination.

Requirement: You must not use the CHKPT=EOV parameter on any DD statement
to take an IMS checkpoint.

Because both checkpoint commands cause a loss of database position at the time
the command is issued, you must reestablish position with a GU command or other
methods.

You cannot reestablish position in the midst of nonunique keys or nonkeyed
segments.

Issuing the CHKP command

When you issue a CHKP command, you must provide the code for restarting your
program and you must specify the ID for the checkpoint. You can supply either the
name of a data area in your program that contains the ID, or you can supply the
actual ID, enclosed in single quotation marks. For example, either of the following
commands is valid:
EXEC DLI CHKP ID(chkpid);

© Copyright IBM Corp. 1974, 2015 529

EXEC DLI CHKP ID(’CHKP0007’);

Issuing the SYMCHKP command

The SYMCHKP command in batch and BMP programs:
v Works with the Extended Restart (XRST) command to restart your program if it

terminates abnormally.
v Can save as many as seven program data areas, which are restored when your

program is restarted. You can save variables, counters, and status information.

For examples of how to specify the SYMCHKP command, see the topic "SYMCHKP
Command" in IMS Version 14 Application Programming APIs.

Restarting your program and checking for position
Programs that issue Symbolic Checkpoint commands must also issue the Extended
Restart (XRST) command. You must issue XRST once, as the first command in the
program. You can use the XRST command to start your program normally, or to
restart it in case of an abnormal termination.

You can restart your program from one of the following:
v A specific checkpoint ID
v A time/date stamp

Because the XRST command attempts to reposition the database, your program also
needs to check for correct position.

Backing out database updates dynamically: the ROLL and ROLB
commands

When a batch program determines that some of its processing is invalid, the ROLL
and ROLB commands make it possible for the program to remove the effects of its
inaccurate processing.

You can use both ROLL and ROLB in batch programs. You can only use the ROLB
command in batch programs if the system log is stored on direct access storage
and if you have specified BKO=Y in the parm field of your JCL.

Issuing either of these commands causes DL/I to back out any changes your
program has made to the database since its last checkpoint, or since the beginning
of the program if your program has not issued a checkpoint.

Using intermediate backout points: the SETS and ROLS commands
Use the SETS and ROLS commands to define multiple points at which to preserve
the state of DL/I full-function databases and to return to these points later. For
example, you can use them to allow your program to handle situations that can
occur when PSB scheduling complete without all of the referenced DL/I databases
being available.

The SETS and ROLS commands apply only to DL/I full-function databases.
Therefore, if a logical unit of work (LUW) is updating recoverable resources other
than full-function databases (VSAM files, for example), the SETS and ROLS requests
have no effect on the non-DL/I resources. The backout points are not CICS commit

530 Application Programming

points; they are intermediate backout points that apply only to DBCTL resources.
Your program must ensure the consistency of all the resources involved.

Before initiating a set of DL/I requests to perform a function, you can use a SETS
command to define points in your application at which to preserve the state of
DL/I databases. Your application can issue a ROLS command later if it cannot
complete the function. You can use the ROLS command to back out to the state all
full-function databases were in before either a specific SETS request or the most
recent commit point.

Chapter 32. Recovering databases and maintaining database integrity 531

532 Application Programming

Chapter 33. Processing Fast Path databases

Using EXEC DLI commands under DBCTL, a CICS program or a batch-oriented
BMP program can access DEDBs. Parameters allow your program to use facilities
of the DEDBs such as subset pointers.

A DEDB contains a root segment and as many as 127 types of dependent segment.
One of these types can be a sequential dependent; the other 126 are direct
dependents. Sequential dependent segments are stored in chronological order.
Direct dependent segments are stored hierarchically.

DEDBs provide high data availability. Each DEDB can be partitioned, or divided
into multiple areas. Each area contains a different set of database records. In
addition, you can make up to seven copies of each area data set. If an error exists
in one copy of an area, application programs can access the data by using another
copy of that area. This is transparent to the application program. When an error
occurs to data in a DEDB, IMS does not stop the database. It makes the data in
error unavailable, but continues to schedule and process application programs.
Programs that do not need the data in error are unaffected.

DEDBs can be shared among application programs in separate IMS systems.
Sharing DEDBs is virtually the same as sharing full-function databases, and most
of the same rules apply. IMS systems can share DEDBs at the area level (instead of
at the database level as with full-function databases), or at the block level.

Processing Fast Path DEDBs with subset pointer options
Subset pointers and the options you use with them are optimization tools that
significantly improve the efficiency of your program when you need to process
long segment chains.

Subset pointers divide a chain of segment occurrences under the same parent into
two or more groups, or subsets. You can define as many as eight subset pointers
for any segment type. You then define the subset pointers from within an
application program. Each subset pointer points to the start of a new subset. For
example, in the following figure, suppose you defined one subset pointer that
divided the last three segment occurrences from the first four. Your program can
then refer to that subset pointer through options, and directly retrieve the last three
segment occurrences.

© Copyright IBM Corp. 1974, 2015 533

You can use subset pointers at any level of the database hierarchy, except at the
root level. Subset pointers used for the root level are ignored.

The next two figures show some of the ways you can set subset pointers. Subset
pointers are independent of one another, which means that you can set one or
more pointers to any segment in the chain. For example, you can set more than
one subset pointer to a segment, as shown in the following figure.

Alternatively, you can define a one-to-one relationship between the pointers and
the segments, as shown in Figure 90 on page 535 where each segment occurrence
has one subset pointer.

B1

P1

B2

B3

B4

B5

B6

B7

Figure 88. Processing a long chain of segment occurrences with subset pointers

B1

P2

P3

P5

P6

P7

P8

B2

B3

B4

B5

B6

B7

B1

B2

B3

B4

B5

B6

B7

Figure 89. Examples of setting multiple subset pointers

534 Application Programming

The following figure shows how the use of subset pointers divides a chain of
segment occurrences under the same parent into subsets. Each subset ends with
the last segment in the entire chain. For example, the last segment in the subset
defined by subset pointer 1 is B7.

Preparing to use subset pointers
For your program to use subset pointers, the pointers must be defined in the DBD
for the DEDB, and in your program's PSB.

In the DBD, you specify the number of pointers for a segment chain. You can
specify as many as eight pointers for any segment chain.

In the PSB, you specify which pointers your program uses; you define this on the
SENSEG statement. (Each pointer is defined as an integer from 1 to 8.) You also
specify on the SENSEG statement whether your program can set the pointers it

B1

P1

P2

P3

P4

P5

P6

B2

B3

B4

B5

B6

B7

B1

B2

B3

B4

B5

B6

B7

Figure 90. More examples of setting subset pointers

B1

P2

P1

B2

B3

B4

B5

B6

B7

Figure 91. How subset pointers divide a chain into subsets

Chapter 33. Processing Fast Path databases 535

uses. If your program has read-only sensitivity, it cannot set pointers, but can only
retrieve segments using subset pointers already set. If your program has update
sensitivity, it can update subset pointers by using the SET, SETCOND,
MOVENEXT, and SETZERO options.

After the pointers are defined in the DBD and the PSB, an application program can
set the pointers to segments in a chain. When an application program finishes
executing, the subset pointers used by that program remain as they were set by the
program and are not reset.

Designating subset pointers
To use subset pointers in your program, you must know the numbers for the
pointers as they were defined in the PSB.

Then, when you use the subset pointer options, you specify the number for each
subset pointer you want to use immediately after the option; for example, you
would use P3 to indicate that you want to retrieve the first segment occurrence in
the subset defined by subset pointer 3. No default exists, so if you do not include a
number between 1 and 8, IMS considers your qualification statement invalid and
returns an AJ status code to your program.

Subset pointer options
To take advantage of subsets, application programs use five different options.

The options are:

GETFIRST
Allows you to retrieve the first segment in a subset.

SETZERO
Sets a subset pointer to zero.

MOVENEXT
Sets a subset pointer to the segment following the current segment.
Current position is at the current segment.

SET Unconditionally sets a subset pointer to the current segment. Current
position is at the current segment.

SETCOND
Conditionally sets a subset pointer to the current segment. Current position
is at the current segment.

Banking transaction application example

The examples in this chapter are based on a sample application, the recording of
banking transactions for a passbook account. The transactions are written to a
database as either posted or unposted, depending on whether they were posted to
the customer's passbook. For example, when Bob Emery does business with the
bank, but forgets to bring in his passbook, an application program writes the
transactions to the database as unposted. The application program sets a subset
pointer to the first unposted transaction, so it can be easily accessed later. The next
time Bob remembers to bring in his passbook, a program posts the transactions.
The program can directly retrieve the first unposted transaction using the subset
pointer that was previously set. After the program has posted the transactions, it
sets the subset pointer to zero; an application program that subsequently updates
the database can determine that no unposted transactions exist. The following

536 Application Programming

figure summarizes the processing performed when the passbook is unavailable.

When the passbook is available, an application program adds the unposted
transactions to the database, setting subset pointer 1 to the first unposted
transaction. The following figure summarizes the processing performed when the
passbook is available.

When the passbook is available, an application program retrieves the first
unposted transaction using the program, then posts all unposted transactions,
setting subset pointer 1 to zero.

GETFIRST option: retrieving the first segment of a subset

To retrieve the first segment occurrence in the subset, your program issues a Get
command with the GETFIRST option. The GETFIRST option does not set or move

B1

P1

B2

B3

B4

B5

B6

B7

Figure 92. Processing performed for the sample passbook example when the passbook is
unavailable

B1

P1=10

B2

B3

B4

B5

B6

B7

Figure 93. Processing performed for the sample passbook example when the passbook is
available

Chapter 33. Processing Fast Path databases 537

the pointer, but indicates to IMS that you want to establish position on the first
segment occurrence in the subset. The GETFIRST option is like the FIRST option,
except that the GETFIRST option applies to the subset instead of to the entire
segment chain.

Using the previous example, imagine that Bob Emery visits the bank with his
passbook and you want to post all of the unposted transactions. Because subset
pointer 1 was previously set to the first unposted transaction, your program can
use the following command to retrieve that transaction:
EXEC DLI GU SEGMENT(A) WHERE(AKEY = ’A1’)

SEGMENT(B) INTO(BAREA) GETFIRST(’1’);

As shown in following figure, this command retrieves segment B5. To continue
processing segments in the chain, you can issue Get Next commands, as you
would if you were not using subset pointers.

If the subset does not exist (subset pointer 1 has been set to zero), IMS returns a
GE status code, and your position in the database immediately follows the last
segment in the chain. Using the passbook example, the GE status code indicates
that no unposted transactions exist.

You can specify only one GETFIRST option per qualification statement; if you use
more than one GETFIRST in a qualification statement, IMS returns an AJ status
code to your program. The rules for using the GETFIRST option are:
1. You can use GETFIRST with all options except:
v FIRST
v LOCKCLASS
v LOCKED

2. Other options take effect after the GETFIRST option has, and position has been
established on the first segment in the subset.

3. If you use GETFIRST with LAST, the last segment in the segment chain is
retrieved.

4. If the subset pointer specified with GETFIRST is not set, IMS returns a GE
status code, not the last segment in the segment chain.

B1

P1

B2

B3

B4

B5

B6

B7

Figure 94. Retrieving the first segment in a chain of segments

538 Application Programming

5. Do not use GETFIRST with FIRST. This causes you to receive an AJ status code.
6. GETFIRST overrides all insert rules, including LAST.

SETZERO, MOVENEXT, SET, and SETCOND options: setting the
subset pointers

The SETZERO, MOVENEXT, SET, and SETCOND options allow you to redefine
subsets by modifying the subset pointers. Before your program can set a subset
pointer, it must establish a position in the database. A command must be fully
satisfied before a subset pointer is set. The segment a pointer is set to depends on
your current position at the completion of the command. If a command to retrieve
a segment is not completely satisfied, and a position is not established, the subset
pointers remain as they were before the command was issued.
v Setting the subset pointer to zero: SETZERO

The SETZERO option sets the value of the subset pointer to zero. After your
program issues a command with the SETZERO option, the pointer is no longer
set to a segment; the subset defined by that pointer no longer exists. (IMS
returns a status code of GE to your program if you try to use a subset pointer
having a value of zero.)
Using the previous example, say that you used the GETFIRST option to retrieve
the first unposted transaction. You would then process the chain of segments,
posting the transactions. After posting the transactions and inserting any new
ones into the chain, you would use the SETZERO option to set the subset
pointer to zero as shown in the following command:
EXEC DLI ISRT SEGMENT(A) WHERE(AKEY = ’A1’)

SEGMENT(B) FROM(BAREA) SETZERO(’1’);

After this command, subset pointer 1 would be set to zero, indicating to a
program updating the database later on that no unposted transactions exist.

v Moving the subset pointer forward to the next segment after your current
position: MOVENEXT

To move the subset pointer forward to the next segment after your current
position, your program issues a command with the MOVENEXT option. Using
the previous example, say that you wanted to post some of the transactions, but
not all, and that you wanted the subset pointer to be set to the first unposted
transaction. The following command sets subset pointer 1 to segment B6.
EXEC DLI GU SEGMENT(A) WHERE(AKEY = ’A1’)

SEGMENT(B) INTO(BAREA) GETFIRST(’1’) MOVENEXT(’1’);

The process of moving the subset pointer with this command is shown in the
following figure. If the current segment is the last in the chain, and you use a
MOVENEXT option, IMS sets the pointer to zero.

Chapter 33. Processing Fast Path databases 539

v Setting the subset pointer unconditionally: SET

You use the SET option to set a subset pointer. The SET option sets a subset
pointer unconditionally, regardless of whether or not it is already set. When
your program issues a command that includes the SET option, IMS sets the
pointer to your current position.
For example, to retrieve the first B segment occurrence in the subset defined by
subset pointer 1, and to reset pointer 1 at the next B segment occurrence, you
would issue the following commands:
EXEC DLI GU SEGMENT(A) WHERE(AKEY = ’A1’)

SEGMENT(B) INTO(BAREA) GETFIRST(’1’);
EXEC DLI GN SEGMENT(B) INTO(BAREA) SET(’1’);

After you have issued these commands, instead of pointing to segment B5,
subset pointer 1 points to segment B6, as shown in the following figure.

Before the command:

After the command:

B1

P1

B2

B3

B4

B5

B6

B7

B1

P1

B2

B3

B4

B5

B6

B7

Figure 95. Moving the subset pointer to the next segment after your current position

540 Application Programming

v Setting the subset pointer conditionally: SETCOND

Your program uses the SETCOND option to conditionally set the subset pointer.
The SETCOND option is similar to the SET option; the only difference is that,
with the SETCOND option, IMS updates the subset pointer only if the subset
pointer is not already set to a segment.
Using the passbook example, say that Bob Emery visits the bank and forgets to
bring his passbook; you add the unposted transactions to the database. You
want to set the pointer to the first unposted transaction so that when you post
the transactions later, you can immediately access the first one. The following
command sets the subset pointer to the transaction you are inserting, if it is the
first unposted one:
EXEC DLI ISRT SEGMENT(A) WHERE(AKEY = ’A1’)

SEGMENT(B) FROM(BAREA) SETCOND(’1’);

As shown by the following figure, this command sets subset pointer 1 to
segment B5. If unposted transactions already existed, the subset pointer is not

Before the command:

After the command:

B1

P1

B2

B3

B4

B5

B6

B7

B1

P1

B2

B3

B4

B5

B6

B7

Figure 96. Unconditionally setting the subset pointer to your current position

Chapter 33. Processing Fast Path databases 541

changed.

Inserting segments in a subset

When you use the GETFIRST option to insert an unkeyed segment in a subset, the
new segment is inserted before the first segment occurrence in the subset.
However, the subset pointer is not automatically set to the new segment
occurrence. For example, the following command inserts a new B segment
occurrence in front of segment B5, but does not set subset pointer 1 to point to the
new B segment occurrence:
EXEC DLI ISRT SEGMENT(A) WHERE(AKEY = ’A1’)

SEGMENT(B) FROM(BAREA) GETFIRST(’1’);

To set subset pointer 1 to the new segment, you use the SET option along with the
GETFIRST option, as shown in the following example:

Before the command:

After the command:

B1

B2

B3

B4

B1

P1

B2

B3

B4

B5

Figure 97. Conditionally setting the subset pointer to your current position

542 Application Programming

EXEC DLI ISRT SEGMENT(A) WHERE(AKEY = ’A1’)
SEGMENT(B) FROM(BAREA) GETFIRST(’1’) SET (’1’);

If the subset does not exist (subset pointer 1 has been set to zero), the segment is
added to the end of the segment chain.

Deleting the segment pointed to by a subset pointer

If you delete the segment pointed to by a subset pointer, the subset pointer points
to the next segment occurrence in the chain. If the segment you delete is the last in
the chain, the subset pointer is set to zero.

Combining options

You can use the SET, MOVENEXT, and SETCOND options with other options, and
you can combine subset pointer options with each other, provided they do not
conflict. For example, you can use GETFIRST and SET together, but you cannot use
SET and SETZERO together because their functions conflict. If you combine
options that conflict, IMS returns an AJ status code to your program.

You can use one GETFIRST option per qualification statement, and one update
option (SETZERO, MOVENEXT, SET, or SETCOND) for each subset pointer.

Subset pointer status codes
If you make an error in a qualification statement that contains subset pointer
options, IMS can return these status codes to your program.

AJ The qualification statement used a GETFIRST, SET, SETZERO, SETCOND,
or MOVENEXT option for a segment for which there are no subset
pointers defined in the DBD.

The subset options included in the qualification statement are in conflict;
for example, if one qualification statement contained a SET option and a
SETZERO option for the same subset pointer, IMS would return an AJ
status code. S means to set the pointer to current position; Z means to set
the pointer to zero. You cannot use these options together in one
qualification statement.

The qualification statement included more than one GETFIRST option.

The pointer number following a subset pointer option is invalid. You either
did not include a number, or included an invalid character. The number
following the option must be between 1 and 8, inclusive.

AM The subset pointer referenced in the qualification statement was not
specified in the program's PSB. For example, if your program's PSB
specifies that your program can use subset pointers 1 and 4, and your
qualification statement referenced subset pointer 5, IMS would return an
AM status code to your program.

Your program tried to use an option that updates the pointer (SET,
SETCOND, or MOVENEXT) but the program's PSB did not specify pointer
update sensitivity.

Your program attempted to open a GSAM database without specifying an
IOAREA.

Chapter 33. Processing Fast Path databases 543

The POS command
You can use the Position (POS) command (only with DEDBs) to perform the
following functions.
v Retrieve the location of a specific sequential dependent segment, or retrieves the

location of the last inserted sequential dependent segment.
v Tell you the amount of unused space within each DEDB area. For example, you

can use the position information that IMS returns for a POS command to scan or
delete the sequential dependent segments for a particular time period.

For the syntax of the POS command, see the topic "POS Command" in IMS Version
14 Application Programming APIs.

If the area the POS command specifies is unavailable, the I/O area is unchanged
and the status code FH is returned.
Related reference:

POS command (Application Programming APIs)

Locating a specific sequential dependent segment
When you have position on a particular root segment, you can retrieve the position
information and the area name of a specific sequential dependent segment of that
root.

If you have a position established on a sequential dependent segment, the search
starts from that position. IMS returns the position information for the first
sequential dependent segment that satisfies the command.

To retrieve this information, you issue a POS command with a qualification
statement containing the segment name of the sequential dependent. The current
position after this kind of POS command is in the same place that it is after a GNP
command.

After a successful POS command, the I/O area contains:

LL A 2-byte field giving the total length of the data in the I/O area, in binary.

Area Name
An 8-byte field giving the ddname from the AREA statement.

Position
An 8-byte field containing the position information for the requested
segment.

If the sequential dependent segment that is the target of the POS command
is inserted in the same synchronization interval, no position information is
returned. Bytes 11-18 contain X'FF'; other fields contain normal data.

Unused CIs
A 4-byte field containing the number of unused CIs in the sequential
dependent part.

Unused CIs
A 4-byte field containing the number of unused CIs in the independent
overflow part.

544 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_poscmd.htm#ims_poscmd

Locating the last inserted sequential dependent segment
You can also retrieve the position information for the most recently inserted
sequential dependent segment of a given root segment.

To do this, you issue a POS command with a qualification statement containing the
root segment as the segment name. The current position after this type of
command follows the same rules as position after a GU.

After a successful command, the I/O area contains:

LL A 2-byte field containing the total length of the data in the I/O area, in
binary.

Area Name
An 8-byte field giving the ddname from the AREA statement.

Position
An 8-byte field containing the position information for the most recently
inserted sequential dependent segment. This field contains zeros provided
no sequential dependent for this root exist.

Unused CIs
A 4-byte field containing the number of unused CIs in the sequential
dependent part.

Unused CIs
A 4-byte field containing the number of unused CIs in the independent
overflow part.

Identifying free space with the POS command
To retrieve the area name and the next available position within the sequential
dependent part from all online areas, you can issue an unqualified POS command.
This type of command also retrieves the free space in the independent overflow
and sequential dependent parts.

After a successful unqualified POS command, the I/O area contains the length (LL)
followed by the same number of entries as areas within the database. Each entry
contains field two through five shown below:

LL A 2-byte field containing the total length of the data in the I/O area, in
binary. The length includes the 2 bytes for the LL field, plus 24 bytes for
each entry.

Area Name
An 8-byte field giving the ddname from the AREA statement.

Position
An 8-byte field giving the next available position within the sequential
dependent part.

Unused CIs
A 4-byte field containing the number of unused CIs in the sequential
dependent part.

Unused CIs
A 4-byte field containing the number of unused CIs in the independent
overflow part.

Chapter 33. Processing Fast Path databases 545

The P processing option
If the P processing option has been specified (with the PROCOPT parameter) in
the PCB for your program, a GC status code is returned to your program
whenever a command to retrieve or insert a segment causes a Unit of Work (UOW)
boundary to be crossed.

Although crossing the UOW boundary probably has no particular significance for
your program, the GC status code indicates that this is a good time to issue a CHKP
command. The advantages of doing this are:
v Your position in the database is kept. Issuing a CHKP normally causes position in

the database to be lost, and the application program has to reestablish position
before it can resume processing.

v Commit points occur at regular intervals.

When a GC status code is returned, no data is retrieved or inserted. In your
program, you can either:
v Issue a CHKP command, and resume database processing by reissuing the

command that caused the GC status code.
v Ignore the GC status code and resume database processing by reissuing the

command that caused the status code.

546 Application Programming

Chapter 34. Comparing command-level and call-level
programs

Call-level and command-level programs exhibit different behavior.

DL/I calls for IMS and CICS
The following table provides a reference for using DL/I calls in a batch,
batch-oriented BMP, or CICS with DBCTL environment.

Table 88. DL/I calls available to IMS and CICS command-level application programs.

Request type Batch Batch-oriented BMP CICS with DBCTL1

CHKP call (symbolic) Yes Yes No

CHKP call (basic) Yes Yes No

GSCD call2 Yes No No

INIT call Yes Yes Yes

ISRT call (initial load) Yes No No

ISRT call Yes Yes Yes

LOG call Yes Yes Yes

SCHD call No No Yes

ROLB call Yes Yes No

ROLL call Yes Yes No

ROLS call (Roll Back
to SETS)3

Yes Yes Yes

ROLS call (Roll Back
to Commit)

Yes Yes Yes

SETS call3 Yes Yes Yes

STAT call4 Yes Yes Yes

TERM call No No Yes

XRST call Yes Yes No

1. In a CICS remote DL/I environment, CALLs in the CICS-DBCTL column are
supported if you are shipping a function to a remote CICS that uses DBCTL.

2. GSCD is a Product-sensitive Programming Interface.
3. SETS and ROLS calls are not valid when the PSB contains a DEDB.
4. STAT is a Product-sensitive Programming Interface.

Comparing EXEC DLI commands and DL/I calls
Use the appropriate EXEC DLI commands and DL/I calls in your program.

The following table compares EXEC DLI commands with DL/I calls. For example,
in a command-level program, you use the LOAD command instead of the ISRT call
to initially load a database.

© Copyright IBM Corp. 1974, 2015 547

Table 89. Comparing call-level and command-level programs: commands and calls.

Call-level Command-level Purpose

INIT call ACCEPT command Initialize for data availability status codes.

CHKP call (basic) CHKP command Issue a basic checkpoint.

DEQ call DEQ command Release segments retrieved using LOCKCLASS option or Q
command code.

DLET call DLET command Delete segments from a database.

GU, GN, and GNP
calls

GU, GN, and GNP
commands1

Retrieve segments from a database.

GHU, GHN, and
GHNP calls1

GU, GN, and GNP
commands1

Retrieve segments from a database for updating.

GSCD call GSCD call2 Retrieve system addresses.

ISRT call ISRT command Add segments to a database.

ISRT call LOAD command Initially load a database.

LOG call LOG command Write a message to the system log.

POS call POS command Retrieve positioning or space usage or positioning and space usage
in a DEDB area.

INIT call ACCEPT command Initialize for data availability status.

INIT call QUERY command Obtain information of initial data availability.

INIT call REFRESH command Availability information after using a PCB.

REPL call REPL command Replace segments in a database.

XRST call RETRIEVE command Issue an extended restart.

ROLL or ROLB call ROLL or ROLB
command

Dynamically back out changes.

ROLS call ROLS command Back out to a previously set backout point.

PCB call SCHD command Schedule a PSB.

SETS call SETS command Set a backout point.

SETU call SETU command Set a backout point even if unsupported PCBs (like DEDBs or
MSDBs) are present.

STAT call3 STAT command Obtain system and buffer pool statistics.

CHKP call (extended) SYMCHKP command Issue a symbolic checkpoint.

TERM call TERM command Terminate a PSB.

XRST call XRST command Issue an extended restart.

Notes:

1. Get commands are just like Get Hold calls, and the performance of Get
commands and Get calls is the same.

2. You can use the GSCD call in a batch command-level program. GSCD is a
Product-sensitive Programming Interface.

3. STAT is a Product-sensitive Programming Interface.

548 Application Programming

Comparing command codes and options
The following table compares the options you use with EXEC DLI commands with
the command codes you use with DL/I calls. For example, the LOCKED option
performs the same function as a Q command code.

Table 90. Comparing call-level and command-level programs: command codes and options

Call- Level Command-Level Allows You to . . .

C KEYS option Use the concatenated key of a segment to identify the segment.

D INTO or FROM specified on
segment level to be
retrieved or inserted.

Retrieve or insert a sequence of segments in a hierarchic path using
only one request, instead of having to use a separate request for each
segment. (Path call or command).

F FIRST option Back up to the first occurrence of a segment under its parent when
searching for a particular segment occurrence. Disregarded for a root
segment.

L LAST option Retrieve the last occurrence of a segment under its parent.

M MOVENEXT option Set a subset pointer to the segment following the current segment.

N Leave out the SEGMENT
option for segments you do
not want replaced.

Designate segments you do not want replaced, when replacing
segments after a get hold request. Usually used when replacing a path
of segments.

P SETPARENT Set parentage at a higher level than what it usually is (the lowest
hierarchic level of the request).

Q LOCKCLASS, LOCKED Reserve a segment so that other programs are not able to update it
until you have finished processing it.

R GETFIRST option Retrieve the first segment in a subset.

S SET option Unconditionally set a subset pointer to the current segment.

U No equivalent for command
level programs.

Limit the search for a segment to the dependents of the segment
occurrence on which position is established.

V CURRENT option Use the hierarchic level of and levels above the current position as
qualifications for the segment.

W SETCOND option Conditionally set a subset pointer to the current segment.

Z SETZERO option Set a subset pointer to zero.

– No command-level
equivalent.

Null. Use an SSA in command code format without specifying the
command code. Can be replaced during execution with the command
codes you want.

Chapter 34. Comparing command-level and call-level programs 549

550 Application Programming

Chapter 35. Data availability enhancements

Your program might fail when it receives a status code indicating that a DL/I
full-function database is unavailable. To avoid this, you can use these data
availability enhancements. After a PSB has been scheduled in DBCTL, your
application program can issue requests to indicate to IMS that the program can
handle data availability status codes and to obtain information about the
availability of each database.

Accepting database availability status codes

These status codes occur because PSB scheduling was completed without all of the
referenced databases being available. Use the ACCEPT command to tell DBCTL to
return a status code instead of abending the program:
EXEC DLI ACCEPT STATUSGROUP(’A’);

Obtaining information about database availability

You can put data availability status codes into each of the DB PCBs if:
v In a CICS DBCTL environment, by using the PSB scheduling request command,

SCHD.
v In a Batch or BMP environment, at initialization time.

You can obtain the data availability status codes within the DL/I interface block
(DIB) by using the following QUERY command:
EXEC DLI QUERY USING PCB(n);

n specifies the PCB.

The QUERY command is used after scheduling the PSB but before making the first
database call. If the program has already issued a call using a DB PCB, then the
QUERY command must follow the REFRESH command:
EXEC DLI REFRESH DBQUERY

The REFRESH command updates the information in the DIB. You can only issue this
command one time.

For full-function databases, the DIBSTAT should contain NA, NU, TH, or blanks.
For MSDBs and DEDBs, the DIBSTAT always contains blanks.

If a CICS command language translator has been used to translate the EXEC DLI
commands, then, in addition to data availability status, the DBDNAME will be
returned in the DIB field DIBDBDNM. Also, the name of the database organization
will be returned in the DIB field DIBDBORG.

© Copyright IBM Corp. 1974, 2015 551

552 Application Programming

Part 5. Application programming for SQL

These topics provide detailed information about developing IMS application
programs in Structured Query Language (SQL).

These topics also provide detailed information about using SQL queries to retrieve
and modify IMS data. This information is intended for IMS application developers
who are familiar with SQL and who know one or more programming languages
that IMS supports.

© Copyright IBM Corp. 1974, 2015 553

554 Application Programming

Chapter 36. SQL considerations and restrictions for COBOL

SQL support for COBOL has the several considerations and restrictions with the
current implementation.
v A subset of SQL keywords is supported. There are SQL keywords that are

currently supported by the IMS Universal JDBC driver but not supported when
the SQL keyword is used in a COBOL application. For example:
– XML is not supported by COBOL SQL in SELECT statements.
– SQL COMMIT and ROLLBACK keywords are not supported. You should use

IMS DB system services call to commit or roll back your database changes
For information about the supported SQL statement and keywords, see
Statements (Application Programming APIs).

v SQL statements are supported for COBOL applications that are running in a
BMP, IFP, and MPR for the IMS TM/DB environment and BMP is supported for
the DBCTL environment. Batch and DB Batch are not supported. Also, the use of
the EXEC SQLIMS API from IBM CICS Transaction Server for z/OS and DB2 for
z/OS stored procedures to IMS is not supported. The DL/I API should be used
instead of the EXEC SQLIMS API.

v You can access DB2 for z/OS data using DB2 SQL support in the same COBOL
application. IMS must connect to DB2 by using the SSM parameter, and the
DFSLI000 module must be included.

v The IMS catalog must be enabled to use SQL support for COBOL. Make sure
that you load the database metadata that would be needed by the COBOL SQL
application into the IMS catalog.

v Ensure that you have sufficient storage for your IMS dependent region in your
COBOL SQL applications. Specify at least 12MB for your IMS dependent region
size for running a COBOL SQL application. You would encounter an 878 or
other storage related abends if you run out of storage.

v Only one cursor and SQL statement can be active at a time in the application. If
you must execute multiple SQL statements in the same application, you must
first close the cursor for the previous statement and then open a new cursor or
prepare a new statement.

v The set of SQL keywords that are supported in COBOL is only for database
access calls. For IMS database services, GSAM, IMS TM, and message processing
services, continue to use DL/I API.

v Dynamic SQL statement is supported. Static SQL is not supported currently.
v Only EBCDIC CCSID 37 and 1140 codepages for the COBOL CODEPAGE option

are supported.
v The qualifiers for type Zoned Decimal or Packed Decimal can only be combined

with other qualifiers by using the logical operator OR in a query
v For the predicate in a WHERE clause, when the data type is integer, no more

than 10 consecutive AND statements are allowed due to potential extensive
memory consumption. You can have more than 10 statements if the WHERE
clause also contains one or more OR predicates, but not 10 consecutive AND
statements.

© Copyright IBM Corp. 1974, 2015 555

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_statementsintro.htm#ims_sql_statementsintro

556 Application Programming

Chapter 37. Writing application programs for SQL

Applications that interact with IMS must first connect to IMS. They can then read,
add, or modify data or manipulate IMS databases.

Coding SQL statements in application programs: General information
IMS provides a way to issue SQL statements directly in a COBOL application to
access your IMS data. IMS uses the same SQL coding techniques as DB2 for z/OS
when programming IMS SQL for COBOL.

To include a SQL statement in an application program:
1. Choose one of the following methods for communicating with IMS:
v Embedded dynamic SQL
v JDBC application support
If you are writing your applications in Java, you can use JDBC application
support to access IMS.
If you are writing your applications for COBOL, use embedded dynamic SQL.

2. Define an SQL communications area (SQLIMSCA) that for your COBOL
program can use to check whether an SQL statement executed successfully.

3. Define at least one SQL descriptor area (SQLIMSDA).
4. Declare any of the following data items for passing data between IMS and

COBOL:
v host variables
v host structures

Ensure that you use the appropriate data types.
5. Code SQL statements to access IMS data.

If you are using a SELECT statement to query IMS data, use cursors to select a
set of rows and then process one row at a time.

6. Check the execution of the SQL statements.
7. Handle any SQL error codes.
Related concepts:
“Dynamic SQL” on page 559
“Programming with the IMS Universal JDBC driver” on page 647
Related tasks:
“Retrieving a set of rows by using a cursor” on page 595

Defining the items that your program can use to check
whether an SQL statement executed successfully

If your program contains SQL statements, the program should include an SQL
communications area (SQLIMSCA), which contains SQLIMSCODE, SQLIMSSTATE,
and SQLIMSERRMT variables, so that it can check whether the statements
executed successfully.
Related tasks:
“Defining the SQL communications area in COBOL” on page 573
Related reference:

© Copyright IBM Corp. 1974, 2015 557

Description of SQLIMSCA fields (Application Programming APIs)

INCLUDE (Application Programming APIs)

Defining SQL descriptor areas
If your program includes certain SQL statements, you must include an SQL
descriptor area (SQLIMSDA). Depending on the context in which it is used, the
SQLIMSDA stores information about prepared SQL statements or host variables.
This information can then be read by either the application program or IMS.

If your program includes any of the following statements, you must include an
SQLIMSDA in your program:
v DESCRIBE statement-name INTO descriptor-name
v FETCH ... INTO DESCRIPTOR descriptor-name

Related tasks:
“Defining SQL descriptor areas in COBOL” on page 573
Related reference:

Description of SQLIMSCA fields (Application Programming APIs)

SQL descriptor area (SQLIMSDA) (Application Programming APIs)

Declaring host variables and indicator variables
You can use host variables in SQL statements in your program to pass data
between IMS and your application.

To declare host variables, host variable arrays, and host structures:

Use the techniques that are appropriate for COBOL.

Host variables
Use host variables to pass a single data item between IMS and your application.

A host variable is a single data item that is declared in the host language to be used
within an SQL statement. You can use host variables in application programs that
are written in COBOL to perform the following actions:
v Retrieve data into the host variable for your application program's use
v Use the data in the dynamic SQL statement host variables that have parameter

marker during the EXECUTE, PREPARE, and OPEN calls
Related concepts:
“Rules for host variables in an SQL statement” on page 562
Related reference:
“Host variables in COBOL” on page 574

Host structures
Use host structures to pass a group of host variables between IMS and your
application.

A host structure is a group of host variables that can be referenced with a single
name. You define host structures with statements in the host language. You can
refer to a host structure in any context where you want to refer to the list of host
variables in the structure. A host structure reference is equivalent to a reference to

558 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_descriptionofsqlcafields.htm#ims_descriptionofsqlcafields
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_include.htm#ims_sql_include
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_descriptionofsqlcafields.htm#ims_descriptionofsqlcafields
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sqldescriptorareaintro.htm#ims_sqldescriptorareaintro

each of the host variables within the structure in the order in which they are
defined in the structure declaration. You can also use indicator variables (or
indicator structures) with host structures.
Related reference:
“Host structures in COBOL” on page 578

Indicator variables, arrays, and structures
An indicator variable is associated with a particular host variable. Each indicator
variable contains a small integer value that indicates some information about the
associated host variable. Indicator structures serve the same purpose for host
variable structures.

You can use indicator variables to perform the following actions:
v Determine whether the value of an associated output host variable is null
v Determine the original length of a character string that was truncated when it

was assigned to a host variable

You can use indicator structures to perform these same actions for individual items
in host data structures.

If you provide an indicator variable for a nullable field of a variable-length
segment, a negative value (-1) is set for the indicator variable when the field is
null. Your program should check the indicator variable before using the field to
determine whether the field is truly null. If the indicator variable contains a
positive integer, the retrieved character string value is truncated, and the integer is
the original length of the string.

An indicator structure is an array of halfword integer variables that supports a
specified host structure. If the field values that your program retrieves into a host
structure can be null, you can attach an indicator structure name to the host
structure name. This name enables IMS to notify your program about each null
value it returns to a host variable in the host structure.

Using SQL statements in your application
You can code SQL statements in a COBOL program using dynamic SQL.
Related concepts:
“SQL statements in COBOL programs” on page 581

Dynamic SQL
Dynamic SQL statements are prepared and executed while the program is running.
Use dynamic SQL when you do not know what SQL statements your application
needs to execute before run time.

Dynamic SQL prepares and executes the SQL statements within a program, while
the program is running. Two types of dynamic SQL are:
v Interactive SQL

A user enters SQL statements through IMS Explorer for Development. IMS
prepares and executes those statements as dynamic SQL statements.

v Embedded dynamic SQL
Your application puts the SQL source in host variables and includes PREPARE
and EXECUTE statements that tell IMS to prepare and run the contents of those
host variables at run time. You must precompile and bind programs that include
embedded dynamic SQL.

Chapter 37. Writing application programs for SQL 559

Dynamic SQL processing

A program that provides for dynamic SQL accepts as input, or generates, an SQL
statement in the form of a character string. You can simplify the programming if
you know a known number of values of known types. In the most general case, in
which you do not know in advance about the SQL statements that will execute, the
program typically takes these steps:
1. Translates the input data, including any parameter markers, into an SQL

statement
2. Prepares the SQL statement to execute and acquires a description of the result

segment
3. Obtains, for SELECT statements, enough main storage to contain retrieved data
4. Executes the statement or fetches the rows of data
5. Processes the information returned
6. Handles SQL return codes.

Dynamically executing SQL for fixed-list SELECT statements
A fixed-list SELECT statement returns rows that contain a known number of
values of a known type. When you use this type of statement, you can specify a
list of host variables to contains the filed values.

The term “fixed-list” does not imply that you must know in advance how many
rows of data will be returned. However, you must know the number of fields and
the data types of those fields. A fixed-list SELECT statement returns a result
segment that can contain any number of rows; your program looks at those rows
one at a time, using the FETCH statement. Each successive fetch returns the same
number of values as the last, and the values have the same data types each time.

To execute a fixed-list SELECT statement dynamically, your program must:
1. Include an SQLIMSCA.
2. Load the input SQL statement into a data area. The preceding two steps are

exactly the same including dynamic SQL for non-SELECT statements in your
program.

3. Declare a cursor for the statement name.
4. Prepare the statement.
5. Open the cursor.
6. Fetch rows from the result segment.
7. Close the cursor.
8. Handle any resulting errors. This step is the same as for static SQL, except for

the number and types of errors that can result.

Example: Suppose that your program retrieves hospital names and codes by
dynamically executing SELECT statements of this form:
SELECT HOSPNAME, HOSPCODE FROM PCB01.HOSPITAL

Declaring a cursor for the statement name:

Use a cursor to put the results into host variables for a SELECT statement.

Example: When you declare the cursor, use the statement name (call it STMT), and
give the cursor itself a name (for example, C1):

560 Application Programming

EXEC SQLIMS DECLARE C1 CURSOR FOR STMT
END-EXEC.

Preparing the statement:

Prepare a statement (STMT) from STMTSTR.

Example: This is one possible PREPARE statement:
EXEC SQLIMS PREPARE STMT FROM :STMTSTR
END-EXEC.

To execute STMT, your program must open the cursor, fetch rows from the result
segment, and close the cursor.

Opening the cursor:

The OPEN statement evaluates the SELECT statement named STMT.

Example:
EXEC SQLIMS OPEN C1
END-EXEC.

Fetching rows from the result table:

Example: Your program could repeatedly execute a statement such as this:
EXEC SQLIMS FETCH C1 INTO :HOSPNAME, :HOSPCODE
END-EXEC.

The key feature of this statement is the use of a list of host variables to receive the
values returned by FETCH. The list has a known number of items (in this case,
two items, :HOSPNAME and :HOSPCODE) of known data types (both are
character strings, of lengths 15 and 4, respectively).

You can use this list in the FETCH statement only because you planned the
program to use only fixed-list SELECTs. Every row that cursor C1 points to must
contain exactly two character values of appropriate length. If the program is to
handle anything else, it must use the techniques for including dynamic SQL for
varying-list SELECT statements in your program.

Closing the cursor:

Example: Close the cursor when your program is finished running the FETCH
statement:
EXEC SQLIMS CLOSE C1
END-EXEC.

Related concepts:
“SQL statements in COBOL programs” on page 581
Related tasks:
“Dynamically executing SQL for non-SELECT statements” on page 566
“Dynamically executing SQL for varying-list SELECT statements” on page 562

Chapter 37. Writing application programs for SQL 561

Rules for host variables in an SQL statement:

Use host variables in embedded SQL statements to represent a single value. Host
variables are useful for storing retrieved data or for passing values that are to be
assigned or used for comparisons.

When you use host variables, adhere to the following requirements:
v You must declare the name of the host variable in the host program before you

use it. Host variables follow the naming conventions of the host language.
v You can use a host variable to represent a data value, but you cannot use it to

represent a segment, view, or field name. You can specify segment or field
names at run time by using dynamic SQL.

v To use a host variable in an SQL statement, you can specify any valid host
variable name that is declared according to the rules of the host language.

v A colon (:) must precede host variables that are used in SQL statements so that
IMS can distinguish a variable name from a field name. When host variables are
used outside of SQL statements, do not precede them with a colon.

v To optimize performance, make sure that the host language declaration maps as
closely as possible to the data type of the associated data in the database.

v For assignments and comparisons between an IMS field and a host variable of a
different data type or length, expect conversions to occur.

Related concepts:
“Dynamic SQL” on page 559

Assignment and comparison (Application Programming APIs)

Dynamically executing SQL for varying-list SELECT statements
A varying-list SELECT statement returns rows that contain an unknown number of
values of unknown type. When you use this type of statement, you do not know
in advance exactly what kinds of host variables you need to declare for storing the
results.

What your application program must do for varying-list SELECT statements: To
execute a varying-list SELECT statement dynamically, your program must follow
these steps:
1. Include an SQLIMSCA.
2. Load the input SQL statement into a data area.
3. Prepare and execute the statement. This step is more complex than for fixed-list

SELECTs. It involves the following steps:
a. Include an SQLIMSDA (SQL descriptor area).
b. Declare a cursor and prepare the statement.
c. Obtain information about each field of the result segment.
d. Determine the main storage needed to hold a row of retrieved data.
e. Put storage addresses in the SQLIMSDA to tell where each item of retrieved

data should be stored.
f. Open the cursor.
g. Fetch a row.
h. Eventually close the cursor and free main storage.

4. Handle any errors that might result.

Preparing a varying-list SELECT statement:

562 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_assignmentandcomparison.htm#ims_assignmentandcomparison

Suppose that your program dynamically executes SQL statements.

Your program puts the statements into a varying-length character variable; call it
STMTSTR. Your program goes on to prepare a statement from the variable and
then give the statement a name; call it S1.

If the statement is a SELECT statement, the program must find out how many
values are in each row, and what their data types are. The information comes from
an SQL descriptor area (SQLIMSDA).

An SQL descriptor area:

The SQLIMSDA is a structure that is used to communicate with your program, and
storage for it is usually allocated dynamically at run time.

For COBOL, use:
EXEC SQLIMS INCLUDE SQLIMSDA END-EXEC.

Obtaining information about the SQL statement:

An SQLIMSDA can contain a variable number of occurrences of SQLIMSVAR, each
of which is a set of five fields that describe one field in the result segment of a
SELECT statement. The included SQLIMSDA contains a maximum of 750
occurrences of SQLVARs, which means it can hold up to 750 of resulting columns.

Declaring a cursor for the statement:

As before, you need a cursor for the dynamic SELECT. For example, write:
EXEC SQLIMS

DECLARE C1 CURSOR FOR S1

Preparing the statement using the minimum SQLIMSDA:

To prepare a statement from the character string in STMTSTR and also enter its
description into SQLIMSDA, write this:
EXEC SQLIMS PREPARE STMT FROM :STMTSTR END-EXEC.
EXEC SQLIMS DESCRIBE STMT INTO :SQLIMSDA END-EXEC.

The following figure shows the contents of the minimum SQLIMSDA in use.

SQLIMSN determines what SQLVAR gets:

The SQLIMSN field, which you must set before using DESCRIBE (or PREPARE
INTO), tells how many occurrences of SQLIMSVAR the SQLIMSDA is allocated for.
v Base SQLIMSVAR information includes:

– Data type code
– Length attribute
– Column name or label
– Host variable address
– Indicator variable address

SQLIMSDAID SQLIMSD750SQLIMSDABCHeader

Figure 98. The minimum SQLIMSDA structure

Chapter 37. Writing application programs for SQL 563

Whenever you execute DESCRIBE, IMS returns the following values, which you
can use to build an SQLIMSDA of the correct size:
v SQLIMSD is 0 if the SQL statement is not a SELECT. Otherwise, SQLIMSD is the

number of fields in the result segment.

If the statement is not a SELECT:

To find out if the statement is a SELECT, your program can query the SQLIMSD
field in SQLIMSDA after the DESCRIBE statement. If the field contains 0, the
statement is not a SELECT, the statement is already prepared, and your program
can execute it. You can use:
EXEC SQLIMS EXECUTE STMT END-EXEC.

If the statement is a SELECT:

After the DESCRIBE statement executes, each occurrence of SQLIMSVAR contains
a description of one field of the result segment in five fields.

The following table describes the values in the descriptor area.

Table 91. Values inserted in the SQLIMSDA

Value Field Description

SQLIMSDA SQLIMSDAID An “eye-catcher”

750 SQLIMSN The number of occurrences of SQLIMSVAR, set by
the program

2 SQLIMSD The number of occurrences of SQLIMSVAR actually
used by the DESCRIBE statement

452 SQLIMSTYPE The value of SQLIMSTYPE in the first occurrence of
SQLIMSVAR. It indicates that the first field contains
fixed-length character strings, and does not allow
nulls.

3 SQLIMSLEN The length attribute of the column

Undefined SQLIMSIND

8 SQLIMSNAME The number of characters in the field name

HOSPCODE SQLIMSNAME+2 The field name of the first column

The following figure shows an SQLIMSDA that describes two fields.

The first SQLIMSVAR pertains to the first field of the result segment (the
HOSPCODE column). SQLIMSVAR element 1 contains fixed-length character
strings and does not allow null values (SQLIMSTYPE=452); the length attribute is
3.

3452

453 4

HOSPCODE

HOSPNAME

0

0

12

17

undefined

undefined

SQLIMSDASQLIMSDA header

SQLIMSVAR element 1 (44 bytes)

SQLIMSVAR element 2 (44 bytes)

Figure 99. Contents of SQLIMSDA after executing DESCRIBE

564 Application Programming

Acquiring storage to hold a row:

Before fetching rows of the result segment, your program must:
1. Analyze each SQLIMSVAR description to determine how much space you need

for the field value.
2. Derive the address of some storage area of the required size.
3. Put this address in the SQLIMSDATA field.

If the SQLIMSTYPE field indicates that the value can be null, the program must
also put the address of an indicator variable in the SQLIMSIND field. The
following figures show the SQL descriptor area after you take certain actions.

Putting storage addresses in the SQLIMSDA:

After analyzing the description of each column, your program must replace the
content of each SQLIMSDATA field with the address of a storage area large
enough to hold values from that column. Similarly, for every field that allows
nulls, the program must replace the content of the SQLIMSIND field. The content
must be the address of a halfword that you can use as an indicator variable for the
column. The program can acquire storage for this purpose, of course, but the
storage areas used do not have to be contiguous.

The following figure shows the SQLIMSDA after your program acquires storage
for the field values and their indicators, and puts the addresses in the
SQLIMSDATA fields of the SQLIMSDA. It shows the content of the descriptor area
before the program obtains any rows of the result table. Addresses of fields and
indicator variables are already in the SQLIMSVAR.

Executing a varying-list SELECT statement dynamically:

You can easily retrieve rows of the result table using a varying-list SELECT
statement. The statements differ only a little from those for the fixed-list example.

Open the cursor: If the SELECT statement contains no parameter marker, this
step is simple enough. For example:
EXEC SQLIMS OPEN C1 END-EXEC.

3452

453 4

HOSPCODE

HOSPNAME

0

0

12

17

undefined

undefined

FLDA
CHAR(12)

FLDB
CHAR(17) FLDAl FLDBl

Indicator variables
(halfword)

SQLIMSDASQLIMSDA header

SQLIMSVAR element 1 (44 bytes)

SQLIMSVAR element 2 (44 bytes)

Figure 100. SQL descriptor area after analyzing descriptions and acquiring storage

Chapter 37. Writing application programs for SQL 565

Fetch rows from the result table: This statement differs from the corresponding
one for the case of a fixed-list select. Write:
EXEC SQLIMS

FETCH C1 USING DESCRIPTOR :SQLIMSDA END-EXEC.

The key feature of this statement is the clause USING DESCRIPTOR :SQLIMSDA.
That clause names an SQL descriptor area in which the occurrences of
SQLIMSVAR point to other areas. Those other areas receive the values that FETCH
returns. It is possible to use that clause only because you previously set up
SQLIMSDA to look like Figure 99 on page 564.

The following figure shows the result of the FETCH. The data areas identified in
the SQLIMSVAR fields receive the values from a single row of the result table.

Successive executions of the same FETCH statement put values from successive
rows of the result table into these same areas.

Close the cursor: This step is the same as for the fixed-list case. When no more
rows need to be processed, execute the following statement:
EXEC SQLIMS CLOSE C1 END-EXEC.

Related concepts:
“SQL statements in COBOL programs” on page 581
Related reference:

DESCRIBE OUTPUT (Application Programming APIs)

SQL descriptor area (SQLIMSDA) (Application Programming APIs)

SQLIMSTYPE and SQLIMSLEN (Application Programming APIs)

The SQLIMSDA header (Application Programming APIs)

Dynamically executing SQL for non-SELECT statements
The easiest way to use dynamic SQL is to use non-SELECT statements such as the
INSERT, UPDATE, or DELETE statement.

Your program must take the following steps:
1. Include an SQLIMSCA.
2. Load the input SQL statement into a data area.

3452

453 4

HOSPCODE

HOSPNAME

0

0

8

7

undefined

undefined

FLDA
CHAR(12)

FLDB
CHAR(17) FLDAl FLDBl

Indicator variables
(halfword)

SQLIMSDASQLIMSDA header

SQLIMSVAR element 1 (44 bytes)

SQLIMSVAR element 2 (44 bytes)

R1210010000A 0 0ALEXANDRIA

Figure 101. SQL descriptor area after executing FETCH

566 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_describeoutput.htm#ims_sql_describeoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sqldescriptorareaintro.htm#ims_sqldescriptorareaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sqltypeandsqlleninsqlda.htm#ims_sqltypeandsqlleninsqlda
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_thesqldaheader.htm#ims_thesqldaheader

3. Execute the statement.
v PREPARE and EXECUTE

4. Handle any errors that might result. The return code from the most recently
executed SQL statement appears in the host variables SQLIMSCODE and
SQLIMSSTATE or corresponding fields of the SQLIMSCA.

5. Check SQLIMSERRD(3) for the number of rows being changed.

Example:

Suppose that your program updates the hospital name by dynamically executing
the UPDATE statement of this form:
UPDATE HOSPITAL SET HOSPNAME = ’MISSION CREEK’
WHERE HOSPITAL.HOSPCODE = ’H001007’

In this example, the UPDATE statement is stored in a host variable STMTSTR.

Declare the statement:
EXEC SQLIMS

DELCARE STMT STATEMENT
END-EXEC.

Declaring a varying-length character host variable: Before you prepare and execute
an SQL statement, you have to assign it into a host variable. Declare
varying-length character host variable for the SQL statement. The first two bytes
must contain the length of the SQL statement. The maximum length of the SQL
statement is 32K. For example:
01 STMTSTR.

49 STMTSTR-LEN PIC S9(4) COMP VALUE +180.
49 STMTSTR-TXT PIC X(180) VALUE SPACES.

Preparing the statement:

Prepare a statement (STMT) from the STMTSTR host variable.
EXEC SQLIMS
PREPARE STMT FROM :STMTSTR
END-EXEC.

Executing the statement:

To execute STMT, your program use the EXECUTE call.
EXEC SQLIMS

EXECUTE STMT
END-EXEC.

Related concepts:
“SQL statements in COBOL programs” on page 581
Related tasks:
“Checking the execution of SQL statements” on page 570

Dynamically executing a SELECT SQL statement with parameter
markers
Use the SELECT statements with parameter markers.

Chapter 37. Writing application programs for SQL 567

Suppose that you want to execute SELECT statements repeatedly using a list of
hospital numbers. Suppose further that users enter a list of hospital numbers to be
retrieved. You must construct and execute the entire statement dynamically. Your
program can:
v Use parameter markers instead of constant values in the SQL statement
v Use OPEN statement with the USING clause to set values for parameter markers
v Use FETCH to retrieve data

Statements with parameter markers:

Dynamic SQL statements cannot use host variables. Therefore, you cannot
dynamically execute an SQL statement that contains host variables. Instead, use
parameter marker. A parameter marker is a question mark (?) that represents a
position in a dynamic SQL statement where the application will provide a value.

Example using parameter markers:
SELECT HOSPNAME FROM PCB01.HOSPITAL WHERE HOSPCODE = ?;

You associate the host variable HOSPCODE with the parameter marker when you
fetch data with the prepared statement.

Declaring a varying-length character host variable: Before you prepare and execute
an SQL statement, you have to assign it into a host variable. Declare
varying-length character host variable for the SQL statement. The first two bytes
must contain the length of the SQL statement. The maximum length of the SQL
statement is 32K. For example:
01 STMTSTR.

49 STMTSTR-LEN PIC S9(4) COMP VALUE +180.
49 STMTSTR-TXT PIC X(180) VALUE SPACES.

Declaring the CURSOR:

Declare a cursor to put the results for a SELECT statement.

When you declare the cursor, use the statement name (call it S1), and give the
cursor itself a name (for example, C1):
EXEC SQLIMS DECLARE C1 CURSOR FOR S1
END-EXEC.

Using the PREPARE statement:

Assume that the character host variable :STMTSTR has the value SELECT HOSPNAME
FROM PCB01.HOSPITAL WHERE HOSPCODE = ?. To prepare an SQL statement from that
string and assign it the name S1, write:
EXEC SQLIMS PREPARE S1 FROM :STMTSTR;

The prepared statement still contains a parameter marker, for which you must
supply a value when the statement executes. After the statement is prepared, the
parameter marker enables you to execute the same statement many times with
different values of the hospital code.

To execute STMT, your program must open the cursor, fetch rows from the result
segment, and close the cursor.

Using the OPEN statement:

568 Application Programming

The OPEN statement open a cursor for the prepared SQL statement. If the SQL
statement contains parameter markers, you must use the USING clause of OPEN
to provide values for all of the parameter markers. The USING clause of the OPEN
statement names a list of one or more host variables or a host structure. This list
supplies values for all of the parameter markers. Suppose that C1 is the cursor and
the parameter value is contained in the host variable HOSPCODE, write:
OPEN C1 USING :HOSPCODE

The OPEN statement can be executed using different values for HOSPCODE.

Using more than one parameter marker: The prepared statement (S1 in the
example) can contain more than one parameter marker. If it does, the USING
clause of EXECUTE specifies a list of variables or a host structure. The variables
must contain values that match the number and data types of parameters in S1 in
the proper order. You must know the number and types of parameters in advance
and declare the variables in your program.

For example, OPEN C1 USING :PARM1, :PARM2

Fetching rows from the result table:

This example shows you how to fetch data into host variables:
EXEC SQLIMS FETCH C1 INTO :HOSPNAME, :HOSPCODE
END-EXEC.

Closing the cursor:

Close the cursor when your program is finished running the FETCH statement:
EXEC SQLIMS CLOSE C1
END-EXEC.

Related concepts:
“SQL statements in COBOL programs” on page 581
Related reference:

PREPARE (Application Programming APIs)

Dynamically executing a non-select SQL statement with
parameter markers
Use PREPARE and EXECUTE for non-SELECT statements like INSERT, UPDATE,
and DELETE with parameter markers.

Suppose that you want to execute UPDATE statements repeatedly using a list of
hospital numbers. Suppose further that users enter a list of hospital numbers to
update. You must construct and execute the entire statement dynamically. Your
program must now do these things differently:
v Use parameter markers instead of host variables
v Use the PREPARE and EXECUTE statement

Parameter markers with PREPARE and EXECUTE: Dynamic SQL statements
cannot use host variables. Therefore, you cannot dynamically execute an SQL
statement that contains host variables. Instead, use parameter marker. A parameter
marker is a question mark (?) that represents a position in a dynamic SQL
statement where the application will provide a value.

Example using parameter markers:

Chapter 37. Writing application programs for SQL 569

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_prepare.htm#ims_sql_prepare

DELETE FROM PCB01.HOSPITAL WHERE HOSPCODE = ?;

You associate the host variable HOSPCODE with the parameter marker when you
execute the prepared statement.

Declaring a varying-length character host variable: Before you prepare and execute
an SQL statement, you have to assign it into a host variable. Declare
varying-length character host variable for the SQL statement. The first two bytes
must contain the length of the SQL statement. The maximum length of the SQL
statement is 32K. For example:
01 STMTSTR.

49 STMTSTR-LEN PIC S9(4) COMP VALUE +180.
49 STMTSTR-TXT PIC X(180) VALUE SPACES.

Using the PREPARE statement: Assume that the character host variable :STMTSTR
has the value DELETE FROM PCB01.HOSPITAL WHERE HOSPCODE = ?. To prepare an
SQL statement from that string and assign it the name S1, write:
EXEC SQLIMS PREPARE S1 FROM :STMTSTR;

The prepared statement still contains a parameter marker, for which you must
supply a value when the statement executes. After the statement is prepared, the
parameter marker enables you to execute the same statement many times with
different values of the hospital code.

Using the EXECUTE statement: The EXECUTE statement executes a prepared SQL
statement by naming a list of one or more host variables or a host structure. This
list supplies values for all of the parameter markers. Suppose that S1 is the
prepared statement and the parameter value is contained in the host variable
HOSPCODE, write:
EXECUTE S1 USING :HOSPCODE

The EXECUTE statement can be executed using different values for HOSPCODE.

Using more than one parameter marker: The prepared statement (S1 in the
example) can contain more than one parameter marker. If it does, the USING
clause of EXECUTE specifies a list of variables or a host structure. The variables
must contain values that match the number and data types of parameters in S1 in
the proper order. You must know the number and types of parameters in advance
and declare the variables in your program.

Example:

If two parameter markers are in STMT, you need the following statement:
EXEC SQLIMS

EXECUTE STMT USING :PARM1, :PARM2
END-EXEC.

Checking the execution of SQL statements
After executing an SQL statement, your program should check for any error codes
before you commit the data and handle the errors that they represent.

You can check the execution of SQL statements in one of the following ways:
v By displaying specific fields in the SQLIMSCA.
v By testing SQLIMSCODE or SQLIMSSTATE for specific values.
v By using the WHENEVER statement in your application program.

570 Application Programming

v By testing indicator variables to detect numeric errors.
Related tasks:
“Defining the SQL communications area in COBOL” on page 573

Checking the execution of SQL statements by using the
SQLIMSCA
One way to check whether an SQL statement executed successfully is to use the
SQL communication area (SQLIMSCA). This area is set apart for communication
with IMS.

If you use the SQLIMSCA, include the necessary instructions to display
information that is contained in the SQLIMSCA in your application program.
v When IMS processes an SQL statement, it places return codes that indicate the

success or failure of the statement execution in SQLIMSCODE and
SQLIMSSTATE.

v When IMS processes a FETCH statement, and the FETCH is successful, the
contents of SQLIMSERRD(3) in the SQLIMSCA is set to the number of returned
rows.

v When IMS processes a FETCH statement, the contents of SQLIMSCODE is set to
+100 if the last row in the segment has been returned with the set of rows.

v When IMS processes an UPDATE, INSERT, or DELETE statement, and the
statement execution is successful, the contents of SQLIMSERRD(3) in the
SQLIMSCA is set to the number of rows that are updated, inserted, or deleted.

Related tasks:
“Checking the execution of SQL statements by using SQLIMSCODE and
SQLIMSSTATE”
“Defining the SQL communications area in COBOL” on page 573
Related reference:

Description of SQLIMSCA fields (Application Programming APIs)

Checking the execution of SQL statements by using
SQLIMSCODE and SQLIMSSTATE
Whenever an SQL statement executes, the SQLIMSCODE and SQLIMSSTATE fields
of the SQLIMSCA receive a return code. The SQLIMSERRMT field of the
SQLIMSCA will contain message text that describes the error.

SQLIMSCODE:

IMS returns the following codes in SQLIMSCODE:
v If SQLIMSCODE = 0, execution was successful.
v If SQLIMSCODE > 0, execution was successful with a warning.
v If SQLIMSCODE < 0, execution was not successful.

SQLIMSCODE 100 indicates that no data was found.

SQLIMSSTATE: SQLIMSSTATE enables an application program to check for
errors in the same way for different IBM database management systems.
Related tasks:
“Defining the SQL communications area in COBOL” on page 573
Related reference:

SQL codes (Messages and Codes)

Chapter 37. Writing application programs for SQL 571

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_descriptionofsqlcafields.htm#ims_descriptionofsqlcafields
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/compcodes/ims_sqlcodes.htm#ims_sqlcodes

Checking the execution of SQL statements by using the
WHENEVER statement
The WHENEVER statement causes IMS to check the SQLIMSCA and continue
processing your program. If an error, exception, or warning occurs, IMS branches
to another area in your program. The condition handling area of your program can
then examine the SQLIMSCODE or SQLIMSSTATE to react specifically to the error
or exception.

The WHENEVER statement enables you to specify what to do if a general
condition is true. You can specify more than one WHENEVER statement in your
program. When you do this, the first WHENEVER statement applies to all
subsequent SQL statements in the source program until the next WHENEVER
statement.

The WHENEVER statement looks like this:
EXEC SQLIMS

WHENEVER condition action
END-EXEC

The condition of the WHENEVER statement is one of these three values:

SQLWARNING
Indicates what to do when SQLIMSWARN0 = W or SQLIMSCODE
contains a positive value other than 100. IMS can set SQLIMSWARN0 for
several reasons—for example, if a field value is truncated when moved
into a host variable. Your program might not regard this as an error.

SQLERROR
Indicates what to do when IMS returns an error code as the result of an
SQL statement (SQLIMSCODE < 0).

NOT FOUND
Indicates what to do when IMS cannot find a row to satisfy your SQL
statement or when there are no more rows to fetch (SQLIMSCODE = 100).

The action of the WHENEVER statement is one of these two values:

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a
single token, preceded by an optional colon. The form of the token
depends on the host language. In COBOL, for example, it can be
section-name or an unqualified paragraph-name.

The WHENEVER statement must precede the first SQL statement it is to affect.
However, if your program checks SQLIMSCODE directly, you must check
SQLIMSCODE after each SQL statement.
Related reference:

WHENEVER (Application Programming APIs)

Coding SQL statements in COBOL application programs
When you code SQL statements in COBOL application programs, you should
follow certain guidelines.

572 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_whenever.htm#ims_sql_whenever

Defining the SQL communications area in COBOL
COBOL programs that contain SQL statements can include an SQL
communications area (SQLIMSCA) to check whether an SQL statement executed
successfully.

To define the SQL communications area:

Use the following SQL INCLUDE statement to request a standard SQLIMSCA
declaration:
EXEC SQLIMS INCLUDE SQLIMSCA

You can specify INCLUDE SQLIMSCA or a declaration for SQLIMSCODE
wherever you can specify a 77 level or a record description entry in the
WORKING-STORAGE SECTION.
IMS sets the SQLIMSCODE, SQLIMSSTATE, and SQLIMSERRMT values in the
SQLIMSCA after each SQL statement executes. Your application should check these
values to determine whether the last SQL statement was successful.
Related tasks:
“Checking the execution of SQL statements” on page 570
“Checking the execution of SQL statements by using the SQLIMSCA” on page 571
“Checking the execution of SQL statements by using SQLIMSCODE and
SQLIMSSTATE” on page 571
“Defining the items that your program can use to check whether an SQL statement
executed successfully” on page 557

Defining SQL descriptor areas in COBOL
If your program includes certain SQL statements such as DESCRIBE, you must
define at least one SQL descriptor area (SQLIMSDA). Depending on the context in
which it is used, the SQLIMSDA stores information about prepared SQL statements
or host variables. This information can then be read by either the application
program or IMS.

To define SQL descriptor areas:
1. Use the following SQL INCLUDE statement to request a standard SQLIMSDA

declaration:
EXEC SQLIMS INCLUDE SQLIMSDA

2. You must place SQLIMSDA declarations in the WORKING-STORAGE
SECTION, LINKAGE SECTION or LOCAL-STORAGE SECTION of your
program, wherever you can specify a record description entry in that section.
You must place SQLIMSDA declarations before the first SQL statement that
references the data descriptor.

Related tasks:
“Defining SQL descriptor areas” on page 558

Declaring host variables and indicator variables in COBOL
You can use host variables and host structures in SQL statements in your program
to pass data between IMS and your application.

To declare host variables and host structures:
1. Declare the variables according to the following rules and guidelines:

Chapter 37. Writing application programs for SQL 573

v You must explicitly declare all host variables that are used in SQL statements
in the WORKING-STORAGE SECTION or LINKAGE SECTION of your
program's DATA DIVISION.

v You must explicitly declare each host variable before using them in an SQL
statement.

v You cannot implicitly declare any host variables through default typing or by
using the IMPLICIT statement.

v Ensure that any SQL statement that uses a host variable is within the scope
of the statement that declares that variable.

2. Optional: Define any associated indicator variables, arrays, and structures.
Related tasks:
“Declaring host variables and indicator variables” on page 558

Host variables in COBOL
In COBOL programs, you can specify numeric and character host variables.

Restrictions:

v Only some of the valid COBOL declarations are valid host variable declarations.
If the declaration for a variable is not valid, any SQL statement that references
the variable might result in the message UNDECLARED HOST VARIABLE.

v One or more REDEFINES entries can follow any level 77 data description entry.
However, you cannot use the names in these entries in SQL statements. Entries
with the name FILLER are ignored.

Recommendations:

v Be careful of overflow. For example, suppose that you retrieve an INTEGER field
value into a PICTURE S9(4) host variable and the field value is larger than 32767
or smaller than -32768. You get an overflow warning or an error, depending on
whether you specify an indicator variable.

v Be careful of truncation. For example, if you retrieve an 80-character CHAR field
value into a PICTURE X(70) host variable, the rightmost 10 characters of the
retrieved string are truncated. Retrieving a double precision floating-point or
decimal field value into a PIC S9(8) COMP host variable removes any fractional
part of the value. Similarly, retrieving a field value with DECIMAL data type
into a COBOL decimal variable with a lower precision might truncate the value.

Numeric host variables

You can specify the following forms of numeric host variables:
v Floating-point numbers
v Integers and small integers
v Decimal numbers

The following diagram shows the syntax for declaring floating-point or real host
variables.

►► 01
77

(1)
level-1

variable-name
IS

USAGE

►

574 Application Programming

►
(2)

COMPUTATIONAL-1
COMP-1

(3)
COMPUTATIONAL-2
COMP-2

IS
VALUE numeric-constant

. ►◄

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 COMPUTATIONAL-1 and COMP-1 are equivalent.

3 COMPUTATIONAL-2 and COMP-2 are equivalent.

The following diagram shows the syntax for declaring integer. small integer, and
big integer host variables.

►► 01
77

(1)
level-1

variable-name PICTURE
PIC

IS
S9(4)
S9999
S9(9)
S999999999
S9(18)

►

►
IS

USAGE

(2)
BINARY
COMPUTATIONAL-4
COMP-4

(3)
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

►

►
IS

VALUE numeric-constant

(4)
. ►◄

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 The COBOL binary integer data types BINARY, COMPUTATIONAL, COMP,
COMPUTATIONAL-4, and COMP-4 are equivalent.

3 COMPUTATIONAL-5 (and COMP-5) are equivalent to the other COBOL
binary integer data types if you compile the other data types with
TRUNC(BIN).

4 Any specification for scale is ignored.

The following diagram shows the syntax for declaring decimal host variables.

►► 01
77

(1)
level-1

variable-name PICTURE
PIC

IS (2)
picture-string ►

Chapter 37. Writing application programs for SQL 575

►
IS

USAGE

►

►
(3)

PACKED-DECIMAL
COMPUTATIONAL-3
COMP-3

IS CHARACTER
DISPLAY SIGN LEADING SEPARATE
NATIONAL

►

►
IS

VALUE numeric-constant

. ►◄

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 The picture-string that is associated with SIGN LEADING SEPARATE must
have the form S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9 or S9...9V
with i instances of 9).

3 PACKED-DECIMAL, COMPUTATIONAL-3, and COMP-3 are equivalent. The
picture-string that is that is associated with these types must have the form
S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9) or S9(i)V.

In COBOL, you declare the SMALLINT and INTEGER data types as a number of
decimal digits. IMS uses the full size of the integers (in a way that is similar to
processing with the TRUNC(BIN) compiler option) and can place larger values in
the host variable than would be allowed in the specified number of digits in the
COBOL declaration. If you compile with TRUNC(OPT) or TRUNC(STD), ensure
that the size of numbers in your application is within the declared number of
digits.

For small integers that can exceed 9999, use S9(4) COMP-5 or compile with
TRUNC(BIN). For large integers that can exceed 999 999 999, use S9(10) COMP-3
to obtain the decimal data type. If you use COBOL for integers that exceed the
COBOL PICTURE, specify the field as decimal to ensure that the data types match
and perform well.

If you are using a COBOL compiler that does not support decimal numbers of
more than 18 digits, use one of the following data types to hold values of greater
than 18 digits:
v A decimal variable with a precision less than or equal to 18, if the actual data

values fit. If you retrieve a decimal value into a decimal variable with a scale
that is less than the source field in the database, the fractional part of the value
might be truncated.

v An integer or a floating-point variable, which converts the value. If you use an
integer variable, you lose the fractional part of the number. If the decimal
number might exceed the maximum value for an integer or if you want to
preserve a fractional value, use a floating-point variable. Floating-point numbers
are approximations of real numbers. Therefore, when you assign a decimal
number to a floating-point variable, the result might be different from the
original number.

576 Application Programming

Character host variables

You can specify the following forms of character host variables:
v Fixed-length strings

The following diagram shows the syntax for declaring fixed-length character host
variables.

►► 01
77

(1)
level-1

variable-name PICTURE
PIC

IS (2)
picture-string ►

►
DISPLAY

IS
USAGE

IS
VALUE character-constant

. ►◄

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 The picture-string that is associated with these forms must be X(m) (or XX...X,
with m instances of X), where m is up to COBOL's limitation.

The following diagrams show the syntax for declaring varying-length character
host variables.

►► 01 variable-name .
(1)

level-1

►◄

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

►►
(1) (2)

49 var-1 PICTURE
PIC

IS (3)
S9(4)
S9999 IS

USAGE

►

► BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

IS
VALUE numeric-constant

. ►◄

Notes:

1 You cannot use an intervening REDEFINE at level 49.

2 You cannot directly reference var-1 as a host variable.

3 IMS uses the full length of the S9(4) BINARY variable even though COBOL

Chapter 37. Writing application programs for SQL 577

with TRUNC(STD) recognizes values up to only 9999. This behavior can
cause data truncation errors when COBOL statements execute and might
effectively limit the maximum length of variable-length character strings to
9999. Consider using the TRUNC(BIN) compiler option or USAGE COMP-5
to avoid data truncation.

►►
(1) (2)

49 var-2 PICTURE
PIC

IS (3)
picture-string ►

►
DISPLAY

IS
USAGE

IS
VALUE character-constant

. ►◄

Notes:

1 You cannot use an intervening REDEFINE at level 49.

2 You cannot directly reference var-2 as a host variable.

3 For fixed-length strings, the picture-string must be X(m) (or XX, with m
instances of X), where mis up to COBOL's limitation.

Related concepts:
“Host variables” on page 558
Related tasks:
“Using SQL statements in your application” on page 559

Host structures in COBOL
A COBOL host structure is a named set of host variables that are defined in your
program's WORKING-STORAGE SECTION or LINKAGE SECTION.

Requirements: Host structure declarations in COBOL must satisfy the following
requirements:
v COBOL host structures can have a maximum of two levels, even though the

host structure might occur within a structure with multiple levels.
v A host structure name can be a group name whose subordinate levels name

elementary data items.
v If you are using the IMS coprocessor, do not declare host variables or host

structures on any subordinate levels after one of the following items:
– A COBOL item that begins in area A
– Any SQL statement (except SQL INCLUDE)
– Any SQL statement within an included member

When the IMS precompiler encounters one of the preceding items in a host
structure, it considers the structure to be complete.

When you write an SQL statement that contains a qualified host variable name
(perhaps to identify a field within a structure), use the name of the structure
followed by a period and the name of the field. For example, for structure B that
contains field C1, specify B.C1 rather than C1 OF B or C1 IN B.

578 Application Programming

Host structures

The following diagram shows the syntax for declaring host structures.

►►
(1)

level-1 variable-name . ▼
(2) (3) (4)

level-2 var-1 A ►◄

A:

numeric-usage .
IS

PICTURE integer-decimal-usage .
PIC picture-string

char-inner-variable .
SQL TYPE IS TABLE LIKE table-name AS LOCATOR .

Notes:

1 level-1 indicates a COBOL level between 1 and 47.

2 level-2 indicates a COBOL level between 2 and 48.

3 For elements within a structure, use any level 02 through 48 (rather than 01 or 77), up to a
maximum of two levels.

4 Using a FILLER or optional FILLER item within a host structure declaration can invalidate the
whole structure.

Numeric usage items

The following diagram shows the syntax for numeric-usage items that are used
within declarations of host structures.

►►
IS

USAGE

COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2

IS
VALUE constant

►◄

Integer and decimal usage items

The following diagram shows the syntax for integer and decimal usage items that
are used within declarations of host structures.

►►
IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP
PACKED-DECIMAL
COMPUTATIONAL-3
COMP-3

IS
DISPLAY SIGN LEADING SEPARATE

CHARACTER

►

Chapter 37. Writing application programs for SQL 579

►
IS

VALUE constant

►◄

CHAR inner variables

The following diagram shows the syntax for CHAR inner variables that are used
within declarations of host structures.

►► PICTURE
PIC

IS
picture-string

DISPLAY
IS

USAGE

IS
VALUE constant

►◄

Related concepts:
“Host structures” on page 558

Equivalent SQL and COBOL data types
When you declare host variables in your COBOL programs, the precompiler uses
equivalent SQL data types. When you retrieve data of a particular SQL data type
into a host variable, you need to ensure that the host variable is of an equivalent
data type.

The following table describes the SQL data type and the base SQLIMSTYPE and
SQLIMSLEN values that the precompiler uses for host variables in SQL statements.

Table 92. SQL data types, SQLIMSLEN values, and SQLIMSTYPE values that the precompiler uses for host variables
in COBOL programs

COBOL host variable data type
SQLIMSTYPE of
host variable1

SQLIMSLEN of host
variable SQL data type

COMP-2 480 8 DOUBLE PRECISION, or
FLOAT(n) 22<=n<=53

S9(i)V9(d) COMP-3 or S9(i)V9(d)
PACKED-DECIMAL

484 i+d in byte 1, d in byte 2 DECIMAL(i+d,d) or
NUMERIC(i+d,d)

S9(i)V9(d) DISPLAY SIGN
LEADING SEPARATE

504 i+d in byte 1, d in byte 2 No exact equivalent. Use
DECIMAL(i+d,d) or
NUMERIC(i+d,d)

S9(4) COMP-4, S9(4) COMP-5,
S9(4) COMP, or S9(4) BINARY

500 2 SMALLINT

S9(9) COMP-4, S9(9) COMP-5,
S9(9) COMP, or S9(9) BINARY

496 4 INTEGER

S9(18) COMP-4, S9(18) COMP-5,
S9(18) COMP, or S9(18) BINARY

492 8 BIGINT

Fixed-length character data 452 n CHAR(n)

SQL TYPE is BINARY(n),
1<=n<=255

912 n BINARY(n)

Notes:

1. If a host variable includes an indicator variable, the SQLIMSTYPE value is the
base SQLIMSTYPE value plus 1.

580 Application Programming

The following table shows equivalent COBOL host variables for each SQL data
type. Use this table to determine the COBOL data type for host variables that you
define to receive output from the database. For example, if you retrieve
TIMESTAMP data, you can define a fixed-length character string variable of length
n

This table shows direct conversions between SQL data types and COBOL data
types. However, a number of SQL data types are compatible. When you do
assignments or comparisons of data that have compatible data types, IMS converts
those compatible data types.

Table 93. COBOL host variable equivalents that you can use when retrieving data of a particular SQL data type

SQL data type COBOL host variable equivalent Notes

SMALLINT S9(4) COMP-4,
S9(4) COMP-5,
S9(4) COMP,
or S9(4) BINARY

INTEGER S9(9) COMP-4,
S9(9) COMP-5,
S9(9) COMP,
or S9(9) BINARY

DECIMAL(p,s) S9(p-s)V9(s) COMP-3 or
S9(p-s)V9(s)
PACKED-DECIMAL
DISPLAY SIGN
LEADING SEPARATE

p is precision; s is scale. 0<=s<=p<=31. If
s=0, use S9(p)V or S9(p). If s=p, use SV9(s).
If the COBOL compiler does not support
31–digit decimal numbers, no exact
equivalent exists. Use COMP-2.

DOUBLE PRECISION,
DOUBLE or FLOAT (n)

COMP-2 22<=n<=53

BIGINT S9(18) COMP-4,
S9(18) COMP-5,
S9(18) COMP,
or S9(18) BINARY

CHAR(n) Fixed-length character string. For example,

01 VAR-NAME PIC X(n).

1<=n<=255

BINARY(n) SQL TYPE IS BINARY(n) 1<=n<=255

DATE Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n).

TIME Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n).

TIMESTAMP Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n).

n must be at least 19. To include
microseconds, n must be 26; if n is less
than 26, truncation occurs on the
microseconds part.

SQL statements in COBOL programs
You can code SQL statements in certain COBOL program sections.

The allowable sections are shown in the following table.

Chapter 37. Writing application programs for SQL 581

Table 94. Allowable SQL statements for COBOL program sections

SQL statement Program section

INCLUDE SQLIMSCA WORKING-STORAGE SECTION1 or LINKAGE
SECTION

INCLUDE text-file-name PROCEDURE DIVISION or DATA DIVISION2

DECLARE CURSOR DATA DIVISION or PROCEDURE DIVISION

Other PROCEDURE DIVISION

Notes:

1. If you use the IMS coprocessor, you can use the LOCAL-STORAGE SECTION
wherever WORKING-STORAGE SECTION is listed in the table.

2. When including host variable declarations, the INCLUDE statement must be in
the WORKING-STORAGE SECTION or the LINKAGE SECTION.

You cannot put SQL statements in the DECLARATIVES section of a COBOL
program.

Each SQL statement in a COBOL program must begin with EXEC SQLIMS and end
with END-EXEC. The EXEC and SQLIMS keywords can be on different lines. Do
not include any tokens between the two keywords EXEC and SQL except for
COBOL comments, including debugging lines. Do not include SQL comments
between the keywords EXEC and SQLIMS.

If the SQL statement appears between two COBOL statements, the period after
END-EXEC is optional and might not be appropriate. If the statement appears in
an IF...THEN set of COBOL statements, omit the ending period to avoid
inadvertently ending the IF statement.

Comments: You can include COBOL comment lines (* in field 7) in SQL statements
wherever you can use a blank. You cannot include COBOL comment lines between
the keywords EXEC and SQLIMS. The IMS coprocessor treats the debugging lines
based on the COBOL rules, which depend on the WITH DEBUGGING mode
setting.

For an SQL INCLUDE statement, the IMS coprocessor treats this text as part of the
COBOL program syntax.

In addition, you can include SQL comments ('--') in any embedded SQL statement.

Debugging lines: The IMS coprocessor follows the COBOL language rules regarding
debugging lines.

Continuation for SQL statements: The rules for continuing a character string
constant from one line to the next in an SQL statement embedded in a COBOL
program are the same as those for continuing a non-numeric literal in COBOL.
However, you can use either a quote or an apostrophe as the first nonblank
character in area B of the continuation line. The same rule applies for the
continuation of delimited identifiers and does not depend on the string delimiter
option.

To conform with SQL standard, delimit a character string constant with an
apostrophe, and use a quote as the first nonblank character in area B of the
continuation line for a character string constant.

582 Application Programming

Continued lines of an SQL statement can be in fields 12 through 72 when using the
IMS coprocessor.

Declaring segments: Your COBOL program should include the statement
DECLARE TABLE to describe each segment and view the program accesses. You
can use the IMS declarations generator to generate the DECLARE TABLE
statements. You should include the generated members in the DATA DIVISION.

Dynamic SQL in a COBOL program: In general, COBOL programs can easily
handle dynamic SQL statements. COBOL programs can handle SELECT statements
if the data types and the number of fields returned are fixed. If you want to use
variable-list SELECT statements, use an SQLIMSDA.

Including code: To include SQL statements or COBOL host variable declarations
from a member of a partitioned data set, use the following SQL statement in the
source code where you want to include the statements:
EXEC SQLIMS INCLUDE member-name END-EXEC.

Use the 'EXEC SQLIMS' and 'END-EXEC' keyword pair to include SQL statements
only. COBOL statements, such as COPY or REPLACE, are not allowed.

Margins: You must code SQL statements that begin with EXEC SQLIMS in fields
12 through 72.

Names: You can use any valid COBOL name for a host variable. Do not use entry
names that begin with DFS or DQF, and do not use host variable names that begin
with 'SQL' or 'SQLIMS'. These names are reserved for IMS.

Sequence numbers: The source statements that the IMS coprocessor generates do
not include sequence numbers.

Statement labels: You can precede executable SQL statements in the PROCEDURE
DIVISION with a paragraph name, if you wish.

WHENEVER statement: The target for the GOTO clause in an SQL statement
WHENEVER must be a section name or unqualified paragraph name in the
PROCEDURE DIVISION.

Special COBOL considerations: The following considerations apply to programs
written in COBOL:
v In a COBOL program that uses elements in a multi-level structure as host

variable names, the IMS coprocessor generates the lowest two-level names.
v To avoid truncating numeric values, use either of the following methods:

– Use the COMP-5 data type for binary integer host variables.
– Specify the COBOL compiler option:

- TRUNC(OPT) if you are certain that the data being moved to each binary
variable by the application does not have a larger precision than is defined
in the PICTURE clause of the binary variable.

- TRUNC(BIN) if the precision of data being moved to each binary variable
might exceed the value in the PICTURE clause.

IMS assigns values to binary integer host variables as if you had specified the
COBOL compiler option TRUNC(BIN) or used the COMP-5 data type.

v Do not use COBOL figurative constants (such as ZERO and SPACE), symbolic
characters, reference modification, and subscripts within SQL statements.

Chapter 37. Writing application programs for SQL 583

v Observe the rules for naming SQL identifiers. However, for COBOL only, the
names of SQL identifiers can follow the rules for naming COBOL words, if the
names do not exceed the allowable length for the IMS object. For example, the
name 1ST-TIME is a valid cursor name because it is a valid COBOL word, but
the name 1_TIME is not valid because it is not a valid SQL identifier or a valid
COBOL word.

v Observe these rules for hyphens:
– Surround hyphens used as subtraction operators with spaces. IMS usually

interprets a hyphen with no spaces around it as part of a host variable name.
v If you include an SQL statement in a COBOL PERFORM ... THRU paragraph and

also specify the SQL statement WHENEVER ... GO, the COBOL compiler returns
the warning message IGYOP3094. That message might indicate a problem. This
usage is not recommended.

Related concepts:

SQL identifiers (Application Programming APIs)
Related tasks:
“Using SQL statements in your application” on page 559
“Defining SQL descriptor areas” on page 558

Delimiters in SQL statements in COBOL programs
You must delimit SQL statements in your COBOL program so that IMS knows
when a particular SQL statement ends.

Delimit an SQL statement in your COBOL program with the beginning keyword
EXEC SQLIMS and an END-EXEC.

Example

Use EXEC SQLIMS and END-EXEC. to delimit an SQL statement in a COBOL program:
EXEC SQLIMS

an SQL statement
END-EXEC.

SQL aggregate functions supported for COBOL
SQL aggregate functions are supported for COBOL and .NET applications (by
using IMS Enterprise Suite IMS Data Provider for Microsoft .NET).
v AVG
v COUNT
v MAX
v MIN
v SUM

These functions work with the ORDER BY clause, as well as GROUP BY:
v ORDER BY

– ASC
– DESC

v GROUP BY

Restriction: The supported SQL aggregate functions accept only a single field
name in a segment as the argument (the DISTINCT keyword is not allowed).

584 Application Programming

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sqlidentifiers.htm#ims_sqlidentifiers

The following table shows the data types of the fields that are accepted by the
aggregate functions, along with the resulting data type in the ResultSet.

Table 95. Supported SQL aggregate functions and their supported data types

Function Argument types Results and result types

AVG All supported numeric data
types for SQL statements in
COBOL programs are
supported, including
TINYINT, SMALLINT,
INTEGER, BIGINT, Zoned
Decimal, and Packed
Decimal

v The function is applied to the set of
values derived from the argument
values by excluding null values.

v For INTEGER, the fractional part of
the average is discarded. The result
can be null.

v For non-DECIMAL data types, the
result data type is always LONG.

v If the data type of the argument
value is DECIMAL, the result is
packed decimal. The scale of the
result is the same as the scale of
the argument value, and the
precision of the result is 31.

v If the function is applied to an
empty set, the result is the null
value.

v The averaged value must be within
the range of the data type of the
result.

COUNT Any supported data type v NULL values are not counted
when the total number of values in
a given column is counted
(COUNT(column)).

v NULL values are counted when the
number of rows in a table is
counted (COUNT(*)).

v COUNT(*) of an empty table
returns one row with a value of 0.

MAX TINYINT, INTEGER,
BIGINT, Zoned Decimal,
Packed Decimal, CHAR,
BINARY, DATE, TIME, and
TIMESTAMP

v Character string arguments and
binary string arguments cannot
have a length attribute greater than
32704.

v The data type of the result and its
other attributes (for example, the
length and CCSID of a string or a
datetime value) are the same as the
data type and attributes of the
argument values.

v The result can be null.

v The function is applied to the set of
values derived from the argument
values by the elimination of null
values.

v If the function is applied to an
empty set, the result is the null
value.

Chapter 37. Writing application programs for SQL 585

|
|

||

|||

||
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|||
|
|
|

|
|
|

|
|

||
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|

Table 95. Supported SQL aggregate functions and their supported data types (continued)

Function Argument types Results and result types

MIN TINYINT, INTEGER,
BIGINT, Zoned Decimal,
Packed Decimal, CHAR,
BINARY, DATE, TIME, and
TIMESTAMP

v The data type of the result and its
other attributes (for example, the
length and CCSID of a string or a
datetime value) are the same as the
data type and attributes of the
argument values.

v The result can be null.

v The function is applied to the set of
values derived from the argument
values by the elimination of null
values.

v If the function is applied to an
empty set, the result is the null
value.

SUM All supported numeric data
types for SQL statements in
COBOL programs are
supported, including
TINYINT, SMALLINT,
INTEGER, BIGINT, Zoned
Decimal and Packed
Decimal

v The sum must be within the range
of the data type of the result.

v The function is applied to the set of
values from the argument values
by eliminating null values.

v If the function is applied to an
empty set, the result is the null
value.

v The order in which the summation
is performed is undefined, but
every intermediate result must be
within the range of the result data
type.

v If the data type of the argument
value is DECIMAL, the result is
packed decimal. The scale of the
result is the same as the scale of
the argument value, and the
precision of the result is 31.

Column names generated by aggregate functions

The generated column name from an aggregate function is a combination of the
aggregate function name and the field name, separated by an underscore character
(_). For example, the statement SELECT MAX(age) results in a column name
MAX_age.

If the aggregate function argument field is table-qualified, the generated column
name is the combination of the aggregate function name, the table name, and the
column name, separated by underscore characters (_). For example, SELECT
MAX(Employee.age) results in a column name MAX_Employee_age.

The aggregate function is executed first, and then the required number of rows of
result are fetched from the result set.

586 Application Programming

|

|||

||
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|

||
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|

Using the ORDER BY and GROUP BY clauses

The field names that are specified in a GROUP BY or ORDER BY clause must
match exactly the field name that is specified in the SELECT statement. In order to
GROUP BY properly, the fields specified in SELECT list must also be specified in
the GROUP BY list.
SELECT HOSPNAME, COUNT(PATNAME) FROM PCB01.HOSPITAL, PATIENT GROUP BY HOSPNAME
ORDER BY HOSPNAME

Restriction: Aggregate functions cannot be used in the GROUP BY or ORDER BY
statements. For example, GROUP BY COUNT(PATNAME) or ORDER BY
AVG(COST) is not supported.
Related reference:

SELECT (Application Programming APIs)

Adding and modifying data
Your application program can query, modify, or delete data in any IMS segment for
which you have the appropriate level of access.

Inserting rows
You can insert data into segments using the SQL INSERT statement.

Use an INSERT statement to add new rows to a segment or view. Using an
INSERT statement, you can specify the field values to insert a single row. You can
specify constants or parameter markers, by using the VALUES clause.

For every row that you insert, you must provide a value for every key field. If you
do not specify a value in the INSERT call, IMS sets a value of 0.

Inserting a single row:

You can use the VALUES clause of the INSERT statement to insert a single row of
field values into a segment. You can either name all of the fields for which you are
providing values, or you can omit the list of field names. If you omit the field
name list, you must specify values for all of the fields. The fields are ordered first
by their field position within the IMS catalog and then by their length.

When inserting a record in a table at a non-root level, you must specify values for
all the foreign key fields of the table. Foreign key fields properly position the new
record (or segment instance) to be inserted in the hierarchic path using standard
SQL processing, similar to foreign keys in a relational database.

Recommendation: For INSERT statements, name all of the fields for which you are
providing values for the following reasons:
v Your INSERT statement is independent of the segment format. (For example,

you do not need to change the statement when a field is added to the segment.)
v You can verify that you are specifying the values in order.
v Your source statements are more self-descriptive.

When you list the field names, you must specify their corresponding values in the
same order as in the list of field names.

Chapter 37. Writing application programs for SQL 587

|

|
|
|
|

|
|

|
|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_select.htm#ims_sql_select

Example: The following statement inserts information about a new hospital into
the HOSPITAL segment.
INSERT INTO PCB01.HOSPITAL (HOSPCODE, HOSPNAME)

VALUES (’R1210050000A’, ’MALLEY CLINIC’)

After inserting a new hospital into your HOSPITAL segment, you can use a
SELECT statement to see what you have loaded into the segment. The following
SQL statement shows you all of the new department rows that you have inserted:
SELECT HOSPCODE, HOSPNAME

FROM PCB01.HOSPITAL

The result segment looks similar to the following output:
+------------+-----------------+
|HOSPCODE |HOSPNAME |
+------------+-----------------+
R1210010000A	ALEXANDRIA
R1210020000A	SANTA TERESA
R1210030000A	SANTA CLARA
R1210040000A	NEW ENGLAND
R1210050000A	MALLEY CLINIC

Example: The following statement inserts a new WARD record under a specific
HOSPITAL table. In this example, the WARD table has the foreign key
HOSPITAL_HOSPCODE. The new record will be inserted if and only if there is a
HOSPCODE in the HOSPITAL table with the value of 'R1210050000A'
INSERT INTO PCB01.WARD

WARDNO, HOSPITAL_HOSPCODE, WARDNAME)
VALUES (’0001’, ’R1210050000A’, ’EMGY’)

Example: The following statement also inserts a row into the HOSPITAL segment
without specifying the column names. All the columns values must be specified in
the VALUES clause.
INSERT INTO PCB01.HOSPITAL

VALUES (900, ’R1210050000A’, ’MALLEY CLINIC’);

Updating segment data
You can change a field value to another value or remove the field value altogether.

To change the data in a segment, use the UPDATE statement. You can also use the
UPDATE statement to remove a value from a field (without removing the row) by
changing the field value to an empty string.

Example: The following statement updates the hospital name to 'MISSION CREEK'
for hospital 'H001007'.
UPDATE HOSPITAL SET HOSPNAME = ’MISSION CREEK’
WHERE HOSPITAL.HOSPCODE = ’H001007’

The SET clause names the fields that you want to update and provides the values
that you want to assign to those fields. You can replace a field value in the SET
clause with any of the following items:
v An expression, which can be any of the following items:

– A constant
– A parameter marker

Next, identify the rows to update:

588 Application Programming

v To update a single row, use a WHERE clause that locates one, and only one,
row.

v To update several rows, use a WHERE clause that locates only the rows that you
want to update.

If you omit the WHERE clause, IMS updates every row in the segment with the
values that you supply. If IMS cannot find the row you want to identify, a
SQLIMSCODE of100 will be returned to the application.

If the UPDATE is successful, SQLIMSERRD(3) in the SQLIMSCA contains the
number of updated rows. This number includes only the number of updated rows
in the segment that is specified in the UPDATE statement.

Update rules:
Update values must satisfy the following rules. If they do not, or if other
errors occur during the execution of the UPDATE statement, no rows are
updated and the position of the cursors are not changed.
v Assignment. Update values are assigned to columns using the

assignment rules described in Language elements.
v When updating a record in a table at a non-root level, you must specify

values for all the foreign key fields of the table to identify the exact
record (or segment instance) to update.

v Making an UPDATE on a foreign key field is invalid.

If IMS finds an error while executing your UPDATE statement (for example, an
update value that is too large for the field), it returns an error. Upon receiving the
error, the application will have to decide on how to manage the rows that were
already changed. It can either commit or rollback the changes.

The following statement updates a WARD record under a specific HOSPITAL. In
this example, the WARD table has the virtual foreign key HOSPITAL_HOSPCODE.
The record will be updated if and only if there is a HOSPCODE in the HOSPITAL
table with the value of 'H5140070000H'.
UPDATE WARD SET WARDNAME = ’EMGY’,

DOCCOUNT = ’2’, NURCOUNT = ’4’
WHERE HOSPITAL_HOSPCODE = ’H5140070000H’

AND WARDNO = ’01’

Deleting data from segments
You can delete data from a segment by deleting one or more rows from the
segment, by deleting all rows from the segment, or by dropping fields from the
segment.

To delete one or more rows in a segment:
v Use the DELETE statement with a WHERE clause to specify a search condition.

The DELETE statement removes zero or more rows of a segment, depending on
how many rows satisfy the search condition that you specify in the WHERE
clause.
The following DELETE statement deletes each row in the HOSPITAL segment
that has Hospital named ALEXANDRIA and SANTA TERESA.

DELETE FROM PCB01.HOSPITAL WHERE HOSPNAME = ’ALEXANDRIA’ OR HOSPNAME = ’SANTA TERESA’;

When this statement executes, IMS deletes any row from the HOSPITAL
segment that meets the search condition.

Chapter 37. Writing application programs for SQL 589

If IMS finds an error while executing your DELETE statement, the application
commits and rollbacks the changes and returns error codes in the SQLIMSCODE
and SQLIMSSTATE variables in the SQLIMSCA. (The data in the segment does
not change.)
If the DELETE is successful, SQLIMSERRD(3) in the SQLIMSCA contains the
number of deleted rows. This number includes only the number of deleted rows
in the segment that is specified in the DELETE statement.

To delete every row in a segment:
v Use the DELETE statement without specifying a WHERE clause.

The following DELETE statement deletes every row in the HOSPITAL segment:
DELETE FROM HOSPITAL;

If the statement executes, the segment continues to exist (that is, you can insert
rows into it), but it is empty.

Related concepts:

SQL communication area (SQLIMSCA) (Application Programming APIs)

Accessing data
Your program can read data from any IMS segments for which you have read
access using SQL SELECT statements.
Related concepts:
“Writing SQL queries to access an IMS database with the IMS Universal JDBC
driver” on page 661

Retrieving data by using the SELECT statement
The simplest way to retrieve data is to use the SQL SELECT statement to specify a
result segment. You can specify the fields and rows that you want to retrieve.

You do not need to know the field names to select IMS data. Use an asterisk (*) in
the SELECT clause to indicate that you want to retrieve all fields of each selected
row of the named segment. To view the values of these fields, you must specify
the field name.

The fields in a SELECT * statement are ordered first by their field position within
the IMS catalog and then by their length.

Example: SELECT *: The following statement retrieves all fields for the PATIENT
segment:
SELECT *

FROM PCB01.HOSPITAL;

The result segment looks similar to the following output:
+------------+-----------------+
|HOSPCODE |HOSPNAME |
+------------+-----------------+
R1210010000A	ALEXANDRIA
R1210020000A	SANTA TERESA
R1210030000A	SANTA CLARA
R1210040000A	NEW ENGLAND

Because the example does not specify a WHERE clause, the statement retrieves
data from all rows.

590 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sqlcommunicationsareaintro.htm#ims_sqlcommunicationsareaintro

SELECT * is not recommended when fetching into a static host structure because of
host variable compatibility and performance reasons.

Note:

v Suppose that you add a field to the segment to which SELECT * refers. If you
have not defined a receiving host variable for that field, an error occurs.

v If you list the field names in an SELECT statement instead of using an asterisk,
you can avoid the problem that sometimes occurs with SELECT *. You can also
see the relationship between the receiving host variables and the fields in the
result segment.

Selecting some fields: SELECT field-name:

Select the field or fields you want to retrieve by naming each field. All fields
appear in the order you specify, not in their order in the segment.

Example: SELECT field-name: The following statement retrieves the ward names
and patient names from the WARD and PATIENT tables, respectively:
SELECT HOSPNAME FROM PCB01.HOSPITAL

The result segment looks similar to the following output:
+-----------------+
|HOSPNAME |
+-----------------+
|ALEXANDRIA |
|SANTA TERESA |
|SANTA CLARA |
|NEW ENGLAND |

With a single SELECT statement, you can select data from one field or as many as
750 fields.

Selecting rows using search conditions: WHERE:

Use a WHERE clause to select the rows that meet certain conditions. A WHERE
clause specifies a search condition. A search condition consists of one or more
predicates. A predicate specifies a test that you want IMS to apply to each segment
row.

IMS evaluates a predicate for each row as true, false, or unknown. Results are
unknown only if an operand is null.

The following segment lists the type of comparison, the comparison operators, and
an example of each type of comparison that you can use in a predicate in a
WHERE clause.

Table 96. Comparison operators used in conditions

Type of comparison Comparison operator Example

Equal to = HOSPCODE = 'R1210010000A'

Not equal to <> HOSPCODE <> 'R1210020000A'

Less than < SALARY < 30000

Less than or equal to <= AGE <= 25

Not less than >= AGE >= 21

Greater than > WARDNO > '0001'

Chapter 37. Writing application programs for SQL 591

Table 96. Comparison operators used in conditions (continued)

Type of comparison Comparison operator Example

Greater than or equal to >= WARDNO >= '0003'

Not greater than <= PATNUM <= '0010'

At least one of two
conditions

OR HOSPCODE >= 'R1210010000A' OR
HOSPCODE < 'R1210050000A'

Both of two conditions AND HOSPCODE = 'R1210050000A' AND
HOSPNAME = 'SANTA TERESA'

Both of these forms of the predicate create an expression for which one value is
equal to another value or both values are equal to null.
Related concepts:
“Host variables” on page 558

Predicates (Application Programming APIs)

Formatting the result segment
An SQL statement returns data in a segment called a result segment. You can
specify certain attributes of the result segment, such as the field names, how the
rows are ordered, and whether the rows are numbered.

Result segments:

The data that is retrieved by an SQL statement is always in the form of a segment,
which is called a result segment. Like the segments from which you retrieve the
data, a result segment has rows and fields. A program fetches this data one row at
a time.

Example result segment: Assume that you issue the following SELECT statement,
which retrieves the hospital code and name from the HOSPITAL segment and
order the result with the name of the hospital in ascending order:
SELECT HOSPCODE, HOSPNAME

FROM PCB01.HOSPITAL
ORDER BY HOSPNAME

The result segment looks similar to the following output:
+------------+-----------------+
|HOSPCODE |HOSPNAME |
+------------+-----------------+
R1210010000A	ALEXANDRIA
R1210040000A	NEW ENGLAND
R1210030000A	SANTA CLARA
R1210020000A	SANTA TERESA

Ordering the result segment rows:

If you want to guarantee that the rows in your result segment are ordered in a
particular way, you must specify the order in the SELECT statement. Otherwise,
IMS can return the rows in any order.

To retrieve rows in a specific order, use the ORDER BY clause. Using ORDER BY is
the only way to guarantee that your rows are ordered as you want them. The
following topics show you how to use the ORDER BY clause.

Specifying the sort key in the ORDER BY clause:

592 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_predicatesoverview.htm#ims_predicatesoverview

The order of the selected rows depends on the sort keys that you identify in the
ORDER BY clause. A sort key is a field name of the segment. IMS orders the rows
by the first sort key, followed by the second sort key, and so on.

You can list the rows in ascending or descending order. Null values appear last in
an ascending sort and first in a descending sort.

Example: ORDER BY clause with a field name as the sort key: The following
statement retrieves all hospital names, sorted in alphabetical order:
SELECT HOSPITAL.HOSPNAME

FROM PCB01.HOSPITAL
ORDER BY HOSPITAL.HOSPNAME ASC

Optimizing retrieval for a small set of rows
When you need only a few of the thousands of rows that satisfy a query, you can
tell IMS to return only a specified number of rows.

Question: How can I tell IMS that I want only a few of the thousands of rows that
satisfy a query?

Answer: Use or FETCH FIRST n ROWS ONLY.

If you want to retrieve only the first few rows. For example, to retrieve the first 50
rows, code:
SELECT * FROM PCB01.HOSPITAL
FETCH FIRST 50 ROWS ONLY

Use FETCH FIRST n ROWS ONLY to limit the number of rows in the result
segment to n rows. FETCH FIRST n ROWS ONLY has the following benefits:
v When you use FETCH statements to retrieve data from a result segment, FETCH

FIRST n ROWS ONLY causes IMS to retrieve only the number of rows that you
need. This can have performance benefits, especially in distributed applications.
If you try to execute a FETCH statement to retrieve the n+1st row, IMS returns a
+100 SQLCODE.

Implications of using SELECT *
Generally, you should use SELECT * only when you want to select all fields.
Otherwise, specify the specific fields that you want to view.

Question: What are the implications of using SELECT * ?

Answer: Generally, you should select only the fields you need because IMS is
sensitive to the number of fields selected. Use SELECT * only when you are sure
you want to select all fields, except hidden fields.

Support for variable-length database segments
SQL language conventions assume that the target database is relational. Relational
database managers do not use the concept of "variable-length" data structures that
are managed by an external application program.

Because IMS is a hierarchical database, IMS translates SQL statements into DL/I
calls that can be interpreted by the IMS Database Manager. When using the IMS
Database Manager, applications must manage the length of individual
variable-length segment instances with the LL field for the segment. Applications
that use the IMS Universal DL/I driver or SQL support for COBOL are responsible
for managing the LL field.

Chapter 37. Writing application programs for SQL 593

For application programs that use the IMS Universal database resource adapter or
the IMS Universal JDBC driver driver treat IMS databases as standard JDBC data
sources. The IMS Universal Database resource adapter and IMS Universal JDBC
driver internally manage the LL field on behalf of the application, so that the
application program does not need to manage the segment length or the size of the
I/O area. For read operations, the IMS Universal Database resource adapter and
IMS Universal JDBC driver handle the offsets and lengths of all the segments and
fields returned. By default, the SQL result set does not contain the LL field
information. For update or insert operations, each instance of a variable-length
segment is automatically expanded to contain the largest field (determined by the
field length and offset) in the segment instance.

For SQL support for COBOL, COBOL applications are responsible for managing
the LL field.

In a variable-length segment, some fields might be nullable. In IMS, a nullable field
is a field that has a starting offset or combined offset and length larger than the
minimum length of the segment. You can determine if a nullable field exists for a
particular segment instance by comparing the LL value for the instance to the
combined offset and length for the nullable field. If the LL value is less than the
combined offset and length of the field, the field is null. For example, if a segment
definition includes a field that starts at offset 50 and is length 5, it is nullable if the
minimum length of the segment is less than 55. It is null for a particular segment
instance if the LL value for that instance is less than 55.

You can also use the null indicator variable for COBOL or
java.sql.ResultSet.wasNull method for IMS Universal Database resource adapter
and IMS Universal JDBC driver to determine whether a nullable field exists in an
instance of a variable-length segment without examining the LL data.

Using the LL field with the IMS Universal Database resource adapter
and IMS Universal JDBC driver

By default, the LL field for a variable length segment is not returned as a visible
column for SQL queries. When the LL field is not requested, the IMS Universal
database resource adapter and IMS Universal JDBC driver manage the LL field on
behalf of the application program. The LL field data is not accessible by any type
of query (including SELECT *) unless your application program explicitly requests
the column when it creates a data connection to IMS.

If you want to manage the LL field at the application level, and your application
uses the IMS Universal Database resource adapter or the IMS Universal JDBC
driver, you must explicitly request the LL field data by setting the LLField
property to true.

Your application can set the LLField property to true in the standard properties
list of either of the following interfaces:
java.sql.DriverManager.getConnection(String url, Properties properties)

com.ibm.ims.jdbc.Datasource.setProperties(Properties properties)

When the LLField=true property is set, the LL field is exposed as a normal column
in the standard SQL result set for all operations. You can read, insert, or update the
LL field data directly. Deleting the LL field data also deletes the rest of the
associated database record. To set a field to the null state, set the length of the
segment (the value of the LL field column) to be smaller than the offset of the field
within the segment.

594 Application Programming

The LL field is 2 bytes long and must be handled as BINARY, SHORT, or USHORT
data.

Using the LL field with COBOL

The LL field is treated as a normal column in the standard SQL result set for all
operations. You can read, insert, or update the LL field data directly. Deleting the
LL field data also deletes the rest of the associated database record. To set a field to
the null state, set the length of the segment (the value of the LL field column) to be
smaller than the offset of the field within the segment.

The LL field is 2 bytes long and must be handled as BINARY, SHORT, or USHORT
data.

Checking for null field instances with the IMS Universal DL/I driver

Applications that use the IMS Universal DL/I driver always receive the LL field
data for a variable-length segment. You can determine if a field is null in a
segment instance in one of two ways: either compare the LL field data to the offset
of the field, or use the com.ibm.ims.dli.Path.wasNull() method.

The com.ibm.ims.dli.Path.wasNull() method returns a boolean value for the null
state of the last field that was read. The returned value is true if the field is null.
You must attempt to read a field before calling the wasNull() method to determine
whether the field is null.

Checking for null field instances in COBOL

Applications that use the SQL for COBOL always receive the LL field data for a
variable-length segment. You can determine if a field is null in a segment instance
in one of two ways: either compare the LL field data to the offset of the field, or
use the null indicator variable.
Related concepts:

Variable-length segments (Database Administration)
Related tasks:
“Declaring host variables and indicator variables” on page 558
“Declaring host variables and indicator variables in COBOL” on page 573

Retrieving a set of rows by using a cursor
In an application program, you can retrieve a set of rows from IMS.

Use the following type of cursors to retrieve rows from a result segment:
v A row-positioned cursor retrieves at most a single row at a time from the result

segment into host variables. At any point in time, the cursor is positioned on at
most a single row. For information about how to use a row-positioned cursor,
see “Accessing data by using a row-positioned cursor” on page 596.

Cursors
A cursor is a mechanism that points to one row in a set of rows from the segment.
Your application program can use a cursor to retrieve rows from a segment.

Chapter 37. Writing application programs for SQL 595

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_varlengthseg.htm#ims_varlengthseg

Types of cursors:

You can declare row-positioned non-scrollable cursor to retrieve data from the
result table.

Using a non-scrollable cursor:

The simplest type of cursor is a non-scrollable cursor. A row-positioned
non-scrollable cursor moves forward through its result segment one row at a time.

Accessing data by using a row-positioned cursor
A row-positioned cursor points to a single row and retrieves at most a single row
at a time from the result segment. You can specify a fetch request to specify which
rows to retrieve, relative to the current cursor position.

To access data by using a row-positioned cursor:
1. Execute a DECLARE CURSOR statement to define the result segment on which

the cursor operates. See “Declaring a row cursor.”
2. Execute an OPEN CURSOR to make the cursor available to the application. See

“Opening a row cursor.”
3. Specify what the program is to do when all rows have been retrieved. See

“Specifying the action that the row cursor is to take when it reaches the end of
the data” on page 597.

4. Execute the SQL statements to retrieve data from the segment. See “Executing
SQL statements by using a row cursor” on page 597.

5. Execute a CLOSE CURSOR statement to make the cursor unavailable to the
application. See “Closing a row cursor” on page 598.

Your program can have several cursors, each of which performs the previous steps.

Declaring a row cursor:

Before you can use a row-positioned cursor to retrieve rows, you must declare the
cursor. When you declare a cursor, you identify a set of rows that are to be
accessed with the cursor.

To declare a row cursor, issue a DECLARE CURSOR statement. The DECLARE
CURSOR statement names a cursor and specifies a prepared SELECT statement.
The SELECT statement defines the criteria for the rows that are to make up the
result segment.

The following example shows a cursor named C1 that is declared using a simple
form of the DECLARE CURSOR statement for a prepared statement STMT.
EXEC SQLIMS

DECLARE C1 CURSOR FOR STMT
END-EXEC.

Related reference:

DECLARE CURSOR (Application Programming APIs)

SELECT (Application Programming APIs)

Opening a row cursor:

After you declare a row cursor, you must tell IMS that you are ready to process the
first row of the result segment. This action is called opening the cursor.

596 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_declarecursor.htm#ims_sql_declarecursor
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_select.htm#ims_sql_select

To open a row cursor, execute the OPEN statement in your program. IMS then
uses the SELECT statement within DECLARE CURSOR to identify a set of rows. If
you use parameter markers in the search condition of that SELECT statement, you
must specify the values for the parameter makers with the USING clause. IMS uses
the current value of the variables to select the rows. The result segment that
satisfies the search condition might contain zero, one, or many rows.

An example of an OPEN statement is:
EXEC SQLIMS

OPEN C1
END-EXEC.

An example of an OPEN statement when the prepared SELECT statement has
parameter markers. Assume that the prepared SELECT statement has a parameter
marker in the WHERE clause:
SELECT HOSPCODE, HOSPAME FROM PCB01.HOSPITAL
WHERE HOSPNAME = ?

Use the OPEN statement with the USING clause to set the value of the parameter
marker from host variable PARM1:
EXEC SQLIMS
OPEN C1 USING :PARM1
END-EXEC.

Specifying the action that the row cursor is to take when it reaches the end of
the data:

Your program must be coded to recognize and handle an end-of-data condition
whenever you use a row cursor to fetch a row.

To determine whether the program has retrieved the last row of data, test the
SQLIMSCODE field for a value of 100 or the SQLIMSSTATE field for a value of
'02000'. These codes occur when a FETCH statement has retrieved the last row in
the result segment and your program issues a subsequent FETCH. For example:
IF SQLIMSCODE = 100 GO TO DATA-NOT-FOUND.

An alternative to this technique is to code the WHENEVER NOT FOUND
statement. The WHENEVER NOT FOUND statement causes your program to
branch to another part that then issues a CLOSE statement. For example, to branch
to label DATA-NOT-FOUND when the FETCH statement does not return a row,
use this statement:
EXEC SQLIMS

WHENEVER NOT FOUND GO TO DATA-NOT-FOUND
END-EXEC.

For more information about the WHENEVER NOT FOUND statement, see
“Checking the execution of SQL statements” on page 570.

Executing SQL statements by using a row cursor:

You can use row cursors to execute FETCH statements.

Execute a FETCH statement to copy data from a row of the result segment into one
or more host variables.

Chapter 37. Writing application programs for SQL 597

The following example shows a FETCH statement that retrieves selected fields
from the hospital segment:
EXEC SQLIMS

FETCH C1 INTO :HOSPCODE, :HOSPNAME, :WARDNAME, :PATNAME
END-EXEC.

When your program executes the FETCH statement, IMS positions the cursor on a
row in the result segment. That row is called the current row. IMS then copies the
current row contents into the program host variables that you specify on the INTO
clause of FETCH. This sequence repeats each time you issue FETCH, until you
process all rows in the result segment.

Closing a row cursor:

Close a row cursor when it finishes processing rows if you want to free the
resources or if you want to use the cursor again. Otherwise, you can let IMS
automatically close the cursor when the current transaction terminates or when
your program terminates.

To free the resources that are held by the cursor, close the cursor explicitly by
issuing the CLOSE statement.

If you want to use the rowset cursor again, reopen it.

To close a row cursor:

Issue a CLOSE statement. An example of a CLOSE statement looks like this:
EXEC SQLIMS

CLOSE C1
END-EXEC.

Commit or roll back data
After your application issues SQL statements to modify data in your IMS database,
your application might want to commit or roll back database changes. To commit
or roll back IMS database changes, use IMS DB system services DL/I calls.

For example, you might issue a ROLB to roll back the changes and issue a CHKP
to commit the changes.

The SQL keyword COMMIT and ROLLBACK are currently not supported.
Related reference:
Chapter 17, “Recovering databases and maintaining database integrity,” on page
287

Preparing an application to run on IMS
To prepare and run applications that contain SQL statements, you must coprocess,
compile, and link-edit them.

Tip: To avoid rework, first test your SQL statements using IMS Enterprise Suite
Explorer for Development. Then compile your program with SQL statements, and
resolve all compiler errors. Finally, proceed with the deployment and compile your
COBOL program using the IMS coprocessor to translate the SQL statements.

598 Application Programming

Processing SQL statements
The first step in preparing an SQL application to run is to process the SQL
statements in the program. To process the statements, use the IMS coprocessor.
During this step, the SQL statements are replaced with calls to IMS language
interface module (DFSLI000).

For COBOL applications, you can use one of the following techniques to process
SQL statements:
v Invoke the IMS coprocessor for the host language that you are using as you

compile your program. You can use the IMS coprocessor with COBOL host
compilers. To invoke the IMS coprocessor, specify the SQLIMS compiler option
followed by its suboptions.
– For COBOL, you need Enterprise COBOL for z/OS Version 5 Release 1 or

later to use this technique. For more information about the COBOL IMS
coprocessor, see Enterprise COBOL for z/OS Programming Guide.

The IMS coprocessor performs precompiler functions at compile time. When you
use the IMS coprocessor, the compiler scans the program and returns the modified
source code.

Processing SQL statements by using the IMS coprocessor
The IMS coprocessor processes SQL statements at compile time.

To process SQL statements by using the IMS coprocessor, perform the following
action:
v Submit a JCL job to process the IMS application that contains SQL statement.

Include the following information:
– Specify the SQLIMS compiler option when you compile your program:

The SQLIMS compiler option indicates that you want the compiler to invoke
the IMS coprocessor. To use IMS co-processor and use the default options,
specify just SQLIMS.
For example:
//COBOL1 EXEC PGM=IGYCRCTL,
// PARM=’LIST,XREF,CP(37),SQLIMS’

The following derault option values will be used by the IMS coprocessor:

PERIOD
Period (.) will be recognized as the decimal point indicator in decimal
or floating point literals within the SQL statement.

APOSTSQL
Apostrophe (') as the string delimiter and the double quotation mark
(") as the SQL escape character within SQL statements.

In addition, the COBOL CODEPAGE option will be used to determine what
CCSID the source program is written. Currently, only EBCDIC CCSID 37 and
1140 are supported.

– Include DD statements for the following data sets in the JCL for your compile
step:
- IMS load library (IGYV5R10.SQGYCOMP)

The IMS coprocessor calls IMS modules to process the SQL statements. You
therefore need to include the name of the IMS load library data set in the
STEPLIB concatenation for the compile step.

- Library for SQL INCLUDE statements

Chapter 37. Writing application programs for SQL 599

If your program contains SQL INCLUDE member-name statements that
specify secondary input to the source program, you need to also specify the
data set for member-name. Include the name of the data set that contains
member-name in the SYSLIB concatenation for the compile step.

600 Application Programming

Part 6. Java application development for IMS

IMS provides support for developing applications using the Java programming
language.

© Copyright IBM Corp. 1974, 2015 601

602 Application Programming

Chapter 38. IMS solutions for Java development overview

You can write Java applications to access IMS databases and process IMS
transactions by using the drivers and resource adapters of the IMS solutions for
Java development.

The IMS solutions for Java development include the IMS Universal drivers and the
IMS Java dependent region resource adapter.

IMS Universal drivers

The IMS Universal drivers are a set of SMP/E-installable Java drivers and resource
adapters that enable access to IMS from z/OS and distributed (non-z/OS)
platforms. The IMS Universal drivers are built on industry standards and open
specifications. Two types of connectivity are supported by the IMS Universal
drivers: local connectivity to IMS databases on the same LPAR (type-2 connectivity)
and distributed connectivity through TCP/IP (type-4 connectivity). Java applications
that use the type-2 IMS Universal drivers must reside on the same logical partition
(LPAR) as the IMS subsystem. Java applications that use the type-4 IMS Universal
drivers can reside on the same logical partition (LPAR) or on a different LPAR
from the IMS subsystem.

The IMS Universal drivers enable access to IMS from multiple environments,
including:
v WebSphere Application Server for z/OS
v CICS Transaction Server for z/OS
v IMS on the host in JMP and JBP regions

The IMS Universal drivers include:
v IMS Universal Database resource adapter: A Java EE Connector Architecture

(JCA) 1.5-compliant resource adapter
v IMS Universal JDBC driver: A Java Database Connectivity (JDBC) driver that

implements the JDBC 3.0 API
v IMS Universal DL/I driver: A Java API for making calls with traditional DL/I

programming semantics

IMS Java dependent region resource adapter

The IMS Java dependent region resource adapter is a set of Java classes and
interfaces that support IMS database access and IMS message queue processing
within Java batch processing (JBP) and Java message processing (JMP) regions. The
IMS Java dependent region resource adapter provides Java application programs
running in JMP or JBP regions with similar DL/I functionality to that provided in
message processing program (MPP) and non-message driven BMP regions, such as:
v Accessing IMS message queues to read and write messages
v Performing program switches
v Commit and rollback processing
v Accessing IMS databases in an IMS DB/TM environment
v Accessing GSAM databases in IMS DB/TM and DCCTL environments
v Database recovery (CHKP/XRST)

© Copyright IBM Corp. 1974, 2015 603

Related concepts:
Chapter 41, “Programming Java dependent regions,” on page 717
Chapter 11, “Writing your application programs for IMS DB,” on page 181
“Formatting DL/I calls for language interfaces” on page 213
Related tasks:

Configuring external Java environment connections (Communications and
Connections)
Related reference:
“Coding a program in Java” on page 206
“Java application programming for IMS” on page 221
Chapter 40, “Programming with the IMS Universal drivers,” on page 611

Software requirements for Java applications that access IMS databases (Release
Planning)

Java API documentation (Javadoc) (Application Programming APIs)

604 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_java_ext_environ_config.htm#ims_java_ext_environ_config
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_java_ext_environ_config.htm#ims_java_ext_environ_config
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.rpg/ims_javadbsoftreqs.htm#ims_javadbsoftreqs
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.rpg/ims_javadbsoftreqs.htm#ims_javadbsoftreqs
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_odbjavadocinformation.htm#ims_odbjavadocinformation

Chapter 39. Comparison of hierarchical and relational
databases

The following information describes the differences between the hierarchical model
for IMS databases and the standard relational database model.

A database segment definition defines the fields for a set of segment instances
similar to the way a relational table defines columns for a set of rows in a table. In
this way, segments relate to relational tables, and fields in a segment relate to
columns in a relational table.

The name of an IMS segment becomes the table name in an SQL query, and the
name of a field becomes the column name in the SQL query.

A fundamental difference between segments in a hierarchical database and tables
in a relational database is that, in a hierarchical database, segments are implicitly
joined with each other. In a relational database, you must explicitly join two tables.
A segment instance in a hierarchical database is already joined with its parent
segment and its child segments, which are all along the same hierarchical path. In
a relational database, this relationship between tables is captured by foreign keys
and primary keys.

This section compares the Dealership sample database, to a relational
representation of the database. The Dealership sample DBDs are available with the
IMS Enterprise Suite Explorer for Development, in the <installation
location>\IMS Explorer samples directory.

Important: This information provides only a comparison between relational and
hierarchical databases.

The Dealership sample database contains five segment types, which are shown in
the following figure. The root segment is the Dealer segment. Under the Dealer
segment is its child segment, the Model segment. Under the Model segment are its
children: the segments Order, Sales, and Stock.

The following figure shows the structure and each segment of the Dealership
sample database.

© Copyright IBM Corp. 1974, 2015 605

The Dealer segment identifies a dealer that sells cars. The segment contains a
dealer name in the field DLRNAME, and a unique dealer number in the field
DLRNO.

Dealers carry car types, each of which has a corresponding Model segment. A
Model segment contains a type code in the field MODTYPE.

Each car that is ordered for the dealership has an Order segment. A Stock segment
is created for each car that is available for sale in the dealer's inventory. When the
car is sold, a Sales segment is created.

The following figure shows a relational representation of the IMS database record
shown in Figure 102.

Figure 102. Segments of the Dealership sample database

606 Application Programming

If a segment does not have a unique key, which is similar to a primary key in
relational databases, view the corresponding relational table as having a generated
primary key added to its column (field) list. An example of a generated primary
key is in the Model table (segment) of the figure above. Similar to referential
integrity in relational databases, you cannot insert, for example, an Order (child)
segment to the database without it being a child of a specific Model (parent)
segment.

Also note that the field (column) names have been renamed. You can rename
segments and fields to more meaningful names by using the IMS Explorer for
Development.

Dealer

DealerNumber DealerName DealerAddress YTDSales

Model

Order

Sales

Stock

OrderNumber . . .

DateSold . . .

StockVINumber . . .

Primary key

Foreign key

ModelTypeCode . . .

Figure 103. Relational representation of the Dealership sample database

Chapter 39. Comparison of hierarchical and relational databases 607

An occurrence of a segment in a hierarchical database corresponds to a row (or
tuple) of a table in a relational database.

The following figure shows three Dealership database records.

The Dealer segment occurrences have dependent Model segment occurrences.

The following figure shows the relational representation of the dependent model
segment occurrences.

In the following example that shows the SELECT statement of an SQL call, Model
is a segment name that is used as a table name in the query:
SELECT * FROM Model

The following example, ModelTypeCode is the name of a field that is contained in
the Model segment and it is used in the SQL query as a column name:
SELECT * FROM Model WHERE ModelTypeCode = ’062579’

Figure 104. Segment occurrences in the Dealership sample database

Figure 105. Relational representation of segment occurrences in the Dealership database

608 Application Programming

In the two preceding examples, Model and ModelTypeCode are alias names that
are assigned with the EXTERNALNAME parameter of the SEGM and FIELD
statements in the DBD, respectively. The EXTERNALNAME parameter is an
optional parameter that specifies an external alias name for client applications to
use when referencing the field or segment, and does not need to conform to the
8-character limit for host resource names. External alias names are only used when
the IMS catalog is active. If the IMS catalog is active but no alias name is specified
on the EXTERNALNAME parameter for a segment or field, use the 8-character
IMS name for the resource instead.

Chapter 39. Comparison of hierarchical and relational databases 609

610 Application Programming

Chapter 40. Programming with the IMS Universal drivers

Use these topics to design, write, and maintain application programs for IMS 14
using the IMS Universal drivers.
Related concepts:
Chapter 38, “IMS solutions for Java development overview,” on page 603
“Overview of the IMS Java dependent regions” on page 717
Related reference:

Software requirements for Java application programs that use the IMS
Universal drivers (Release Planning)

IMS Universal drivers overview
The IMS Universal drivers are software components that provide Java applications
with connectivity and access to IMS databases from z/OS and distributed
environments through TCP/IP. Java applications that use the type-2 IMS Universal
drivers must reside on the same logical partition (LPAR) as the IMS subsystem.
Java applications that use the type-4 IMS Universal drivers can reside on the same
logical partition (LPAR) or on a different LPAR from the IMS subsystem.

Programming approaches

The IMS Universal drivers provide an application programming framework that
offers multiple options for access to IMS data. These programming options include:

IMS Universal Database resource adapter
Provides connectivity to IMS databases from a Java Platform, Enterprise
Edition (Java EE) environment, and access to IMS data using the Common
Client Interface (CCI) and Java Database Connectivity (JDBC) interfaces.

IMS Universal JDBC driver
Provides a stand-alone JDBC 4.0 driver for making SQL-based database
calls to IMS databases.

IMS Universal DL/I driver
Provides a stand-alone Java API for writing granular queries to IMS
databases using programming semantics similar to traditional DL/I calls.

Open standards

The IMS Universal drivers are built on the following industry open standards and
interfaces:

Java EE Connector Architecture (JCA)
JCA is the Java standard for connecting Enterprise Information Systems
(EISs) such as IMS into the Java EE framework. Using JCA, you can
simplify application development and take advantage of the services that
can be provided by a Java EE application server, such as connection
management, transaction management, and security management. The
Common Client Interface (CCI) is the interface in JCA that provides access
from Java EE clients, such as Enterprise JavaBeans (EJB) applications,
JavaServer Pages (JSP), and Java servlets, to backend IMS subsystems.

© Copyright IBM Corp. 1974, 2015 611

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.rpg/ims_javaapps_thatuse_odbm_softreqs.htm#ims_javaapps_thatuse_odbm_softreqs
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.rpg/ims_javaapps_thatuse_odbm_softreqs.htm#ims_javaapps_thatuse_odbm_softreqs

Java Database Connectivity (JDBC)
JDBC is the SQL-based standard interface for database access. It is the
industry standard for database-independent connectivity between the Java
programming language and any database that has implemented the JDBC
interface.

Distributed Relational Database Architecture (DRDA) specification
DRDA is an open architecture that enables communication between
applications and database systems on disparate platforms. These
applications and database systems can be provided by different vendors
and the platforms can be different hardware and software architectures.
DRDA provides distributed database access with built-in support for
distributed, two-phase commit transactions.

Related reference:

DRDA DDM command architecture reference (Application Programming APIs)

Software requirements for Java application programs that use the IMS
Universal drivers (Release Planning)

Distributed and local connectivity with the IMS Universal
drivers

The IMS Universal drivers support distributed (type-4) and local (type-2)
connectivity to IMS databases.

Distributed connectivity with the type-4 IMS Universal drivers

With type-4 connectivity, the IMS Universal drivers can run on any platform that
supports TCP/IP and a Java Virtual Machine (JVM), including z/OS. To access IMS
databases, the type-4 IMS Universal drivers first establish a TCP/IP-based socket
connection to IMS Connect. IMS Connect is responsible for routing the request to
the IMS databases by using the Open Database Manager (ODBM), and sending the
response back to the client application. The DRDA protocol is used internally in
the implementation of the type-4 IMS Universal drivers. You do not need to know
DRDA to use the type-4 IMS Universal drivers.

The type-4 IMS Universal drivers support two-phase commit (XA) transactions.
IMS Connect builds the necessary z/OS Resource Recovery Services (RRS)
structure to support the two-phase commit protocol. If two-phase commit
transactions are not used, RRS is not required.

To establish a connection to IMS, the driverType connection property must be set
to indicate distributed (type-4) connectivity to IMS

After successful authentication, the IMS Universal drivers send other socket
connection information, such as program specification block (PSB) name and IMS
database subsystem, to IMS Connect and ODBM to allocate the PSB to connect to
the database.

A connection to an IMS database is established only when a program specification
block (PSB) is allocated. Authorization for a particular PSB is done by the ODBM
component during the allocation of a PSB.

The type-4 IMS Universal drivers support connection pooling, which limits the
time that is needed for allocation and deallocation of TCP/IP socket connections.

612 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_ddm_architecture.htm#drdaddmcommands
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.rpg/ims_javaapps_thatuse_odbm_softreqs.htm#ims_javaapps_thatuse_odbm_softreqs
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.rpg/ims_javaapps_thatuse_odbm_softreqs.htm#ims_javaapps_thatuse_odbm_softreqs

To maximize connection reuse, only the socket attributes of a connection are
pooled. These attributes include the IP address and port number that the host IMS
Connect is listening on. As a result, the physical socket connection can be reused
and additional attributes can be sent on this socket to connect to an IMS database.
When a client application of the type-4 IMS Universal drivers makes a connection
to IMS, this means:
v A one-to-one relationship is established between a client socket and an allocated

PSB that contains one or more IMS databases.
v A one-to-many relationship is established between IMS Connect and the possible

number of database connections it can handle at one time.
v IMS Connect does the user authentication.
v ODBM ensures that the authenticated user is authorized to access the given PSB.

The following figure shows how the type-4 IMS Universal drivers route
communications between your Java client applications that are running in a
distributed environment and an IMS subsystem.

You can also use the type-4 IMS Universal drivers if your Java clients are running
in a z/OS environment but are on a separate logical partition from the IMS
subsystem. Use type-4 connectivity from a z/OS environment if you want to
isolate the application runtime environment from the IMS subsystem environment.

WebSphere
Application Server

IMS Universal
Drivers with

type-4
connectivity

Distributed environment

Java EE application
DRDA

protocol
over

TCP/IP

Open Database
Manager
(ODBM)

IMS DB

Stand-alone
JDBC application

IM
S

C
o
n

n
e
c
t

Stand-alone DL/I
application in Java

Distributed environment z/OS environment

Figure 106. Distributed connectivity with the type-4 IMS Universal drivers

Chapter 40. Programming with the IMS Universal drivers 613

Local connectivity with the type-2 IMS Universal drivers

Local connectivity with the type-2 IMS Universal drivers is targeted for the z/OS
platform and runtime environments. Use type-2 connectivity to connect to IMS
subsystems in the same logical partition (LPAR).

The following table shows the z/OS runtime environments that support client
applications of the type-2 IMS Universal drivers.

Table 97. z/OS runtime environment support for the type-2 IMS Universal drivers

z/OS runtime environment Type-2 IMS Universal drivers supported

WebSphere Application Server for z/OS v IMS Universal Database resource adapter

IMS Java dependent regions (JMP and JBP
regions); CICS

v IMS Universal DL/I driver

v IMS Universal JDBC driver

Because it runs on the same LPAR as the IMS subsystem, during connection time,
a client application of the type-2 IMS Universal drivers does not need to supply an
IP address, port number, user ID, or password. The driverType property must be
set to indicate local (type-2) connectivity to IMS.

The following figure shows how the type-2 IMS Universal drivers route
communications between your Java client applications that are running in an LPAR
inside a z/OS mainframe environment and an IMS subsystem that is located in the
same LPAR.

RRSLocalOption connectivity type

In addition to type-4 and type-2 connectivity, the RRSLocalOption connectivity
type is supported by the IMS Universal Database resource adapter running on

Logical partition

Open Database
Access
(ODBA)

Database
resource

adapter (DRA)

IMS DB

Java application in WebSphere
for z/OS environment

Java application in CICS
environment

Java application in IMS Java
Dependent region

z/OS environment

IMS Universal
Drivers with

type-2
connectivity

Figure 107. Local connectivity with the type-2 IMS Universal drivers

614 Application Programming

WebSphere Application Server for z/OS. With RRSLocalOption connectivity,
applications using the IMS Universal Database resource adapter do not issue
commit or rollback calls. Instead, transaction processing is managed by WebSphere
Application Server for z/OS. Two-phase commit (XA) transaction processing is not
supported with RRSLocalOption connectivity type.
Related concepts:

IMS Connect support for access to IMS DB (Communications and Connections)

CSL ODBM administration (System Administration)

Comparison of IMS Universal drivers programming
approaches for accessing IMS

Depending on your IT infrastructure, solution architecture, and application design,
choose the IMS Universal drivers programming approach that is best for your
development scenario.

The following table lists the recommended IMS Universal drivers programming
approach to use, based on the application programmer's choice of application
platform, data access method, and transaction processing option.

Chapter 40. Programming with the IMS Universal drivers 615

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_ct_odb_support.htm#ims_connect_odb_support
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/system_admin/ims_odbm_admin.htm#csl_odbm_admin

Table 98. Comparison of programming approaches for accessing IMS

Application platform Data access method
Transaction
processing required

Recommended
approach

WebSphere
Application Server
for distributed
platforms or
WebSphere
Application Server
for z/OS

CCI programming
interface to perform
SQL or DL/I data
operations.

Local transaction
processing only.

Use the IMS
Universal Database
resource adapter with
local transaction
support
(imsudbLocal.rar),
and make SQL calls
with the
SQLInteractionSpec
class or DL/I calls
with the
DLIInteractionSpec
class.

CCI programming
interface to perform
SQL or DL/I data
operations.

Two-phase (XA)
commit processing1

or local transaction
processing.

Use the IMS
Universal Database
resource adapter with
XA transaction
support
(imsudbXA.rar), and
make SQL calls with
the
SQLInteractionSpec
class or DL/I calls
with the
DLIInteractionSpec
class.

JDBC programming
interface to perform
SQL data operations.

Local transaction
processing only.

Use the IMS
Universal JCA/JDBC
driver version of the
IMS Universal
Database resource
adapter with local
transaction support
(imsudbJLocal.rar),
and make SQL calls
with the JDBC API.

JDBC programming
interface to perform
SQL data operations.

Two-phase (XA)
commit processing1

or local transaction
processing.

Use the IMS
Universal JCA/JDBC
driver version of the
IMS Universal
Database resource
adapter with XA
transaction support
(imsudbJXA.rar), and
make SQL calls with
the JDBC API.

616 Application Programming

Table 98. Comparison of programming approaches for accessing IMS (continued)

Application platform Data access method
Transaction
processing required

Recommended
approach

Standalone Java
application (outside a
Java EE application
server) that resides
on a distributed
platform or a z/OS
platform

JDBC programming
interface to perform
SQL data operations.

Two-phase (XA)
commit processing2

or local transaction
processing.

Use the IMS
Universal JDBC
driver (imsudb.jar),
and make SQL calls
with the JDBC API.

Traditional DL/I
programming
semantics to perform
data operations.

Two-phase (XA)
commit processing2

or local transaction
processing.

Use the IMS
Universal DL/I
driver (imsudb.jar),
and make DL/I calls
with the PCB class.

Standalone non-Java
application that
resides on a
distributed platform
or a z/OS platform

Data access using
DRDA protocol.

Two-phase (XA)
commit processing or
local transaction
processing.

Use a programming
language of your
choice to issue DDM
commands to IMS
Connect. The
application
programmer is
responsible for
implementing the
two-phase commit
mechanism.

Note:

1. XA transaction support is available only with type-4 connectivity.
2. The driver is enabled for local and XA transactions, but the application

programmer is responsible for implementing the two-phase commit
mechanism. XA transaction support is available only with type-4 connectivity.

Support for variable-length database segments with the IMS
Universal drivers

The IMS Universal database resource adapter and the IMS Universal JDBC driver
manage variable-length segments on behalf of client application programs.
Application programs that use the IMS Universal DL/I driver must manage the LL
field data for variable-length segments.

Using the LL field with the IMS Universal database resource
adapter and IMS Universal JDBC driver

By default, the LL field for a variable length segment is not returned as a visible
column for SQL queries. When the LL field is not requested, the IMS Universal
database resource adapter and IMS Universal JDBC driver manage the LL field on
behalf of the application program. The LL field data is not accessible by any type
of query (including SELECT *) unless your application program explicitly requests
the column when it creates a data connection to IMS.

If you want to manage the LL field at the application level, and your application
uses the IMS Universal database resource adapter or the IMS Universal JDBC
driver, you must explicitly request the LL field data by setting the llField property
to true.

Chapter 40. Programming with the IMS Universal drivers 617

Your application can set the llField property to true in the standard properties list
of either of the following interfaces:
java.sql.DriverManager.getConnection(String url, Properties properties)

com.ibm.ims.jdbc.Datasource.setProperties(Properties properties)

When the llField=true property is set, the LL field is exposed as a normal column
in the standard SQL result set for all operations. You can read, insert, or update the
LL field data directly. Deleting the LL field data also deletes the rest of the
associated database record. To set a field to the null state, set the length of the
segment (the value of the LL field column) to be smaller than the offset of the field
within the segment.

The LL field is 2 bytes long and must be handled as BINARY, SHORT, or USHORT
data.

You can also use the java.sql.ResultSet.wasNull method to determine whether a
nullable field exists in an instance of a variable-length segment without examining
the LL data.

Checking for null field instances with the IMS Universal DL/I
driver

Applications that use the IMS Universal DL/I driver always receive the LL field
data for a variable-length segment. You can determine if a field is null in a
segment instance in one of two ways: either compare the LL field data to the offset
of the field, or use the com.ibm.ims.dli.Path.wasNull() method.

The com.ibm.ims.dli.Path.wasNull() method returns a boolean value for the null
state of the last field that was read. The returned value is true if the field is null.
You must attempt to read a field before calling the wasNull() method to determine
whether the field is null.
Related concepts:

Variable-length segments (Database Administration)
Related tasks:

How to specify variable-length segments (Database Administration)

Support for flattening complex structures
The flattenTables connection property produces a flattened view of a database
table. Although the copybook structure in the IMS catalog is unchanged, the
information about the structure of the table is altered for that particular connection.
Enabling the flattenTables connection property can simplify the process of querying
a database table.

Complex structures that are displayed according to the flattenTables connection
property are formatted according to these naming conventions:
v Static arrays are referenced by the name of the array, index of the array, and

name of the field.
An example of this convention is CLASSES_2_INST, where CLASSES is the name of
the array, 2 is the index of the array, and INST is the name of the field.

v Only the sub-elements of structures are displayed in the flattened structure view
(not the names of the structures themselves).

618 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_varlengthseg.htm#ims_varlengthseg
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_howspecvarseg.htm#ims_howspecvarseg

Restriction: The flattenTables connection property supports static arrays and
structures only. Dynamic arrays are not altered.

The following view displays a copybook structure with the flattenTables connection
property disabled.
01 SEGM.

05 CLASSES OCCURS 4 TIMES.
10 INST PIC X(15).
10 GRADE PIC X(1).
10 BOOKS OCCURS 2 TIMES.

15 AUTHOR.
20 FIRSTNAME PIC X(10).
20 LASTNAME PIC X(15).

15 TITLE PIC X(20).

The following view displays the same copybook structure as in the previous
example, but with the flattenTables connection property enabled.
01 SEGM.

05 CLASSES_1_INST PIC X(15).
05 CLASSES_1_GRADE PIC X(1).
05 CLASSES_1_BOOKS_1_FIRSTNAME PIC X(10).
05 CLASSES_1_BOOKS_1_LASTNAME PIC X(15).
05 CLASSES_1_BOOKS_1_TITLE PIC X(20).
05 CLASSES_1_BOOKS_2_FIRSTNAME PIC X(10).
05 CLASSES_1_BOOKS_2_LASTNAME PIC X(15).
05 CLASSES_1_BOOKS_2_TITLE PIC X(20).
05 CLASSES_2_INST PIC X(15).
05 CLASSES_2_GRADE PIC X(1).
05 CLASSES_2_BOOKS_1_FIRSTNAME PIC X(10).
05 CLASSES_2_BOOKS_1_LASTNAME PIC X(15).
05 CLASSES_2_BOOKS_1_TITLE PIC X(20).
05 CLASSES_2_BOOKS_2_FIRSTNAME PIC X(10).
05 CLASSES_2_BOOKS_2_LASTNAME PIC X(15).
05 CLASSES_2_BOOKS_2_TITLE PIC X(20).
05 CLASSES_3_INST PIC X(15).
05 CLASSES_3_GRADE PIC X(1).
05 CLASSES_3_BOOKS_1_FIRSTNAME PIC X(10).
05 CLASSES_3_BOOKS_1_LASTNAME PIC X(15).
05 CLASSES_3_BOOKS_1_TITLE PIC X(20).
05 CLASSES_3_BOOKS_2_FIRSTNAME PIC X(10).
05 CLASSES_3_BOOKS_2_LASTNAME PIC X(15).
05 CLASSES_3_BOOKS_2_TITLE PIC X(20).
05 CLASSES_4_INST PIC X(15).
05 CLASSES_4_GRADE PIC X(1).
05 CLASSES_4_BOOKS_1_FIRSTNAME PIC X(10).
05 CLASSES_4_BOOKS_1_LASTNAME PIC X(15).
05 CLASSES_4_BOOKS_1_TITLE PIC X(20).
05 CLASSES_4_BOOKS_2_FIRSTNAME PIC X(10).
05 CLASSES_4_BOOKS_2_LASTNAME PIC X(15).
05 CLASSES_4_BOOKS_2_TITLE PIC X(20).

Related tasks:
“Connecting using the IMS Universal Database resource adapter in a managed
environment” on page 626
“Connecting using the IMS Universal JCA/JDBC driver in a managed
environment” on page 631
“Connecting to an IMS database using the JDBC DataSource interface” on page 648

“Connecting to an IMS database by using the JDBC DriverManager interface” on
page 654

Chapter 40. Programming with the IMS Universal drivers 619

Generating the runtime Java metadata class
To connect to an IMS database using the IMS Universal drivers, you need to
include on your Java classpath the Java metadata class that provides the database
view.

Note: If you are using the IMS catalog, an IMS Universal drivers application
program can obtain the necessary metadata directly from the catalog database
without a Java metadata class file.

The Java metadata class is generated using the IMS Enterprise Suite Explorer for
Development. The Java metadata class represents the application view information
specified by a program specification block (PSB) and its related Program Control
Blocks (PCBs). The Java metadata class provides a one-to-one mapping to the
segments and fields defined in the PSB.

To generate the metadata class, use the IMS Explorer for Development to import
the application PSB source and related DBD source files. Optionally, you can also
import COBOL copybooks and PL/I INCLUDE files. The Java metadata class must
be compiled and made available through the classpath for any Java application
attempting to access IMS data using that PSB.

During database connection setup, pass the name of this metadata class to the
resource adapter or JDBC driver. The Java metadata class is used at runtime by the
IMS Universal drivers to process both SQL and Java-based DL/I calls.

The default segment encoding of the database metadata class produced by the IMS
Explorer for Development is cp1047. To change the segment encoding, use the
com.ibm.ims.base.DLIBaseSegment.setDefaultEncoding method.
Related concepts:

IMS Explorer for Development overview

Hospital database example
The code examples for the IMS Universal drivers application programming topics
use the Hospital database.

The following figure shows the hierarchical structure of the segments in the
Hospital database.

620 Application Programming

http://www-01.ibm.com/support/knowledgecenter/SS9NWR_3.2.0/com.ibm.ims.explorer32.doc/wb_overview.htm

Each node in the figure represents a segment:
v The HOSPITAL segment is the root segment in the database.
v PAYMENTS and WARD are child segments of the HOSPITAL segment.
v WARD has a direct descendent segment named PATIENT.
v ILLNESS and BILLING are the child segments of the PATIENT.
v ILLNESS has a child segment named TREATMENT that stores details about

patient treatment.
v The child segment of ILLNESS, DOCTOR, is the lowest level segment in the

database hierarchy.

The tables that follow show the layouts of each segment in the Hospital database.

HOSPITAL segment

The following table shows the HOSPITAL segment, which has two fields:
v The hospital code (HOSPCODE)
v The hospital name (HOSPNAME)

Figure 108. Segments of the Hospital database

Chapter 40. Programming with the IMS Universal drivers 621

HOSPCODE is a unique key field.

Field name Field length (in bytes)

HOSPCODE 12

HOSPNAME 17

PAYMENTS segment

The following table shows the PAYMENTS segment, which has two fields:
v The patient number (PATNUM)
v The payment amount (AMOUNT)

Field name Field length (in bytes)

PATNUM 4

AMOUNT 8

WARD segment

The following table shows the WARD segment, which has five fields:
v The ward number (WARDNO)
v The ward name (WARDNAME)
v The patient count (PATCOUNT)
v The nurse count (NURCOUNT)
v The doctor count (DOCCOUNT)

WARDNO is a unique key field.

Field name Field length (in bytes)

WARDNO 2

WARDNAME 4

PATCOUNT 8

NURCOUNT 4

DOCCOUNT 2

PATIENT segment

The following table shows the PATIENT segment, which has two fields:
v The patient number (PATNUM)
v The patient name (PATNAME)

PATNUM is a unique key field.

Field name Field length (in bytes)

PATNUM 12

PATNAME 17

622 Application Programming

ILLNESS segment

The following table shows the ILLNESS segment, which has one field:
v The illness name (ILLNAME)

Field name Field length (in bytes)

ILLNAME 15

TREATMNT segment

The following table shows the TREATMNT segment, which has three fields:
v The day of treatment (TREATDAY)
v The type of treatment (TREATMNT)
v The treatment comments (COMMENTS)

Field name Field length (in bytes)

TREATDAY 8

TREATMNT 15

COMMENTS 10

DOCTOR segment

The following table shows the DOCTOR segment, which has two fields:
v The doctor number (DOCTNO)
v The doctor name (DOCNAME)

Field name Field length (in bytes)

DOCTNO 4

DOCNAME 20

BILLING segment

The following table shows the BILLING segment, which has two fields:
v The bill amount (AMOUNT)
v The bill comments (COMMENTS)

Field name Field length (in bytes)

AMOUNT 8

COMMENTS 20

Related concepts:
“Specifying segment search arguments using the SSAList interface” on page 694

Programming using the IMS Universal Database resource adapter
This information describes how to write programs with the IMS Universal
Database resource adapter to access IMS databases.

Chapter 40. Programming with the IMS Universal drivers 623

Overview of the IMS Universal Database resource adapter
The IMS Universal Database resource adapter is based on the Java Platform,
Enterprise Edition (Java EE) Connector Architecture (JCA) 1.5 standard. The
purpose of the JCA is to connect Enterprise Information Systems (EISs), such as
IMS, into the Java EE platform. JCA provides a number of services that are
managed by a Java EE application server. These services include security credential
management, connection pooling, and transaction management.

These services are provided by means of system level contracts between the IMS
Universal Database resource adapter and the Java EE application server, without
the need for additional coding by the application programmer.

The JCA specification defines a programming interface called the Common Client
Interface (CCI). This interface is used to communicate with any EIS. The IMS
Universal Database resource adapter implements the CCI for interactions with IMS
databases. The CCI interfaces for the IMS Universal Database resource adapter are
in the com.ibm.ims.db.cci package. The CCI implementation provided by IMS
allows applications to make either SQL or DL/I calls to access the IMS database.

In addition to the CCI interface provided by the IMS Universal Database resource
adapter, you can also write JDBC applications to access your IMS data from a
managed environment, while leveraging the Java EE services provided by the
application server. This capability is provided by the IMS Universal JCA/JDBC
driver version of the IMS Universal Database resource adapter. The IMS Universal
JCA/JDBC driver is based on the Java Platform, Enterprise Edition (Java EE)
Connector Architecture (JCA) 1.5 and Java Database Connectivity (JDBC) 3.0
standard.

The IMS Universal Database resource adapter communicates with IMS Connect as
the TCP/IP endpoint to access IMS.

Preparing to write a Java application with the IMS Universal
drivers

Java application programs that use the IMS Universal drivers require the Java
Development Kit 6.0 (JDK 6.0). Java programs that run in JMP and JBP regions
require the Java Development Kit 6.0 (JDK 6.0) or later. Java application programs
that use the IMS Universal drivers must have access to database metadata in order
to interact with IMS databases. This metadata can either be accessed directly in the
IMS catalog database or it can be generated as a Java metadata class with the IMS
Enterprise Suite Explorer for Development.

Transaction types and programming interfaces supported by
the IMS Universal Database resource adapter

The IMS Universal Database resource adapter provides four types of support for
optimized transaction management and performance.

The types of transaction support provided by the IMS Universal Database resource
adapter are:

IMS Universal Database resource adapter with local transaction support
(imsudbLocal.rar)

This resource adapter provides a CCI programming interface and
LocalTransaction support when deployed on any supported Java EE
application server.

624 Application Programming

IMS Universal Database resource adapter with XA transaction support
(imsudbXA.rar)

This resource adapter provides a CCI programming interface and both
XATransaction and LocalTransaction support when deployed on any
supported Java EE application server.

IMS Universal JCA/JDBC driver with local transaction support
(imsudbJLocal.rar)

This resource adapter provides a JDBC programming interface and
LocalTransaction support when deployed on any supported Java EE
application server.

IMS Universal JCA/JDBC driver with XA transaction support (imsudbJXA.rar)
This resource adapter provides a JDBC programming interface and both
XATransaction and LocalTransaction support when deployed on any
supported Java EE application server.

Restriction: XA transaction support is available only with type-4 connectivity.

For global or two-phase commit transaction processing, use the IMS Universal
Database resource adapters with XA transaction support. For single-phase commit
functionality, use either the IMS Universal Database resource adapters with XA
transaction support or with local transaction support.

In order to provide for different transactional qualities of service for Java EE
applications, it is possible to deploy two or more separate types of IMS Universal
Database resource adapters into the same Java EE application server.

When carrying out multiple interactions with IMS databases using the IMS
Universal Database resource adapter, you might want to group all actions together
to ensure that they either all succeed or all fail. This can be done using
container-managed or bean-managed transaction demarcation.

In container-managed transactions, all work performed in an EJB method invocation
is part of one unit of work, and no explicit demarcation by the application is
required. Transactional integrity is managed by the Java EE application server.

In bean-managed transactions, you must use the javax.resource.cci.LocalTransaction
or javax.transaction.UserTransaction interface to programmatically demarcate units
of work explicitly. Bean-managed transactions that use the LocalTransaction
interface can group work performed only through the resource adapter; the
UserTransaction interface allows all transactional resources within the application
to be grouped. Use a bean-managed EJB if you need to have multiple units of
works within the same EJB method invocation.

When using the type-2 IMS Universal Database resource adapter, if you specify a
driverType connection property of 2, you can use
javax.resource.cci.LocalTransaction for bean-managed transactions or the JDBC
Connection interface. If you specify a driverType connection property of 2_CTX,
you can use the javax.transaction.UserTransaction for application programs that
issue explicit commit and rollback calls.

Connecting to IMS with the IMS Universal Database resource
adapter

The IMS Universal Database resource adapter provides connectivity to IMS
databases from a Java EE-managed environment.

Chapter 40. Programming with the IMS Universal drivers 625

The Common Client Interface (CCI) provides ConnectionFactory and Connection
interfaces to establish a connection with an Enterprise Information System (EIS).
When using the CCI programming interface with the IMS Universal Database
resource adapter, your Java application component looks up a ConnectionFactory
instance using the Java Naming and Directory Interface (JNDI) and uses the
ConnectionFactory instance to get a connection to an IMS database.

Similarly, when using the JDBC programming interface with the IMS Universal
JCA/JDBC driver, your Java application component looks up a DataSource
instance using JNDI, and uses the DataSource instance to obtain a Connection
object

RRSLocalOption connectivity type

In addition to type-4 and type-2 connectivity, the RRSLocalOption connectivity
type is supported by the IMS Universal Database resource adapter running on
WebSphere Application Server for z/OS. With RRSLocalOption connectivity,
applications using the IMS Universal Database resource adapter do not issue
commit or rollback calls. Instead, transaction processing is managed by WebSphere
Application Server for z/OS. Two-phase commit (XA) transaction processing is not
supported with RRSLocalOption connectivity type.

Connecting using the IMS Universal Database resource adapter
in a managed environment
In a managed (or three-tier) environment, your Java EE application interacts with a
Java EE application server, such as WebSphere Application Server, and the IMS
Universal Database resource adapter to communicate with an IMS database.

To configure and use a CCI Connection object in WebSphere Application Server to
access an IMS database:
1. Deploy the IMS Universal Database resource adapter in WebSphere Application

Server using the administrative console.
2. Create a connection factory for use with the IMS Universal Database resource

adapter in WebSphere Application Server through the administrative console.
a. Specify a name for the connection factory and a Java Naming and Directory

Interface (JNDI) name.
b. Set the following custom connection properties for the IMS Universal

Database resource adapter:

DatastoreName

The name of the IMS data store to access.
v When using type-4 connectivity, the DatastoreName property must

match either the name of the data store defined to ODBM or be
blank. The data store name is defined in the ODBM CSLDCxxx
PROCLIB member using either the DATASTORE(NAME=name) or
DATASTORE(NAME=name, ALIAS(NAME=aliasname)) parameter.
If an alias is specified, you must specify the aliasname as the value
of the datastoreName property. If the DatastoreName value is left
blank (or not supplied), IMS Connect connects to any available
instance of ODBM as it is assumed that data sharing is enabled
between all datastores defined to ODBM.

v When using type-2 connectivity, set the DatastoreName property
to the IMS subsystem alias. This is not required to be set for the
Java Dependent Region run time.

626 Application Programming

DatabaseName

The location of the database metadata representing the target IMS
database.

The DatabaseName property can be specified in one of two ways,
depending on whether the metadata is stored in the IMS catalog or
as a static metadata class generated by the IMS Enterprise Suite
Explorer for Development:
v If your IMS system uses the IMS catalog, the DatabaseName

property is the name of the PSB that your application uses to
access the target IMS database.

v If you are using the IMS Explorer for Development, the
databaseName property is the fully qualified name of the Java
metadata class generated by the IMS Explorer for Development.
The URL must be prefixed with class:// (for example,
class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the DatabaseName
property can be overridden for an individual connection without
affecting the default value specified for the resource adapter.

MetadataURL

The location of the database metadata representing the target IMS
database.

This property is deprecated. Use DatabaseName instead.

The MetadataURL property is the fully qualified name of the Java
metadata class generated by the IMS Enterprise Suite Explorer for
Development. The URL must be prefixed with class:// (for
example, class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the MetadataURL property
can be overridden for an individual connection without affecting
the default value specified for the resource adapter.

PortNumber
The TCP/IP server port number to be used to communicate with
IMS Connect. The port number is defined using the DRDAPORT
parameter on the ODACCESS statement in the IMS Connect
configuration PROCLIB member. The default port number is 8888.
Do not set this property when using type-2 connectivity.

DatastoreServer
The name or IP address of the data store server (IMS Connect). You
can provide either the host name (for example, dev123.svl.ibm.com)
or the IP address (for example, 192.166.0.2). Do not set this property
when using type-2 connectivity.

DriverType
The type of driver connectivity to use. The DriverType value must
be “4” for type-4 connectivity or “2” for type-2 connectivity. If the
driver is running on WebSphere Application Server for z/OS, you
can also set the DriverType value to “2_CTX” for RRSLocalOption
connectivity.

user The user name for the connection to IMS Connect provided by your
RACF administrator. Do not set this property when using type-2
connectivity.

Chapter 40. Programming with the IMS Universal drivers 627

password
The password for the connection to IMS Connect provided by your
RACF administrator. Do not set this property when using type-2
connectivity.

signedCompare
Optional. When this property is set to “true”, special SSAs are
generated to support ranged queries over signed data types. If the
property is set to “false”, standard binary comparisons are
performed based on the binary representation of the data type
value. Setting the value to “false” can increase performance but
might result in incorrect results. The default value for this property
is “true”.

flattenTables
Indicates whether to produce a flattened view of the database
tables. A value of true exposes the sub-elements of a STRUCT or an
ARRAY as additional columns of the table. The default value is
false.
v IMS Explorer flattens the copybook structures when you import

the copybook. Although the copybook itself remains unchanged
in the IMS catalog, the information about the structure of each
table is altered for that particular connection.

v The the flattenTables property allows you to query the fields in
complex structures directly. For more information about support
for flattening complex structures, see “Support for flattening
complex structures” on page 618.

Restriction: The flattenTables connection property supports static
arrays and structures only. Dynamic arrays are not altered.

sslKeyStoreType
Optional. Specifies the format of the file that contains cryptographic
objects needed to establish a secure socket connection. The valid
values are “JKS” and “PKCS12”. This value is only used when
sslConnection is set to “true” and sslKeyStoreType is not specified.
The sslKeyStoreType parameter defaults to “JKS”.

sslSecureSocketProtocol
Optional. Specifies the cryptographic communication protocol for
the new connection. Specify a protocol that is supported by the
server and provides the highest level of security. The valid values
are “SSL”, “SSLv3”, “TLSv1.1”, and “TLSv1.2”. This value is only
used when sslConnection is set to “true”. If sslConnection is set to
“true” and sslSecureSocketProtocol is not specified, a default
protocol will be determined at runtime by the JRE and the server.

t2OutputBufferSize
Optional. The size of the output buffer in bytes for the results from
a SELECT operation for a type-2 connection.

The minimum value for t2OutputBufferSize is 500000. If any value
less than 500000 is set, this property value will be adjusted to
500000. There is no maximum bound. The default value is 1280000.

treatInvalidDecimalsAsNull
Optional. Indicates whether to interpret certain Decimal values that
appear invalid in Java applications (such as PACKEDDECIMAL and
ZONEDDECIMAL with invalid sign bits) as null. By default, this

628 Application Programming

property is “false”, and a conversion exception is thrown when the
Java applications are processing invalid values.

currentSchema
Optional. Specifies the default schema name that is used to qualify
unqualified database objects in dynamically prepared SQL
statements.

dbViewLocation
Optional. Specifies the fully qualified path to a databaseView
metadata class. You can use this property to include a metadata
class that is not located in your project path.

dpsbOnCommit
Optional. Set this property to true to deallocate the PSB when a
commit occurs.

Recommendation: Do not set this property to true except in a
managed environment with integrated connection pooling.

fetchSize
Optional. Gives the client a hint about the number of rows to get
from the database when more rows are needed. The number
specified for this property only affects data retrieved with the
current connection. If the value specified is 0, all of the applicable
rows are returned.

The default value for this property is 0 for both managed and
unmanaged connections.

llField Optional. Setting this property to true exposes the LL field data as a
normal column in the result set. You can modify the LL field value
to change the length of a variable length segment instance.

maxRows
Optional. Specifies the maximum number of rows to return in a
query result set. The default value is 0, which returns all of the
applicable rows in the result set.

traceFile
Optional. Specifies the name of the trace file for the connection.

traceFileAppend
Optional. If the specified trace file exists, setting this property to
true specifies that the trace data for the new connection must be
appended to the existing trace file instead of overwriting it.

This property is ignored if no value is specified for traceFile.

traceDirectory
Optional. Specifies the file system directory where the trace file is
located. By default, this path is the directory where the application
is executed.

This property is ignored if no value is specified for traceFile.

traceLevel
Optional. Specifies which traces are enabled for the connection. The
valid values for this property are defined in the Java API
documentation for the class.

By default, all traces are disabled.

Chapter 40. Programming with the IMS Universal drivers 629

This property is ignored if no value is specified for traceFile.
3. In the deployment descriptor for your Java EE application, add a resource

reference for the connection factory that was created in the previous step. Set
the name of the resource reference to the JNDI name of the connection factory
and set the type to javax.resource.cci.ConnectionFactory.

4. In your Java EE application, create an initial JNDI naming context and get the
corresponding javax.resource.cci.ConnectionFactory instance for the IMS
Universal Database resource adapter using JNDI lookup. The following code
sample shows how to perform the JNDI lookup to obtain a ConnectionFactory
instance, where the connection factory has the JNDI name “imsdblocal”:
Context initctx = new InitialContext();
javax.resource.cci.ConnectionFactory cf =
(javax.resource.cci.ConnectionFactory)initctx.lookup
("java:comp/env/imsdblocal");

5. Create a com.ibm.ims.db.cci.IMSConnectionSpec object and, if necessary, set
application-specific property values to override the values are already assigned
in the connection factory deployment descriptor for accessing the IMS database.
The following code sample shows how to create the IMSConnectionSpec object,
assuming the application needs to override the values for the user ID and
password:
IMSConnectionSpec connSpec = new IMSConnectionSpec();
connSpec.setUser("myUserId");
connSpec.setPassword("myPassword");

6. Get the connection to IMS from the connection factory by invoking the
getConnection method and passing in the IMSConnectionSpec instance created
in the previous step. If the application does not need to override any of the
connection properties set in the connection factory deployment descriptor, then
there is no need to instantiate a IMSConnectionSpec object. Instead, the
application can invoke the getConnection method that takes no arguments. The
returned javax.resource.cci.Connection instance represents an application-level
handle to the underlying physical connection.

7. Use the connection to access the IMS database using the CCI Interaction
interface. The following code sample shows how to obtain the Connection
object:
javax.resource.cci.Connection conn = cf.getConnection(connSpec);

8. After your Java EE application is finished with the connection, close the
connection with the close method on the Connection interface.

Example code for connecting to an IMS database using the IMS
Universal Database resource adapter in a managed environment

The following code sample shows the flow for connecting to an IMS database
using the IMS Universal Database resource adapter from an Java EE application:
//obtain the initial JNDI Naming context
Context initctx = new InitialContext();

//perform JNDI lookup to obtain the connection factory
javax.resource.cci.ConnectionFactory cf =

(javax.resource.cci.ConnectionFactory)initctx.lookup("java:comp/env/imsdblocal");

//specify connection properties
IMSConnectionSpec connSpec = new IMSConnectionSpec();
connSpec.setUser("user");
connSpec.setPassword("password");

//create CCI connection
javax.resource.cci.Connection conn = cf.getConnection(connSpec);

630 Application Programming

The following code sample shows how you can override the default MetadataURL
value of the resource adapter for a specific connection. Overriding the value in this
way does not alter the default value or require any modifications to the J2C
connection factory parameters.
InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("myJNDIName");
Connection con = ((IMSHybridDataSource)ds).getConnection(iSpec);

Related tasks:
“Configuring the IMS Universal drivers for SSL support” on page 712
Related reference:

IMS Universal drivers support for the Common Client Interface (Application
Programming APIs)

Connecting using the IMS Universal JCA/JDBC driver in a
managed environment
To access IMS databases using a JDBC programming interface in a managed (or
three-tier) environment, you need to deploy the IMS Universal JCA/JDBC driver
on your Java EE application server and configure the connection properties.

To configure and use the IMS Universal JCA/JDBC driver to access an IMS
database:
1. Deploy the IMS Universal JCA/JDBC driver in WebSphere Application Server

using the administrative console.
2. Create a connection factory for use with the IMS Universal JCA/JDBC driver in

WebSphere Application Server through the administrative console.
a. Specify a name for the connection factory and a Java Naming and Directory

Interface (JNDI) name. Set the connection factory interface as
javax.sql.DataSource.

b. Set the following custom connection properties for the IMS Universal
JCA/JDBC driver connection factory:

DatastoreName

The name of the IMS data store to access.
v When using type-4 connectivity, the DatastoreName property must

match either the name of the data store defined to ODBM or be
blank. The data store name is defined in the ODBM CSLDCxxx
PROCLIB member using either the DATASTORE(NAME=name) or
DATASTORE(NAME=name, ALIAS(NAME=aliasname)) parameter.
If an alias is specified, you must specify the aliasname as the value
of the datastoreName property. If the DatastoreName value is left
blank (or not supplied), IMS Connect connects to any available
instance of ODBM as it is assumed that data sharing is enabled
between all datastores defined to ODBM.

v When using type-2 connectivity, set the DatastoreName property
to the IMS subsystem alias. This is not required to be set for the
Java Dependent Region run time.

DatabaseName

The location of the database metadata representing the target IMS
database.

Chapter 40. Programming with the IMS Universal drivers 631

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_odbjcasupportforcci.htm#ims_odbjcasupportforcci
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_odbjcasupportforcci.htm#ims_odbjcasupportforcci

The DatabaseName property can be specified in one of two ways,
depending on whether the metadata is stored in the IMS catalog or
as a static metadata class generated by the IMS Enterprise Suite
Explorer for Development:
v If your IMS system uses the IMS catalog, the DatabaseName

property is the name of the PSB that your application uses to
access the target IMS database.

v If you are using the IMS Explorer for Development, the
databaseName property is the fully qualified name of the Java
metadata class generated by the IMS Explorer for Development.
The URL must be prefixed with class:// (for example,
class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the DatabaseName
property can be overridden for an individual connection without
affecting the default value specified for the resource adapter.

MetadataURL

The location of the database metadata representing the target IMS
database.

This property is deprecated. Use DatabaseName instead.

The MetadataURL property is the fully qualified name of the Java
metadata class generated by the IMS Enterprise Suite Explorer for
Development. The URL must be prefixed with class:// (for
example, class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the MetadataURL property
can be overridden for an individual connection without affecting
the default value specified for the resource adapter.

PortNumber
The TCP/IP server port number to be used to communicate with
IMS Connect. The port number is defined using the DRDAPORT
parameter on the ODACCESS statement in the IMS Connect
configuration PROCLIB member. The default port number is 8888.
Do not set this property when using type-2 connectivity.

DatastoreServer
The name or IP address of the data store server (IMS Connect). You
can provide either the host name (for example, dev123.svl.ibm.com)
or the IP address (for example, 192.166.0.2). Do not set this property
when using type-2 connectivity.

DriverType
The type of driver connectivity to use. The DriverType value must
be “4” for type-4 connectivity or “2” for type-2 connectivity. If the
driver is running on WebSphere Application Server for z/OS, you
can also set the DriverType value to “2_CTX” for RRSLocalOption
connectivity.

sslConnection
Optional. Indicates if this connection uses Secure Sockets Layer
(SSL) for data encryption. Set this property to “true” to enable SSL,
or to “false” otherwise. Do not set this property when using type-2
connectivity.

sslKeyStoreType
Optional. Specifies the format of the file that contains

632 Application Programming

cryptographic objects needed to establish a secure socket
connection. The valid values are “JKS” and “PKCS12”. This
value is only used when sslConnection is set to “true” and
sslKeyStoreType is not specified. The sslKeyStoreType
parameter defaults to “JKS”.

sslSecureSocketProtocol
Optional. Specifies the cryptographic communication
protocol for the new connection. Specify a protocol that is
supported by the server and provides the highest level of
security. The valid values are “SSL”, “SSLv3”, “TLSv1.1”,
and “TLSv1.2”. This value is only used when sslConnection
is set to “true”. If sslConnection is set to “true” and
sslSecureSocketProtocol is not specified, a default protocol
will be determined at runtime by the JRE and the server.

sslTrustStoreLocation
Optional. Specifies the location of the cryptographic trust
store file for the new connection. This value is only used
when sslConnection is set to true.

sslTrustStorePassword
Optional. Specifies the password to access the cryptographic
trust store file. This value is only used when sslConnection
is set to true.

sslKeyStoreLocation
Optional. Specifies the location of the cryptographic key
store file for the new connection. This value is only used
when sslConnection is set to true.

sslKeyStorePassword
Optional. Specifies the password to access the cryptographic
key store file. This value is only used when sslConnection
is set to true.

loginTimeout
Optional. Specifies the number of seconds that the driver waits for a
response from the server before timing out a connection
initialization or server request. Set this property to a non-negative
integer for the number of seconds. Set this property to 0 for an
infinite timeout length. Do not set this property when using type-2
connectivity.

user The user name for the connection to IMS Connect provided by your
RACF administrator. Do not set this property when using type-2
connectivity.

password
The password for the connection to IMS Connect provided by your
RACF administrator. Do not set this property when using type-2
connectivity.

signedCompare
Optional. When this property is set to “true”, special SSAs are
generated to support ranged queries over signed data types. If the
property is set to “false”, standard binary comparisons are
performed based on the binary representation of the data type

Chapter 40. Programming with the IMS Universal drivers 633

value. Setting the value to “false” can increase performance but
might result in incorrect results. The default value for this property
is “true”.

flattenTables
Indicates whether to produce a flattened view of the database
tables. A value of true exposes the sub-elements of a STRUCT or an
ARRAY as additional columns of the table. The default value is
false.
v IMS Explorer flattens the copybook structures when you import

the copybook. Although the copybook itself remains unchanged
in the IMS catalog, the information about the structure of each
table is altered for that particular connection.

v The the flattenTables property allows you to query the fields in
complex structures directly. For more information about support
for flattening complex structures, see “Support for flattening
complex structures” on page 618.

Restriction: The flattenTables connection property supports static
arrays and structures only. Dynamic arrays are not altered.

t2OutputBufferSize
Optional. The size of the output buffer in bytes for the results from
a SELECT operation for a type-2 connection.

The minimum value for t2OutputBufferSize is 500000. If any value
less than 500000 is set, this property value will be adjusted to
500000. There is no maximum bound. The default value is 1280000.

treatInvalidDecimalsAsNull
Optional. Indicates whether to interpret certain Decimal values that
appear invalid in Java applications (such as PACKEDDECIMAL and
ZONEDDECIMAL with invalid sign bits) as null. By default, this
property is “false”, and a conversion exception is thrown when the
Java applications are processing invalid values.

currentSchema
Optional. Specifies the default schema name that is used to qualify
unqualified database objects in dynamically prepared SQL
statements.

dbViewLocation
Optional. Specifies the fully qualified path to a databaseView
metadata class. You can use this property to include a metadata
class that is not located in your project path.

dpsbOnCommit
Optional. Set this property to true to deallocate the PSB when a
commit occurs.

Recommendation: Do not set this property to true except in a
managed environment with integrated connection pooling.

fetchSize
Optional. Gives the client a hint about the number of rows to get
from the database when more rows are needed. The number
specified for this property only affects data retrieved with the
current connection. If the value specified is 0, all of the applicable
rows are returned.

634 Application Programming

The default value for this property is 0 for both managed and
unmanaged connections.

llField Optional. Setting this property to true exposes the LL field data as a
normal column in the result set. You can modify the LL field value
to change the length of a variable length segment instance.

maxRows
Optional. Specifies the maximum number of rows to return in a
query result set. The default value is 0, which returns all of the
applicable rows in the result set.

traceFile
Optional. Specifies the name of the trace file for the connection.

traceFileAppend
Optional. If the specified trace file exists, setting this property to
true specifies that the trace data for the new connection must be
appended to the existing trace file instead of overwriting it.

This property is ignored if no value is specified for traceFile.

traceDirectory
Optional. Specifies the file system directory where the trace file is
located. By default, this path is the directory where the application
is executed.

This property is ignored if no value is specified for traceFile.

traceLevel
Optional. Specifies which traces are enabled for the connection. The
valid values for this property are defined in the Java API
documentation for the class.

By default, all traces are disabled.

This property is ignored if no value is specified for traceFile.
3. In the deployment descriptor for your Java EE application, add a resource

reference for the connection factory that was created in the previous step. Set
the name of the resource reference to the JNDI name of the connection factory
and set the type to javax.resource.cci.ConnectionFactory.

4. In your Java EE application, create an initial JNDI naming context and get a
javax.sql.DataSource instance for the IMS Universal JCA/JDBC hybrid driver
using JNDI lookup. The following code sample shows how to perform the
JNDI lookup to obtain a DataSource instance, where the connection factory has
the JNDI name “imsdblocal”:
InitialContext ic = new InitialContext();
javax.sql.DataSource ds =
(DataSource)ic.lookup("java:comp/env/imsdblocal");

5. Use the getConnection method on the DataSource instance to obtain a
java.sql.Connection instance, as shown by the following code sample:
Connection con = ds.getConnection();

6. After your Java EE application has finished with the connection, close the
connection using the close method on the Connection interface.

Example code for connecting to an IMS database using the IMS
Universal JCA/JDBC driver

The following code sample shows the flow for connecting to an IMS database
using the IMS Universal JCA/JDBC driver from an Java EE application:

Chapter 40. Programming with the IMS Universal drivers 635

//obtain the initial JNDI Naming context
InitialContext ic = new InitialContext();

//perform JNDI lookup to obtain the data source
javax.sql.DataSource ds =
(DataSource)ic.lookup("java:comp/env/imsdblocal");

//specify connection properties
ds.setUser("myUserID");
ds.setPassword("myPassword");
props.put("sslConnection", "true");
props.put("loginTimeout", "10");

//create JDBC connection
java.sql.Connection con = ds.getConnection();

Related tasks:
“Configuring the IMS Universal drivers for SSL support” on page 712
Related reference:

javax.sql.DataSource methods supported (Application Programming APIs)

Sample EJB application using the IMS Universal Database
resource adapter CCI programming interface

The following sample EJB bean demonstrates the basic programming flow for a
JCA application using the IMS Universal Database resource adapter in a managed
environment.
package client;

import java.sql.SQLException;
import javax.naming.InitialContext;
import javax.resource.ResourceException;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Interaction;
import javax.resource.cci.ResultSet;
import javax.transaction.UserTransaction;
import com.ibm.ims.db.cci.SQLInteractionSpec;

/**
* Bean implementation class for Enterprise Bean: StatefulBeanManaged
*/

public class BeanManagedSampleBean implements javax.ejb.SessionBean {

private javax.ejb.SessionContext mySessionCtx;

public void execute() throws Exception {
InitialContext ic = new InitialContext();
ConnectionFactory cf =

(ConnectionFactory) ic.lookup("java:comp/env/MyMCF");
Connection conn = null;
UserTransaction ut = null;

try {
ut = this.mySessionCtx.getUserTransaction();
ut.begin();

conn = cf.getConnection();
Interaction ix = conn.createInteraction();
SQLInteractionSpec iSpec = new SQLInteractionSpec();

// This query will return information for each person
// in the phonebook with the last name WATSON
iSpec.setSQL("SELECT * FROM " +

636 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_odbjdbcdatasourcemethodssupported.htm#ims_odbjdbcdatasourcemethodssupported

"PCB01.PHONEBOOK WHERE LASTNAME=’WATSON’");

ResultSet rs = (ResultSet) ix.execute(iSpec, null);

// Print out the first name of every person in the
// phonebook with the last name WATSON
while (rs.next()) {

System.out.println(rs.getString("FIRSTNAME"));
}

rs.close();
ix.close();
ut.commit();
conn.close();

} catch (ResourceException e) {
ut.rollback();
conn.close();

} catch (SQLException e) {
ut.rollback();
conn.close();

}
}

/**
* getSessionContext
*/

public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;

}

/**
* setSessionContext
*/

public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;

}

/**
* ejbCreate
*/

public void ejbCreate() throws javax.ejb.CreateException {
}

/**
* ejbActivate
*/

public void ejbActivate() {
}

/**
* ejbPassivate
*/

public void ejbPassivate() {
}

/**
* ejbRemove
*/

public void ejbRemove() {
}

}

Accessing IMS data with the DLIInteractionSpec class
Use the DLIInteractionSpec class to retrieve, insert, update, and delete data from
an IMS database using DL/I-like programming semantics with the IMS Universal
Database resource adapter.

Chapter 40. Programming with the IMS Universal drivers 637

Before your application component can retrieve, insert, update, or delete data from
an IMS database, you need to obtain a javax.resource.cci.Connection instance for
the physical connection to the database.

To retrieve, insert, update, or delete data using the DLIInteractionSpec class:
1. In your application component, create a new javax.resource.cci.Interaction

instance using the Connection.createInteraction method. For example, in the
following code sample, con is a javax.resource.cci.Connection instance for an
IMS database:
Interaction ix = con.createInteraction();

2. Create a new com.ibm.ims.db.cci.DLIInteractionSpec instance.
DLIInteractionSpec iSpec = new DLIInteractionSpec();

3. Set the function to perform using the DLIInteractionSpec.setFunctionName
method, and specifying the function constant value listed in the table below as
the input parameter.

Data operation to perform setFunctionName value

Data retrieval DLIInteractionSpec.RETRIEVE

Data insertion DLIInteractionSpec.CREATE

Data update DLIInteractionSpec.UPDATE

Data deletion DLIInteractionSpec.DELETE

For example, the following code sample specifies a data retrieval operation:
iSpec.setFunctionName(DLIInteractionSpec.RETRIEVE);

4. Set the PCB name using the DLIInteractionSpec.setPCBName method. For
example, the following code sample specifies the PCB to be used for this
interaction as “PCB01”:
iSpec.setPCBName("PCB01");

5. Set the segment search argument (SSA) list using the
DLIInteractionSpec.setSSAList method. The setSSAList method allows you to
specify an SSA in a syntax similar to traditional DL/I.
v You can manually provide the SSA qualification statement as a string in the

argument. The syntax is as follows:

Syntax for segment search argument qualification statement in the
setSSAList method

►► segName
* cmdCode (fldName relOp value)

boolOp fldName relOp value

►◄

segName
The name of the segment as defined in the Java metadata class
generated by the IMS Enterprise Suite Explorer for Development.

cmdCode (optional)
All DL/I command codes except Q and C are supported.

fldName
The name of the field.

relOp The SSA qualification statement's relational operator. Supported
values are:

= Equals

638 Application Programming

!= Not equal

> Greater than

>= Greater than or equals

< Less than

<= Less than or equals

value A string representation of the field value. If the value is
character-based, the string has to be enclosed in quotation marks. If
the value is numeric, it does not need to be enclosed in quotation
marks. If the character-based value has quotation marks, use a single
quote as an escape for the quote in the value. For example, if the
value is “O'brian”, you would enter it as “O''brian”.

boolOp
Boolean operators for adding additional field-level qualifications. The
supported Boolean operators are:
– logical AND (specified * or &)
– logical OR (specified + or |)
– independent AND (specified #)

The following code example shows how to set the segment search argument
list to return the last patient admitted to all wards with more than five
doctors and less than three nurses in hospital “ALEXANDRIA”. The *L
command means "last occurrence".
String ssaList =
"Hospital(HospName=’ALEXANDRIA’) Ward(Doccount>5 | Nurcount<3) Patient *L";
iSpec.setSSAList(ssaList);

v Instead of providing the string manually, you can use the
com.ibm.ims.db.cci.SSAListHelper class to generate the string.
The following code example shows how to set the SSA qualification
statement string using the SSAListHelper:
SSAListHelper sh = new SSAListHelper();
sh.addInitialQualification

("Hospital","HospName",SSAListHelper.EQUALS, "ALEXANDRIA");
sh.addInitialQualification("Ward","Doccount",

SSAListHelper.GREATER_THAN, 5);
sh.appendQualification("Ward",SSAListHelper.OR, "Nurcount",

SSAListHelper.LESS_THAN, 3);
sh.addCommandCode("Patient",SSAListHelper.CC_L);
iSpec.setSSA(sh.toString());

6. Create a javax.resource.cci.RecordFactory instance using the
ConnectionFactory.getRecordFactory method. For example, the following code
sample creates a ConnectionFactory instance rf:
RecordFactory rf = cf.getRecordFactory();

This step is not needed for a DELETE operation.
7. Create a javax.resource.cci.MappedRecord instance using the

RecordFactory.getMappedRecord method. For a RETRIEVE operation, pass the
name of the record you want to create as an argument to this method. For a
CREATE or UPDATE operation, the argument is the name of the segment to
insert or update. For example, in the following code sample for a RETRIEVE
operation, rf is a javax.resource.cci.RecordFactory instance:
MappedRecord input = rf.createMappedRecord("myHospitalRecord");

Chapter 40. Programming with the IMS Universal drivers 639

This step is not needed for a DELETE operation because the MappedRecord is
not used.

8. Specify the field to target for the data operation using the MappedRecord.put
method. Pass the name of the field as the first argument to this method. For a
CREATE or UPDATE operation, the MappedRecord is used to specify the field
to insert or update as well as its values. Pass in the value of the field as the
second argument. For a RETRIEVE operation, the MappedRecord is used to
specify the field that the application is interested in retrieving as a result of the
call, and the second argument in the put method call is ignored (you can pass
in a null). If you do not specify any fields, the RETRIEVE operation will return
all the fields of the leaf segment for that record, along with all the fields in
segments which have SSAs specified with a *D command. For CREATE,
UPDATE, and RETRIEVE operations, you can specify multiple fields by making
multiple MappedRecord.put method calls. For example, in the following code
sample, input is a javax.resource.cci.MappedRecord instance and “HospCode” is
the name of the field we want to retrieve:
input.put("HospCode", null);

This step is not needed for a DELETE operation as the MappedRecord is not
used.

9. Execute the query by calling the Interaction.execute method. Pass the
DLIInteractionSpec object and the MappedRecord object as arguments. If the
query is successful, the method returns a Record object with the query results.
You can cast the Record instance to javax.resource.cci.ResultSet and process the
results as tabular data in your application component. For example, in the
following code sample, results is a javax.resource.cci.ResultSet instance, ix is a
javax.resource.cci.Interaction instance, iSpec is a
com.ibm.ims.db.cci.DLIInteractionSpec instance, and input is a
javax.resource.cci.MappedRecord instance:
results = (ResultSet)ix.execute(iSpec, input);

Example code for IMS data operations using the DLIInteraction
interface

The following complete code example shows how to use the DLIInteraction
interface to retrieve fields from a WARD segment.
package client;

import java.sql.SQLException;
import javax.naming.InitialContext;
import javax.resource.ResourceException;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Interaction;
import javax.resource.cci.ResultSet;
import javax.transaction.UserTransaction;
import com.ibm.ims.db.cci.SQLInteractionSpec;

/**
* Bean implementation class for Enterprise Bean: StatefulBeanManaged
*/

public class BeanManagedSampleDLIBean implements javax.ejb.SessionBean {

private javax.ejb.SessionContext mySessionCtx;

public void execute() throws Exception {
InitialContext ic = new InitialContext();
ConnectionFactory cf =

(ConnectionFactory) ic.lookup("java:comp/env/MyMCF");

640 Application Programming

Connection conn = null;
UserTransaction ut = null;

try {
ut = this.mySessionCtx.getUserTransaction();
ut.begin();

conn = cf.getConnection();
Interaction ix = conn.createInteraction();

DLIInteractionSpec iSpec = new DLIInteractionSpec();
iSpec.setFunctionName("RETRIEVE");
iSpec.setPCBName("PCB09");

// This query will return the WARDNAME, PATCOUNT, DOCCOUNT,
// and NURCOUNT fields for all WARDs with WARNNO = 51
iSpec.setSSAList("WARD (WARDNO = ’51’)");

// Create RecordFactory
RecordFactory rf = cf.getRecordFactory();

// Create Record
MappedRecord input = rf.createMappedRecord("WARD");
// Specify the fields to retrieve
input.put("WARDNAME", null);
input.put("PATCOUNT", null);
input.put("DOCCOUNT", null);
input.put("NURCOUNT", null);

ResultSet results = (ResultSet) ix.execute(iSpec, input);
while (results.next()) {

System.out.println(results.getString("WARDNAME"));
System.out.println(results.getString("PATCOUNT"));
System.out.println(results.getString("DOCCOUNT"));
System.out.println(results.getString("NURCOUNT"));

}

rs.close();
ix.close();
ut.commit();
conn.close();

} catch (ResourceException e) {
ut.rollback();
conn.close();

} catch (SQLException e) {
ut.rollback();
conn.close();

}
}

/**
* getSessionContext
*/

public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;

}

/**
* setSessionContext
*/

public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;

}

/**
* ejbCreate
*/

Chapter 40. Programming with the IMS Universal drivers 641

public void ejbCreate() throws javax.ejb.CreateException {
}

/**
* ejbActivate
*/

public void ejbActivate() {
}

/**
* ejbPassivate
*/

public void ejbPassivate() {
}

/**
* ejbRemove
*/

public void ejbRemove() {
}

}

Related concepts:
“Connecting to IMS with the IMS Universal Database resource adapter” on page
625
Related reference:

IMS Universal drivers support for the Common Client Interface (Application
Programming APIs)

Accessing IMS data with the SQLInteractionSpec class
Use the SQLInteractionSpec class to retrieve, insert, update, and delete data from
an IMS database using SQL queries with the IMS Universal Database resource
adapter. The IMS Universal Database resource adapter supports the same SQL
statement syntax and usage as the IMS Universal JDBC driver and has the same
restrictions.

Before your application component can retrieve, insert, update, or delete data from
an IMS database, you need to obtain a javax.resource.cci.Connection instance for
the physical connection to the database.

To retrieve, insert, update, or delete data using the SQLInteractionSpec class:
1. In your application component, create a new javax.resource.cci.Interaction

instance using the Connection.createInteraction method. For example, in the
following code sample, con is a javax.resource.cci.Connection instance for an
IMS database:
Interaction ix = con.createInteraction();

2. Create a new com.ibm.ims.db.cci.SQLInteractionSpec instance.
SQLInteractionSpec iSpec = new SQLInteractionSpec();

3. Set the SQL query string using the SQLInteractionSpec.setSQL method. In the
query, you can specify the qualification column values in the WHERE clause
with a ? parameter marker, meaning that the values will provided later (similar
to a PreparedStatement in JDBC).
v The following example shows how to specify the SELECT statement without

using parameter markers, where iSpec is an instance of SQLInteractionSpec:
iSpec.setQuery("SELECT PATIENT.PATNAME, ILLNESS.ILLNAME "+

"FROM pcb01.HOSPITAL, pcb01.PATIENT, pcb01.ILLNESS " +
"WHERE HOSPITAL.HOSPNAME=’SANTA TERESA’");

642 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_odbjcasupportforcci.htm#ims_odbjcasupportforcci
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_odbjcasupportforcci.htm#ims_odbjcasupportforcci

v The following example shows how to perform the SELECT statement with
parameter markers, where iSpec is an instance of SQLInteractionSpec:
iSpec.setQuery("SELECT PATIENT.PatName, WARD.WardName "+

"FROM pcb01.HOSPITAL, pcb01.PATIENT, pcb01.WARD " +
"WHERE HOSPITAL.HospName=? AND WARD.DocCount>?");

4. Create a javax.resource.cci.RecordFactory instance using the
ConnectionFactory.getRecordFactory method. Creating a RecordFactory is not
needed for SQL queries without parameter markers.

5. Create a javax.resource.cci.IndexedRecord instance using the
RecordFactory.getIndexedRecord method. Pass the name of the record you want
to create as an argument to this method. For example, in the following code
sample, rf is a javax.resource.cci.RecordFactory instance:
IndexedRecord input = rf.createIndexedRecord("myPatientRecord");

Creating a IndexedRecord is not needed for SQL queries without parameter
markers.

6. If your query string uses parameter markers, use the IndexedRecord.add
method to qualify the WHERE clause. For example, using the same query
string with parameter markers as in step 5, where input is an instance of
IndexedRecord:
input.add(1, "Santa Teresa"); //HospName value is "Santa Teresa"
input.add(2, 5); //DocCount value is greater than 5

7. Execute the query by calling the Interaction.execute method. Pass the
SQLInteractionSpec object and the IndexedRecord object as arguments. If your
SQL query does not use parameter markers, the second argument in the
execute method call is ignored (you can pass in a null). If the query is
successful, the method returns a Record object with the query results. You can
cast the Record instance to javax.resource.cci.ResultSet and process the results
as tabular data in your application component. For example, in the following
code sample, results is a javax.resource.cci.ResultSet instance, ix is a
javax.resource.cci.Interaction instance, iSpec is a
com.ibm.ims.db.cci.SQLInteractionSpec instance, and input is a
javax.resource.cci.IndexedRecord instance:
results = (ResultSet)ix.execute(iSpec, input);

Example code for IMS data operations using the
SQLInteractionSpec class

The following code example shows how to use the SQLInteractionSpec class to
retrieve patient names from PATIENT records.
package client;

import java.sql.SQLException;
import javax.naming.InitialContext;
import javax.resource.ResourceException;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Interaction;
import javax.resource.cci.ResultSet;
import javax.transaction.UserTransaction;
import com.ibm.ims.db.cci.SQLInteractionSpec;

/**
* Bean implementation class for Enterprise Bean: StatefulBeanManaged
*/

public class BeanManagedSampleSQLBean implements javax.ejb.SessionBean {

Chapter 40. Programming with the IMS Universal drivers 643

private javax.ejb.SessionContext mySessionCtx;

public void execute() throws Exception {
InitialContext ic = new InitialContext();
ConnectionFactory cf =

(ConnectionFactory) ic.lookup("java:comp/env/MyMCF");
Connection conn = null;
UserTransaction ut = null;

try {
ut = this.mySessionCtx.getUserTransaction();
ut.begin();

conn = cf.getConnection();
Interaction ix = conn.createInteraction();
SQLInteractionSpec iSpec = new SQLInteractionSpec();

// This query will return the WARDNAME, PATCOUNT, DOCCOUNT,
// and NURCOUNT fields for the WARD with WARDNO = 51
iSpec.setSQL("SELECT WARDNAME, PATCOUNT, DOCCOUNT, " +

"NURCOUNT FROM PCB09.WARD WHERE WARDNO=’51’");

ResultSet rs = (ResultSet) ix.execute(iSpec, null);

while (rs.next()) {
System.out.println(rs.getString("WARDNAME"));
System.out.println(rs.getString("PATCOUNT"));
System.out.println(rs.getString("DOCCOUNT"));
System.out.println(rs.getString("NURCOUNT"));

}

rs.close();
ix.close();
ut.commit();
conn.close();

} catch (ResourceException e) {
ut.rollback();
conn.close();

} catch (SQLException e) {
ut.rollback();
conn.close();

}
}

/**
* getSessionContext
*/

public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;

}

/**
* setSessionContext
*/

public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;

}

/**
* ejbCreate
*/

public void ejbCreate() throws javax.ejb.CreateException {
}

/**
* ejbActivate
*/

644 Application Programming

public void ejbActivate() {
}

/**
* ejbPassivate
*/

public void ejbPassivate() {
}

/**
* ejbRemove
*/

public void ejbRemove() {
}

}

Related concepts:
“Connecting to IMS with the IMS Universal Database resource adapter” on page
625
Related reference:

IMS Universal drivers support for the Common Client Interface (Application
Programming APIs)
“SQL statement usage with the IMS Universal JDBC driver” on page 666

Accessing IMS data with the IMS Universal JCA/JDBC driver
Use the IMS Universal JCA/JDBC driver if you require full use of the IMS
Universal JDBC driver within a Java EE runtime environment.

Before your Java EE application component can retrieve, insert, update, or delete
data from an IMS database, you need to obtain a java.sql.Connection instance for
the physical connection to the database.

In your Java EE application component, code the application logic for the data
operations you want to perform in the same way as for a JDBC application. The
IMS Universal JCA/JDBC driver has the same SQL statement syntax support and
usage restrictions as the IMS Universal JDBC driver.

Example EJB application using the IMS Universal JCA/JDBC
driver

The following code sample shows a bean-managed EJB application that connects to
an IMS database, retrieves a list of patient names using a SQL SELECT query, and
modifies the patient information using a SQL UPDATE query.
package client;
import java.sql.SQLException;
import javax.naming.InitialContext;
import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.ResultSet;

import javax.transaction.UserTransaction;
import com.ibm.ims.db.cci.SQLInteractionSpec;

/**
* Bean implementation class for Enterprise Bean: StatefulBeanManaged
*/

public class JDBCBeanManagedSampleSQLBean {

private javax.ejb.SessionContext mySessionCtx;

Chapter 40. Programming with the IMS Universal drivers 645

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_odbjcasupportforcci.htm#ims_odbjcasupportforcci
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_odbjcasupportforcci.htm#ims_odbjcasupportforcci

public void execute() throws Exception {
InitialContext ic = new InitialContext();

DataSource ds =
(DataSource) ic.lookup("java:comp/env/MyMCF");

Connection conn = null;
UserTransaction ut = null;

try {
ut = this.mySessionCtx.getUserTransaction();

ut.begin();

conn = ds.getConnection();

Statement st = conn.createStatement();

// List all of the patient names in the
// SURG ward in the ALEXANDRIA hospital
ResultSet rs = st.executeQuery("SELECT patname from " +

"pcb01.hospital, ward, patient " +
"where hospital.hospname = ’ALEXANDRIA’ " +
"and ward.wardname = ’SURG’");

while (rs.next()) {
System.out.println(rs.getString("patname"));

}

// Update the name of the patient with patient
// number 0222 in ward 04 in the hospital
// with code R1210010000A
int updatedRecords = st.executeUpdate("UPDATE PCB01.PATIENT " +

"SET PATNAME=’UPDATED NAME’ WHERE PATNUM=’0222’ " +
"AND HOSPITAL_HOSPCODE=’R121001000A’ AND WARD_WARDNO=’04’");

System.out.println("Updated " + updatedRecords + " Record(s)");

rs.close();
ut.commit();
conn.close();

} catch (SQLException e) {
e.printStackTrace();

ut.rollback();
conn.close();

}
}

/**
* getSessionContext
*/

public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;

}

/**
* setSessionContext
*/

public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;

}

/**
* ejbCreate
*/

public void ejbCreate() throws javax.ejb.CreateException {
}

/**
* ejbActivate
*/

646 Application Programming

public void ejbActivate() {
}

/**
* ejbPassivate
*/

public void ejbPassivate() {
}

/**
* ejbRemove
*/

public void ejbRemove() {
}

}

Related reference:
“SQL statement usage with the IMS Universal JDBC driver” on page 666

Programming with the IMS Universal JDBC driver
IMS provides a Java Database Connectivity (JDBC) driver for SQL-based database
connectivity to access IMS databases over TCP/IP with the IMS Universal JDBC
driver that is included in the IMS Universal drivers. The IMS Universal JDBC
driver is based on the JDBC 3.0 standard.

JDBC is an application programming interface (API) that Java applications use to
access relational databases or tabular data sources. The JDBC API is the industry
standard for database-independent connectivity between the Java programming
language and any database that has implemented the JDBC interface. The client
uses the interface to query and update data in a database. It is the responsibility of
the JDBC driver itself to implement the underlying (specific) access protocol for the
specific database the driver is implemented for. Drivers are client-side adapters
(they are installed in the client machine, not in the server) that convert requests
from Java programs to a protocol that the database management system (DBMS)
can understand.

IMS support for JDBC lets you write Java applications that can issue dynamic SQL
calls to access IMS data and process the result set that is returned in tabular
format. The IMS Universal JDBC driver is designed to support a subset of the SQL
syntax with functionality that is limited to what the IMS database management
system can process natively. Its DBMS-centric design allows the IMS Universal
JDBC driver to fully leverage the high performance capabilities of IMS. The IMS
Universal JDBC driver also provides aggregate function support, and ORDER BY
and GROUP BY support.

Preparing to write a Java application with the IMS Universal
drivers

Java application programs that use the IMS Universal drivers require the Java
Development Kit 6.0 (JDK 6.0). Java programs that run in JMP and JBP regions
require the Java Development Kit 6.0 (JDK 6.0) or later. Java application programs
that use the IMS Universal drivers must have access to database metadata in order
to interact with IMS databases. This metadata can either be accessed directly in the
IMS catalog database or it can be generated as a Java metadata class with the IMS
Enterprise Suite Explorer for Development.
Related reference:

IBM Java development kits on the developerWorks website

Chapter 40. Programming with the IMS Universal drivers 647

http://www.ibm.com/developerworks/java/jdk/index.html

Supported drivers for JDBC
The IMS Universal JDBC driver supports the type-2 and type-4 JDBC architectures.

The table below lists the IMS support available for the four types of JDBC driver
architectures:

Table 99. JDBC driver architectures supported by IMS

JDBC driver architecture Description IMS support

Type-1 Drivers that implement the
JDBC API as a mapping to
another data access API, such
as Open Database
Connectivity (ODBC). Drivers
of this type are generally
dependent on a native
library, which limits their
portability.

IMS does not support a
type-1 driver.

Type-2 Drivers that are written
partly in the Java
programming language and
partly in native code. The
drivers use a native client
library specific to the data
source to which they connect.
Because of the native code,
their portability is limited.
Java programs with type 2
JDBC connectivity can run on
the same z/OS system or
zSeries logical partition
(LPAR) as the target IMS
subsystem.

Use the IMS Universal JDBC
driver with type-2
connectivity to access IMS
from WebSphere Application
Server for z/OS, IMS Java
Dependent Regions (JDRs),
and CICS.

Type-3 Drivers that use a pure Java
client and communicate with
a server using a
database-independent
protocol. The server then
communicates the client's
requests to the data source.

IMS does not support a
type-3 driver.

Type-4 Drivers that are pure Java
and implement the network
protocol for a specific data
source. The client connects
directly to the data source.

Use the IMS Universal JDBC
driver with type-4
connectivity to access the IMS
subsystem via a TCP/IP
network connection.

Connecting to IMS using the IMS Universal JDBC driver
You must first establish a connection to an IMS database before you can start
sending queries and receiving results in your JDBC program.

Connecting to an IMS database using the JDBC DataSource
interface
Using the DataSource interface is the preferred way to connect to IMS from your
IMS Universal JDBC driver application.

To create and use a DataSource interface in your IMS Universal JDBC driver
application:

648 Application Programming

1. Create an instance of the com.ibm.ims.jdbc.IMSDataSource class. This class is
the IMS Universal JDBC driver implementation of the DataSource interface.

2. Set the following connection properties of the DataSource instance.

DatastoreName

The name of the IMS data store to access.
v When using type-4 connectivity, the DatastoreName property must

match either the name of the data store defined to ODBM or be
blank. The data store name is defined in the ODBM CSLDCxxx
PROCLIB member using either the DATASTORE(NAME=name) or
DATASTORE(NAME=name, ALIAS(NAME=aliasname)) parameter. If
an alias is specified, you must specify the aliasname as the value of
the datastoreName property. If the DatastoreName value is left blank
(or not supplied), IMS Connect connects to any available instance of
ODBM as it is assumed that data sharing is enabled between all
datastores defined to ODBM.

v When using type-2 connectivity, set the DatastoreName property to
the IMS subsystem alias. This is not required to be set for the Java
Dependent Region run time.

DatabaseName

The location of the database metadata representing the target IMS
database.

The DatabaseName property can be specified in one of two ways,
depending on whether the metadata is stored in the IMS catalog or as a
static metadata class generated by the IMS Enterprise Suite Explorer for
Development:
v If your IMS system uses the IMS catalog, the DatabaseName property

is the name of the PSB that your application uses to access the target
IMS database.

v If you are using the IMS Explorer for Development, the databaseName
property is the fully qualified name of the Java metadata class
generated by the IMS Explorer for Development. The URL must be
prefixed with class:// (for example, class://
com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the DatabaseName property
can be overridden for an individual connection without affecting the
default value specified for the resource adapter.

MetadataURL

The location of the database metadata representing the target IMS
database.

This property is deprecated. Use DatabaseName instead.

The MetadataURL property is the fully qualified name of the Java
metadata class generated by the IMS Enterprise Suite Explorer for
Development. The URL must be prefixed with class:// (for example,
class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the MetadataURL property can
be overridden for an individual connection without affecting the
default value specified for the resource adapter.

PortNumber
The TCP/IP server port number to be used to communicate with IMS

Chapter 40. Programming with the IMS Universal drivers 649

Connect. The port number is defined using the DRDAPORT parameter
on the ODACCESS statement in the IMS Connect configuration
PROCLIB member. The default port number is 8888. Do not set this
property when using type-2 connectivity.

DatastoreServer
The name or IP address of the data store server (IMS Connect). You can
provide either the host name (for example, dev123.svl.ibm.com) or the
IP address (for example, 192.166.0.2). Do not set this property when
using type-2 connectivity.

DriverType
The type of driver connectivity to use (value must be
IMSDataSource.DRIVER_TYPE_4 for type-4 connectivity or
IMSDataSource.DRIVER_TYPE_2 for type-2 connectivity).

user The user name for the connection to IMS Connect provided by your
RACF administrator. Do not set this property when using type-2
connectivity.

password
The password for the connection to IMS Connect provided by your
RACF administrator. Do not set this property when using type-2
connectivity.

sslConnection
Optional. Indicates if this connection uses Secure Sockets Layer (SSL)
for data encryption. Set this property to “true” to enable SSL, or to
“false” otherwise. Do not set this property when using type-2
connectivity.

sslKeyStoreType
Optional. Specifies the format of the file that contains
cryptographic objects needed to establish a secure socket
connection. The valid values are “JKS” and “PKCS12”. This
value is only used when sslConnection is set to “true” and
sslKeyStoreType is not specified. The sslKeyStoreType
parameter defaults to “JKS”.

sslSecureSocketProtocol
Optional. Specifies the cryptographic communication protocol
for the new connection. Specify a protocol that is supported by
the server and provides the highest level of security. The valid
values are “SSL”, “SSLv3”, “TLSv1.1”, and “TLSv1.2”. This
value is only used when sslConnection is set to “true”. If
sslConnection is set to “true” and sslSecureSocketProtocol is
not specified, a default protocol will be determined at runtime
by the JRE and the server.

sslTrustStoreLocation
Optional. Specifies the location of the cryptographic trust store
file for the new connection. This value is only used when
sslConnection is set to true.

sslTrustStorePassword
Optional. Specifies the password to access the cryptographic
trust store file. This value is only used when sslConnection is
set to true.

650 Application Programming

sslKeyStoreLocation
Optional. Specifies the location of the cryptographic key store
file for the new connection. This value is only used when
sslConnection is set to true.

sslKeyStorePassword
Optional. Specifies the password to access the cryptographic
key store file. This value is only used when sslConnection is
set to true.

loginTimeout
Optional. Specifies the number of seconds that the driver waits for a
response from the server before timing out a connection initialization or
server request. Set this property to a non-negative integer for the
number of seconds. Set this property to 0 for an infinite timeout length.
Do not set this property when using type-2 connectivity.

signedCompare
Optional. When this property is set to “true”, special SSAs are
generated to support ranged queries over signed data types. If the
property is set to “false”, standard binary comparisons are performed
based on the binary representation of the data type value. Setting the
value to “false” can increase performance but might result in incorrect
results. The default value for this property is “true”.

flattenTables
Indicates whether to produce a flattened view of the database tables. A
value of true exposes the sub-elements of a STRUCT or an ARRAY as
additional columns of the table. The default value is false.
v IMS Explorer flattens the copybook structures when you import the

copybook. Although the copybook itself remains unchanged in the
IMS catalog, the information about the structure of each table is
altered for that particular connection.

v The the flattenTables property allows you to query the fields in
complex structures directly. For more information about support for
flattening complex structures, see “Support for flattening complex
structures” on page 618.

Restriction: The flattenTables connection property supports static
arrays and structures only. Dynamic arrays are not altered.

t2OutputBufferSize
Optional. The size of the output buffer in bytes for the results from a
SELECT operation for a type-2 connection.

The minimum value for t2OutputBufferSize is 500000. If any value less
than 500000 is set, this property value will be adjusted to 500000. There
is no maximum bound. The default value is 1280000.

treatInvalidDecimalsAsNull
Optional. Indicates whether to interpret certain Decimal values that
appear invalid in Java applications (such as PACKEDDECIMAL and
ZONEDDECIMAL with invalid sign bits) as null. By default, this
property is “false”, and a conversion exception is thrown when the Java
applications are processing invalid values.

3. Optional: Set additional connection properties with the setProperties method of
the IMSDataSource object.

Chapter 40. Programming with the IMS Universal drivers 651

currentSchema
Optional. Specifies the default schema name that is used to qualify
unqualified database objects in dynamically prepared SQL statements.

dbViewLocation
Optional. Specifies the fully qualified path to a databaseView metadata
class. You can use this property to include a metadata class that is not
located in your project path.

dpsbOnCommit
Optional. Set this property to true to deallocate the PSB when a
commit occurs.

Recommendation: Do not set this property to true except in a
managed environment with integrated connection pooling.

fetchSize
Optional. Gives the client a hint about the number of rows to get from
the database when more rows are needed. The number specified for
this property only affects data retrieved with the current connection. If
the value specified is 0, all of the applicable rows are returned.

The default value for this property is 0 for both managed and
unmanaged connections.

llField Optional. Setting this property to true exposes the LL field data as a
normal column in the result set. You can modify the LL field value to
change the length of a variable length segment instance.

maxRows
Optional. Specifies the maximum number of rows to return in a query
result set. The default value is 0, which returns all of the applicable
rows in the result set.

traceFile
Optional. Specifies the name of the trace file for the connection.

traceFileAppend
Optional. If the specified trace file exists, setting this property to true
specifies that the trace data for the new connection must be appended
to the existing trace file instead of overwriting it.

This property is ignored if no value is specified for traceFile.

traceDirectory
Optional. Specifies the file system directory where the trace file is
located. By default, this path is the directory where the application is
executed.

This property is ignored if no value is specified for traceFile.

traceLevel
Optional. Specifies which traces are enabled for the connection. The
valid values for this property are defined in the Java API
documentation for the class.

By default, all traces are disabled.

This property is ignored if no value is specified for traceFile.
4. Establish a connection to the data source by calling the getConnection method

on the DataSource object.

652 Application Programming

5. After your application has finished with the connection, close the connection
using the close method on the Connection interface.

The following code example shows how to create a type-4 connection to an IMS
database from your IMS Universal JDBC driver application using the DataSource
interface:
import java.sql.*;
import javax.sql.*;
import com.ibm.ims.jdbc.*;

Connection conn = null;

// Create an instance of DataSource
IMSDataSource ds = new com.ibm.ims.jdbc.IMSDataSource();

// Set the URL of the fully qualified name of the Java metadata class
ds.setDatabaseName("class://BMP255.BMP255DatabaseView");

// Set the data store name
ds.setDatastoreName("IMS1");

// Set the data store server
ds.setDatastoreServer("ecdev47.svl.ibm.com");

// Set the port number
ds.setPortNumber(5555);

// Set the JDBC connectivity driver typ
ds.setDriverType(IMSDataSource.DRIVER_TYPE_4);

// Enable SSL for connection
ds.setSSLConnection("true");

// Set timeout for connection
ds.setLoginTimeout("10");

// Set user ID for connection
ds.setUser("myUserID");

// Set password for connection
ds.setPassword("myPassword");

// Create JDBC connection
conn = ds.getConnection();

Alternatively, you can set all of the connection properties as key value pairs in a
Properties object and then set them simultaneously with the
IMSDataSource.setProperties method:
Properties props = new Properties();
props.put("user", "MyUserID");
props.put("password", "MyPassword");

IMSDataSource ds = new com.ibm.ims.jdbc.IMSDataSource();
ds.setProperties(props);

The typical usage of a DataSource object is for your system administrator to create
and manage it separately. The program that creates and manages a DataSource
object also uses the Java Naming and Directory Interface (JNDI) to assign a logical
name to the DataSource object. The JDBC application that uses the DataSource
object can then refer to the object by its logical name, and does not need any
information about the underlying data source. In addition, your system
administrator can modify the data source attributes, and you do not need to
change your application program.

Chapter 40. Programming with the IMS Universal drivers 653

Recommendation: For maximum portability, use only the DataSource interface to
obtain connections.

To obtain a connection using a DataSource object, given that the system
administrator has already created the object and assigned a logical name to it:
1. From your system administrator, obtain the logical name of the data source to

which you need to connect.
2. Create a Context object to use in the next step. The Context interface is part of

the Java Naming and Directory Interface (JNDI), not JDBC.
3. In your application program, use JNDI to get the DataSource object that is

associated with the logical data source name.
4. Use the getConnection method on the DataSource instance to obtain the

connection.

The following code shows an example of the code that you need in your
application program to obtain a connection using a DataSource object. In this
example, the logical name of the data source that you need to connect to is
“jdbc/sampledb”.
import java.sql.*;
import javax.naming.*;
import javax.sql.*;
...
Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/sampledb");
Connection con = ds.getConnection();

Related tasks:
“Configuring the IMS Universal drivers for SSL support” on page 712
Related reference:

javax.sql.DataSource methods supported (Application Programming APIs)

Connecting to an IMS database by using the JDBC
DriverManager interface
A JDBC application can establish a connection to a data source using the JDBC
DriverManager interface, which is part of the java.sql package.

The Java application first loads the JDBC driver by invoking the Class.forName
method. After the application loads the driver, it connects to a database server by
invoking the DriverManager.getConnection method. For example:
Connection conn = DriverManager.getConnection(url);

To connect to an IMS database by using the DriverManager interface in your IMS
Universal JDBC driver application:
1. Load the IMS Universal JDBC driver with the DriverManager interface by

invoking the Class.forName method with the argument
com.ibm.ims.jdbc.IMSDriver.

2. Connect to the IMS database by invoking the DriverManager.getConnection
method. The URL represents a data source, and indicates what type of JDBC
connectivity you are using.
v For type-4 connectivity, specify the URL in the following form:

►► jdbc:ims: // DatastoreServer ►

654 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_odbjdbcdatasourcemethodssupported.htm#ims_odbjdbcdatasourcemethodssupported

►

▼

/ DatabaseName
: PortNumber

: property = value ;

►◄

v For type-2 connectivity, specify the URL in the following form:

►► jdbc:ims: DatabaseName

▼: property = value ;

►◄

The parts of the URL have the following meaning:

jdbc:ims:
Indicates that the connection is to an IMS database.

PortNumber
The TCP/IP server port number to be used to communicate with IMS
Connect. The port number is defined using the DRDAPORT parameter
on the ODACCESS statement in the IMS Connect configuration
PROCLIB member. The default port number is 8888. Do not set this
property when using type-2 connectivity.

MetadataURL

The location of the database metadata representing the target IMS
database.

This property is deprecated. Use DatabaseName instead.

The MetadataURL property is the fully qualified name of the Java
metadata class generated by the IMS Enterprise Suite Explorer for
Development. The URL must be prefixed with class:// (for example,
class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the MetadataURL property can
be overridden for an individual connection without affecting the
default value specified for the resource adapter.

DatabaseName

The location of the database metadata representing the target IMS
database.

The DatabaseName property can be specified in one of two ways,
depending on whether the metadata is stored in the IMS catalog or as a
static metadata class generated by the IMS Enterprise Suite Explorer for
Development:
v If your IMS system uses the IMS catalog, the DatabaseName property

is the name of the PSB that your application uses to access the target
IMS database.

v If you are using the IMS Explorer for Development, the databaseName
property is the fully qualified name of the Java metadata class
generated by the IMS Explorer for Development. The URL must be
prefixed with class:// (for example, class://
com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the DatabaseName property
can be overridden for an individual connection without affecting the
default value specified for the resource adapter.

Chapter 40. Programming with the IMS Universal drivers 655

DatastoreServer
The name or IP address of the data store server (IMS Connect). You can
provide either the host name (for example, dev123.svl.ibm.com) or the
IP address (for example, 192.166.0.2). Do not set this property when
using type-2 connectivity.

property
One of the following connection properties:

datastoreName

Optional. The name of the IMS data store to access.
v When using type-4 connectivity, the DatastoreName property

must match either the name of the data store defined to
ODBM or be blank. The data store name is defined in the
ODBM CSLDCxxx PROCLIB member using either the
DATASTORE(NAME=name) or DATASTORE(NAME=name,
ALIAS(NAME=aliasname)) parameter. If an alias is specified,
you must specify the aliasname as the value of the
datastoreName property. If the DatastoreName value is left
blank (or not supplied), IMS Connect connects to any
available instance of ODBM as it is assumed that data
sharing is enabled among all datastores defined to ODBM.

v When using type-2 connectivity, set the DatastoreName
property to the IMS subsystem alias. This is not required to
be set for the Java Dependent Region run time.

loginTimeout
Optional. Specifies the number of seconds that the driver waits
for a response from the server before timing out a connection
initialization or server request. Set this property to a
non-negative integer for the number of seconds. Set this
property to 0 for an infinite timeout length. Do not set this
property when using type-2 connectivity.

password
The password for the connection to IMS Connect provided by
your RACF administrator. Do not set this property when using
type-2 connectivity.

sslConnection
Optional. Indicates if this connection uses Secure Sockets Layer
(SSL) for data encryption. Set this property to “true” to enable
SSL, or to “false” otherwise. Do not set this property when
using type-2 connectivity.

sslKeyStoreType
Optional. Specifies the format of the file that contains
cryptographic objects needed to establish a secure
socket connection. The valid values are “JKS” and
“PKCS12”. This value is only used when sslConnection
is set to “true” and sslKeyStoreType is not specified.
The sslKeyStoreType parameter defaults to “JKS”.

sslSecureSocketProtocol
Optional. Specifies the cryptographic communication
protocol for the new connection. Specify a protocol that
is supported by the server and provides the highest
level of security. The valid values are “SSL”, “SSLv3”,

656 Application Programming

“TLSv1.1”, and “TLSv1.2”. This value is only used
when sslConnection is set to “true”. If sslConnection is
set to “true” and sslSecureSocketProtocol is not
specified, a default protocol will be determined at
runtime by the JRE and the server.

sslTrustStoreLocation
Optional. Specifies the location of the cryptographic
trust store file for the new connection. This value is
only used when sslConnection is set to true.

sslTrustStorePassword
Optional. Specifies the password to access the
cryptographic trust store file. This value is only used
when sslConnection is set to true.

sslKeyStoreLocation
Optional. Specifies the location of the cryptographic key
store file for the new connection. This value is only
used when sslConnection is set to true.

sslKeyStorePassword
Optional. Specifies the password to access the
cryptographic key store file. This value is only used
when sslConnection is set to true.

user The user name for the connection to IMS Connect provided by
your RACF administrator. Do not set this property when using
type-2 connectivity.

signedCompare
Optional. When this property is set to “true”, special SSAs are
generated to support ranged queries over signed data types. If
the property is set to “false”, standard binary comparisons are
performed based on the binary representation of the data type
value. Setting the value to “false” can increase performance but
might result in incorrect results. The default value for this
property is “true”.

flattenTables
Indicates whether to produce a flattened view of the database
tables. A value of true exposes the sub-elements of a STRUCT
or an ARRAY as additional columns of the table. The default
value is false.
v IMS Explorer flattens the copybook structures when you

import the copybook. Although the copybook itself remains
unchanged in the IMS catalog, the information about the
structure of each table is altered for that particular
connection.

v The the flattenTables property allows you to query the fields
in complex structures directly. For more information about
support for flattening complex structures, see “Support for
flattening complex structures” on page 618.

Restriction: The flattenTables connection property supports
static arrays and structures only. Dynamic arrays are not
altered.

Chapter 40. Programming with the IMS Universal drivers 657

t2OutputBufferSize
Optional. The size of the output buffer in bytes for the results
from a SELECT operation for a type-2 connection.

The minimum value for t2OutputBufferSize is 500000. If any
value less than 500000 is set, this property value will be
adjusted to 500000. There is no maximum bound. The default
value is 1280000.

treatInvalidDecimalsAsNull
Optional. Indicates whether to interpret certain Decimal values
that appear invalid in Java applications (such as
PACKEDDECIMAL and ZONEDDECIMAL with invalid sign
bits) as null. By default, this property is “false”, and a
conversion exception is thrown when the Java applications are
processing invalid values.

currentSchema
Optional. Specifies the default schema name that is used to
qualify unqualified database objects in dynamically prepared
SQL statements.

dbViewLocation
Optional. Specifies the fully qualified path to a databaseView
metadata class. You can use this property to include a metadata
class that is not located in your project path.

dpsbOnCommit
Optional. Set this property to true to deallocate the PSB when a
commit occurs.

Recommendation: Do not set this property to true except in a
managed environment with integrated connection pooling.

fetchSize
Optional. Gives the client a hint about the number of rows to
get from the database when more rows are needed. The
number specified for this property only affects data retrieved
with the current connection. If the value specified is 0, all of the
applicable rows are returned.

The default value for this property is 0 for both managed and
unmanaged connections.

llField Optional. Setting this property to true exposes the LL field data
as a normal column in the result set. You can modify the LL
field value to change the length of a variable length segment
instance.

maxRows
Optional. Specifies the maximum number of rows to return in a
query result set. The default value is 0, which returns all of the
applicable rows in the result set.

traceFile
Optional. Specifies the name of the trace file for the connection.

traceFileAppend
Optional. If the specified trace file exists, setting this property
to true specifies that the trace data for the new connection must
be appended to the existing trace file instead of overwriting it.

658 Application Programming

This property is ignored if no value is specified for traceFile.

traceDirectory
Optional. Specifies the file system directory where the trace file
is located. By default, this path is the directory where the
application is executed.

This property is ignored if no value is specified for traceFile.

traceLevel
Optional. Specifies which traces are enabled for the connection.
The valid values for this property are defined in the Java API
documentation for the class.

By default, all traces are disabled.

This property is ignored if no value is specified for traceFile.

value A valid value for the connection property.
To set the sslConnection and loginTimeout properties, use a java.util.Properties
object. For example, the following sample code shows how to enable SSL and
set the timeout value to 10 seconds:
Properties props = new Properties();
props.put("sslConnection", "true");
props.put("timeout", "10");

3. For type-4 connectivity, you must specify a user ID and password in one of the
following ways: through the connection URL, through parameters, or through a
java.util.Properties object. To set the user ID and password for the connection
through parameters, use the form of the getConnection method that specifies
user and password. For example:
String url =
"jdbc:ims://tst.svl.ibm.com:8888/class://BMP2.BMP2DatabaseView";
String user = "MyUserID";
String password = "MyPassword";
Connection conn = DriverManager.getConnection(url, user, password);

To set the user ID and password for the connection through a
java.util.Properties object, use the form of the getConnection method that
specifies a java.util.Properties object. For example:
Properties props = new Properties();
props.put("user", "MyUserID");
props.put("password", "MyPassword");
String url =
"jdbc:ims://tst.svl.ibm.com:8888/class://BMP2.BMP2DatabaseView";
Connection conn = DriverManager.getConnection(url, props);

4. After your application has finished with the connection, close the connection
using the close method on the Connection interface.

The following code example shows how to create a type-4 connection to an IMS
database from your IMS Universal JDBC driver application using the
DriverManager interface:
Connection conn = null;

// Create Properties object
Properties props = new Properties();

// Enable SSL for connection
props.put("sslConnection", "true");

// Set datastoreName for connection
props.put("datastoreName", "IMS1");

Chapter 40. Programming with the IMS Universal drivers 659

// Set timeout for connection
props.put("loginTimeout", "10");

// Set user ID for connection
props.put("user", "myUserID");

// Set password for connection
props.put("password", "myPassword");

// Set URL for the data source
Class.forName("com.ibm.ims.jdbc.IMSDriver");

// Create connection
conn = DriverManager.getConnection
("jdbc:ims://tst.svl.ibm.com:8888/class://BMP2.BMP2DatabaseView",
props);

Alternatively, you can specify the connection properties in the URL. For example:
String url=""jdbc:ims://tst.svl.ibm.com:8888/class://"

+ "BMP2.BMP2DatabaseView:datastoreName=IMS1;"
+ "loginTimeout=10;sslConnection=true;user=myUserID;password=myPassword;";

Connection conn = DriverManager.getConnection(url);

Related tasks:
“Configuring the IMS Universal drivers for SSL support” on page 712

Sample application for the IMS Universal JDBC driver
The following sample Java application demonstrates the basic programming flow
for a JDBC application using the IMS Universal JDBC driver.

The following example connects to an IMS database, retrieves a list of patient
names using a SQL SELECT query, and modifies the patient information using a
SQL UPDATE query.
package client;

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import com.ibm.ims.jdbc.IMSDataSource;

public class JDBCSample {

public static void main(String[] args)
throws SQLException {
IMSDataSource ds = new IMSDataSource();
ds.setDatabaseName("MYPSB");
ds.setDatastoreName("IMS1");
ds.setDatastoreServer("ec0123.my.host.com");
ds.setPortNumber(5555);
ds.setDriverType(IMSDataSource.DRIVER_TYPE_4);
ds.setUser("myUserId");
ds.setPassword("myPassword");

Connection conn = null;

try {
conn = ds.getConnection();

Statement st = conn.createStatement();

// List all of the patient names in the

660 Application Programming

// SURG ward in the ALEXANDRIA hospital
ResultSet rs = st.executeQuery("SELECT patname from " +

"pcb01.hospital, ward, patient " +
"where hospital.hospname = ’ALEXANDRIA’ " +
"and ward.wardname = ’SURG’");

while (rs.next()) {
System.out.println(rs.getString("patname"));

}

// Update the name of the patient with patient
// number 0222 in ward 04 in the hospital
// with code R1210010000A
int updatedRecords = st.executeUpdate("UPDATE PCB01.PATIENT " +

"SET PATNAME=’UPDATED NAME’ WHERE PATNUM=’0222’ " +
"AND HOSPITAL_HOSPCODE=’R121001000A’ AND WARD_WARDNO=’04’");

System.out.println("Updated " + updatedRecords + " Record(s)");

conn.commit();
conn.close();

} catch (SQLException e) {
e.printStackTrace();
if (!conn.isClosed()) {

conn.rollback();
conn.close();

}
}

}
}

Writing SQL queries to access an IMS database with the IMS
Universal JDBC driver

Use the IMS Universal JDBC driver to connect to an IMS database for writing SQL
queries.

The IMS catalog provides metadata to your application program. You can write
SQL queries to access IMS data based on the metadata information available in the
catalog database.

If your IMS system does not use the IMS catalog, you can use the IMS Enterprise
Suite Explorer for Development instead.

The IMS Explorer for Development generates a Java database metadata class. This
class that contains the PSB and DBD metadata classes that the IMS Universal
drivers use at runtime.

The metadata includes information about the IMS database, including segments,
segment names, the segment hierarchy, fields, field types, field names, fields
offsets, and field lengths.

The metadata is used by the IMS Universal JDBC driver to allocate program
specification blocks (PSBs), issue DL/I calls, perform data transformation, and
translate SQL queries to DL/I calls.

The following table summarizes the mapping between IMS database elements and
relational database elements.

Table 100. Mapping between IMS database elements and relational database elements.

Hierarchical database elements in IMS Equivalent relational database elements

Segment name Table name

Chapter 40. Programming with the IMS Universal drivers 661

Table 100. Mapping between IMS database elements and relational database
elements. (continued)

Hierarchical database elements in IMS Equivalent relational database elements

Segment instance Table row

Segment field name Column name

Segment unique key Table primary key

Foreign key field Table foreign key

Related concepts:

IMS Explorer for Development overview

SQL keywords supported by the IMS JDBC drivers
The SQL support provided by the IMS Universal JDBC driver is based on the
SQL-92 standard for relational database management systems.

If you use a SQL keyword as a name for a PCB, segment, or field, your JDBC
application program will throw an error when it attempts an SQL query. These
keywords are not case-sensitive.

The following SQL keywords are supported by the IMS JDBC drivers:
ABS
ACOS
ALL
ALTER
AND
AS
ASC
ASIN
ATAN
ATAN2
AVG
BETWEEN
CEIL
CEILING
COS
COSH
COT
COUNT
CREATE
DEGREES
DELETE
DESC
DISTINCT
DROP
EXP
FETCH
FIRST
FLOOR
FROM
GROUP BY
INNER
INSERT
INTO
JOIN

662 Application Programming

|

|

|

http://www-01.ibm.com/support/knowledgecenter/SS9NWR_3.2.0/com.ibm.ims.explorer32.doc/wb_overview.htm

LN
LOG
LOG10
MAX
MIN
MOD
NULL
ON
ONLY
OR
ORDER BY
POWER
RADIANS
ROW
ROWS
SELECT
SET
SIGN
SIN
SINH
SQRT
SUM
TAN
TANH
UPDATE
VALUES
WHERE

Related reference:
“Portable SQL keywords restricted by the IMS Universal JDBC drivers” on page
665

SQL aggregate functions supported by the IMS JDBC drivers
The IMS Universal JDBC driver supports SQL aggregate functions and related
keywords.
v AS
v AVG
v COUNT
v GROUP BY
v MAX
v MIN
v ORDER BY

– ASC
– DESC

v SUM

The ResultSet type for aggregate functions and ORDER BY and GROUP BY clauses
is always TYPE_SCROLL_INSENSITIVE.

The following table shows the data types of the fields that are accepted by the
aggregate functions, along with the resulting data type in the ResultSet.

Chapter 40. Programming with the IMS Universal drivers 663

Table 101. Supported SQL aggregate functions and their supported data types

Function Argument type Result type

SUM and AVG Byte Long

Short Long

Integer Long

Long Long

BigDecimal Double-precision floating point

Single-precision floating point Double-precision floating point

Double-precision floating point Double-precision floating point

MIN and MAX Any type except BIT, BLOB, or
BINARY

Same as argument type

COUNT Any type Long

Column names generated by aggregate functions

The ResultSet column name from an aggregate function is a combination of the
aggregate function name and the field name separated by an underscore character
(_). For example, the statement SELECT MAX(age) results in a column name
MAX_age. Use this column name in all subsequent references—for example,
resultSet.getInt("MAX_age").

If the aggregate function argument field is table-qualified, the ResultSet column
name is the combination of the aggregate function name, the table name, and the
column name, separated by underscore characters (_). For example, SELECT
MAX(Employee.age) results in a column name MAX_Employee_age.

Using the AS clause

You can use the AS keyword to rename the aggregate function column in the result
set or any other field in the SELECT statement. You cannot use the AS keyword to
rename a table in the FROM clause. When you use the AS keyword to rename the
column, you must use this new name to refer to the column. For example, if you
specify SELECT MAX(age) AS oldest, a subsequent reference to the aggregate
function column is resultSet.getInt("oldest").

If you are using the IMS Universal JDBC driver and you specified a SELECT query
with column names renamed by an AS clause, you can only refer to the field in the
resulting ResultSet by the AS rename. However, in the rest of your SELECT query,
in the WHERE, ORDER BY, and GROUP BY clauses, you can use either the
original column name or the AS rename.

Using the ORDER BY and GROUP BY clauses

Important: The field names that are specified in a GROUP BY or ORDER BY
clause must match exactly the field name that is specified in the SELECT
statement.

When using the IMS Universal JDBC driver, the following queries with the ORDER
BY and GROUP BY clauses are valid:
SELECT HOSPNAME, COUNT(PATNAME) AS PatCount FROM PCB01.HOSPITAL, PATIENT
GROUP BY HOSPNAME ORDER BY HOSPNAME

664 Application Programming

SELECT HOSPNAME, COUNT(DISTINCT PATNAME) AS PatCount FROM PCB01.HOSPITAL,
PATIENT GROUP BY HOSPNAME ORDER BY HOSPNAME

Using the COUNT function with DISTINCT

When using the IMS Universal JDBC driver, the COUNT aggregate function can be
qualified with the DISTINCT keyword. For example, the following query returns
all hospital names listed in ascending order along with the number of distinct
patient names from that hospital. The COUNT aggregate function generates a
column name COUNT_DISTINCT_PATNAME .
SELECT HOSPNAME, COUNT(DISTINCT PATNAME)FROM PCB01.HOSPITAL, PATIENT
GROUP BY HOSPNAME ORDER BY HOSPNAME

Portable SQL keywords restricted by the IMS Universal JDBC
drivers
If you use any of the following SQL keywords as a name for a PCB, segment, or
field, your JDBC application will receive an error when it attempts an SQL query.
Instead, use the aliasing feature of the IMS Enterprise Suite Explorer for
Development. These keywords are not case-sensitive.

The keywords shown in the following table are reserved SQL keywords.

ABORT to CROSS CURRENT to IS JOIN to REAL
REFERENCES to
WORK

ABORT CURRENT JOIN REFERENCES
ANALYZE CURSOR LAST RESET
AND DECIMAL LEADING REVOKE
ALL DECLARE LEFT RIGHT
ALLOCATE DEFAULT LIKE ROLLBACK
ALTER DELETE LISTEN ROW
AND DESC LOAD ROWS
ANY DISTINCT LOCAL SELECT
ARE DO LOCK SET
AS DOUBLE MAX SETOF
ASC DROP MIN SHOW
ASSERTION END MOVE SMALLINT
AT EXECUTE NAMES SUBSTRING
AVG EXISTS NATIONAL SUM
BEGIN EXPLAIN NATURAL TABLE
BETWEEN EXTRACT NCHAR TO
BINARY EXTEND NEW TRAILING
BIT FALSE NO TRANSACTION
BOOLEAN FETCH NONE TRIM
BOTH FIRST NOT TRUE
BY FLOAT NOTIFY UNION
CASCADE FOR NULL UNIQUE
CAST FOREIGN NUMERIC UNLISTEN
CHAR FROM ON UNTIL
CHARACTER FULL ONLY UPDATE
CHECK GRANT OR USER
CLOSE GROUP ORDER USING
CLUSTER HAVING OUTER VACUUM
COLLATE IN PARTIAL VALUES
COLUMN INNER POSITION VARCHAR
COMMIT INSERT PRECISON VARYING
CONSTRAINT INT PRIMARY VERBOSE

Chapter 40. Programming with the IMS Universal drivers 665

ABORT to CROSS CURRENT to IS JOIN to REAL
REFERENCES to
WORK

COPY INTERVAL PRIVILEGES VIEW
COUNT INTERVAL PROCEDURE WHERE
CREATE INTO PUBLIC WITH
CROSS IS REAL WORK

Related reference:
“SQL keywords supported by the IMS JDBC drivers” on page 662

Writing DDL statements to modify IMS resources with the IMS
Universal JDBC driver
You can write a java application to create or modify an active DBD or PSB in an
IMS system.
1. Create a connection to an IMS system by using the Universal Drivers.
2. Create a statement and execute the DDL query.
3. Execute a query called Commit DDL. For example:

ds = FVTConnectionFactory.getIMSDataSource(alias, driverType,
host, port, userName,

password, url);
con = ds.getConnection();

Statement st = con.createStatement();
st.executeUpdate("CREATE DATABASE MYDB ACCESS SHSAM CCSID ’Cp1047’

VERSION ’2.0’");
st.executeUpdate("CREATE TABLE MYTABLE (COLUMN1 DECIMAL(5,2)

INTERNALNAME COLUMN1 TYPE C BYTES 10 START 1) AMBIGUOUS INSERT LAST IN MYDB");
st.executeUpdate("CREATE TABLESPACE tb1 IN MYDB BLOCK PRIMARY

32768");
st.executeUpdate("COMMIT DDL");

SQL statement usage with the IMS Universal JDBC driver
The following usage rules apply to SQL statements passed to IMS with the IMS
Universal JDBC driver.

Foreign key fields:

In relational databases, hierarchies can be logically built by creating foreign key
relationships between tables. In IMS, the hierarchies are explicit and are part of the
database definition itself. The IMS Universal JDBC driver introduces the concept of
foreign keys to capture these explicit hierarchies in a relational sense, which makes
the SQL syntax for IMS equivalent to standard SQL.

When accessing IMS databases with the IMS Universal JDBC driver, every table
that is not the root table in a hierarchic path will virtually contain the unique keys
of all of its parent segments up to the root of the database. These keys are called
foreign key fields.

For segments with secondary indexes, the secondary index is also the primary key
of the segment. Foreign keys that correspond with the segment are derived from
the name of the secondary index.

666 Application Programming

|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Restriction: Secondary indexes cannot be referenced in SELECT statements. They
can only be referenced in WHERE clauses.

The purpose of the foreign key fields is to maintain referential integrity, similar to
foreign keys in relational databases. This allows SQL SELECT, INSERT, UPDATE,
and DELETE queries to be written against specific tables and columns located in a
hierarchic path.

Remember: Foreign keys are maintained internally by the IMS Universal JDBC
driver; the keys are not physically stored in the IMS database.

Hospital database example without a secondary index

For example, in the Hospital database, the HOSPITAL, WARD, and PATIENT
tables are on the same hierarchic path. The JDBC application would view the tables
as containing the following columns.

HOSPITAL table

Columns are:
v HOSPNAME
v HOSPCODE (primary key)

WARD table

Columns are:
v WARDNO (primary key)
v WARDNAME
v PATCOUNT
v NURCOUNT
v DOCCOUNT
v HOSPITAL_HOSPCODE (foreign key field referencing the HOSPCODE column

in the HOSPITAL table)

PATIENT table

Columns are:
v PATNUM (primary key)
v PATNAME
v WARD_WARDNO (foreign key field referencing the WARDNO column in the

WARD table)
v HOSPITAL_HOSPCODE (foreign key field referencing the HOSPCODE column

in the HOSPITAL table)

The following queries show how SQL SELECT statements can use foreign keys,
based on the previous database example. The following statement retrieves all
columns from a PATIENT table derived from a child segment under HOSPITAL
and WARD on a hierarchic path:
SELECT * FROM PCB01.PATIENT
WHERE HOSPITAL_HOSPCODE = ’H5140070000H’

AND WARD_WARDNO = ’0023’

The following example shows an INSERT statement using foreign keys:

Chapter 40. Programming with the IMS Universal drivers 667

INSERT INTO PCB01.PATIENT (PATNUM, PATNAME,
WARD_WARDNO, HOSPITAL_HOSPCODE)
VALUES (’00345’, ’John Doe’, ’0023’, ’H514007000H’)

The following statements retrieve the hospital code and all ward names from a
WARD table. These statements are all equivalent:
SELECT HOSPITAL.HOSPCODE, WARD.WARDNAME
FROM PCB01.HOSPITAL, PCB01.WARD

SELECT HOSPITAL_HOSPCODE, WARD.WARDNAME
FROM PCB01.WARD

SELECT WARD.HOSPITAL_HOSPCODE, WARD.WARDNAME
FROM PCB01.WARD

SELECT HOSPITAL_HOSPCODE, WARDNAME
FROM PCB01.WARD

The following statement will fail because the column HOSPITAL_HOSPCODE is
not in the table HOSPITAL.:
SELECT HOSPITAL_HOSPCODE FROM PCB01.HOSPITAL

Hospital database example with a secondary index

The following example shows how the previous example would change if the
HOSPITAL table had a secondary index.

HOSPITAL table

Columns are:
v HOSPNAME (secondary index and primary key)
v HOSPCODE

WARD table

Columns are:
v WARDNO (primary key)
v WARDNAME
v PATCOUNT
v NURCOUNT
v DOCCOUNT
v HOSPITAL_HOSPNAME (foreign key field referencing the HOSPNAME

secondary index in the HOSPITAL table)

PATIENT table

Columns are:
v PATNUM (primary key)
v PATNAME
v WARD_WARDNO (foreign key field referencing the WARDNO column in the

WARD table)
v HOSPITAL_HOSPNAME (foreign key field referencing the HOSPNAME

secondary index in the HOSPITAL table)

668 Application Programming

CREATE statement usage:

The CREATE statement is used to create a resource in IMS.

Each one of the create commands has their own separate list of keywords
available. You can issue the following create commands:
v CREATE DATABASE (Application Programming APIs)
v CREATE TABLE (Application Programming APIs)
v CREATE TABLESPACE (Application Programming APIs)
v CREATE PROGRAMVIEW (Application Programming APIs)

Example

Issuing the CREATE DATABASE statement, looks similar to the following.
CREATE DATABASE MYDB ACCESS HIDAM VSAM LIKE BASEDB CCSID ’UTF-8’
DATA CAPTURE CHANGES (EXIT1

NOCASCADE DATA INPOS PATH LOG, EXIT2 NOCASCADE DATA INPOS PATH LOG)
VERSION ’1.8’ DATXEXITNO

ALTER statement usage:

The ALTER statement is used to modify a resource in IMS.

Each one of the alter commands has their own separate list of keywords available.
You can issue the following alter commands:
v ALTER DATABASE (Application Programming APIs)
v ALTER TABLE (Application Programming APIs)
v ALTER TABLESPACE (Application Programming APIs)

Example

Issuing the ALTER DATABASE statement, looks similar to the following.
ALTER DATABASE MYDB CCSID ’Cp1047’ VERSION ’1.8’ DATXEXITYES

Note: This alter statement will only modify the given keywords, any other
keywords that were originally defined will not change unless specified specifically
in the ALTER statement.

DROP statement usage:

The DROP statement is used to remove a resource in IMS.

Each one of the drop commands has their own separate list of keywords available.
You can issue the following drop commands:
v DROP DATABASE (Application Programming APIs)
v DROP PROGRAMVIEW (Application Programming APIs)
v DROP TABLE (Application Programming APIs)
v DROP TABLESPACE (Application Programming APIs)

Example

Issuing the DROP DATABASE statement, looks similar to the following.
DROP DATABASE MYDB

Chapter 40. Programming with the IMS Universal drivers 669

|

|

|
|

|

|

|

|

|

|

|
|
|
|
|

|

|

|
|

|

|

|

|

|

|

|
|
|

|

|

|
|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_create_database.htm#ims_sql_create_database
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_create_table.htm#ims_sql_create_table
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_create_tablespace.htm#ims_sql_create_tablespace
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_create_programview.htm#ims_sql_create_programview
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_alter_database.htm#ims_sql_alter_database
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_alter_table.htm#ims_sql_alter_table
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_alter_tablespace.htm#ims_sql_alter_tablespace
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_drop_database.htm#ims_sql_drop_database
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_drop_programview.htm#ims_sql_drop_programview
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_drop_table.htm#ims_sql_drop_table
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_drop_tablespace.htm#ims_sql_drop_tablespace

SELECT statement usage:

The SELECT statement is used to retrieve data from one or more tables. The result
is returned in a tabular result set.

When using the SELECT statement with the IMS Universal JDBC driver:
v If you are selecting from multiple tables and the same column name exists in

one or more of these tables, you must table-qualify the column or an ambiguity
error will occur.

v The FROM clause must list all the tables you are selecting data from. The tables
listed in the FROM clause must be in the same hierarchic path in the IMS
database.

v In Java applications using the IMS JDBC drivers, connections are made to PSBs.
Because there are multiple database PCBs in a PSB, queries must specify which
PCB in a PSB to use. To specify which PCB to use, always qualify segments that
are referenced in the FROM clause of an SQL statement by prefixing the segment
name with the PCB name. You can omit the PCB name only if the PSB contains
only one PCB.

Examples of valid IMS Universal JDBC driver SELECT queries

Selecting specified columns
The following statement retrieves the ward names and patient names from
the WARD and PATIENT tables, respectively:
SELECT WARD.WARDNAME,PATIENT.PATNAME
FROM PCB01.WARD, PATIENT

Selecting all columns with * symbol
The following statement retrieves all columns for the PATIENT table:
SELECT *
FROM PCB01.PATIENT

The following statement retrieves the hospital name from the HOSPITAL
table and all columns from the WARD table:
SELECT HOSPITAL.HOSPNAME, WARD.*
FROM PCB01.HOSPITAL, PCB01.WARD

Selecting with DISTINCT
The following statement retrieves all distinct patient names from the
PATIENT table:
SELECT DISTINCT PATNAME
FROM PCB01.PATIENT

Selecting with ORDER BY
The ORDER BY clause is used to sort the rows. By default, results are
sorted by ascending numerical or alphabetical order. The following
statement retrieves all distinct hospital names, sorted in alphabetical order:
SELECT DISTINCT HOSPNAME FROM PCB01.HOSPITAL

ORDER BY HOSPNAME

The following statement retrieves all ward names sorted in alphabetical
order, and the number of patients in each ward sorted in ascending
numerical order. If two WARDNAME values in the ORDER BY compare
are equal, the tiebreaker will be their corresponding PATCOUNT values (in
this case, the row with the numerically smaller corresponding PATCOUNT
value is displayed first).

670 Application Programming

SELECT WARDNAME, PATCOUNT FROM PCB01.WARD
ORDER BY WARDNAME, PATCOUNT

Use the DESC qualifier to sort the query result in descending numerical or
reverse alphabetical order. The following statement retrieves all patient
names in reverse alphabetical order:
SELECT PATNAME FROM PCB01.PATIENT

ORDER BY PATNAME DESC

Use the ASC qualifier to explicitly sort the query result in ascending
numerical or reverse alphabetical order. The following statement retrieves
all ward names sorted in ascending alphabetical order, and the number of
patients in each ward sorted in descending numerical order:
SELECT WARDNAME, PATCOUNT FROM PCB01.WARD

ORDER BY WARDNAME ASC, PATCOUNT DESC

Selecting with GROUP BY
The GROUP BY clause is used to return results for aggregate functions,
grouped by distinct column values. The following statement returns the
aggregated sum of all doctors in every ward in a hospital, grouped by
distinct ward names:
SELECT WARDNAME, SUM(DOCCOUNT)
FROM PCB01.WARD
WHERE HOSPITAL_HOSPCODE = ’H5140070000H

GROUP BY WARDNAME

The following statement returns the hospital name, ward name, and the
count of all patients in each ward in each hospital, grouped by distinct
hospital names and sub-grouped by ward names:
SELECT HOSPNAME, WARDNAME, COUNT(PATNAME)
FROM PCB01.HOSPITAL, WARD, PATIENT

GROUP BY HOSPNAME, WARDNAME

Using the AS clause
Use the AS clause to rename the aggregate function column in the result
set or any other field in the SELECT statement. The following statement
returns the aggregate count of distinct patients in the PATIENT table with
the alias of “PATIENTCOUNT”:
SELECT COUNT(DISTINCT PATNAME)

AS PATIENTCOUNT
FROM PCB01.PATIENT

The following statement returns the aggregate count of distinct wards in
all hospitals with the alias of “WARDCOUNT”, sorted by the hospital
names in alphabetical order, and grouped by distinct hospital names
(under a renamed column alias “HOSPITALNAME”):
SELECT HOSPNAME AS HOSPITALNAME, COUNT(DISTINCT WARDNAME)

AS WARDCOUNT
FROM PCB01.HOSPITAL, WARD

GROUP BY HOSPNAME
ORDER BY HOSPNAME

INSERT statement usage:

The INSERT statement is used to insert new rows into a table.

Foreign key fields enable the IMS Universal JDBC driver to properly position the
new record (or segment instance) to be inserted in the hierarchic path using

Chapter 40. Programming with the IMS Universal drivers 671

standard SQL processing, similar to foreign keys in a relational database. When
inserting a record in a table at a non-root level, you must specify values for all the
foreign key fields of the table.

Examples of valid IMS Universal JDBC driver INSERT statements

Inserting data at the root
The following statement inserts a new HOSPITAL record:
INSERT INTO PCB01.HOSPITAL (HOSPCODE, HOSPNAME)
VALUES (’R1210050000A’, ’O’’MALLEY CLINIC’)

Inserting data into a specified table in a hierarchic path
When inserting a record in a table at a non-root level, you must specify
values for all the foreign key fields of the table. The following statement
inserts a new ILLNESS record under a specific HOSPITAL, WARD, and
PATIENT table. In this example, the ILLNESS table has three foreign keys
HOSPITAL_HOSPCODE, WARD_WARDNO, and PATIENT_PATNUM. The
new record will be inserted if and only if there is a HOSPCODE in the
HOSPITAL table with the value of 'H5140070000H', a WARD table with a
WARDNO value of '01', and a PATIENT table with PATNUM value of
'R1210050000A'.
INSERT INTO PCB01.ILLNESS (HOSPITAL_HOSPCODE, WARD_WARDNO,

ILLNAME, PATIENT_PATNUM)
VALUES (’H5140070000H’, ’01’, ’COLD’, ’R1210050000A’)

The following statement inserts a new WARD record under a specific
HOSPITAL table. In this example, the WARD table has the foreign key
HOSPITAL_HOSPCODE. The new record will be inserted if and only if
there is a HOSPCODE in the HOSPITAL table with the value of
'H5140070000H'.
INSERT INTO PCB01.WARD (WARDNO, HOSPITAL_HOSPCODE, WARDNAME)
VALUES (’0001’, ’H5140070000H’, ’EMGY’)

Inserting data in a searchable field with subfields
If a searchable field consists of subfields, you can insert data by setting all
the subfield values such that the searchable field is completely populated.

Examples of invalid IMS Universal JDBC driver INSERT statements

Inserting a record at a non-root level without specifying foreign key fields
In this statement, the WARD_WARDNO foreign key field is missing. The
query will fail because it violates the referential integrity constraint that all
foreign keys must be provided with legal values.
INSERT INTO PCB01.PATIENT (HOSPITAL_HOSPCODE, PATNAME, PATNUM)
VALUES (’HW3201’, ’JOHN O’’CONNER’, ’Z800’)

UPDATE statement usage:

The UPDATE statement is used to modify the data in a table.

Examples of valid IMS Universal JDBC driver UPDATE statements

Updating one column in a record
The following statement updates the root:
UPDATE HOSPITAL SET HOSPNAME = ’MISSION CREEK’
WHERE HOSPITAL.HOSPCODE = ’H001007’

Updating multiple columns in a specified record in a hierarchic path
Foreign keys allow the IMS Universal JDBC driver to maintain referential

672 Application Programming

integrity by identifying the exact record (or segment instance) to update.
The following statement updates a WARD record under a specific
HOSPITAL. In this example, the WARD table has the foreign key
HOSPITAL_HOSPCODE. The record will be updated if and only if there is
a HOSPCODE in the HOSPITAL table with the value of 'H5140070000H'.
UPDATE WARD SET WARDNAME = ’EMGY’,

DOCCOUNT = ’2’, NURCOUNT = ’4’
WHERE HOSPITAL_HOSPCODE = ’H5140070000H’

AND WARDNO = ’01’

Examples of invalid IMS Universal JDBC driver UPDATE statements

Updating a foreign key field
Making an UPDATE on a foreign key field is invalid for the IMS Universal
JDBC driver. For example, the following UPDATE query will fail:
UPDATE WARD SET WARDNAME = ’EMGY’,

HOSPITAL_HOSPCODE = ’H5140070000H’
WHERE WARDNO = ’01’

DELETE statement usage:

The DELETE statement is used to delete rows in a table. DELETE operations are
cascaded to all child segments.

Examples of valid IMS Universal JDBC driver DELETE statements

Deleting an entire database
The following statement deletes the HOSPITAL database:
DELETE FROM pcb01.HOSPITAL

Deleting a root
The following statement deletes the root segment instance and all its
children in the hierarchic path.
DELETE FROM pcb01.HOSPITAL
WHERE HOSPCODE = ’H5140070000H’

Deleting a single record
Foreign keys allow the IMS Universal JDBC driver to maintain referential
integrity by identifying the exact record (or segment instance) to delete.
The following statement deletes a single record from the WARD table. In
this example, the WARD table has the foreign key
HOSPITAL_HOSPCODE. The WARD record will be deleted if and only if
there is a HOSPCODE in the HOSPITAL table with the value of
'H5140070000H' and a WARD table with a WARDNO value of '0001'.
DELETE FROM pcb01.WARD
WHERE HOSPITAL_HOSPCODE = ’H5140070000H’

AND WARDNO = ’0001’

Deleting multiple records
The following statement deletes multiple records from the PATIENT table.
In this example, the PATIENT table has two foreign keys:
HOSPITAL_HOSPCODE and WARD_WARDNO. The PATIENT record will
be deleted if and only if there is a HOSPCODE in the HOSPITAL table
with the value of 'H5140070000H', a WARD table with WARDNO value of
'0001', and a PATIENT table with a PATNUM value greater than '0007'.
DELETE FROM pcb01.PATIENT
WHERE PATNUM > ’0007’

AND HOSPITAL_HOSPCODE = ’H5140070000H’
AND WARD_WARDNO = ’0001’

Chapter 40. Programming with the IMS Universal drivers 673

The following statement deletes all WARD segment instances in the entire
database:
DELETE FROM pcb01.WARD

WHERE clause usage:

In a SQL SELECT, UPDATE, and DELETE statement, the WHERE clause can be
used to select data conditionally.

When using the WHERE clause with the IMS Universal JDBC driver, use columns
that are in any table listed in the FROM clause.

Recommendation: Qualify columns with table names. If you do not table-qualify a
column, there can be ambiguity if that column exists in more than one table that
was joined in the FROM clause.

The IMS JDBC drivers convert the WHERE clause in an SQL query to a segment
search argument (SSA) list when querying a database. SSA rules restrict the type of
conditions you can specify in the WHERE clause. The following restrictions apply:
v In general, compare columns to values, not other columns. With the introduction

of foreign keys, it is legal to compare one column to another column if one
column is the foreign key and the other column is the primary key it is
referencing. For example:
WHERE HOSPITAL_HOSPCODE = HOSPITAL.HOSPCODE

You can use the following operators between column names and values in the
individual qualification statements:

= Equals

!= Not equal

> Greater than

>= Greater than or equals

< Less than

<= Less than or equals
For example, the following WHERE clause will fail because it is trying to
compare two columns:
WHERE PAYMENTS.PATNUM=PAYMENTS.AMOUNT

The following example is valid because the WHERE clause is comparing a
column to a value:
WHERE PAYMENTS.PATNUM=’A415’

v Do not use parentheses. Qualification statements are evaluated from left to right.
The order of evaluation for operators is the IMS evaluation order for segment
search arguments.

v List all qualification statements for a table adjacently. For example, in the
following valid WHERE clause, the qualified columns from the same PATIENT
table are listed adjacently:
WHERE PATIENT.PATNAME=’BOB’ OR PATIENT.PATNUM=’A342’ AND WARD.WARDNO=’52’

The following invalid WHERE clause will fail because the columns from the
HOSPITAL table are separated by the columns from the WARD table:
WHERE HOSPITAL.HOSPNAME=’Santa Teresa’ AND WARD.WARDNO=’52’
OR WARD.WARDNAME=’CARD’ AND HOSPITAL.HOSPCODE=’90’

674 Application Programming

v The OR operator can be used only between qualification statements that contain
columns from the same table. You cannot use the OR operator across tables. To
combine qualification statements for different tables, use an AND operator. For
example, the following invalid WHERE clause will fail:
WHERE WARD.WARDNO=’03’ OR PATIENT.PATNUM=’A415’

However, the following WHERE clause is valid because the OR operator is
between two qualification statements for the same table:
WHERE PATIENT.PATNUM=’A409’ OR PATIENT.PATNAME=’Sandy’

v When using prepared statements, you can use the question mark (?) character,
which is later filled in with a value. For example, the following WHERE clause
is valid:
WHERE PAYMENTS.AMOUNT>?

WHERE clause subfield support:

When passing SQL statements using the IMS JDBC drivers, you can use the
WHERE clause to list subfields of any field, as long as the field is searchable and is
fully defined by the subfields.

For example, a DBD-defined field is named ADDRESS and is 30 bytes long. In a
COBOL copybook, this field is broken down into CITY, STATE, and ZIPCODE
subfields, as illustrated by the code below.
01 ADDRESS

02 CITY PIC X(10)
02 STATE PIC X(10)
03 ZIP PIC X(10)

Without the subfield support, the ADDRESS value in the WHERE clause would
have to be padded manually, and entered like this:
WHERE ADDRESS = ’san jose ca 95141 ’

With the subfield support, you can enter the WHERE clause like this:
WHERE CITY = ’san jose’

AND STATE = ’ca’
AND ZIPCODE = ’95141’

The IMS JDBC drivers will convert the individual subfields and bundle them into
the ADDRESS field before sending the SQL query to IMS.

The following usage rules and restrictions apply to WHERE clause subfield
support:
v Parameter markers are supported for subfields. For example, for a prepared

statement, the following WHERE clause entry is valid:
WHERE CITY = ? AND STATE = ? AND ZIPCODE = ?

v The only relational operator supported for subfields is “=” (equals operator).
v The only Boolean operator is “AND” for connecting subfields. The following

WHERE clause entry is valid because the subfields are connected using only
“AND” operators:
WHERE HOSPCODE=? OR CITY = ? AND STATE = ? AND ZIPCODE = ?

v All the subfields for a particular searchable field must be specified in the
WHERE clause. You cannot omit any subfields of a field. For example, the
following WHERE clause entry is invalid because the STATE subfield was not
provided:
WHERE CITY = ? AND ZIPCODE = ?

Chapter 40. Programming with the IMS Universal drivers 675

v When specifying the subfields in a WHERE clause, all the subfields for a
searchable field must be listed adjacent to each other. For example, the following
WHERE clause entry is invalid because the listing of the subfields is not
contiguous:
WHERE CITY = ? AND STATE = ? OR HOSPCODE=? AND ZIPCODE = ?

v You can enter subfields for multiple searchable fields in the WHERE clause. For
example, if the PATNAME field was broken into LASTNAME and FIRSTNAME
subfields, you can specify the subfields for ADDRESS and PATNAME as follows:
WHERE CITY = ? AND STATE = ? AND ZIPCODE = ?

OR LASTNAME = ? AND FIRSTNAME = ?

v When specifying the subfields in a WHERE clause across multiple tables, all the
subfields for the searchable fields in each table must be listed together, before
listing the subfields for the next table. For example, if the ADDRESS field was in
the HOSPITAL table and the PATNAME field was in the PATIENT table, the
following WHERE clause entry is invalid because not all the ADDRESS subfields
have been listed for HOSPITAL:
WHERE HOSPITAL.CITY = ? AND HOSPITAL.ZIPCODE = ?

AND PATIENT.LASTNAME = ? AND PATIENT.FIRSTNAME = ?

Writing DL/I calls to access an IMS database with the IMS
Universal JDBC driver

In addition to support for SQL queries, the IMS Universal JDBC driver also
supports casts to DL/I objects.

The IMS Universal JDBC driver is normally used to provide an interface for an
application program to make SQL queries to get IMS data. However, you can also
cast to DL/I objects from the JDBC interface. You might want to use this approach
if you want to reuse a known-good DL/I call in a new application context, or if
you want to obtain maximum performance for a simple query.
1. Create JDBC and PSB connection objects.
2. Obtain a connection to the IMS data.
3. Cast the JDBC connection to get a PSB handle from the IMS Universal DL/I

driver.
4. Get a PCB object from your existing PSB connection object.
5. Allocate a data connection from your PSB object.
6. Build and submit your segment search argument (SSA) list.
7. Create Path and PathSet objects to contain the returned data.
8. Process the PathSet data.

This example demonstrates how to make the cast to the DL/I driver and obtain
data. This examples accesses a JDBC connection from a JNDI datasource that was
created in a JEE server with the IMS Universal Database Resource Adapter.

import java.sql.Connection;

import javax.naming.InitialContext;
import javax.sql.DataSource;

import com.ibm.ims.dli.PCB;
import com.ibm.ims.dli.PSB;
import com.ibm.ims.dli.Path;
import com.ibm.ims.dli.PathSet;
import com.ibm.ims.dli.SSAList;

public class JDBCToDLI {

676 Application Programming

public static void main(String args[]){

Connection conn = null; // This is a JDBC Connection
// This is the equivalent connection object to the JDBC connection for the IMS Java DL/I API
PSB psb = null;
try{
// Lookup the JNDI DataSource that contains the IMS connection information.
// The JNDI DataSource would be defined in the JEE
// server with the IMS Universal Database Resource Adapters
InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("myJNDIName");

// Get a JDBC Connection from the DataSource
conn = ds.getConnection();

// Cast the JDBC Connection to the IMS ConnectImpl in order to retrieve
// a handle to the PSB in the IMS Java DL/I API
psb = ((com.ibm.ims.jdbc.ConnectionImpl) conn).getPSB();

//Get a PCB using the PSB you just created
PCB ivp1pcb = psb.getPCB("PHONEAP");
//Allocate PSB1 to establish a connection to the data
psb.allocate();
System.out.println("PSB for IVPDB1 Allocated");

//Do work on PSB1
SSAList ssaList = ivp1pcb.getSSAList("PhoneBook"); //Create an SSA list to use in a DLI call.

//This SSA list qualifies the entire
//PhoneBook segment. PhoneBook is an
//alias name for segment A1111111 which
//is specificed in the database view
//(DFSIVPDBView.java).

//Create a path object for later use
Path path = null;
PathSet ps = ivp1pcb.batchRetrieve(ssaList); //This statement uses the PCB object created

//above to do a batch retrieval of
//all the segment instances of PhoneBook.
//The data returned will be placed in
//a PathSet which is a collection of
//Path’s containing the data you requested

System.out.println("Batch retrieved all segment instances of Phone Book");

System.out.println("FIRSTNAME\tLASTNAME\tEXTENSION\tZIPCODE");
System.out.println("--");

/*
* The following while loop process the PathSet by checking that there is
* a next element (ps.hasNext), then it prints out the three fields that are defined in the
* database view (FIRSTNAME, LASTNAME, EXTENSION) for segment PhoneBook. This will continue
* until there are no more elements in the PathSet
*/
while(ps.hasNext()){
path = ps.next();
System.out.println(path.getString("FIRSTNAME").trim()+"\t\t"+
path.getString("LASTNAME").trim()+"\t\t"+
path.getString("EXTENSION").trim()+"\t"+
path.getString("ZIPCODE").trim());
}

//INSERT a segment into the PhoneBook
path = ssaList.getPathForInsert("PhoneBook");
path.setString("LASTNAME", "LAST15");
path.setString("FIRSTNAME", "FIRST15");
path.setString("EXTENSION", "8-111-1515");
path.setString("ZIPCODE", "D15/R15");
ivp1pcb.insert(path, ssaList);
System.out.println("\nInserted New Phone Book Entry with LASTNAME equal to LAST15");

//Batch retrieve all segment instances of the PhoneBook (A1111111) segment
ps = ivp1pcb.batchRetrieve(ssaList);
System.out.println("\nBatch Retrieved all segment instances of Phone Book and verify LAST15 was inserted");

System.out.println("FIRSTNAME\tLASTNAME\tEXTENSION\tZIPCODE");
System.out.println("--");
while(ps.hasNext()){
path = ps.next();
System.out.println(path.getString("FIRSTNAME").trim()+"\t\t"+

Chapter 40. Programming with the IMS Universal drivers 677

path.getString("LASTNAME").trim()+"\t\t"+
path.getString("EXTENSION").trim()+"\t"+
path.getString("ZIPCODE").trim());
}

//UPDATE FIRSTNAME to NEWNAME where LASTNAME equals LAST15
ssaList.addInitialQualification(1, "LASTNAME", SSAList.EQUALS, "LAST15");
if(ivp1pcb.getUnique(path, ssaList, true)){
path.setString("FIRSTNAME", "NEWNAME");
if(16448==ivp1pcb.replace(path)){
System.out.println("\nUpdated FIRSTNAME for segments with LASTNAME of LAST15");
}
}

ssaList.removeAllQualificationStatements(1);
//Batch retrieve all segment instances of the PhoneBook (A1111111) segment
ps = ivp1pcb.batchRetrieve(ssaList);
System.out.println("\nBatch Retrieved all segment instances of Phone Book and " +
"\nverify that the FISTNAME was updated for the entry LAST15");

System.out.println("FIRSTNAME\tLASTNAME\tEXTENSION\tZIPCODE");
System.out.println("--");
while(ps.hasNext()){
path = ps.next();
System.out.println(path.getString("FIRSTNAME").trim()+"\t\t"+
path.getString("LASTNAME").trim()+"\t\t"+
path.getString("EXTENSION").trim()+"\t"+
path.getString("ZIPCODE").trim());
}

//DELETE all segments where LASTNAME equals LAST15
ssaList.addInitialQualification(1, "LASTNAME", SSAList.EQUALS, "LAST15");
if(ivp1pcb.batchDelete(ssaList)==1){
System.out.println("\nSegment with LASTNAME equal to LAST15 has been deleted");
}

ssaList.removeAllQualificationStatements(1);

//Batch retrieve all segment instances of the PhoneBook (A1111111) segment
ps = ivp1pcb.batchRetrieve(ssaList);
System.out.println("\nBatch Retrieved all segment instances of Phone Book and " +
"\nverify that the segment with LASTNAME of LAST15 has been deleted");

System.out.println("FIRSTNAME\tLASTNAME\tEXTENSION\tZIPCODE");
System.out.println("--");
while(ps.hasNext()){
path = ps.next();
System.out.println(path.getString("FIRSTNAME").trim()+"\t\t"+
path.getString("LASTNAME").trim()+"\t\t"+
path.getString("EXTENSION").trim()+"\t"+
path.getString("ZIPCODE").trim());
}

//Commit the work
psb.commit();
System.out.println("\nPSB Committed");
//Deallocate the PSB
psb.deallocate();
System.out.println("PSB deallocated");
//Close the socket connection
psb.close();
System.out.println("Connection Closed");
System.out.println("Open Database IVP Completed");

} catch(Exception e) {
e.printStackTrace();
try {

psb.deallocate();
psb.close();

}catch(Exception e1){
e1.printStackTrace();
}
}
}
}

Related concepts:
“Programming with the IMS Universal DL/I driver” on page 689

678 Application Programming

IMS Universal JDBC driver support for XML
You can write applications to store XML data in IMS databases or retrieve XML
data from IMS databases by using the IMS Universal JDBC driver. Both the type-4
and type-2 drivers offer this support.

You can use the IMS Universal JDBC driver support for XML to complete the
following operations:
v Retrieve XML data from an IMS database as a character large object (CLOB)

through a SQL SELECT statement.
v Store XML data into an IMS database, through a SQL INSERT statement, by

using either the PreparedStatement.setClob method or the
PreparedStatement.setCharacterStream method.

The syntax for storing and retrieving XML data by using the IMS Universal JDBC
driver is independent of how the XML data is physically stored in the IMS
database. The interface is not sensitive to whether the data is stored in
decomposed storage mode, intact storage mode, or both or whether the data is
stored in an existing or new IMS database.

To use IMS Universal JDBC driver support for XML, you need to generate a
runtime Java metadata class that corresponds to a program specification block
(PSB). The Java metadata class must define the column fields in the IMS database
for storing and retrieving XML data and identify the XML schema that describes
the structure of the data.

IMS Version 12 and later includes new DBD source parameters (the
DATATYPE=XML parameter of the FIELD statement and the OVERFLOW
parameter of the DFSMARSH statement) that you can use to define
XML-containing fields and overflow segments. If your IMS system uses the IMS
catalog database, the IMS Enterprise Suite Explorer for Development can make a
connection to the catalog to dynamically retrieve the needed metadata instead of
generating a static metadata class. If your IMS system does not use the IMS catalog
database, these field definitions are included in the static Java metadata class
created with the IMS Explorer for Development.

Defining XML datatype column fields in the Java metadata class
To use IMS Universal JDBC driver support for XML, you need to define the XML
datatype column fields for storing and retrieving XML data.

Note: 14 and later supports new DBD generation parameters for XML datatype
definitions: the DATATYPE=XML parameter for the FIELD statement and the
OVERFLOW segment definition for the DFSMARSH statement. If you use these
parameters, the Java metadata class will already contain the XML definitions and
you do not need to modify the class. If you are using the IMS catalog database, the
metadata is available with a data connection instead of with a static metadata
class.

To define an XML data type column field in the Java metadata class:
1. Generate the Java metadata class with the IMS Enterprise Suite Explorer for

Development.
2. Generate the XML schema for the database with the IMS Enterprise Suite

DLIModel utility plug-in or manually create the XML schema based on the
DBD and data type mappings.

Chapter 40. Programming with the IMS Universal drivers 679

3. Specify the XML datatype column field by modifying the generated Java
metadata class. If you are storing or retrieving XML data in decomposed
storage mode, define the XML datatype column field with the following
DLITypeInfo constructor syntax. One or more XML datatype column fields can
be defined in a segment.
public DLITypeInfo(String fieldName,

String XMLSchemaName,
DLITypeInfo.XML);

4. During database connection setup, pass the name of the Java metadata class to
the IMS Universal JDBC driver.

The following example shows how to define XML column datatype fields in a Java
metadata class for decomposed mode. In this example, an XML datatype column
field named “HOSPXML” is defined that is associated with the
“BMP255-PCB01.xsd” XML schema. Another XML datatype column field named
“HXML” is defined that is associated with the “B.xsd” XML schema.
// The following describes Segment: HOSPITAL ("HOSPITAL") in PCB: PCB01 ("PCB01")

static DLITypeInfo[] PCB01HOSPITALArray= {
new DLITypeInfo("HOSPLL", DLITypeInfo.CHAR, 1, 2, "HOSPLL"),
new DLITypeInfo("HOSPCODE", DLITypeInfo.CHAR, 3, 12,

"HOSPCODE", DLITypeInfo.UNIQUE_KEY),
new DLITypeInfo("HOSPNAME", DLITypeInfo.CHAR, 15, 17, "HOSPNAME"),
new DLITypeInfo("HOSPXML", "BMP255-PCB01.xsd", DLITypeInfo.XML),
new DLITypeInfo("HXML", "B.xsd", DLITypeInfo.XML)

};

Storing XML data by using the IMS Universal JDBC driver
You can use the IMS Universal JDBC driver to store XML data into an IMS
database through an SQL INSERT statement.

To store XML data in your IMS Universal JDBC driver application:
1. Specify the file path that contains the XML schema file (.xsd) that describes the

input XML data structure by setting the http://www.ibm.com/ims/schema-resolver/
file/path environment variable. The following example shows how to
programmatically set the environment variable. In this example, the file path
uxml/samples indicates a relative path to the XML schema file. You can also
specify an absolute file path.
System.setProperty("http://www.ibm.com/ims/schema-resolver/file/path",

"uxml/samples");

2. Specify your XML data source. If you are reading in XML data from an external
source, such as a file, you must create a java.io.Reader object to wrap the input
XML data. The following example shows how to create an InputStreamReader
object to wrap an external file named hospwashington.xml. The
InputStreamReader object converts the bytes that are read from the input file
from ASCII encoding to Unicode.
String doc = "hospwashington.xml";
InputStream fileStream = getClass().getResourceAsStream(doc);
if (fileStream == null) {

throw new FileNotFoundException("Insert Document: ’" + doc + "’ was
not found in classpath");

}
InputStreamReader fileReader = new InputStreamReader(fileStream, "ASCII");

3. Insert the XML data.
a. Create a java.sql.preparedStatement object representing the SQL INSERT

call. In the SQL INSERT statement, you must specify the name of the XML
column to store the XML data. The column name must match the name that
is defined in the Java metadata class.

680 Application Programming

The following example shows how to create a preparedStatement object to
insert data into the hospxml column in the HOSPITAL segment, using the
java.sql.Connection instance conn.
String s = "INSERT INTO pcb01.HOSPITAL (hospxml) VALUES (?)"
PreparedStatement ps = conn.prepareStatement(s);

b. Set the value of the XML data to insert into the preparedStatement object.
The following table describes the methods and corresponding input data
types that you can use to insert data in XML columns.

Table 102. Methods and data types for updating XML columns

Method Input data type

PreparedStatement.setCharacterStream Reader

PreparedStatement.setClob Clob

In decomposed storage mode, XML data is stored with EBCDIC encoding.
In intact storage mode, the default encoding is Unicode.

The following code sample shows how to insert XML data into the Hospital
database.
package uxml.samples;

import java.io.*;
import java.sql.Clob;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.PreparedStatement;
import com.ibm.ims.jdbc.IMSDataSource;

public class StoreXMLSamples{

public static void main(String argv[]) throws SQLException,IOException {
IMSDataSource ds = new IMSDataSource();
ds.setDatabaseName("class://uxml.samples.BMP255NewSyntaxDatabaseView");
ds.setDatastoreName("IMS1");
ds.setDatastoreServer("yourhost.yourdomain.com");
ds.setPortNumber(5555);
ds.setDriverType(IMSDataSource.DRIVER_TYPE_4);
ds.setUser("myUserID");
ds.setPassword("myPass");

// Specify file path of XML schema
System.setProperty("http://www.ibm.com/ims/schema-resolver/file/path",

"uxml/samples");

Connection conn = null;

try {
conn = ds.getConnection();
Statement st = conn.createStatement();
String doc = "hospwashington.xml";
StoreXMLSamples storeSample = new StoreXMLSamples();
InputStream fileStream =

storeSample.getClass().getResourceAsStream(doc);
if (fileStream == null) {

throw new FileNotFoundException("Insert Document: ’" +
doc + "’ was not found in classpath");

}

// Convert XML document from ASCII to Unicode
InputStreamReader fileReader =

Chapter 40. Programming with the IMS Universal drivers 681

new InputStreamReader(fileStream, "ASCII");

PreparedStatement ps =
conn.prepareStatement("INSERT INTO pcb01.HOSPITAL" +

" (hospxml) VALUES (?)");

ps.setCharacterStream(1, fileReader, -1);
int rows = ps.executeUpdate();
System.out.println("Inserted");
conn.commit();

conn.close();
} catch (SQLException e) {

e.printStackTrace();
if (!conn.isClosed()) {

conn.rollback();
conn.close();

}
}

}
}

Retrieving XML data by using the IMS Universal JDBC driver
You can use the IMS Universal JDBC driver to retrieve XML data from an IMS
database as a character large object (CLOB) through an SQL SELECT statement.

To retrieve XML data in your IMS Universal JDBC driver application:
1. Specify the file path that contains the XML schema file (.xsd) describing the

input XML data structure by setting the http://www.ibm.com/ims/schema-resolver/
file/path environment variable. The following example shows how to
programmatically set the environment variable. In this example, the file path
uxml/samples indicates a relative path to the XML schema file. You can also
specify an absolute file path.
System.setProperty("http://www.ibm.com/ims/schema-resolver/file/path",

"uxml/samples");

2. Specify and execute an SQL SELECT statement to retrieve the XML data. The
database table in your SQL SELECT statement must include the XML column
for retrieving the XML data. If you specify the column name explicitly in the
SQL SELECT statement, the column name must match the name defined in the
Java metadata class.
The following example shows how to obtain a java.sql.resultSet object from an
SQL SELECT call to retrieve the hospxml column in the HOSPITAL segment. In
the example, st is a java.sql.Statement instance.
ResultSet rs = st.executeQuery("SELECT hospxml FROM PCB01.HOSPITAL");

3. Read the XML data from the resultSet object after the retrieve call is made. The
XML data is stored in a java.sql.Clob object in the resultSet.

The following code sample shows how to retrieve XML data from the Hospital
database.
package uxml.samples;

import java.io.*;
import java.sql.Clob;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import com.ibm.ims.jdbc.IMSDataSource;

public class RetrieveXMLSamples{

682 Application Programming

public static void main(String argv[]) throws SQLException,IOException {
IMSDataSource ds = new IMSDataSource();
ds.setDatabaseName("class://uxml.samples.BMP255NewSyntaxDatabaseView");
ds.setDatastoreName("IMS1");
ds.setDatastoreServer("yourhost.yourdomain.com");
ds.setPortNumber(5555);
ds.setDriverType(IMSDataSource.DRIVER_TYPE_4);
ds.setUser("myUserId");
ds.setPassword("myPass");

// Specify file path of XML schema
System.setProperty("http://www.ibm.com/ims/schema-resolver/file/path",

"uxml/samples");

Connection conn = null;

try {
conn = ds.getConnection();

Statement st = conn.createStatement();

ResultSet rs = st.executeQuery("SELECT hospxml FROM PCB01.HOSPITAL");

StringWriter sw = new StringWriter();

while (rs.next()) {

Clob clob = rs.getClob(1);
Reader reader = clob.getCharacterStream();
char[] buffer = new char[1000];
int read = reader.read(buffer);
while (read != -1) {
sw.write(buffer,0,read);

read = reader.read(buffer);
}

}

String result = sw.toString();
System.out.println(result);
System.out.println();

conn.commit();
conn.close();

} catch (SQLException e) {
e.printStackTrace();
if (!conn.isClosed()) {

conn.rollback();
conn.close();

}
}

}
}

Data transformation support for JDBC
The IMS JDBC drivers provide data transformation on behalf of client applications.
When provided with the information from the IMS catalog database or Java
database metadata class, the libraries are able to internally convert data from one
datatype to another. The IMS Universal DL/I driver also includes an extensible
user data type converter for translating custom data types.

Chapter 40. Programming with the IMS Universal drivers 683

Supported JDBC data types
The following table lists the supported Java data types for each JDBC data type.

Table 103. Supported JDBC data types

JDBC data type Java data type Length

ARRAY java.lang.Array Application-defined

BIGINT long 8 bytes

BINARY byte[] 1 - 32 KB

BIT Boolean 1 byte

CHAR java.lang.String 1 - 32 KB

CLOB java.sql.Clob Application-defined

DATE java.sql.Date Application-defined

DOUBLE double 8 bytes

FLOAT float 4 bytes

INTEGER int 4 bytes

PACKEDDECIMAL java.math.BigDecimal 1 - 10 bytes

SMALLINT short 2 bytes

STRUCT java.lang.Struct Application-defined

TIME java.sql.Time Application-defined

TIMESTAMP java.sql.Timestamp Application-defined

TINYINT byte 1 byte

ZONEDDECIMAL java.math.BigDecimal 1 - 19 bytes

Methods for retrieving and converting data types
With the IMS Universal JDBC driver, you can use the ResultSet interface
(java.sql.ResultSet) to retrieve and convert the data from the type that is defined in
the database metadata to the type that is required by your Java application.
Similarly, with the IMS Universal DL/I driver, you can use the Path interface to
perform data retrieval and conversion to Java data types.

The following table shows the available get methods in the ResultSet interface (for
the IMS Universal JDBC driver) or the Path interface (for the IMS Universal DL/I
driver) for accessing data of a certain Java data type.

The "No Truncation or Data Loss" column indicates the data types that are
designed to be accessed with the given getXXX method. No truncation or data loss
occurs when using those methods for those data types. The data types that are in
the “Legal without Data Integrity” column are all other legal calls; however, data
integrity cannot be ensured when using the given getxxx method to access those
data types. If a data type is not in either column, using the given getXXX method
for that data type will result in an exception.

684 Application Programming

Table 104. ResultSet.getXXX and Path.getXXX methods to retrieve data types

ResultSet.getXXX
Method or Path.getXXX
Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getByte TINYINT
UTINYINT

SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getShort SMALLINT
USMALLINT

TINYINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getInt INTEGER
UINTEGER

TINYINT
SMALLINT
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getLong BIGINT
UBIGINT

TINYINT
SMALLINT
INTEGER
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getFloat FLOAT TINYINT
SMALLINT
INTEGER
BIGINT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

Chapter 40. Programming with the IMS Universal drivers 685

Table 104. ResultSet.getXXX and Path.getXXX methods to retrieve data types (continued)

ResultSet.getXXX
Method or Path.getXXX
Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getDouble DOUBLE TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getBoolean BIT TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getString CHAR
VARCHAR

TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
PACKEDDECIMAL1

ZONEDDECIMAL1

BINARY
DATE
TIME
TIMESTAMP

getBigDecimal BINARY3

PACKEDDECIMAL1

ZONEDDECIMAL1

TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR

getClob CLOB2 all others result in an exception

getBytes BINARY all others result in an exception

getDate DATE CHAR
VARCHAR
TYIMESTAMP

getTime TIME CHAR
VARCHAR
TIMESTAMP

686 Application Programming

Table 104. ResultSet.getXXX and Path.getXXX methods to retrieve data types (continued)

ResultSet.getXXX
Method or Path.getXXX
Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getTimestamp TIMESTAMP CHAR
VARCHAR
DATE
TIME

Note:

1. PACKEDDECIMAL and ZONEDDECIMAL are data type extensions for IMS
Universal JDBC driver and the IMS Universal DL/I driver. All other types are
standard SQL types defined in SQL92. Restriction: PACKEDDECIMAL and
ZONEDDECIMAL data types do not support the Sign Leading or Sign Separate
modes. For these two data types, sign information is always stored with the
Sign Trailing method.

2. The CLOB data type is supported only for the retrieval and storage of XML
data.

3. The BINARY data type is valid only for decimal data used with a binary type
converter.

If the field type is either PACKEDDECIMAL or ZONEDDECIMAL, the type
qualifier is the COBOL PICTURE string that represents the layout of the field. All
COBOL PICTURE strings that contain valid combinations of 9s, Ps, Vs, and Ss are
supported. Expansion of PICTURE strings is handled automatically. For example,
'9(5)' is a valid PICTURE string. For zoned decimal numbers, the decimal point can
also be used in the PICTURE string. PIC 9(06)V99 COMP and PIC 9(06)V99 COMP-4
are valid PICTURE clauses for BINARY decimal data.

If the field contains DATE, TIME, or TIMESTAMP data, the type qualifier specifies
the format of the data. For example, a type qualifier of ddMMyyyy indicates that
the data is formatted as follows:
11122015 is December 11, 2015

For DATE and TIME types, all formatting options in the
java.text.SimpleDateFormat class are supported.

For the TIMESTAMP type, the formatting option 'f' is available for nanoseconds.
TIMESTAMP can contain up to nine 'f's and replaces the 'S' options for
milliseconds. Instead, 'fff' indicates milliseconds of precision. An example
TIMESTAMP format is as follows:
yyyy-mm-dd hh:mm:ss.fffffffff

COBOL copybook types that map to Java data types
Because data in IMS is not strongly typed, you can use COBOL copybook types to
map your IMS data to Java data types.

The following table describes how COBOL copybook types are mapped to both
DLITypeInfo constants in the DLIDatabaseView class and Java data types.

Table 105. Mapping from COBOL formats to DLITypeInfo constants and Java data types

Copybook format DLITypeInfo constant Java data type

PIC X CHAR java.lang.String

Chapter 40. Programming with the IMS Universal drivers 687

Table 105. Mapping from COBOL formats to DLITypeInfo constants and Java data
types (continued)

Copybook format DLITypeInfo constant Java data type

PIC 9 BINARY1 See “DLITypeInfo constants
and Java data types based on
the PICTURE clause”.2

See “DLITypeInfo constants
and Java data types based on
the PICTURE clause”.2

COMP-1 FLOAT float

COMP-2 DOUBLE double

PIC 9 COMP-33 PACKEDDECIMAL java.math.BigDecimal

PIC 9 DISPLAY4 ZONEDDECIMAL java.math.BigDecimal

Notes:

1. Synonyms for BINARY data items are COMP and COMP-4. A PIC 9(06)V99
statement with COMP or COMP-4 is used for binary decimal data.

2. For BINARY data items, the DLITypeInfo constant and Java type depend on the
number of digits in the PICTURE clause.The table “DLITypeInfo constants and
Java data types based on the PICTURE clause” describes the type based on
PICTURE clause length.

3. PACKED-DECIMAL is a synonym for COMP-3.
4. If the USAGE clause is not specified at either the group or elementary level, it

is assumed to be DISPLAY.

The following table shows the DLITypeInfo constants and the Java data types
based on the PICTURE clause.

Table 106. DLITypeInfo constants and Java data types based on the PICTURE clause

Digits in PICTURE clause Storage occupied
DLITypeInfo
constant Java data type

1 through 2 1 byte TINYINT
UTINYINT

byte

1 through 4 2 bytes SMALLINT
USMALLINT

short

5 through 9 4 bytes INTEGER
UINTEGER

int

10 through 18 8 bytes BIGINT
UBIGINT

long

The following table shows examples of specific copybook formats mapped to
DLITypeInfo constants.

Table 107. Copybook formats mapped to DLITypeInfo constants

Copybook format DLITypeInfo constant

PIC X(25) CHAR

PIC 9(02) COMP UTINYINT

PIC S9(04) COMP SMALLINT

PIC 9(04) COMP USMALLINT

PIC S9(06) COMP-4 INTEGER

PIC 9(06) COMP-4 UINTEGER

688 Application Programming

Table 107. Copybook formats mapped to DLITypeInfo constants (continued)

Copybook format DLITypeInfo constant

PIC 9(06)V99 COMP or COMP-4 BINARY

PIC S9(12) BINARY BIGINT

PIC 9(12) BINARY UBIGINT

COMP-1 FLOAT

COMP-2 DOUBLE

PIC S9(06)V99 ZONEDDECIMAL

PIC 9(06).99 ZONEDDECIMAL

PIC S9(06)V99 COMP-3 PACKEDDECIMAL

Programming with the IMS Universal DL/I driver
Use the IMS Universal DL/I driver when you need to write granular queries to
access IMS databases directly from a Java client in an non-managed environment.

Because of the fundamental differences between hierarchical databases and
relational databases, sometimes the JDBC API does not provide access to the full
set of IMS databases features. The IMS Universal DL/I driver is closely related to
the traditional IMS DL/I database call interface that is used with other
programming languages for writing applications in IMS, and provides a
lower-level access to IMS database functions than the JDBC API. By using the IMS
Universal DL/I driver, you can build segment search arguments (SSAs) and use
the methods of the program communication block (PCB) object to read, insert,
update, delete, or perform batch operations on segments. You can gain full
navigation control in the segment hierarchy.

Preparing to write a Java application with the IMS Universal
drivers

Java application programs that use the IMS Universal drivers require the Java
Development Kit 6.0 (JDK 6.0). Java programs that run in JMP and JBP regions
require the Java Development Kit 6.0 (JDK 6.0) or later. Java application programs
that use the IMS Universal drivers must have access to database metadata in order
to interact with IMS databases. This metadata can either be accessed directly in the
IMS catalog database or it can be generated as a Java metadata class with the IMS
Enterprise Suite Explorer for Development.

Basic steps in writing a IMS Universal DL/I driver application
In general, to write a application program with the IMS Universal DL/I driver, you
need to complete the following tasks.

To write an IMS Universal DL/I driver application, follow these steps.
1. Import the com.ibm.ims.dli package that contains the IMS Universal DL/I

driver classes, interfaces, and methods.
2. Connect to an IMS database subsystem.
3. Obtain a program specification block (PSB), which contains one or more PCBs.
4. Obtain a PCB handle, which defines an application's view of an IMS database

and provides the ability to issue database calls to retrieve, insert, update, and
delete database information.

Chapter 40. Programming with the IMS Universal drivers 689

5. Obtain an unqualified segment search argument list (SSAList) of one or more
segments in the database hierarchy.

6. Add qualification statements to specify the segments targeted by DL/I calls.
7. If retrieving data, mark the segment fields to be returned.
8. Execute DL/I calls to the IMS database.
9. Handle errors that are returned from the DL/I programming interface.

10. Disconnect from the IMS database subsystem.
Related tasks:
“Retrieving data in a IMS Universal DL/I driver application” on page 697
Related reference:
“Generating the runtime Java metadata class” on page 620

Java packages for IMS Universal DL/I driver support
Before you can invoke IMS Universal DL/I driver methods, you must access all or
parts of various Java packages that contain those methods.

You can do that by either importing the packages or specific classes, or by using
the fully-qualified class names. You might need the following packages or classes
for your IMS Universal DL/I driver application:

com.ibm.ims.dli
Contains the core classes, interfaces, and methods for the IMS Universal
DL/I driver.

com.ibm.ims.base
Contains exception classes for errors that are returned by DL/I or IMS.

Related reference:

Java API documentation (Javadoc) (Application Programming APIs)

Connecting to an IMS database by using the IMS Universal
DL/I driver

Before you can execute DL/I calls from your IMS Universal DL/I driver
application, you must connect to an IMS database.

The IMS Universal DL/I driver application can establish a connection to an IMS
database using the PSB interface, which is part of the com.ibm.ims.dli package.
Pass the connection properties using an IMSConnectionSpec instance.

To connect to an IMS database by using the IMS Universal DL/I driver:
1. Create an IMSConnectionSpec instance by calling the createIMSConnectionSpec

method in the IMSConnectionSpecFactory class.
2. Set the following connection properties for the IMSConnectionSpec instance.

DatastoreName

The name of the IMS data store to access.
v When using type-4 connectivity, the DatastoreName property must

match either the name of the data store defined to ODBM or be
blank. The data store name is defined in the ODBM CSLDCxxx
PROCLIB member using either the DATASTORE(NAME=name) or
DATASTORE(NAME=name, ALIAS(NAME=aliasname)) parameter. If
an alias is specified, you must specify the aliasname as the value of
the datastoreName property. If the DatastoreName value is left blank

690 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_odbjavadocinformation.htm#ims_odbjavadocinformation

(or not supplied), IMS Connect connects to any available instance of
ODBM as it is assumed that data sharing is enabled between all
datastores defined to ODBM.

v When using type-2 connectivity, set the DatastoreName property to
the IMS subsystem alias. This is not required to be set for the Java
Dependent Region run time.

DatabaseName

The location of the database metadata representing the target IMS
database.

The DatabaseName property can be specified in one of two ways,
depending on whether the metadata is stored in the IMS catalog or as a
static metadata class generated by the IMS Enterprise Suite Explorer for
Development:
v If your IMS system uses the IMS catalog, the DatabaseName property

is the name of the PSB that your application uses to access the target
IMS database.

v If you are using the IMS Explorer for Development, the databaseName
property is the fully qualified name of the Java metadata class
generated by the IMS Explorer for Development. The URL must be
prefixed with class:// (for example, class://
com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the DatabaseName property
can be overridden for an individual connection without affecting the
default value specified for the resource adapter.

MetadataURL

The location of the database metadata representing the target IMS
database.

This property is deprecated. Use DatabaseName instead.

The MetadataURL property is the fully qualified name of the Java
metadata class generated by the IMS Enterprise Suite Explorer for
Development. The URL must be prefixed with class:// (for example,
class://com.foo.BMP255DatabaseView).

In a J2C Connection Factory environment, the MetadataURL property can
be overridden for an individual connection without affecting the
default value specified for the resource adapter.

PortNumber
The TCP/IP server port number to be used to communicate with IMS
Connect. The port number is defined using the DRDAPORT parameter
on the ODACCESS statement in the IMS Connect configuration
PROCLIB member. The default port number is 8888. Do not set this
property when using type-2 connectivity.

DatastoreServer
The name or IP address of the data store server (IMS Connect). You can
provide either the host name (for example, dev123.svl.ibm.com) or the
IP address (for example, 192.166.0.2). Do not set this property when
using type-2 connectivity.

DriverType
The type of driver connectivity to use (value must be

Chapter 40. Programming with the IMS Universal drivers 691

IMSConnectionSpec.DRIVER_TYPE_4 for type-4 connectivity or
IMSConnectionSpec.DRIVER_TYPE_2 for type-2 connectivity).

sslConnection
Optional. Indicates if this connection uses Secure Sockets Layer (SSL)
for data encryption. Set this property to “true” to enable SSL, or to
“false” otherwise. Do not set this property when using type-2
connectivity.

sslKeyStoreType
Optional. Specifies the format of the file that contains
cryptographic objects needed to establish a secure socket
connection. The valid values are “JKS” and “PKCS12”. This
value is only used when sslConnection is set to “true” and
sslKeyStoreType is not specified. The sslKeyStoreType
parameter defaults to “JKS”.

sslSecureSocketProtocol
Optional. Specifies the cryptographic communication protocol
for the new connection. Specify a protocol that is supported by
the server and provides the highest level of security. The valid
values are “SSL”, “SSLv3”, “TLSv1.1”, and “TLSv1.2”. This
value is only used when sslConnection is set to “true”. If
sslConnection is set to “true” and sslSecureSocketProtocol is
not specified, a default protocol will be determined at runtime
by the JRE and the server.

sslTrustStoreLocation
Optional. Specifies the location of the cryptographic trust store
file for the new connection. This value is only used when
sslConnection is set to true.

sslTrustStorePassword
Optional. Specifies the password to access the cryptographic
trust store file. This value is only used when sslConnection is
set to true.

sslKeyStoreLocation
Optional. Specifies the location of the cryptographic key store
file for the new connection. This value is only used when
sslConnection is set to true.

sslKeyStorePassword
Optional. Specifies the password to access the cryptographic
key store file. This value is only used when sslConnection is
set to true.

loginTimeout
Optional. Specifies the number of seconds that the driver waits for a
response from the server before timing out a connection initialization or
server request. Set this property to a non-negative integer for the
number of seconds. Set this property to 0 for an infinite timeout length.
Do not set this property when using type-2 connectivity.

user The user name for the connection to IMS Connect provided by your
RACF administrator. Do not set this property when using type-2
connectivity.

692 Application Programming

password
The password for the connection to IMS Connect provided by your
RACF administrator. Do not set this property when using type-2
connectivity.

dbViewLocation
Optional. Specifies the fully qualified path to a databaseView metadata
class. You can use this property to include a metadata class that is not
located in your project path.

treatInvalidDecimalsAsNull
Optional. Indicates whether to interpret certain Decimal values that
appear invalid in Java applications (such as PACKEDDECIMAL and
ZONEDDECIMAL with invalid sign bits) as null. By default, this
property is “false”, and a conversion exception is thrown when the Java
applications are processing invalid values.

3. Pass the connection request properties to the PSBFactory class to create the PSB
instance. When the PSB instance is created successfully, a connection is
established to the database.

4. When you are finished with a connection to the IMS database from a IMS
Universal DL/I driver application, you must close the connection to the
database by calling the close method on the PSB instance.

Example: type-4 Connection

The following code example shows how to create a type-4 connection to an IMS
database from your IMS Universal DL/I driver application:
IMSConnectionSpec connSpec = IMSConnectionSpecFactory.createIMSConnectionSpec();
connSpec.setDatastoreName("SYS1");
connSpec.setDatastoreServer("9.876.543.21");
connSpec.setPortNumber(8888);
connSpec.setDatabaseName("class://testdb.jdbo.HospitalDatabaseView");
connSpec.setSSLConnection(true);
connSpec.setLoginTimeout(10);
connSpec.setUser("usr");
connSpec.setPassword("usrpwd");
connSpec.setDriverType(IMSConnectionSpec.DRIVER_TYPE_4);
PSB psb = PSBFactory.createPSB(connSpec);

Related tasks:
“Configuring the IMS Universal drivers for SSL support” on page 712
Related reference:

Java API documentation (Javadoc) (Application Programming APIs)

IMS Universal DL/I driver interfaces for executing DL/I
operations

In a traditional IMS application, you make DL/I calls to insert, update, delete, or
retrieve data. To perform the same functions in a IMS Universal DL/I driver
application, you invoke methods.

Methods are defined in the following interfaces:
v The program specification block (PSB) interface is used to connect to IMS

databases. Use the PSB interface to obtain a handle to any program
communication block (PCB) that is contained in the PSB. The PCB handle is
used to access the particular database that is referenced by the PCB.

Chapter 40. Programming with the IMS Universal drivers 693

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_odbjavadocinformation.htm#ims_odbjavadocinformation

v The PCB interface represents a cursor position in an IMS database. The PCB
interface supports DL/I message call functions, including Get Unique (GU), Get
Next (GN), Get Next Within Parent (GNP), Insert (ISRT), Replace (REPL), and
Delete (DLET). The PCB interface can obtain an unqualified list of segment
search arguments and perform batch retrieve, update, and delete operations. You
can also use the PCB interface to return the application interface block (AIB) that
is associated with the most recent DL/I call.

v The SSAList interface represents a list of segment search arguments (SSAs) used
to specify the segments to target in a particular database call. Use the SSAList
interface to construct the SSAs, and to set the command codes and lock class for
the SSAs. You can set an initial qualification statement and append additional
qualifiers, based on the values of the segment fields, to restrict which segments
to target in the DL/I call. You can also specify which fields to return from a
database retrieve call.

v The Path interface represents a database record for the purpose of a DL/I
retrieval or update operation. The Path interface can be viewed as the
concatenation of all of the segment instances in a specific database hierarchic
path, starting from the highest level segment that is nearest the root segment to
the lowest level segment. Use the Path interface to set or retrieve the value of
any segment field that is located in the hierarchic path.

v The PathSet interface provides access to a collection of Path objects that are
returned by a batch retrieve operation.

v The AIB interface and the database PCB (DBPCB) interface return useful
information that was returned by IMS as a result of a DL/I call.

v The GSAMPCB interface represents a GSAM PCB and is essentially a cursor
position in a GSAM database. This interface provides data access to GSAM
databases with calls that are similar to DL/I calls.

v The RSA interface represents a GSAM database record search argument that is
the key to a cursor position in the GSAM database.

Related reference:

Java API documentation (Javadoc) (Application Programming APIs)

Specifying segment search arguments using the SSAList
interface
The SSAList interface represents a set of a list of segment search arguments used to
specify the segments to target in a particular database call.

Use the SSAList interface to construct each segment search argument (SSA) in the
list and to set the command codes and lock class for the SSAs. Each SSA in the
SSAList can be unqualified or qualified.

In addition, your application can specify which segment fields are to be returned
from a database retrieve call by using the markFieldForRetrieval or the
markAllFieldsForRetrieval methods. Following the IMS default, all of the fields in
the lowest level segment specified by the SSAList are initially marked for retrieval.
v For non-batch DL/I data retrieval or update operations, use the

getPathForRetrieveReplace method.
v For a DL/I insert call, use the getPathForInsert method.
v For a batch update operation, use the getPathForBatchUpdate method.

The following examples demonstrate how to specify segment search arguments
using the SSAList interface. The examples are based on the Hospital database.

694 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_odbjavadocinformation.htm#ims_odbjavadocinformation

Creating an unqualified SSAList

This example returns a Path that consists of all fields in the segment “DOCTOR”:
SSAList ssaList = pcb.getSSAList("HOSPITAL","DOCTOR");
Path path = ssaList.getPathForRetrieveReplace();
pcb.getUnique(path, ssaList, false);

In the previous example, the ssaList represents all segments along the hierarchic
path from the topmost segment (“HOSPITAL”) to the lowest segment
(“DOCTOR”). The ssaList will look like this:
HOSPITALb
WARDbbbbb
PATIENTbb
ILLNESSbb
TREATMNTb
DOCTORbbb

Creating a qualified SSAList

An SSAList can be qualified to filter the segments on the hierarchic path to be
retrieved or updated. The general steps to create a qualified SSAList are:
1. Obtain an unqualified SSAList from the PCB using the getSSAList method.
2. Use the addInititalQualification method to specify the initial search criteria for

a segment on the SSAList returned from a getSSAList method. For each
segment represented in the SSAList, you can make one call to specify an initial
qualification for that segment. The segment can be referenced by name or by
using the 1-based offset of the SSA representing that segment within the
SSAList. If you use more than one addInitialQualification statement for a
segment, an exception will be thrown. The relational operator (relationalOp)
parameter in the addInitialQualification method indicates the conditional
criteria that the segment must meet in order to be qualified. Valid relational
operators are:
v EQUALS
v GREATER_OR_EQUAL
v GREATER_THAN
v LESS_OR_EQUAL
v LESS_THAN
v NOT_EQUAL

3. To specify additional search criteria, use the appendQualification method. For
each segment, you can make multiple calls to the appendQualification method
to add more than one qualification statement. The Boolean operator (booleanOp)
parameter in the appendQualification method indicates how this qualification is
logically connected to the previous qualification. Valid Boolean operators are:
v AND
v OR
v INDEPENDENT_AND

4. You can also qualify a SSAList by setting DL/I command codes and lock
classes. The supported DL/I command codes include:
v CC_A: The A command code (clear positioning).
v CC_C: The C command code (concatenated key). Use the

addConcatenatedKey method to add a concatenated key to a segment.
v CC_D: The D command code (path call)
v CC_F: The F command code (first occurrence)

Chapter 40. Programming with the IMS Universal drivers 695

v CC_G: The G command code (prevent randomization).
v CC_L: The L command code (last occurrence)
v CC_N: The N command code (path call ignore)
v CC_O: The O command code (contain field names or segment position and

length).
v CC_P: The P command code (set parentage)
v CC_U: The U command code (maintain position at this level)
v CC_V: The V command code (maintain position at this level and all superior

levels)

You can use a lock class to prevent another program from updating a segment
until your program reaches a commit point. Use the addLockClass method to
add a lock class to a segment. The supported lock class letters are “A” to “J”.
The behavior of a lock class is the same as using a “Q” command code with
that lock class letter.

The following code example demonstrates how to specify and use a qualified
SSAList with a single initial qualification statement to retrieve data:
SSAList ssaList = pcb.getSSAList("HOSPITAL","DOCTOR");
ssaList.addInitialQualification("PATIENT","PATNAME",SSAList.EQUALS,"ANDREA SMITH");
ssaList.markFieldForRetrieval("ILLNESS","ILLNAME",true);
ssaList.markFieldForRetrieval("TREATMNT","TREATMNT",true);
Path path = ssaList.getPathForRetrieveReplace();
pcb.getUnique(path, ssaList, false);

For the code example above, the ssaList will look like this:
HOSPITALb
WARDbbbbb
PATIENTb(PATNAMEbEQANDREAbSMITHbbbbb)
ILLNESSb*D
TREATMNT*D

The code example above retrieves the following information for all records where
PATNAME is "ANDREA SMITH":
v The ILLNAME field in the ILLNESS segment.
v The TREATMNT field in the TREATMNT segment.
v All fields in the DOCTOR segment (by default, IMS returns all fields in the

lowest level segment specified by the SSAList).

The following code example demonstrates how to specify a qualified SSAList with
a multiple qualification statements to retrieve data:
SSAList ssaList = pcb.getSSAList("HOSPITAL","WARD");
ssaList.addInitialQualification("WARD","NURCOUNT",SSAList.GREATER_THAN,4);
ssaList.appendQualification("WARD",SSAList.AND,"DOCCOUNT",SSAList.GREATER_THAN, 2);

For the code example above, the ssaList will look like this:
HOSPITALb
WARDbbbb(NURCOUNTGT4&DOCCOUNTGT2;)

The following example shows how to specify a qualified SSAList with the
command code CC_L (which means "last occurence") to find the most recently
admitted patient in the "SANTA TERESA" hospital:

696 Application Programming

SSAList ssaList = pcb.getSSAList("HOSPITAL","PATIENT");
ssaList.addInitialQualification

("HOSPITAL","HOSPNAME",SSAList.EQUALS,"SANTA TERESA");
ssaList.addCommandCode("PATIENT",SSAList.CC_L);
Path path = ssaList.getPathForRetrieveReplace();
pcb.getUnique(path,ssaList,false);

For the code example above, the ssaList will look like this:
HOSPITAL(HOSPNAMEEQSANTAbTERESAbbbbb)
WARDbbbbb
PATIENTb*L

Debugging an SSAList

If you need to debug by identifying whether the segment search arguments in
your SSAList are correct, use the buildSSAListInBytes method to build the SSAList
in DL/I format for further debugging:
byte[][] ssaListInBytes = ssaList.buildSSAListInBytes();

You can iterate over each segment search argument in the byte array that is
returned and print it out to make sure the segment search argument is what it
should be.
Related concepts:
“Segment search arguments (SSAs)” on page 182
Related reference:
“SSA coding formats” on page 242
“Hospital database example” on page 620

Command code reference (Application Programming APIs)

Retrieving data in a IMS Universal DL/I driver application
The IMS Universal DL/I driver provides support for data retrieval that mirrors
DL/I semantics.

The following are the general steps to retrieve segments from the database:
1. Obtain an SSAList instance from the PCB instance representing the database.
2. Optionally, you can add qualification statements to the SSAList instance.
3. Specify the segment fields to retrieve. Use the markFieldForRetrieval method to

mark a single field, or use the markAllFieldsForRetrieval method to mark all
the fields for a segment. Following the IMS default, all of the fields in the
lowest-level segment specified by the SSAList instance are initially marked for
retrieval. When one or more of the fields in the lowest level segment specified
in an SSAList instance is marked for retrieval, only the explicitly marked fields
are retrieved.

4. Get a Path instance by using the SSAList instance from the previous steps and
calling the getPathForRetrieveReplace method. When a retrieve call is made,
the resulting Path object will contain all the fields that have been marked for
retrieval.

5. Call a DL/I retrieve operation using one of the following methods from the
PCB interface:

Chapter 40. Programming with the IMS Universal drivers 697

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_cmdcodref.htm#ims_cmdcodref

Java API for DL/I retrieve method Usage

getUnique Retrieves a specific unique segment. This
method provides the same functionality as
the DL/I Get Unique (GU) database call. If
the isHoldCall parameter is set to true, the
call behaves as a DL/I Get Hold Unique
(GHU) database call.

getNext Retrieves the next segment in a Path. This
method provides the same functionality as
the DL/I Get Next (GN) database call. If the
isHoldCall parameter is set to true, the call
behaves as a DL/I Get Hold Next (GHN)
database call.

getNextWithinParent Retrieves the next segment within the same
parent. This method provides the same
functionality as the DL/I Get Next Within
Parent (GNP) database call. If the isHoldCall
parameter is set to true, the call behaves as a
DL/I Get Hold Next Within Parent (GHNP)
database call.

batchRetrieve Retrieves multiple segments with a single
call. See “Batch data retrieval in a Java API
for DL/I application” for more information
about how to use this method.

6. Read the values of the retrieved fields out of the Path object after the retrieve
call is made.

IMS Universal DL/I driver data retrieval example

The following code fragment illustrates how to use the getUnique method and
getNext method to retrieve the hospital name (HOSPNAME), ward name
(WARDNAME), patient count (PATCOUNT), nurse count (NURCOUNT), and
doctor count (DOCCOUNT) fields from the Hospital database:
import com.ibm.ims.dli.*;

public class HospitalDLIReadClient {

public static void main(String[] args) {
PSB psb = null;
PCB pcb = null;
SSAList ssaList = null;
Path path = null;
PathSet pathSet = null;

try {
// establish a database connection
IMSConnectionSpec connSpec

= IMSConnectionSpecFactory.createIMSConnectionSpec();
connSpec.setDatastoreName("IMS1");
connSpec.setDatastoreServer("ecdev123.svl.ibm.com");
connSpec.setPortNumber(5555);
connSpec.setMetadataURL("class://BMP266.BMP266DatabaseView");
connSpec.setUser("usr");
connSpec.setPassword("password");

connSpec.setDriverType(IMSConnectionSpec.DRIVER_TYPE_4);
psb = PSBFactory.createPSB(connSpec);
System.out.println("**** Created a connection to the IMS database");

698 Application Programming

pcb = psb.getPCB("PCb01");
System.out.println("**** Created PCB object");

// specify the segment search arguments
ssaList = pcb.getSSAList("HOSPITAL", "WARD");
// add the initial qualification
ssaList.addInitialQualification("HOSPITAL", "HOSPCODE",

SSAList.GREATER_OR_EQUAL, 444);
// specify the fields to retrieve
ssaList.markFieldForRetrieval("HOSPITAL", "HOSPNAME", true);
ssaList.markAllFieldsForRetrieval("WARD", true);
ssaList.markFieldForRetrieval("WARD", "WARDNO", false);
System.out.println("**** Created SSAList object");

// obtain a Path containing the segments that match the SSAList criteria
path = ssaList.getPathForRetrieveReplace();
System.out.println("**** Created Path object");

// issue a DL/I GU call to retrieve the first segment on the Path
if (pcb.getUnique(path, ssaList, true) {

System.out.println("HOSPNAME: "+ path.getString("HOSPITAL", "HOSPNAME"));
System.out.println("WARDNAME: "+ path.getString("WARD", "WARDNAME"));
System.out.println("PATCOUNT: "+ path.getInt("WARD", "PATCOUNT"));
System.out.println("NURCOUNT: "+ path.getInt("WARD", "NURCOUNT"));
System.out.println("DOCCOUNT: "+ path.getShort("WARD", "DOCCOUNT"));

}

// issue multiple DL/I GN calls until there are no more segments to retrieve
while (pcb.getNext(pat, ssaList, true) {

System.out.println("HOSPNAME: "+ path.getString("HOSPITAL", "HOSPNAME"));
System.out.println("WARDNAME: "+ path.getString("WARD", "WARDNAME"));
System.out.println("PATCOUNT: "+ path.getInt("WARD", "PATCOUNT"));
System.out.println("NURCOUNT: "+ path.getInt("WARD", "NURCOUNT"));
System.out.println("DOCCOUNT: "+ path.getShort("WARD", "DOCCOUNT"));

}

// close the database connection
psb.close();
System.out.println("**** Disconnected from IMS database");

} catch (DLIException e) {
System.out.println(e);
System.exit(0);

}
}

}

Related concepts:
“Specifying segment search arguments using the SSAList interface” on page 694
Related tasks:
“Basic steps in writing a IMS Universal DL/I driver application” on page 689
“Batch data retrieval in a IMS Universal DL/I driver application”
Related reference:
“Methods for retrieving and converting data types” on page 684

Batch data retrieval in a IMS Universal DL/I driver application
Use the batchRetrieve method to retrieve multiple segments in a single call.

Instead of the client application making multiple GU and GN calls, IMS will
perform all of the GU and GN processing and will deliver the results back to the
client in a single batch network operation. The fetch size property determines how
much data is sent back on each batch network operation.

Chapter 40. Programming with the IMS Universal drivers 699

To perform a batch data retrieval operation:
1. Obtain an SSAList instance from the PCB instance that represents the database.
2. Optionally, you can add qualification statements to the SSAList instance.
3. Specify the segment fields to retrieve. Use the markFieldForRetrieval method to

mark a single field, or use the markAllFieldsForRetrieval method to mark all
the fields for a segment. Following the IMS default, all of the fields in the
lowest-level segment specified by the SSAList instance are initially marked for
retrieval.

4. Optionally, set the fetch size property. The fetch size gives a hint to the IMS
Universal DL/I driver as to the number of records to fetch from the database in
a single batch operation. See “Improving query performance by setting fetch
size” for more information.

5. Call the batchRetrieve method with the SSAList instance above as a parameter.
The batchRetrieve method returns a PathSet that contains a list of records that
satisfy the criteria specified by the SSAList.

6. Read the values of the retrieved fields out of the Path object after the retrieve
call is made.

IMS Universal DL/I driver batch data retrieval example

The following code fragment illustrates how to use the batchRetrieve method to
retrieve the hospital name (HOSPNAME), ward name (WARDNAME), patient
count (PATCOUNT), nurse count (NURCOUNT), and doctor count (DOCCOUNT)
fields from the Hospital database:
import com.ibm.ims.dli.*;

public class HospitalDLIReadClient {

public static void main(String[] args) {
PSB psb = null;
PCB pcb = null;
SSAList ssaList = null;
Path path = null;
PathSet pathSet = null;

try {
// establish a database connection
IMSConnectionSpec connSpec

= IMSConnectionSpecFactory.createIMSConnectionSpec();
connSpec.setDatastoreName("IMS1");
connSpec.setDatastoreServer("ecdev123.svl.ibm.com");
connSpec.setPortNumber(5555);
connSpec.setMetadataURL("class://BMP266.BMP266DatabaseView");
connSpec.setUser("usr");
connSpec.setPassword("password");

connSpec.setDriverType(IMSConnectionSpec.DRIVER_TYPE_4);

psb = PSBFactory.createPSB(connSpec);
System.out.println("**** Created a connection to the IMS database");

pcb = psb.getPCB("PCb01");
System.out.println("**** Created PCB object");

// specify the segment search arguments
ssaList = pcb.getSSAList("HOSPITAL", "WARD");
// add the initial qualification
ssaList.addInitialQualification("HOSPITAL", "HOSPCODE",

SSAList.GREATER_OR_EQUAL, 444);
// specify the fields to retrieve

700 Application Programming

ssaList.markFieldForRetrieval("HOSPITAL", "HOSPNAME", true);
ssaList.markAllFieldsForRetrieval("WARD", true);
ssaList.markFieldForRetrieval("WARD", "WARDNO", false);
System.out.println("**** Created SSAList object");

// issue the database call to perform a batch retrieve operation
pathSet = pcb.batchRetrieve(ssaList);
System.out.println("**** Batch Retrieve returned without exception");
System.out.println("**** Created PathSet object");

while(pathSet.hasNext()){
path = pathSet.next();

System.out.println("HOSPNAME: "+ path.getString("HOSPITAL", "HOSPNAME"));
System.out.println("WARDNAME: "+ path.getString("WARD", "WARDNAME"));
System.out.println("PATCOUNT: "+ path.getInt("WARD", "PATCOUNT"));
System.out.println("NURCOUNT: "+ path.getInt("WARD", "NURCOUNT"));
System.out.println("DOCCOUNT: "+ path.getShort("WARD", "DOCCOUNT"));

}
System.out.println("**** Fetched all rows from PathSet");

// close the database connection
psb.close();
System.out.println("**** Disconnected from IMS database");

} catch (DLIException e) {
System.out.println(e);
System.exit(0);

}
}

}

Related concepts:
“Specifying segment search arguments using the SSAList interface” on page 694
Related reference:
“Methods for retrieving and converting data types” on page 684

Improving query performance by setting fetch size:

You can optimize query performance by setting the number of records to retrieve
in batch retrieval mode.

In the IMS Universal DL/I driver, a list of rows is represented by a Path instance
containing one or more segments that match the segment search argument criteria
specified by an SSAList. The fetch size is the number of rows physically retrieved
from the IMS database per network call. This is set for you internally. You can also
set the fetch size using the setFetchSize method from the PCB interface. Setting the
fetch size allows a single request to return multiple rows at a time, so that each
application request to retrieve the next row does not always result in a network
request. If the fetch size was n and the IMS Universal DL/I driver application
requires more than the previous n number of rows during a batch retrieve
operation, another network call will be made on behalf of the application to
retrieve the next n number of rows that match the segment search argument
criteria.

Methods for retrieving and converting data types
With the IMS Universal JDBC driver, you can use the ResultSet interface
(java.sql.ResultSet) to retrieve and convert the data from the type that is defined in
the database metadata to the type that is required by your Java application.
Similarly, with the IMS Universal DL/I driver, you can use the Path interface to
perform data retrieval and conversion to Java data types.

Chapter 40. Programming with the IMS Universal drivers 701

The following table shows the available get methods in the ResultSet interface (for
the IMS Universal JDBC driver) or the Path interface (for the IMS Universal DL/I
driver) for accessing data of a certain Java data type.

The "No Truncation or Data Loss" column indicates the data types that are
designed to be accessed with the given getXXX method. No truncation or data loss
occurs when using those methods for those data types. The data types that are in
the “Legal without Data Integrity” column are all other legal calls; however, data
integrity cannot be ensured when using the given getxxx method to access those
data types. If a data type is not in either column, using the given getXXX method
for that data type will result in an exception.

Table 108. ResultSet.getXXX and Path.getXXX methods to retrieve data types

ResultSet.getXXX
Method or Path.getXXX
Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getByte TINYINT
UTINYINT

SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getShort SMALLINT
USMALLINT

TINYINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getInt INTEGER
UINTEGER

TINYINT
SMALLINT
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getLong BIGINT
UBIGINT

TINYINT
SMALLINT
INTEGER
FLOAT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

702 Application Programming

Table 108. ResultSet.getXXX and Path.getXXX methods to retrieve data types (continued)

ResultSet.getXXX
Method or Path.getXXX
Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getFloat FLOAT TINYINT
SMALLINT
INTEGER
BIGINT
DOUBLE
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getDouble DOUBLE TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
BIT
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getBoolean BIT TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
CHAR
VARCHAR
PACKEDDECIMAL1

ZONEDDECIMAL1

getString CHAR
VARCHAR

TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
PACKEDDECIMAL1

ZONEDDECIMAL1

BINARY
DATE
TIME
TIMESTAMP

getBigDecimal BINARY3

PACKEDDECIMAL1

ZONEDDECIMAL1

TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
BIT
CHAR
VARCHAR

getClob CLOB2 all others result in an exception

Chapter 40. Programming with the IMS Universal drivers 703

Table 108. ResultSet.getXXX and Path.getXXX methods to retrieve data types (continued)

ResultSet.getXXX
Method or Path.getXXX
Method

Data Type (any not listed result in an exception)

No Truncation or Data Loss Legal without Data Integrity

getBytes BINARY all others result in an exception

getDate DATE CHAR
VARCHAR
TYIMESTAMP

getTime TIME CHAR
VARCHAR
TIMESTAMP

getTimestamp TIMESTAMP CHAR
VARCHAR
DATE
TIME

Note:

1. PACKEDDECIMAL and ZONEDDECIMAL are data type extensions for IMS
Universal JDBC driver and the IMS Universal DL/I driver. All other types are
standard SQL types defined in SQL92. Restriction: PACKEDDECIMAL and
ZONEDDECIMAL data types do not support the Sign Leading or Sign Separate
modes. For these two data types, sign information is always stored with the
Sign Trailing method.

2. The CLOB data type is supported only for the retrieval and storage of XML
data.

3. The BINARY data type is valid only for decimal data used with a binary type
converter.

If the field type is either PACKEDDECIMAL or ZONEDDECIMAL, the type
qualifier is the COBOL PICTURE string that represents the layout of the field. All
COBOL PICTURE strings that contain valid combinations of 9s, Ps, Vs, and Ss are
supported. Expansion of PICTURE strings is handled automatically. For example,
'9(5)' is a valid PICTURE string. For zoned decimal numbers, the decimal point can
also be used in the PICTURE string. PIC 9(06)V99 COMP and PIC 9(06)V99 COMP-4
are valid PICTURE clauses for BINARY decimal data.

If the field contains DATE, TIME, or TIMESTAMP data, the type qualifier specifies
the format of the data. For example, a type qualifier of ddMMyyyy indicates that
the data is formatted as follows:
11122015 is December 11, 2015

For DATE and TIME types, all formatting options in the
java.text.SimpleDateFormat class are supported.

For the TIMESTAMP type, the formatting option 'f' is available for nanoseconds.
TIMESTAMP can contain up to nine 'f's and replaces the 'S' options for
milliseconds. Instead, 'fff' indicates milliseconds of precision. An example
TIMESTAMP format is as follows:
yyyy-mm-dd hh:mm:ss.fffffffff

704 Application Programming

Creating and inserting data in a IMS Universal DL/I driver
application
Use the create or the insert methods in the PCB interface to add a new segment to
the database.

In the IMS Universal DL/I driver, the insert and create methods provide
functionality similar to the DL/I ISRT call. The insert methods will return an IMS
status code indicating the results of the DL/I operation, whereas the create method
returns the number of segments created (this will always return 1). An exception is
thrown if a key field is not set.

The following are the general steps to add a new segment to the database:
1. Obtain an SSAList instance from the PCB instance representing the database.
2. Optionally, you can add qualification statements to the SSAList.
3. Get a Path instance by using the SSAList instance from the previous steps and

calling the getPathForInsert method. The getPathForInsert method takes the
name of an existing segment on the SSAList as a parameter. The parameter
indicates the name of the segment type for the new segment. For instance, to
add a new patient segment, you would pass the segment name PATIENT as the
parameter.

4. Using the Path instance from the step above, set the field values for the new
segment.

5. Call the insert or create method to add the new segment.

IMS Universal DL/I driver create and insert example

The following code fragment illustrates how to use the create and insert methods
to add a new patient and illness segment in the database where the hospital name
is “SANTA TERESA” and the ward name is “GENERAL”.
SSAList ssaList = pcb.getSSAList("HOSPITAL","PATIENT");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",
SSAList.EQUALS,"SANTA TERESA");
ssaList.addInitialQualification("WARD","WARDNAME",
SSAList.EQUALS,"GENERAL");

Path path = ssaList.getPathForInsert("PATIENT");
path.setString("PATIENT", "PATNUM", "0088");
path.setString("PATIENT", "PATNAME", "JACK KIRBY");
int i = pcb.create(path, ssaList); // returns i = 1 if successful
System.out.println(i);

SSAList ssaList2 = pcb.getSSAList("HOSPITAL","ILLNESS");
ssaList2.addInitialQualification("HOSPITAL","HOSPNAME",

SSAList.EQUALS,"SANTA TERESA");
ssaList2.addInitialQualification("WARD","WARDNAME",

SSAList.EQUALS,"GENERAL");
ssaList2.addInitialQualification("PATIENT","PATNUM",

SSAList.EQUALS,"0088");

Path path2 = ssaList2.getPathForInsert("ILLNESS");
path2.setString("ILLNAME", "APPENDICITIS");
short status = pcb.insert(path2, ssaList2);

The following code example shows another way to do this in a single call:
SSAList ssaList = pcb.getSSAList("HOSPITAL","ILLNESS");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",

SSAList.EQUALS,"SANTA TERESA");
ssaList.addInitialQualification("WARD","WARDNAME",

SSAList.EQUALS,"GENERAL");

Chapter 40. Programming with the IMS Universal drivers 705

ssaList.addCommandCode("PATIENT", SSAList.CC_D);

Path path = ssaList.getPathForInsert("PATIENT");
path.setString("PATIENT", "PATNUM", "0088");
path.setString("PATIENT", "PATNAME", "JACK KIRBY");
path.setString("ILLNAME", "APPENDICITIS");

int i = pcb.create(path, ssaList); // returns i = 1 if successful

Important: To persist changes made to the database, your application must call the
PSB.commit method prior to deallocating the PSB, otherwise the changes are rolled
back up to the last point commit was called.
Related concepts:
“Specifying segment search arguments using the SSAList interface” on page 694

Updating data in a IMS Universal DL/I driver application
Use the replace methods in the PCB interface to update an existing segment in the
database.

In the IMS Universal DL/I driver, the replace methods provide functionality
similar to the DL/I REPL call. The replace methods will return an IMS status code
indicating the results of the DL/I operation.

The following are the general steps to update an existing segment in the database:
1. Obtain an SSAList instance from the PCB instance representing the database.
2. Optionally, you can add qualification statements to the SSAList instance. See

“Specifying segment search arguments using the SSAList interface” for more
information.

3. Get a Path instance by using the SSAList instance from the previous steps and
calling the getPathForRetrieveReplace method.

4. Using the Path instance from the step above, set the field values to update for
the segment.

5. Perform a Hold operation before issuing the replace call. The Hold operation
can be a getUnique, getNext, or getNextWithinParent method call.

6. Call the replace method to update the segment.

IMS Universal DL/I driver update example

The following code fragment illustrates how to use the replace method to update a
patient's name in patient records where the patient name is “ANDREA SMITH”,
the ward name is “SURG”, and the hospital name is “ALEXANDRIA”.
SSAList ssaList = pcb.getSSAList("HOSPITAL","PATIENT");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",SSAList.EQUALS,"ALEXANDRIA");
ssaList.addInitialQualification("WARD","WARDNAME",SSAList.EQUALS,"SURG");
ssaList.addInitialQualification("PATIENT","PATNAME",SSAList.EQUALS,"ANDREA SMITH");

Path path = ssaList.getPathForRetrieveReplace();
if(pcb.getUnique(path, ssaList, true)){

path.setString("PATNAME", "ANDREA TAYLOR");
pcb.replace(path);

}
while(pcb.getNext(path, ssaList, true){

path.setString("PATNAME", "ANDREA TAYLOR");
pcb.replace(path);

}

706 Application Programming

Note: To persist changes made to the database, your application must call the
commit method prior to deallocating the PSB, otherwise the changes are rolled
back up to the last point the commit method was called.
Related concepts:
“Specifying segment search arguments using the SSAList interface” on page 694

Making batch data updates in IMS Universal DL/I driver
applications
Use the batchUpdate method in the PCB interface to update multiple existing
segments in the database with one call.

The following are the general steps to update multiple existing segments in the
database with a single call:
1. Obtain an SSAList instance from the PCB instance representing the database.
2. Optionally, you can add qualification statements to the SSAList method. See

“Specifying segment search arguments using the SSAList interface” for more
information.

3. Get a Path instance by using the SSAList instance from the previous steps and
calling the getPathForBatchUpdate method.

4. Using the Path instance from the step above, set the field values to update for
the segments.

5. Call the batchUpdate method to update the segments.

The following code fragment illustrates how to use the batchUpdate method to
modify a patient's name. The SSAList instance is set to update only records where
the patient name is “ANDREA SMITH”, the ward name is “SURG”, and the
hospital name is “ALEXANDRIA”. The getPathForBatchUpdate method is called to
obtain a Path containing the PATIENT segment and its child segments. Finally, the
batchUpdate method is called to change the value of the patient name field to
“ANDREA TAYLOR”.
SSAList ssaList = pcb.getSSAList("HOSPITAL","PATIENT");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",SSAList.EQUALS,"ALEXANDRIA");
ssaList.addInitialQualification("WARD","WARDNAME",SSAList.EQUALS,"SURG");
ssaList.addInitialQualification("PATIENT","PATNAME",SSAList.EQUALS,"ANDREA SMITH");
Path path = ssaList.getPathForBatchUpdate("PATIENT");
path.setString("PATNAME", "ANDREA TAYLOR");
pcb.batchUpdate(path, ssaList);

Important: To persist changes made to the database, your application must call the
commit method prior to deallocating the PSB, otherwise the changes are rolled
back up to the last point the commit method was called.
Related concepts:
“Specifying segment search arguments using the SSAList interface” on page 694

Deleting data in a IMS Universal DL/I driver application
Use the delete method in the PCB interface to delete existing segments in the
database.

In the IMS Universal DL/I driver, the delete methods provide functionality similar
to the DL/I DLET call. The delete call must be preceded by a HOLD operation.
Deleting a segment causes all its child segments to be deleted. The delete method
will return an IMS status code indicating the results of the DL/I operation.

The following are the general steps to delete existing segments in the database:

Chapter 40. Programming with the IMS Universal drivers 707

1. Obtain an unqualified SSAList instance from the PCB instance representing the
database.

2. Optionally, you can add qualification statements to the SSAList instance. See
“Specifying segment search arguments using the SSAList interface” for more
information.

3. Get a Path instance by using the SSAList instance from steps 1 and 2 and
calling the getPathForRetrieveReplace method.

4. Perform a Hold operation before issuing the replace call. The Hold operation
can be a getUnique, getNext, or getNextWithinParent method call.

5. You can delete all the segments on the Path retrieved by step 3 or delete a
subset of the segments.
v To delete all the segments on the Path, call the PCB.delete method with no

arguments.
v If the Path retrieved by step 3 returned multiple segments from the database

and you do not want to delete all the segments on the Path, use the
PCB.delete method that takes an SSAList argument and pass in an
unqualified SSAList for the segment where you want the deletion to begin.
An exception is thrown if a qualified SSAList is provided as an argument.

IMS Universal DL/I driver delete examples

The following code fragment illustrates how delete all segments in a Path. Calling
the delete method with no arguments removes all PATIENT segments and its
dependent segments (ILLNESS, TREATMNT, DOCTOR, BILLING) where the
patient name is “ANDREA SMITH”, the ward name is “SURG”, the hospital name
is “ALEXANDRIA”, and the patient number is “PatientNo7”.
SSAList ssaList = pcb.getSSAList("HOSPITAL","ILLNESS");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",SSAList.EQUALS,"ALEXANDRIA");
ssaList.addInitialQualification("WARD","WARDNAME",SSAList.EQUALS,"SURG");
ssaList.addInitialQualification("PATIENT","PATNAME",SSAList.EQUALS,"ANDREA SMITH");
ssaList.addCommandCode("PATIENT", SSAList.CC_D);
Path path = ssaList.getPathForRetrieveReplace();
if (pcb.getUnique(path, ssaList, true)) {

if (path.getString("PATIENT", "PATNUM").equals("PatientNo7")) {
pcb.delete();

}
}
while (pcb.getNext(path, ssaList, true)) {

if (path.getString("PATIENT", "PATNUM").equals("PatientNo7")) {
pcb.delete();

}
}

The following code fragment illustrates how to use delete with an unqualified
SSAList. Calling the delete method with an unqualified SSAList removes all
ILLNESS segments and its dependent segments (TREATMNT, DOCTOR) where the
patient name is “ANDREA SMITH”, the ward name is “SURGICAL”, the hospital
name is “ALEXANDRIA”, and the patient number is “PatientNo7”.
SSAList ssaList = pcb.getSSAList("HOSPITAL","ILLNESS");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",SSAList.EQUALS,"ALEXANDRIA");
ssaList.addInitialQualification("WARD","WARDNAME",SSAList.EQUALS,"SURGICAL");
ssaList.addInitialQualification("PATIENT","PATNAME",SSAList.EQUALS,"ANDREA SMITH");
ssaList.markAllFieldsForRetrieval("PATIENT", true);
Path path = ssaList.getPathForRetrieveReplace();
SSAList illnessSSAList = pcb.getSSAList("ILLNESS");
if (pcb.getUnique(path, ssaList, true)) {

if (path.getString("PATIENT", "PATNUM").equals("PatientNo7")) {
pcb.delete(illnessSSAList);

708 Application Programming

}
}
while (pcb.getNext(path, ssaList, true)) {

if (path.getString("PATIENT", "PATNUM").equals("PatientNo7")) {
pcb.delete(illnessSSAList);

}
}

Important: To persist changes made to the database, your application must call the
commit method prior to deallocating the PSB, otherwise the changes are rolled
back up to the last point the commit method was called.
Related concepts:
“Specifying segment search arguments using the SSAList interface” on page 694

Making batch data deletions in a IMS Universal DL/I driver
application
Use the batchDelete method in the PCB interface to delete multiple existing
segments in the database with one call.

The following are the general steps to delete multiple existing segments in the
database with a single call:
1. Obtain an unqualified SSAList instance from the PCB instance representing the

database.
2. Optionally, you can add qualification statements to the SSAList. See “Specifying

segment search arguments using the SSAList” for more information.
3. Call the batchDelete method to delete the segments specified by the SSAList in

the previous steps.

The following code fragment illustrates how to use the batchDelete method to
remove a patient's records. The SSAList instance is set to restrict the deletion
operation to remove only records where the patient name is “ANDREA SMITH”,
the ward name is “SURG”, and the hospital name is “ALEXANDRIA”.
SSAList ssaList = pcb.getSSAList("HOSPITAL","PATIENT");
ssaList.addInitialQualification("HOSPITAL","HOSPNAME",SSAList.EQUALS,"ALEXANDRIA");
ssaList.addInitialQualification("WARD","WARDNAME",SSAList.EQUALS,"SURG");
ssaList.addInitialQualification("PATIENT","PATNAME",SSAList.EQUALS,"ANDREA SMITH");
pcb.batchDelete(ssaList);

Important: To persist changes made to the database, your application must call the
PSB.commit method prior to deallocating the PSB, otherwise the changes are rolled
back up to the last point commit was called.
Related concepts:
“Specifying segment search arguments using the SSAList interface” on page 694

Inspecting the PCB status code and related information using
the com.ibm.ims.dli.AIB interface

To inspect the PCB status code, return code, reason code, error code extension, and
related information after a data access call by the IMS Universal drivers, use the
com.ibm.ims.dli.AIB interface provided by the IMS Universal DL/I driver.

Typically, the IMS Universal drivers throws an exception if a call is not successful.
The non-blank status codes that do not generate an exception are GD, GE, GB, GA,
GK, QC, QD, and CF. In error cases, the generated exception contains the most
pertinent information such as PCB status code, return code, reason code, and error

Chapter 40. Programming with the IMS Universal drivers 709

code extension. To inspect the PCB status code and related information for all the
non-error cases, use the com.ibm.ims.dli.AIB interface.

The AIB instance contains all the data attributes of an IMS application interface
block. The AIB instance also contains a reference to a com.ibm.ims.dli.DBPCB
instance, which contains all the data attributes of a PCB instance.

When your IMS Universal drivers application makes a data access call to IMS, the
application is internally making a DL/I call using a com.ibm.ims.dli.PCB instance.
After each DL/I call that your application issues, IMS places a two-character status
code in the DBPCB instance stored in the AIB instance for that PCB instance.

The com.ibm.ims.dli.IMSStatusCodes class contains constants for the IMS status
codes. Use this helper class for comparison checking of the status code from the
DL/I call.

The following code example shows how to access the AIB instance from a IMS
Universal DL/I driver application:
try {

psb = PSBFactory.createPSB(connSpec);
} catch (DLIException e) {

AIB aib = e.getAib();
if (aib != null) {

String sc = aib.getDBPCB().getStatusCodeChars();
String retcode = aib.getReturnCodeHex();
String reascode = aib.getReasonCodeHex();
System.out.println("Status code: " + sc + " Return Code: "

+ retcode + " Reason Code: " + reascode);
}

}

The following code example shows how to access the AIB instance from a JDBC
application. Note that you need to import the com.ibm.ims.dli package to use the
AIB and DLIException objects in your Java code.
try {

resultSet.updateString(1, "Harry Houdini");
} catch (SQLException e) {

Throwable t = e.getCause();
if (t != null && t instanceof DLIException) {

com.ibm.ims.dli.DLIException de = (com.ibm.ims.dli.DLIException) t;
com.ibm.ims.dli.AIB aib = de.getAib();
if (aib != null) {

String sc = aib.getDBPCB().getStatusCodeChars();
String retcode = aib.getReturnCodeHex();
String reascode = aib.getReasonCodeHex();
System.out.println("Status code: " + sc + " Return Code: "

+ retcode + " Reason Code: " + reascode);
}

}
}

Related reference:

DL/I status code explanations (Messages and Codes)

Committing or rolling back DL/I transactions
The IMS Universal DL/I driver provides support for local transactions with the
commit and rollback methods.

A local transaction consists of a unit of work with several units of recovery. A IMS
Universal DL/I driver application can commit or roll back changes to the database

710 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/compcodes/ims_dlistatuscodesxpl.htm#ims_dlistatuscodesxpl

within a unit of recovery. In the IMS Universal DL/I driver, the local transaction is
scoped to the PSB instance. No explicit call is needed to begin a local transaction.
A unit of work starts when the application allocates a PSB object and obtains a
connection to the database by calling the PSB.allocate method.

After the unit of work starts, the application makes DL/I calls to access the
database and create, replace, insert, or delete data. The application commits the
current unit of recovery by using the PSB.commit method. The commit operation
instructs the database to commit all changes to the database that are made from
the point when the unit of work started, or from the point after the last commit or
rollback method call, whichever was most recent.

Important: To persist changes made to the database, your application must call the
commit method prior to deallocating the PSB, otherwise the changes are rolled
back up to the last point the commit method was called.

The application can also end the unit of recovery by calling a roll back operation
using the PSB.rollback method. Calling a roll back operation causes the database to
undo all changes to the database made from the start of the unit of work, or from
the point after the most recent commit or rollback call.

If the PSB.commit method or the PSB.rollback method is called and the PSB
instance is not deallocated, a new unit of recovery is started. The overall unit of
work ends when the PSB instance is deallocated. If the PSB.commit method or the
PSB.rollback method are called while they are not currently in a unit of work
(either before the PSB instance is allocated or after it is deallocated), an exception is
thrown.

Local transaction with a single PSB

The following example code shows a local transaction for a single PSB.
IMSConnectionSpec connSpec = IMSConnectionSpecFactory.createIMSConnectionSpec();
connSpec.setDatastoreName("IMS1");
connSpec.setDatastoreServer("ecdev123.svl.ibm.com");
connSpec.setPortNumber(5555);
connSpec.setMetadataURL("class://BMP266.BMP266DatabaseView");
connSpec.setUser("usr");
connSpec.setPassword("password");
connSpec.setDriverType(IMSConnectionSpec.DRIVER_TYPE_4);

PSB psb = PSBFactory.createPSB(connSpec);
psb.allocate(); // new unit of work begins
PCB pcb = psb.getPCB("PCb01");

SSAList ssa = pcb.getSSAList("HOSPITAL");
Path path = ssa.getPathForInsert("HOSPITAL");
path.setString("HOSPCODE", "R1210020000A");
path.setString("HOSPNAME", "SANTA TERESA");
pcb.insert(path);
psb.commit(); // or use psb.rollback() to undo the insert.

// The unit of receovery ends.

In this example, the application makes a connection to the database and allocates a
PSB. The application obtains a PCB and specifies the path to insert a new
HOSPITAL record. The application then performs a DL/I operation to insert the
new record into the database. At this point, the application commits the insert
operation and the new record is written to the database. Alternatively, the
application can roll back the insert operation to return the database to the previous
state before the insert call was made. This ends the current unit of recovery.

Chapter 40. Programming with the IMS Universal drivers 711

Local transaction with multiple PSBs

When two or more PSB objects are allocated by an application, separate local
transactions for each PSB may run concurrently. The following example code
shows multiple local transactions with two PSBs.
IMSConnectionSpec connSpec = IMSConnectionSpecFactory.createIMSConnectionSpec();
connSpec.setDatastoreName("IMS1");
connSpec.setDatastoreServer("ecdev123.svl.ibm.com");
connSpec.setPortNumber(5555);
connSpec.setMetadataURL("class://BMP266.BMP266DatabaseView");
connSpec.setUser("usr");
connSpec.setPassword("password");
connSpec.setDriverType(IMSConnectionSpec.DRIVER_TYPE_4);

// create a connection to MyDB
PSB psb = PSBFactory.createPSB(connSpec);
psb.allocate(); // new unit of work begins for psb

// create another connection to MyDB.
// Note: This does not need be be a connection to the same database.
PSB psb2 = PSBFactory.createPSB(connSpec);
psb2.allocate();

pcb = psb.getPCB("PCb01");
SSAList ssa = pcb.getSSAList("HOSPITAL");
Path path = ssa.getPathForInsert("HOSPITAL");
path.setString("HOSPCODE", "R1210020000A");
path.setString("HOSPNAME", "SANTA TERESA");
pcb.insert(path);
psb.commit(); // or use psb.rollback() to undo the insert.

// The unit of recovery for psb ends

pcb2 = psb2.getPCB("PCb01");
SSAList ssa2 = pcb2.getSSAList("HOSPITAL");
Path path2 = ssa2.getPathForInsert("HOSPITAL");
path2.setString("HOSPCODE", "R1210010000A");
path2.setString("HOSPNAME", "ALEXANDRIA");
pcb2.insert(path2);
psb2.rollback(); //or use psb2.commit() to commit the insert.

// The unit of recovery for psb2 ends

psb2.deallocate(); // unit of work ends for psb2
psb.deallocate(); // unit of work ends for psb

In this example, the application makes two connections to the same database. A
PSB is allocated for the first connection and the application performs a DL/I
operation to insert a new HOSPITAL record with hospital name “SANTA TERESA”
into the database. Another PSB is allocated to the second connection and an insert
operation is made for a new HOSPITAL record with hospital name
“ALEXANDRIA”. The application then commits the changes for the first PSB and
writes the new record with hospital name “SANTA TERESA” to the database. The
application issues a roll back statement for the second PSB, undoing the previous
insert operation for the record with hospital name “ALEXANDRIA”. Only one new
record is inserted to the database: the HOSPITAL record with hospital name
“SANTA TERESA”.

Configuring the IMS Universal drivers for SSL support
With type-4 connectivity, the IMS Universal drivers provide support for the Secure
Sockets Layer (SSL) through the Java Secure Socket Extension (JSSE).

712 Application Programming

This information applies to type-4 connectivity only. You can use SSL support in
your Java applications in either a container-managed environment with the IMS
Universal Database resource adapter, or in a stand-alone environment with the IMS
Universal JDBC driver and the IMS Universal DL/I driver.

Configuring the IMS Universal Database resource adapter for
SSL support in a container-managed environment

To enable SSL in a container-managed environment for the IMS Universal Database
resource adapter, you need to configure the SSL certificate and key management
settings from your WebSphere Application Server administrative console.

Prerequisites:

v You must first set up the IBM z/OS Communications Server Application
Transparent Transport Layer Security (AT-TLS) to enable SSL support on the
z/OS system for IMS Connect.

v You also need to retrieve the client certificate (.crt) to your local file system
where WebSphere Application Server is installed. To retrieve the certificate, from
TSO, browse the OMVSADM.CERTAUTH.CERT member. Copy its contents into a text
file on your local file system, and remove any trailing spaces. Name the file
hostname.crt.

To configure the IMS Universal Database resource adapter for SSL support:
1. Open the WebSphere Application Server administrative console.
2. From the left pane, expand Security -> SSL certificate and key management.
3. Click Key stores and certificates.
4. Click NodeDefaultTrustStore.
5. Click Signer certificates.
6. Click Add.
7. In the Alias field, type a name that helps you remember that this certificate is

associated with (extracted from) the server key ring file that was created when
you set up AT-TLS to enable SSL on IMS Connect.

8. In the File name field, type the fully qualified path to the .crt file located on
your local file system.

9. Click OK and then click Save. The trusted certificate is picked up automatically
and used during the SSL handshaking process at run time.

Related tasks:

Setting up AT-TLS SSL for IMS Connect (System Definition)

Configuring IMS Universal drivers for SSL support in a
stand-alone environment

To enable SSL in a stand-alone environment for the IMS Universal drivers, you
need to generate and configure an SSL keystore.

Prerequisites:

v You must first set up the IBM z/OS Communications Server Application
Transparent Transport Layer Security (AT-TLS) to enable SSL support on the
z/OS system for IMS Connect.

v You also need to retrieve the client certificate (.crt) to your local file system. To
retrieve the certificate, from TSO, browse the OMVSADM.CERTAUTH.CERT member.

Chapter 40. Programming with the IMS Universal drivers 713

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_odb_ssl_setup.htm#iconsslsetup

Copy its contents into a text file on your local file system, and remove any
trailing spaces. Name the file hostname.crt.

To configure the IMS Universal DL/I driver or the IMS Universal JDBC driver for
SSL support:
1. Generate a new SSL keystore by using the Java Keytool provided by the Java

SDK. This keystore file will be used as a truststore by the JRE during SSL
handshaking when it creates an SSL connection to IMS. Save the keystore (.ks)
file on your local file system and record its location. Set the password for the
keystore and record it.
Keystore files can contain public/private key pairs that are generated on the
local system as well as public keys (in the form of certificates) that are received
from remote communicating peers. When the keystore is accessed to retrieve a
certificate of a communicating peer for use during SSL handshaking, the
keystore file is referred to as a truststore.

2. Verify that the certificate has not been tampered with before importing the
certificate (.crt) file into the keystore as a trusted self-signed certificate. You can
do this with the Keytool by viewing the fingerprint of the local certificate and
comparing it to the original that was extracted from the key ring file on the
host.

3. Set the fully qualified path to the keystore file as the value for the system
property javax.net.ssl.trustStore and set the keystore password as the value for
the system property javax.net.ssl.trustStorePassword. Optionally, to troubleshoot
any SSL-related problems, you can turn on the SSL client-side trace by setting
the system property javax.net.debug=all. To specify the system properties
from the command line, enter:
java -Djavax.net.debug=all -Djavax.net.ssl.trustStore=myTruststore
-Djavax.net.ssl.trustStorePassword=myTruststorePassword MyApp

Related tasks:

Setting up AT-TLS SSL for IMS Connect (System Definition)

Tracing IMS Universal drivers applications
To obtain data for diagnosing problems with the IMS Universal drivers, you can
collect trace data.

Use one of the following procedures to enable tracing.

Turning on automatic tracing in JRE logging.properties file

The recommended method is to enable the trace by setting the trace level for the
IMS Universal drivers loggers in the logging.properties file of your Java Runtime
Environment (JRE). Using this method, the application does not need to be
recompiled. The file is located on the install path of your JRE, under
\jre\lib\logging.properties. The recommended trace level is FINEST.

To set the trace for all IMS Universal drivers loggers, add the following line to the
logging.properties file:
com.ibm.ims.* = FINEST

To send the trace output to a file, add the following lines to your
logging.properties file:

714 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_odb_ssl_setup.htm#iconsslsetup

java.util.logging.FileHandler.level = FINEST
java.util.logging.FileHandler.pattern = c:/UniversalDriverTrace.txt
java.util.logging.FileHandler.formatter = java.util.logging.SimpleFormatter

Configuring J2EE tracing

Tracing can be turned on from your J2EE application server. In WebSphere
Application Server, this is configured through the administrative console. The IMS
Universal Database resource adapter must be deployed on WebSphere Application
Server before tracing can be configured.

To get the most detailed trace from the IMS Universal Database resource adapter,
follow these steps:
1. Start the WebSphere Application Server administration console.
2. Select Troubleshooting.
3. Select Logs and Trace.
4. Select your application server from the table.
5. Under General Properties, select Diagnostic Trace.
6. Under Additional Properties, select Change Log Detail Levels.
7. Select the Runtime tab.
v Make sure that the Save runtime changes to configuration as well check

box is turned ON.
v Under the Change Log Details Levels section, select the component

com.ibm.ims.*. This brings up the Message and Trace levels menu.
v Select the message level FINEST.
v Click Apply.

8. To save these changes for the next time the application server is started, click
the Save link at the top of the page. WebSphere Application Server does not
need to be restarted.

Programmatically enabling tracing

You can also programmatically turn on tracing in your IMS Universal drivers
application. This requires the application to be recompiled.
1. Import the java.util.logging package in your application and create a logger by

calling the Logger.getLogger method with the String argument
“com.ibm.ims.*”.

2. In your application, you can set the level of tracing for the logger by using the
Logger.setLevel method. The recommended trace level is Level.FINEST.

The following sample code shows how programmatic trace is enabled for any IMS
Universal drivers application.
private static final Logger universalLogger

= Logger.getLogger("com.ibm.ims.*");
universalLogger.setLevel(Level.FINEST);
FileHandler fh

= new FileHandler("C:/UniversalTrace.txt");
fh.setFormatter(new SimpleFormatter());
fh.setLevel(Level.FINEST);
universalLogger.addHandler(fh);

Chapter 40. Programming with the IMS Universal drivers 715

716 Application Programming

Chapter 41. Programming Java dependent regions

Use these topics to design, write, and maintain application programs for running
in the Java dependent regions.
Related concepts:
Chapter 38, “IMS solutions for Java development overview,” on page 603

Overview of the IMS Java dependent regions
The IMS Java dependent regions are two types of IMS dependent regions that
provide a Java Virtual Machine (JVM) environment for Java applications: Java
message processing (JMP) regions and Java batch processing (JBP) regions.

Important: You can host Java applications on the mainframe to access IMS from
the following z/OS environments:
v JMP and JBP regions
v WebSphere Application Server for z/OS
v DB2 for z/OS stored procedures
v CICS

Use the JMP or JBP regions to host your Java application if your application is
required to run in an IMS dependent region.

JMP and JBP regions can run applications written in Java, object-oriented COBOL,
object-oriented PL/I, or a combination of these languages.

To access IMS message queues from your JMP and JBP applications, use the IMS
Java dependent region resource adapter. To access IMS databases from your JMP
and JBP applications, you can also use these IMS Universal drivers: the IMS
Universal JDBC driver and the IMS Universal DL/I driver.

In addition to IMS databases, you can access DB2 for z/OS databases from your
JMP and JBP applications by using the JDBC driver for DB2 for z/OS (JCC driver
version 3.57.91).

Java message processing (JMP) regions

JMP regions are like message processing program (MPP) regions, but JMP regions
allow the scheduling only of Java programs. In the PSB source associated with the
Java program, the option LANG=JAVA must be specified. A JMP application is started
when there is a message in the queue for the JMP application and IMS schedules
the message to be processed. JMP applications, like MPP applications, are executed
through transaction codes submitted by users at terminals and from other
applications. Each transaction code represents a transaction that the JMP
application processes.

A single application can also be started from multiple transaction codes. JMP
applications, like MPP applications, are flexible in how they process transactions
and where they send the output. JMP applications send any output messages back
to the message queues and process the next message with the same transaction
code. The program continues to run until there are no more messages with the
same transaction code. JMP applications share the following characteristics:

© Copyright IBM Corp. 1974, 2015 717

v They are small.
v They can produce output that is needed immediately.
v They can access IMS or DB2 data in a DB/DC environment and DB2 data in a

DCCTL environment.

Java batch processing (JBP) regions

JBP regions run flexible programs that perform batch-type processing online and
can access the IMS message queues for output, like non-message-driven batch
message processing (BMP) applications. JBP applications are started by submitting
a job with JCL or from TSO. JBP applications are like BMP applications, except that
they cannot read input messages from the IMS message queue. For example, there
is no IN= parameter in the startup procedure. Like BMP applications, JBP
applications can use symbolic checkpoint and restart calls to restart the application
after an abend. JBP applications can access IMS or DB2 for z/OS data in a DB/DC
or DBCTL environment and DB2 for z/OS data in a DCCTL environment
Related tasks:
“IBM Enterprise COBOL for z/OS interoperability with JMP and JBP applications”
on page 748
“Accessing DB2 for z/OS databases from JMP or JBP applications” on page 750
Related reference:
Chapter 40, “Programming with the IMS Universal drivers,” on page 611

Programming with the IMS Java dependent region resource adapter
IMS provides a set of Java APIs called the IMS Java dependent region resource
adapter to develop Java applications to run on the IMS Java dependent regions.

The IMS Java dependent region resource adapter provides Java application
programs running in JMP or JBP regions with similar DL/I functionality to that
provided in message processing program (MPP) and non-message driven BMP
regions, such as:
v Accessing IMS message queues to read and write messages
v Performing program switches
v Commit and rollback processing
v Accessing GSAM databases
v Database recovery (CHKP/XRST)

Use the IMS Java dependent region resource adapter together with the type-2 IMS
Universal JDBC driver or type-2 IMS Universal DL/I driver to perform database
operations, including GSAM database access.

The following figure shows a Java application that is running in a JMP or JBP
region. Database access and message processing requests are passed to the IMS
Java dependent region resource adapter and type-2 IMS Universal drivers, which
converts the calls to DL/I calls.

718 Application Programming

Preparing to write a Java application with the IMS Java
dependent region resource adapter

The IMS Java dependent region resource adapter is available as an
SMP/E-installable driver (imsutm.jar).

Java application programs that use the IMS Java dependent region resource
adapter require the Java Development Kit (JDK) 6.0 or later. They also require a
way to generate the IMS database metadata, such as using the IMS Enterprise Suite
Explorer for Development. The default segment encoding of the database metadata
class produced by the IMS Explorer for Development is cp1047. To change the
segment encoding, use the com.ibm.ims.base.DLIBaseSegment.setDefaultEncoding
method.
Related concepts:
Chapter 6, “Gathering requirements for message processing options,” on page 99

Developing JMP applications with the IMS Java dependent
region resource adapter

Java message processing (JMP) applications access the IMS message queue to
receive messages to process and to send output messages.

Defining the input and output message classes
Before your JMP application can access the message queue, you must define input
and output message classes by subclassing the
com.ibm.ims.application.IMSFieldMessage class.

Recommendation: Use the IMS Enterprise Suite Explorer for Development to
generate the necessary metadata class files from COBOL copybooks or PL/I
resources when this support is available.

JMP or JBP region

IMS

DL/I

Java application

IMS
message

queue

JDR resource adapter

DB2 JCC
driver

IMS Universal
driver

IMS databaseDB2 database

Figure 109. JMP or JBP application that is using the IMS Java dependent region resource
adapter

Chapter 41. Programming Java dependent regions 719

The com.ibm.ims.application.IMSFieldMessage and com.ibm.ims.base.DLITypeInfo
class can be found in the classic Java APIs for IMS.

The IMS Java dependent region resource adapter provides the capability to process
IMSFieldMessage objects.

Subclass IMSFieldMessage: input message sample code

This example code subclasses the com.ibm.ims.application.IMSFieldMessage class
to make the fields in the message available to the program and creates an array of
com.ibm.ims.base.DLITypeInfo objects for the fields in the message. For the
DLITypeInfo class, the code identifies first the field name, then the data type, the
position, and finally the length of the individual fields within the array. This
allows the application to use the access functions within the IMSFieldMessage class
hierarchy to automatically convert the data from its format in the message to a
Java type that the application can process. In addition to the message-specific fields
that it defines, the IMSFieldMessage class provides access functions that allow it to
determine the transaction code and the length of the message.

This class defines an input message that accepts a 2-byte type code of a car model
to query a car dealership database for available car models.
package dealership.application;
import com.ibm.ims.db.*;
import com.ibm.ims.base.*;
import com.ibm.ims.application.*;

/* Subclasses IMSFieldMessage to define application’s input messages */
public class InputMessage extends IMSFieldMessage {

/* Creates array of DLITypeInfo objects for the fields in message */
final static DLITypeInfo[]fieldInfo={

new DLITypeInfo("ModelTypeCode", DLITypeInfo.CHAR, 1, 2)
};

public InputMessage() {
super(fieldInfo, 2, false);

}
}

Subclass IMSFieldMessage: output message sample code

The following code example shows how to subclass the
com.ibm.ims.application.IMSFieldMessage class to define an output message that
displays the available car models from a type code query.

This sample code creates an array of com.ibm.ims.base.DLITypeInfo objects and
then passes that array, the byte array length, and the Boolean value false, which
indicates a non-SPA message, to the IMSFieldMessage constructor. For each
DLITypeInfo object, you must first identify the field data type, then the field name,
the field offset in the byte array, and finally the length of the byte array.
package dealership.application;
import com.ibm.ims.db.*;
import com.ibm.ims.base.*;
import com.ibm.ims.application.*;

/*Subclasses IMSFieldMessage to define application’s output messages */
public class ModelOutput extends IMSFieldMessage {

s /* Creates array of DLITypeInfo objects for the fields in message */
final static DLITypeInfo[] fieldInfo={

720 Application Programming

new DLITypeInfo("Type", DLITypeInfo.CHAR, 1, 2),
new DLITypeInfo("Make", DLITypeInfo.CHAR, 3, 10),
new DLITypeInfo("Model", DLITypeInfo.CHAR, 13, 10),
new DLITypeInfo("Year", DLITypeInfo.DOUBLE, 23, 4),
new DLITypeInfo("CityMiles", DLITypeInfo.CHAR, 27, 4),
new DLITypeInfo("HighwayMiles", DLITypeInfo.CHAR, 31, 4),
new DLITypeInfo("Horsepower", DLITypeInfo.CHAR, 35, 4)

};

public ModelOutput() {
super(fieldInfo, 38,false);

}

}

JMP programming models
JMP applications can retrieve input messages from the IMS message queue, access
IMS and DB2 for z/OS databases, commit or roll back transactions, and send
output messages.

Creating the main method for a JMP application

The main method (public static void main(String[] args)) is the program entry
point for all JMP and JBP applications.

A JMP application starts when IMS receives a message with a transaction code for
the JMP application and schedules the message. A JMP application typically ends
when there are no more messages with that transaction code to process.

JMP application main method code sample

The following code sample shows how to implement a JMP application to access
the hospital database and send messages:
package hospital.ims;

import java.sql.*;
import com.ibm.ims.dli.tm.*;
import com.ibm.ims.dli.DLIException;

public static void main(String args[]) {
try {
Application app = null;
MessageQueue messageQueue = null;
IOMessage inputMessage = null;
IOMessage outputMessage = null;
Transaction tran = null;

app = ApplicationFactory.createApplication();
inputMessage = app.getIOMessage("class://hospital.ims.InMessage");
outputMessage = app.getIOMessage("class://hospital.ims.OutMessage");
messageQueue = app.getMessageQueue();
tran = app.getTransaction();

IMSDataSource dataSource = new IMSDataSource();
dataSource.setMetadataURL("class://hospital.ims.HospitalDBView");
dataSource.setDriverType(IMSDataSource.DRIVER_TYPE_2);
dataSource.setDatastoreName("IMS1");

Connection conn = dataSource.getConnection();
conn.SetAutoCommit(false);
Statement st = conn.createStatement();

String in = new String("");

Chapter 41. Programming Java dependent regions 721

// Returns true if a message is read from the queue
while (messageQueue.getUnique(inputMessage)) {

in = inputMessage.getString("Message").trim();
if (!in.equals("")) {

// Query the database for all hospital names
ResultSet rs

= st.executeQuery("SELECT HOSPNAME FROM PCB01.HOSpital");

while (rs.next()) {

// Return hospital name in output message
outputMessage.setString("Message", rs.getString("HOSPNAME"));
messageQueue.insert(outputMessage,
MessageQueue.DEFAULT_DESTINATION);

// Commit this transaction
tran.commit();

}
conn.close();
}

}
} catch (Exception e) {

e.printStackTrace();
}

}

Accessing DB2 for z/OS data from a JMP application

When a JMP application accesses only IMS data, it must open a database
connection only once to process multiple transactions. However, a JMP application
that accesses DB2 for z/OS data must open and close a database connection for
each message that is processed.

Processing an input message in a JMP application:

A transaction begins when the application receives an input message and ends
when the application commits the results from processing the message. To get an
input message, the application calls the MessageQueue.getUnique method.

Processing an input message sample code

The following code example shows how an input message is processed in a JMP
application.
import com.ibm.ims.dli.tm.*;

public static void main(String args[]) {

conn = dataSource.getConnection(...); //Establish DB connection

while(messageQueue.getUnique(...)){ //Get input message, which
//starts transaction

results=statement.executeQuery(...); //Perform DB processing
...
messageQueue.insert(...); //Send output messages
...

}

722 Application Programming

conn.close(); //Close DB connection

return;
}

Rolling back IMS changes in a JMP application:

A JMP application can roll back IMS changes any number of times during a
transaction. A rollback call backs out all output messages to the most recent
commit.

Use the com.ibm.ims.dli.tm.Transaction class to issue commit and rollback
operations from your JMP application.

The following code example shows how a JMP application rolls back IMS changes.
import com.ibm.ims.dli.tm.*;
import java.sql.*;

public static void main(String args[]) {

conn = dataSource.getConnection(...); //Establish DB connection
Application app = ApplicationFactory.createApplication();
Transaction tran = app.getTransaction();
MessageQueue mq = app.getMessageQueue();

while(mq.getUnique(...)){ //Get input message, which
//starts transaction

results=statement.executeQuery(...); //Perform DB processing
...
mq.insertMessage(...); //Send output messages
...
tran.rollback(); //Roll back output messages

results=statement.executeQuery(...); //Perform more DB processing
//(optional)

...
mq.insert(...); //Send more output messages

//(optional)
}

conn.close(); //Close DB connection
}

Additional message handling considerations for JMP
applications
The following considerations apply to JMP applications that access the IMS
message queue when handling conversational transactions, multi-segment
messages, messages with repeating structures, and multiple input messages.

Conversational transactions:

The IMS Java dependent region resource adapter supports access to IMS
conversational transactions.

Conversational transactions

A conversational transaction does not process the entire transaction at the same
time. A conversational program divides processing into a connected series of
terminal-to-program-to-terminal interactions. Use conversational processing when

Chapter 41. Programming Java dependent regions 723

one transaction contains several parts. In contrast, a nonconversational program
receives a message from a terminal, processes the request, and sends a message
back to the terminal.

A conversational program receives a message from a terminal and replies to the
terminal, but it saves the data from the transaction in a scratchpad area (SPA).
When the user at the terminal enters more data, the program has the data it saved
from the last message in the SPA, so it can continue processing the request without
the user at the terminal having to enter the data again.

Conversational transaction sample

The following code example shows how to write a JMP application to process a
conversational transaction.
package mytest.jdbo;

import com.ibm.ims.dli.DLIException;
import com.ibm.ims.dli.tm.*;

public class MyConversationalSample {

public static void main(String[] args) {
Transaction tran = null;
try {

Application app
= ApplicationFactory.createApplication();

IOMessage spaMessage
= app.getIOMessage("class://mytest.jdbo.SPAMessage");

IOMessage inputMessage
= app.getIOMessage("class://mytest.jdbo.InMessage");

IOMessage outputMessage
= app.getIOMessage("class://mytest.jdbo.OutMessage");

MessageQueue msgQueue = app.getMessageQueue();
tran = app.getTransaction();

// Read the SPA message
while (msgQueue.getUnique(spaMessage)) {
// before reading the application messages.
if (msgQueue.getNext(inputMessage)) {

String inField
= inputMessage.getString("Message").trim();

try {
int sum = (new Integer(inField)).intValue();
spaMessage.setString("Message", "" + sum);
msgQueue.insert(spaMessage,
MessageQueue.DEFAULT_DESTINATION);

outputMessage.setString("Message",
"The initial value is: " + sum);

msgQueue.insert(outputMessage,
MessageQueue.DEFAULT_DESTINATION);

} catch (NumberFormatException e) {
if (inField.equalsIgnoreCase("stop")) {
// End the conversation
spaMessage.setString("Message",

"Exit requested, so I am exiting");
spaMessage.setTransactionName(IOMessage.END_CONVERSATION_BLANKS);
msgQueue.insert(spaMessage, MessageQueue.DEFAULT_DESTINATION);

}
}

}
}
tran.commit();

} catch (DLIException e) {
e.printStackTrace();

724 Application Programming

try {
// Roll back the transaction
if (tran != null) {

tran.rollback();
}

} catch (DLIException e1) {
e1.printStackTrace();

}
}
}

}

Conversational transaction sequence of events

When the message is a conversational transaction, the following sequence of events
occurs:
1. IMS removes the transaction code and places it at the beginning of a message

segment. The message segment is equal in length to the SPA that was defined
for this transaction during system definition. The transaction code is the first
segment of the input message that is made available to the program. The
second through the nth segments from the terminal, minus the transaction
code, become the remainder of the message that is presented to the application
program.

2. After the conversational program prepares its reply, it inserts the SPA to IMS.
The program then inserts the actual text of the reply as segments of an output
message.

3. IMS saves the SPA and routes the message to the input LTERM (logical
terminal).

4. If the SPA insert specifies that another program is to continue the same
conversation, the total reply (including the SPA) is retained on the message
queue as input to the next program. This program then receives the message in
a similar form.

5. A conversational program must be scheduled for each input exchange. The
other processing continues while the operator at the input terminal examines
the reply and prepares new input messages.

6. To terminate a conversation, the program places blanks in the transaction code
field of the SPA and inserts the SPA to IMS. To terminate a conversation when
using the IMS Java dependent region resource adapter, set the SPA transaction
code to the constant IOMessage.END_CONVERSATION_BLANKS.

7. The conversation can also be terminated if the transaction code in the SPA is
replaced by any transaction code from a nonconversational program, and the
SPA is inserted to IMS. After the next terminal input, IMS routes that message
to the queue of the other program in the normal way.

Related concepts:

Conversational transactions (Communications and Connections)

Handling multi-segment messages:

Message-driven applications can have multi-segment input messages. That is, more
than one message needs to be read from the message queue in order to retrieve the
entire message.

The following code shows how the IOMessage and the MessageQueue classes are
used to retrieve multi-segment messages:

Chapter 41. Programming Java dependent regions 725

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_tm_plan_terminals_convtrans.htm#ims_tm_plan_terminals_convtrans

//Create a message queue
MessageQueue messageQueue = app.getMessageQueue();

//Create the first input message
IOMessage input1
= app.getIOMessage("class://InputMessage1");

//Create the second input message
IOMessage input2
= app.getIOMessage("class://InputMessage2");

try {
//Read the first message from the queue
messageQueue.getUnique(input1);
...

//Read additional messages from the queue
while(messageQueue.getNext(input2)) {
...

} catch (DLIException e) {
...

}

Coding and accessing messages with repeating structures:

Messages with repeating structures can be defined by using the DLITypeInfoList
class. With the DLITypeInfoList class, you can specify a repeating list of fields and
the maximum number of times the list can be repeated. These repeating structures
can contain repeating structures.

The following code example is a sample output message that contains a set of
Make, Model, and Color fields:

Sample output message with repeating structures
public class ModelOutput extends IMSFieldMessage {
static DLITypeInfo[] modelTypeInfo = {

new DLITypeInfo("Make", DLITypeInfo.CHAR, 1, 20),
new DLITypeInfo("Model", DLITypeInfo.CHAR, 21, 20),
new DLITypeInfo("Color", DLITypeInfo.CHAR, 41, 20),
};

static DLITypeInfo[] modelTypeInfoList = {
new DLITypeInfoList("Models", modelTypeInfo, 1, 60, 100),
};

public ModelOutput() {
super(modelTypeInfoList, 6004, false);

} }

To access the nested structures that are defined in a DLITypeInfoList object, use a
dotted notation to specify the fields of the field within a repeating structure. For
example, the “Color” field in the fourth “Models” definition in the output object is
accessed as “Models.4.Color” within the output message. The following code sets
the fourth “Color” in the output message to “Red.”
IOMessage output = app.getIOMessage("class://ModelOutput");
output.setString("Models.4.Color", "Red");

Flexible reading of multiple input messages:

JMP applications can process multiple input messages that require different input
data types.

726 Application Programming

The following car dealership sample application supports requests to list models,
show model details, find cars, cancel orders, and record sales. Each of these
requests requires different input data.

The following steps explain how to define the messages to support these requests,
and how to access the messages from the application.
1. Define the primary input message.

The primary input message is the message that you pass to the
MessageQueue.getUnique method to retrieve all of your input messages. Your
primary input message must have an I/O area that is large enough to contain
any of the input requests that your application might receive. It must also
contain at least one field in common with all of your input messages. This
common field allows you to determine the input request. In the following code
example, the common field is CommandCode, and the maximum length of
each message is 64 (the number passed to the IMSFieldMessage constructor):
public class InputMessage extends IMSFieldMessage {

final static DLITypeInfo[] fieldInfo =
{

new DLITypeInfo("CommandCode",
DLITypeInfo.CHAR, 1, 20),

};

public InputMessage(DLITypeInfo[] fieldInfo)
{

super(fieldInfo, 64, false);
}

}

2. Define separate input messages for each request.
Each of these input messages contains the same CommandCode field as its first
field. Each of these input messages also uses an IMSFieldMessage constructor
that takes an IMSFieldMessage object and a DLITypeInfo array. The
IMSFieldMessage constructor allows you to remap the contents of the primary
input message using the same type of information with each request; therefore,
you do not copy the I/O area of the message, only a reference to this area. The
following code example illustrates how to create the input messages for the
requests ShowModelDetails, FindACar, and CancelOrder.
public class ShowModelDetailsInput extends IMSFieldMessage {

final static DLITypeInfo[] fieldInfo = {
new DLITypeInfo("CommandCode", DLITypeInfo.CHAR, 1, 20),
new DLITypeInfo("ModelTypeCode", DLITypeInfo.CHAR, 21, 2)

};

public ShowModelDetailsInput(InputMessage inputMessage) {
super(inputMessage, fieldInfo);

}
}

public class FindACarInput extends IMSFieldMessage {
final static DLITypeInfo[] fieldInfo = {

new DLITypeInfo("CommandCode", DLITypeInfo.CHAR, 1, 20),
new DLITypeInfo("Make", DLITypeInfo.CHAR, 21, 10),
new DLITypeInfo("Model", DLITypeInfo.CHAR, 31, 10),
new DLITypeInfo("Year", DLITypeInfo.CHAR, 41, 4),
new DLITypeInfo("LowPrice", DLITypeInfo.PACKEDDECIMAL, 45, 5),
new DLITypeInfo("HighPrice", DLITypeInfo.PACKEDDECIMAL, 50, 5),
new DLITypeInfo("Color", DLITypeInfo.CHAR, 55, 10),

};
public FindACarInput(InputMessage inputMessage) {

super(inputMessage, fieldInfo);

Chapter 41. Programming Java dependent regions 727

}
}

public class CancelOrderInput extends IMSFieldMessage {
final static DLITypeInfo[] fieldInfo = {

new DLITypeInfo("CommandCode", DLITypeInfo.CHAR, 1, 20),
new DLITypeInfo("OrderNumber", DLITypeInfo.CHAR, 21, 6),
new DLITypeInfo("DealerNumber", DLITypeInfo.CHAR, 21, 6),

};
public CancelOrderInput(InputMessage inputMessage)
{

super(inputMessage, fieldInfo);
}

}

Note the following details about the previous code examples:
v The CommandCode field is defined in every message that reads the command

code. If you do not define the field, you must adjust the offsets of the following
fields to account for the existence of the CommandCode in the byte array. For
example, you can delete the DLITypeInfo entry for CommandCode in the
CancelOrderInput class, but the OrderNumber field must still start at offset 21.

v The length of the base class InputMessage must be large enough to contain any
of its subclasses. In this example, the InputMessage class is 65 bytes because the
fields of the FindACarInput method require it.

v Each InputMessage subclass must provide a constructor to create itself from an
InputMessage object. This constructor uses a new constructor in the
IMSFieldMessage class, called a copy constructor.

Given this design, an application can provide message-reading logic like in the
following code example.
while (messageQueue.getUnique(inputMessage)) {

string commandCode=inputMessage.getString("CommandCode").trim();

if (commandCode.equals("ShowModelDetails")) {
showModelDetails(new ShowModelDetailsInput(inputMessage));

} else if(commandCode.equals("FindACar")) {
findACar(new FindACarInput(inputMessage));

} else {
//process an error

}

}

Developing JBP applications with the IMS Java dependent
region resource adapter

JBP applications are similar to JMP applications, except that JBP applications do
not receive input messages from the IMS message queue. Unlike batch message
processing (BMP) applications, JBP applications must be non-message-driven
applications.

Symbolic checkpoint and restart

Similarly to batch message processing (BMP) applications, JBP applications can use
symbolic checkpoint and restart calls to restart the application after an abend. To

728 Application Programming

issue a symbolic checkpoint and restart when using the IMS Java dependent region
resource adapter, use these methods of the com.ibm.ims.dli.tm.Transaction
interface:
v Transaction.checkpoint()
v Transaction.restart()

These methods perform functions that are analogous to the DL/I system service
calls: (symbolic) CHKP and XRST.

A JBP application connects to a database, makes a restart call, performs database
processing, periodically checkpoints, and disconnects from the database at the end
of the program. The program must issue a final commit before ending. On an
initial application start, the Transaction.restart() method notifies IMS that symbolic
checkpoint and restart is to be enabled for the application. The application then
issues periodic Transaction.checkpoint() calls to take checkpoints. The
Transaction.checkpoint() method allows the application to provide a
com.ibm.ims.dli.tm.SaveArea object that contains one or more other application
Java objects whose state is to be saved with the checkpoint.

If a restart is required, it defaults to the last checkpoint ID. The Transaction.restart()
method returns a SaveArea object that contains the application objects in the same
order in which they were inserted at checkpoint time. If the SaveArea object
returned is null, this means there were no objects stored in the SaveArea object at
checkpoint time.

Symbolic checkpoint and restart calls may also be used with GSAM data, or z/OS
data sets. To restart using a basic z/OS checkpoint, you must identify the restart
checkpoint.

Code sample of JBP symbolic checkpoint and restart

The following symbolic checkpoint/restart sample JBP application demonstrates
the use of the checkpoint and restart functionality support with the IMS Java
dependent region resource adapter.

The two symbolic checkpoint methods checkpoint() andcheckpoint(SaveArea
saveArea) require the application to be restarted (in the case of any abnormal end
of the program) using the 4-character constant “LAST”.
package samples.dealership.chkp_xrst;

import java.sql.*;
import java.io.*;

import com.ibm.ims.dli.DLIException;
import com.ibm.ims.dli.tm.Application;
import com.ibm.ims.dli.tm.ApplicationFactory;
import com.ibm.ims.dli.tm.SaveArea;
import com.ibm.ims.dli.tm.Transaction;
import com.ibm.ims.jdbc.IMSDataSource;

public class CheckpointRestartAutoSample {

private SaveArea saveAreaOut;
private Connection connection;
private Transaction transaction;

// The entry point of the application
public static void main(String[] args) throws Exception {

CheckpointRestartAutoSample crSample

Chapter 41. Programming Java dependent regions 729

= new CheckpointRestartAutoSample();

crSample.setup();

crSample.runSample();

crSample.closeDown();

}

// Set up for the application:
// 1. Enable trace
// 2. Creates connection
void setup() throws Exception {

this.createConnection();
Application app = ApplicationFactory.createApplication();
this.transaction = app.getTransaction();

}

void closeDown() throws Exception {
// close the connection
connection.close();

// Commit the IMS DB work
this.transaction.commit();

}

// Creates a connection to the auto dealership database
void createConnection() throws Exception {

try {
IMSDataSource ds = new IMSDataSource();

ds.setDriverType(IMSDataSource.DRIVER_TYPE_2);
ds.setMetadataURL("class://samples.dealership.AUTPSB11DatabaseView");

connection = ds.getConnection();

} catch (SQLException e) {
String errorMessage

= new String("During connection creation: "
+ e.toString());

throw new Exception(errorMessage);
}

}

void runSample() throws Exception {
// the restart call is always the first call in a
// checkpoint/restart application
saveAreaOut = this.transaction.restart();

// if the SaveArea object returned is null it
// is a normal program start, otherwise it is a restart
if (saveAreaOut != null) {

// Check the SaveArea object to determine
// where to restart from

if (saveAreaOut.isEmpty()) {
sqlMethod(true);

} else {
String str =

(String)saveAreaOut.getObject(1);
System.out.println("Retrieved string = "+str);

}
} else {

sqlMethod(false);
}

}

void sqlMethod(boolean isRestart)

730 Application Programming

throws DLIException, SQLException {

String sql
= new String("SELECT * FROM Dealer.DealerSegment");

Statement statement = connection.createStatement();
ResultSet results = statement.executeQuery(sql);

// this part of the code will be executed only during a normal
// program start
if (!isRestart && results.next()) {

System.out.println("At first GetSegment call to the DealerDB: ");
System.out.println("Dealer Number = "

+ results.getString("DealerNo"));
System.out.println("Dealer Name = "

+ results.getString("DealerName"));
System.out.println("DealerCity = "

+ results.getString("DealerCity"));
System.out.println("DealerZip = "

+ results.getString("DealerZip"));
System.out.println("DealerPhone = "

+ results.getString("DealerPhone"));
}

//String ckptid = null;
for (int i=1; results.next(); i++) {

System.out.println("GetSegment call to the DealerDB:");
System.out.println("Dealer Number = "

+ results.getString("DealerNo"));
System.out.println("Dealer Name = "

+ results.getString("DealerName"));
System.out.println("DealerCity = "

+ results.getString("DealerCity"));
System.out.println("DealerZip = "

+ results.getString("DealerZip"));
System.out.println("DealerPhone = "

+ results.getString("DealerPhone"));

// The checkpoint call, apart from storing program information,
// causes the program to lose its position in the database

this.transaction.checkpoint();
}

}

}

Rolling back changes in a JBP application

Similar to JMP applications, a JBP application can roll back database processing
and output messages any number of times during a transaction. A rollback call
backs out all database processing and output messages to the most recent commit.

Use the com.ibm.ims.dli.tm.Transaction class to issue commit and rollback
operations from your JMP application.
Related concepts:
“Restarting your program” on page 68
Related reference:
Chapter 17, “Recovering databases and maintaining database integrity,” on page
287

Chapter 41. Programming Java dependent regions 731

Accessing GSAM data from a JBP application
GSAM data are frequently referred to as z/OS data sets or as flat files. This kind of
data is non-hierarchical in structure. You can access data from GSAM databases
from a JBP application.

The JMP application connects to a GSAM database, performs database processing,
periodically commits, and disconnects from the database at the end of the
application. To access the GSAM data, you will need to supply your JBP
application with the Java database metadata class for that database.

If your IMS system includes an activate IMS catalog database, you can connect to
the catalog instead of using a database metadata class file.

Sample metadata class for a car dealership database

The following Java code sample provides an example of the Java database
metadata class.
package samples.dealership.gsam;

import com.ibm.ims.db.*;
import com.ibm.ims.base.*;

public class AUTOGSAMDatabaseView extends DLIDatabaseView {

// This class describes the data view of PSB: AUTOGSAM
// PSB AUTOGSAM has database PCBs with 8-char PCBNAME or label:
// AUTOLPCB
// PCBGSAMG
// PCBGSAML

// The following describes Segment:
// DEALER ("DEALER") in PCB: AUTOLPCB ("AUTOLPCB")

static DLITypeInfo[] AUTOLPCBDEALERArray= {
new DLITypeInfo("DLRNO", DLITypeInfo.CHAR, 1, 4,

"DLRNO", DLITypeInfo.UNIQUE_KEY),
new DLITypeInfo("DLRNAME", DLITypeInfo.CHAR,

5, 30, "DLRNAME"),
new DLITypeInfo("CITY", DLITypeInfo.CHAR,

35, 10, "CITY"),
new DLITypeInfo("ZIP", DLITypeInfo.CHAR,

45, 10, "ZIP"),
new DLITypeInfo("PHONE", DLITypeInfo.CHAR,

55, 7, "PHONE")
};
static DLISegment AUTOLPCBDEALERSegment= new DLISegment
("DEALER","DEALER",AUTOLPCBDEALERArray,61);

// The following describes Segment: MODEL ("MODEL")
// in PCB: AUTOLPCB ("AUTOLPCB")

static DLITypeInfo[] AUTOLPCBMODELArray= {
new DLITypeInfo("MODKEY", DLITypeInfo.CHAR, 3, 24,

"MODKEY", DLITypeInfo.UNIQUE_KEY),
new DLITypeInfo("MODTYPE", DLITypeInfo.CHAR, 1, 2, "MODTYPE"),
new DLITypeInfo("MAKE", DLITypeInfo.CHAR, 3, 10, "MAKE"),
new DLITypeInfo("MODEL", DLITypeInfo.CHAR, 13, 10, "MODEL"),
new DLITypeInfo("YEAR", DLITypeInfo.CHAR, 23, 4, "YEAR"),
new DLITypeInfo("MSRP", DLITypeInfo.CHAR, 27, 5, "MSRP"),
new DLITypeInfo("COUNT1", DLITypeInfo.CHAR, 32, 2, "COUNT")
};
static DLISegment AUTOLPCBMODELSegment= new DLISegment
("MODEL","MODEL",AUTOLPCBMODELArray,37);

// An array of DLISegmentInfo objects follows

732 Application Programming

// to describe the view for PCB: AUTOLPCB ("AUTOLPCB")
static DLISegmentInfo[] AUTOLPCBarray = {
new DLISegmentInfo(AUTOLPCBDEALERSegment,DLIDatabaseView.ROOT),
new DLISegmentInfo(AUTOLPCBMODELSegment,0),
};

// Warning: PCB: PCBGSAMG has no SENSEGS
// The following describes GSAM Record:

// JAVGSAM1 ("JAVGSAM1") in PCB: PCBGSAMG ("GSAMRead")
static DLITypeInfo[] PCBGSAMGJAVGSAM1Array= {
new DLITypeInfo("DealerNo", DLITypeInfo.INTEGER, 1, 4),
new DLITypeInfo("DealerName", DLITypeInfo.CHAR, 5, 30),
new DLITypeInfo("ModelType", DLITypeInfo.CHAR, 35, 2),
new DLITypeInfo("ModelKey", DLITypeInfo.CHAR, 37, 24),
new DLITypeInfo("Make", DLITypeInfo.CHAR, 37, 10),
new DLITypeInfo("Model", DLITypeInfo.CHAR, 47, 10),
new DLITypeInfo("Year", "yyyy", DLITypeInfo.DATE, 57, 4),
new DLITypeInfo("MSRP", "S999999V99", DLITypeInfo.PACKEDDECIMAL, 61, 5),
new DLITypeInfo("Counter", DLITypeInfo.SMALLINT, 66, 2)
};
static GSAMRecord PCBGSAMGRecord= new GSAMRecord
("PCBGSAMGRecord",PCBGSAMGJAVGSAM1Array,80);

// An array of DLISegmentInfo objects follows
// to describe the view for PCB: PCBGSAMG ("GSAMRead")

static DLISegmentInfo[] PCBGSAMGarray = {
new DLISegmentInfo(PCBGSAMGRecord, DLIDatabaseView.ROOT)
};

// Warning: PCB: PCBGSAML has no SENSEGS
// The following describes GSAM Record:

// JAVGSAM1 ("JAVGSAM1") in PCB: PCBGSAML ("GSAMLoad")
static DLITypeInfo[] PCBGSAMLJAVGSAM1Array= {
new DLITypeInfo("DealerNo", DLITypeInfo.INTEGER, 1, 4),
new DLITypeInfo("DealerName", DLITypeInfo.CHAR, 5, 30),
new DLITypeInfo("ModelType", DLITypeInfo.CHAR, 35, 2),
new DLITypeInfo("ModelKey", DLITypeInfo.CHAR, 37, 24),
new DLITypeInfo("Make", DLITypeInfo.CHAR, 37, 10),
new DLITypeInfo("Model", DLITypeInfo.CHAR, 47, 10),
new DLITypeInfo("Year", "yyyy", DLITypeInfo.DATE, 57, 4),
new DLITypeInfo("MSRP", "S999999V99",

DLITypeInfo.PACKEDDECIMAL, 61, 5),
new DLITypeInfo("Counter", DLITypeInfo.SMALLINT, 66, 2)
};
static GSAMRecord PCBGSAMLRecord= new GSAMRecord
("PCBGSAMLRecord",PCBGSAMLJAVGSAM1Array,80);

// An array of DLISegmentInfo objects follows
// to describe the view for PCB: PCBGSAML ("GSAMLoad")

static DLISegmentInfo[] PCBGSAMLarray = {
new DLISegmentInfo(PCBGSAMLRecord, DLIDatabaseView.ROOT)
};

// Constructor
public AUTOGSAMDatabaseView() {
super("2.0","AUTOGSAM", "AUTOLPCB", "AUTOLPCB",

AUTOLPCBarray);
addDatabase("GSAMRead", "PCBGSAMG", PCBGSAMGarray);
addDatabase("GSAMLoad", "PCBGSAML", PCBGSAMLarray);
} // end AUTOGSAMDatabaseView constructor

} // end AUTOGSAMDatabaseView class definition

Chapter 41. Programming Java dependent regions 733

Sample JBP application for accessing a GSAM database

The following code example is a JBP application that relies on the previous code
sample to access GSAM data.
package samples.dealership.gsam;

import java.io.*;
import java.util.Properties;
import java.math.BigDecimal;

import com.ibm.ims.dli.*;
import com.ibm.ims.dli.tm.*;

/**
* This is an auto dealership sample application
* demonstrating the use of the
* GSAM database functionality support in
* the IMS Java dependent region resource adapter.
*
*/
public class GSAMAuto {
private final String readOnlyGSAMPCB

= new String("GSAMRead");
private final String writeOnlyGSAMPCB

= new String("GSAMLoad");

private PSB psb;

/**
* The entry point of the application
*/
public static void main(String[] args) {
GSAMAuto gsamLoadSample = new GSAMAuto();
if (System.getProperty("com.ibm.ims.jdbcenvironment")

== null) {
Properties properties = System.getProperties();
properties.put("com.ibm.ims.jdbcenvironment", "IMS");
}

try {
gsamLoadSample.setup();
} catch (Exception e) {
e.printStackTrace();
}

try {
gsamLoadSample.runSample();

gsamLoadSample.closeDown();
} catch (Throwable e) {
e.printStackTrace();
}

}

/**
* This method does the set up for the application:
* 1. Enable trace
* 2. Creates dbConnection
* 3. Creates GSAMConnection object
* @throws IOException
* @throws SecurityException
* @throws DLIException
*/
void setup() throws SecurityException,

IOException, DLIException {

734 Application Programming

IMSConnectionSpec cSpec
= IMSConnectionSpecFactory.createIMSConnectionSpec();

cSpec.setDatastoreName("IMS1");
cSpec.setDriverType(IMSConnectionSpec.DRIVER_TYPE_2);
cSpec.setMetadataURL("class://samples.dealership.gsam.AUTOGSAMDatabaseView");
psb = PSBFactory.createPSB(cSpec);
}

/**
* This method does the clean up before application exit.
* 1. Commits the database work done. IMS Java dependent
* regions require all applications to commit before exiting.
* @throws DLIException
*
* @exception Exception
*/
void closeDown() throws DLIException {
try {
Application app = ApplicationFactory.createApplication();
Transaction transaction = app.getTransaction();

// Always commit any work before exiting
transaction.commit();
} catch (DLIException e) {
System.out.println("IMS commit failed. Reason: "

+ e.toString());
throw e;
}
}

/**
* Demonstrates how to write to and read from a
* GSAM database. Also shows different data types
* being stored into the GSAM database using the
* internal data conversion methods.
*/
void runSample() {

final int dealerNo = 1171;
final String dealerName = "ABC Autos";
final String modelType = "LX";
final String make = "Santro";
final String model = "Zen";
final java.sql.Date year

= java.sql.Date.valueOf("2011-05-18");
final BigDecimal msrp = new BigDecimal(17750.00);
final short count = (short) 8;

try {
GSAMPCB pcb1 = psb.getGSAMPCB(this.writeOnlyGSAMPCB);

Path myGSAMRecord = pcb1.getPathForInsert();

// Set values to individual fields in a GSAM record
myGSAMRecord.setInt("DealerNo", dealerNo);
myGSAMRecord.setString("DealerName", dealerName);
myGSAMRecord.setString("ModelType", modelType);
myGSAMRecord.setString("Make", make);
myGSAMRecord.setString("Model", model);
myGSAMRecord.setDate("Year", year);
myGSAMRecord.setBigDecimal("MSRP", msrp);
myGSAMRecord.setShort("Counter", count);

// Insert the GSAM record data
// and save the RSA of the record

RSA rsa = pcb1.insert(myGSAMRecord);

Chapter 41. Programming Java dependent regions 735

// Close the GSAM database explicitly
// for writing/loading data

pcb1.close();

// Open a GSAM Connection to write the GSAM dataset
GSAMPCB pcb2 = psb.getGSAMPCB(this.readOnlyGSAMPCB);

// Read the GSAM record data using
// the RSA stored earlier

Path gsamRecord = pcb2.getUnique(rsa);

// Print the GSAM data
if (gsamRecord != null) {
System.out.println("Dealer Number: "

+ gsamRecord.getInt("DealerNo"));
System.out.println("Dealer Name: "

+ gsamRecord.getString("DealerName"));
System.out.println("Model Type: "

+ gsamRecord.getString("ModelType"));
System.out.println("Make: "

+ gsamRecord.getString("Make"));
System.out.println("Model: "

+ gsamRecord.getString("Model"));
System.out.println("Year: "

+ gsamRecord.getDate("Year"));
System.out.println("MSRP: "

+ gsamRecord.getBigDecimal("MSRP"));
System.out.println("Counter: "

+ gsamRecord.getShort("Counter"));

System.out.println
("\nSuccessful completion of GSAM sample application");

} else {
System.out.println("GSAM DB is empty");
}

} catch (DLIException e) {
System.out.println
("GSAM sample failed. Reason: " + e.toString());

}
}
}

Related concepts:
Chapter 20, “Processing GSAM databases,” on page 309
Related reference:
“GSAM coding considerations” on page 316

Issuing synchronous callout requests from a Java dependent
region

IMS provides support for synchronous callout functionality from Java message
processing (JMP) or Java batch processing (JBP) applications through an IMS
implementation of the Java Message Service (JMS).

To use the JMP and JBP support for synchronous callout, the IMS Enterprise Suite
JMS API jms.jar file must be on your classpath. To download the IMS Enterprise
Suite JMS API, go to the following web URL: http://www-01.ibm.com/software/
data/ims/enterprise-suite/index.html

The IMS implementation of JMS is limited to supporting the Point-to-Point (PTP)
messaging domain only. In addition, support is only provided for non-transacted
QueueSession objects with Session.AUTO_ACKNOWLEDGE mode.

736 Application Programming

http://www-01.ibm.com/software/data/ims/enterprise-suite/index.html
http://www-01.ibm.com/software/data/ims/enterprise-suite/index.html

If the JMP or JBP application attempts to call any JMS method not supported by
IMS or pass any unsupported argument to JMS method calls, a JMSException
exception is thrown.

To send a message using the JMP and JBP support for synchronous callout and
synchronously receive a response:
1. Create a com.ibm.ims.jms.IMSQueueConnectionFactory object.
2. Create a JMS QueueConnection instance by calling the createQueueConnection

method on the IMSQueueConnectionFactory object.
3. Create a JMS QueueSession instance by calling the createQueueSession method

on the QueueConnection instance. In the method call, you must set the input
parameter values to false and Session.AUTO_ACKNOWLEDGE to specify that
the generated QueueSession instance is non-transacted and runs in
AUTO_ACKNOWLEDGE mode.

4. Create a queue identity by calling the createQueue method on the
QueueSession instance. In the method call, you must set the input parameter
value to the OTMA descriptor name for the synchronous callout operation.

5. Create a JMS QueueRequestor instance and pass in the QueueSession instance
from step 3 and the Queue instance from step 4 as input parameters to the
QueueRequestor constructor method.

6. Create a TextMessage instance by calling the createTextMessage method on the
QueueSession instance from step 3. Set the string containing the message data.

7. To send the message and retrieve a response, call the request method on the
QueueRequestor object from step 5. In the method call, pass in the TextMessage
instance from step 6. You need to cast the return value from the request method
call to a TextMessage instance. If the call is successful, the return value is the
response to the synchronous callout request.

The following code shows how to write a simple JMP or JBP application that sends
a message to an external application and synchronously receive a response
message. In the example, an IMSQueueConnectionFactory instance is created with
a timeout value of 10 seconds and with 128 KB of space allocated to hold response
messages.
import javax.jms.JMSException;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueRequestor;
import javax.jms.QueueSession;
import javax.jms.Session ;
import javax.jms.TextMessage;
import com.ibm.ims.jms.IMSQueueConnectionFactory;

public class IMS_Sample
{

public static void main(String argv[])
{

IMSQueueConnectionFactory jmsConnectionFactory
= new IMSQueueConnectionFactory();

QueueConnection jmsConnection = null;
QueueSession jmsQueueSession = null;
Queue jmsQueue = null;
QueueRequestor jmsQueueRequestor = null;

try {
jmsConnectionFactory.setTimeout(1000);

// set the timeout to 10 seconds
jmsConnectionFactory.setResponseAreaLength(128000);

// allocate 128k to hold the response message

Chapter 41. Programming Java dependent regions 737

jmsConnection = jmsConnectionFactory.createQueueConnection();
jmsQueueSession
= jmsConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

// set session to be non-transacted and in AUTO_ACKNOWLEDGE mode
jmsQueue = jmsQueueSession.createQueue("OTMDEST1");

// pass in the OTMA descriptor name

jmsQueueRequestor
= new QueueRequestor(jmsQueueSession, jmsQueue);

TextMessage sendMsg = jmsQueueSession.createTextMessage();
sendMsg.setText("MyMessage");
System.out.println("Sending message: "+sendMsg.getText());
TextMessage replyMsg

= (TextMessage)jmsQueueRequestor.request(sendMsg);

System.out.println("\nReceived message: "+replyMsg.getText());
} catch (JMSException e) {

e.printStackTrace();
}

}
}

Related tasks:
“Implementing the synchronous callout function” on page 491
Related reference:

Java Message Service API Tutorial

Java Platform Enterprise Edition, v5.0 API Specifications

IMS Java dependent region resource adapter support for ICAL
callout with control data

IMS transactions that are written in Java and leverage the IMS Java dependent
region resource adapter can issue ICAL calls that include control data.

By using control data, you can include any information in an ICAL callout message
such as the endpoint information or other routing specifications.

The support for ICAL callout with control data uses the IMS implementation of the
Java Message Service (JMS) API in the IMS Java dependent region resource adapter
(imsutm.jar). The IMS Java dependent region resource adapter invokes the
Universal Drivers C library (DFSCLIBU) through JNI calls to issue the calls from C
to the AIBTDLI interface with the ICAL information.

The following example illustrates an IMS IMS Java dependent region resource
adapter JMP application that issues a synchronous callout message with control
data:
public static void main(String args[]) {

// Create an IMS JMP application
app = ApplicationFactory.createApplication();

// Get the IMS JMS queue connection factory
IMSQueueConnectionFactory jmsConnectionFactory = app
.getIMSQueueConnectionFactory();

QueueConnection jmsConnection = null;
QueueSession jmsQueueSession = null;
javax.jms.Queue jmsQueue = null;
QueueRequestor jmsQueueRequestor = null;

try {
// Get a reference to the IMS message queue
msgQueue = app.getMessageQueue();

738 Application Programming

|

|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://java.sun.com/products/jms/tutorial/
http://docs.oracle.com/javaee/5/api/

// Create an input message object
inputMessage = app.getIOMessage("class://MyInputMessage");

// Create an output message object
outputMessage = app.getIOMessage("class://MyOutputMessage");

// Retrieve messages off the queue
while (msgQueue.getUnique(inputMessage)) {

// Setting the JMS settings to issue an ICAL call

// Specify the amount of time to wait for a response from an
// ICAL call. This value
// corresponds to the RSFLD value in the AIB
jmsConnectionFactory.setTimeout(999999);

// Specify the expected size of the response message from the
// ICAL call. This value
// corresponds to the OAUSE value in the AIB
jmsConnectionFactory.setResponseAreaLength(0x00000033);

// Create the JMS queue connection
jmsConnection = jmsConnectionFactory.createQueueConnection();

// Create the JMS queue session
jmsQueueSession = jmsConnection.createQueueSession(false, 1);

// Specify the OTMA Routing descriptor which describes the
// target that the ICAL call
// will be sent to. This value correponse with the RSNM1 value
// in the AIB
jmsQueue = jmsQueueSession.createQueue("DEST0001");

// Create the JMS queue requestor
jmsQueueRequestor = new QueueRequestor(jmsQueueSession,

jmsQueue);

// Build the request area for the ICAL call
// For synchronous program switch a BytesMessage object must be
// used
BytesMessage sendMsg = jmsQueueSession.createBytesMessage();

// The content of the request area must follow the existing
// format for synchronous program switch:
// LL + ZZ + SWITCH-TO-TRAN + TRAN-INPUT
short ll = 50;
short zz = 0;
sendMsg.writeShort(ll); // Specify the LL value
sendMsg.writeShort(zz); // Specify the ZZ value

// The name of the SWITCH-TO-TRAN is 8 bytes long and encoded in
// CP1047
// This value must be converted to bytes to be written into the
// BytesMessage object
String trancode = new String("SWTCHTRN");
sendMsg.writeBytes(trancode.getBytes("Cp1047"));

// Specify the input data for the switch to transaction
sendMsg.writeUTF(inputMessage.getString("MYINPUT"));

// Build the control data object
IMSControlArea controlArea = new IMSControlArea();
byte controlData[] = "Richard".getBytes();
controlArea.addControlDataItem("name", controlData);

// Attach the control data object to the message object

Chapter 41. Programming Java dependent regions 739

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

((BytesMessageImpl) sendMsg).addControlArea(controlArea);

// The length of the request area can be retrieved by calling
// the BytesMessage.getBodyLength() method
// This value corresponds to the OALEN value in the AIB
System.out.println("Request Message Length (AIBOALEN): "

+ sendMsg.getBodyLength());

// Submit the ICAL call
// >>-ICAL--aib--request_area--responseArea---control_area---<<
// For synchronous program switch, the reply message will be a
// BytesMessage object
BytesMessage replyMsg = (BytesMessage) jmsQueueRequestor

.request(sendMsg);

// The response message will have the following format
// LL + ZZ + TRAN-OUTPUT

// Retrieve the LL field
replyMsg.readShort();

// Retrieve the ZZ field
replyMsg.readShort();

// Retrieve the output data from the switch to transaction and
// place it in the output message
outputMessage.setString("MYOUTPUT", replyMsg.readUTF());

// Send the output message back to IMS
msgQueue

.insert(outputMessage, MessageQueue.DEFAULT_DESTINATION);

}

// Terminate the application and free up any associated resources
app.end();

} catch (Exception e) {
// Error scenario, free up resources
app.end();
e.printStackTrace();
}

}

Program switching in JMP and JBP applications
IMS allows you to switch programs in JMP and JBP applications. You can perform
immediate program switches in JMP and JBP applications, and you can also make
a deferred program switch in a conversational JMP application.
Related concepts:
“Sending messages to other IMS application programs” on page 425

Immediate program switching for JMP and JBP applications
The IMS Java dependent region resource adapter supports immediate program
switching in JMP and JBP applications. An immediate program switch passes the
conversation directly to another conversational program that is specified by an
alternate PCB.

When an application makes an immediate program switch, the first
MessageQueue.insert call sends the SPA to the other conversational program, but
subsequent MessageQueue.insert calls will send messages to the new program. The
program does not return or respond to the original terminal.

740 Application Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The setAlternatePCBName method of the
com.ibm.ims.dli.tm.MessageDestinationSpec class sets the name of the alternate
PCB for the program switch. The setAlternatePCBName method issues the DL/I
CHNG call.

To make an immediate program switch in a JMP or JBP application:
1. Call the MessageDestinationSpec.setAlternatePCBName method to set the name

of the alternate PCB.
2. Call the MessageQueue.insert method to send the message to the alternate PCB.

Code sample of immediate program switching

The following code sample demonstrates how immediate program switching is
performed in a JMP application.
package sample.jmp;

import com.ibm.ims.dli.tm.Application;
import com.ibm.ims.dli.tm.ApplicationFactory;
import com.ibm.ims.dli.tm.IOMessage;
import com.ibm.ims.dli.tm.MessageDestinationSpec;
import com.ibm.ims.dli.tm.MessageQueue;
import com.ibm.ims.dli.tm.Transaction;

public class SampleJMPImmediatePgmSwitch {
private static IOMessage outputMessage = null;
private static MessageQueue msgQueue = null;
private static Application app = null;
private static IOMessage inputMessage = null;

public static void main(String[] args) {
try {

app = (Application) ApplicationFactory.createApplication();
msgQueue = (MessageQueue) app.getMessageQueue();
inputMessage

= app.getIOMessage("class://sample.jmp.InMessage");
outputMessage

= app.getIOMessage("class://sample.jmp.OutMessage");

//Define Message Destinations Specs
MessageDestinationSpec mds2

= new MessageDestinationSpec();
mds2.setAlternatePCBName("TPPCB1");
mds2.setDestination("JAVTRANJ");

String in = new String("");
while (msgQueue.getUnique(inputMessage)){

in = inputMessage.getString("Message").trim();
if(in.equalsIgnoreCase("ImmediatePGMSwitch1")){

outputMessage.setString("Message",
"Running ImmediatePGMSwitch1 Call");

msgQueue.insert(outputMessage,
MessageQueue.DEFAULT_DESTINATION);

// Insert Message to JAVTRANJ TPPCB1: DLIWithCommit
outputMessage.setString("Message",

"Insert Message to JAVTRANJ TPPCB1");
msgQueue.insert(outputMessage,

MessageQueue.DEFAULT_DESTINATION);

outputMessage.setString("Message", "DLIWithCommit");
outputMessage.setTransactionName("JAVTRANJ");

// Insert message to JAVTRANJ

Chapter 41. Programming Java dependent regions 741

msgQueue.insert(outputMessage, mds2);

// Commit transaction
Transaction tran = app.getTransaction();

tran.commit();
} else {

outputMessage.setString("Message",
"Invalid input - valid input is ’ImmediatePGMSwitch1’");

msgQueue.insert(outputMessage,
MessageQueue.DEFAULT_DESTINATION);

Transaction tran = app.getTransaction();
tran.commit();

}
}

} catch (Exception e) {
e.printStackTrace();

}
}

}

To perform immediate program switching in a JBP application, the steps are
similar to a JMP application. In the main module, setup a MessageDestinationSpec
instance then issue an insert call to another transaction. For example:
MessageDestinationSpec mds2 = new MessageDestinationSpec();
mds2.setAlternatePCBName("TPPCB1");
mds2.setDestination("JAVTRANJ");
...
outputMessage.setString("Message", "Some Message");
outputMessage.setTransactionName("JAVTRANJ");
msgQueue.insert(outputMessage, mds2);

Related concepts:
“Passing the conversation to another conversational program” on page 437

Deferred program switching for conversational JMP applications
You can make a deferred program switch in a conversational JMP application. A
deferred program switch changes the transaction code in the scratchpad area (SPA)
before the SPA is returned to IMS. When an application makes a deferred program
switch, the application replies to the terminal and passes the conversation to
another conversational application.

Use the setTransactionName(String) method of the com.ibm.ims.dli.tm.IOMessage
class to specify the transaction code in the SPA.

To make a deferred program switch in a conversational JMP application:
1. Call the insert(IOMessage) method to send the output message to the terminal.
2. Call the setTransactionName(String) method to set the name of the transaction

code in the SPA.
3. Call the insert(IOMessage) method to send the SPA to IMS.

Code sample of deferred program switching

The following code sample demonstrates how deferred program switching is
performed in a JMP application.
package sample.jmp;

import com.ibm.ims.dli.tm.Application;
import com.ibm.ims.dli.tm.ApplicationFactory;
import com.ibm.ims.dli.tm.IOMessage;
import com.ibm.ims.dli.tm.MessageDestinationSpec;
import com.ibm.ims.dli.tm.MessageQueue;

742 Application Programming

import com.ibm.ims.dli.tm.Transaction;

public class SampleJMPDeferredPGM {
private static IOMessage spaMessage = null;
private static MessageQueue msgQueue = null;
private static Application app = null;
private static IOMessage inputMessage = null;
private static Transaction tran = null;

public static void main(String[] args) {
try {

app = ApplicationFactory.createApplication();
spaMessage

= app.getIOMessage("class://sample.jmp.SPAMessage");
inputMessage

= app.getIOMessage("class://sample.jmp.InMessage");
msgQueue = app.getMessageQueue();
tran = app.getTransaction();

MessageDestinationSpec mds
= new MessageDestinationSpec();

mds.setAlternatePCBName("TPPCB1");
mds.setDestination("IVTCM");

String in = new String("");
while (msgQueue.getUnique(spaMessage)) {

if (msgQueue.getNext(inputMessage)) {
in = inputMessage.getString("Message").trim();
if (in.equalsIgnoreCase("DeferredPGMSwitch2")) {

inputMessage.setString("Message", spaMessage.getString("Message"));
msgQueue.insert(inputMessage, MessageQueue.DEFAULT_DESTINATION);

// Setting Deferred Program Switch
inputMessage.setString("Message", "Setting Deferred Program Switch");
msgQueue.insert(inputMessage, MessageQueue.DEFAULT_DESTINATION);

spaMessage.setString("Message", "SampleJMPDeferredPGM");
spaMessage.setTransactionName("IVTCM");
msgQueue.insert(spaMessage, mds);

inputMessage.setString("Message", "SampleJMPDeferredPGM Completed");
msgQueue.insert(inputMessage, MessageQueue.DEFAULT_DESTINATION);

tran.commit();
} else {
inputMessage.setString("Message", spaMessage.getString("Message"));
msgQueue.insert(inputMessage, MessageQueue.DEFAULT_DESTINATION);

inputMessage.setString("Message",
"Input Message was not ’DeferredPGMSwitch2’");

msgQueue.insert(inputMessage, MessageQueue.DEFAULT_DESTINATION);

tran.commit();
}

}
}

} catch(Exception e){
e.printStackTrace();

}
}

}

Related concepts:
“Passing the conversation to another conversational program” on page 437

Chapter 41. Programming Java dependent regions 743

Issuing synchronous program switch requests from a Java
dependent region
IMS provides support for synchronous program switch functionality from Java
message processing (JMP) or Java batch processing (JBP) applications through an
IMS implementation of the Java Message Service (JMS).

To use the JMP support for synchronous program switch, the IMS Enterprise Suite
JMS API jms.jar file must be on your classpath. To download the IMS Enterprise
Suite JMS API, go to the following URL: http://www-01.ibm.com/software/data/
ims/enterprise-suite/index.html.

You must create an OTMA destination descriptor with the type IMSTRAN to use
this function.

Restrictions:

v The IMS implementation of JMS is limited to supporting the Point-to-Point (PTP)
messaging domain only. In addition, support is only provided for non-transacted
QueueSession objects with Session.AUTO_ACKNOWLEDGE mode.

v The DFSYIOE0 and DFSMSCE0 exit routines are not called for synchronous
program switch requests.

v The target transaction is not part of the RRS commit scope for the initiating
application program.

v JBP applications cannot make synchronous program switch requests in a DBCTL
environment.

v The target transaction has read-only access to Fast Path Main Storage Databases
(MSDBs).

v The target transaction cannot be a conversational transaction.
v Synchronous program switch requests can be used in a shared queues

environment only if all of the participating IMS systems have a DBRC MINVERS
value of 13.1 or greater.

If the application attempts to call a JMS method that is not supported by IMS or
pass an unsupported argument in a JMS method call, the API throws a
JMSException.

The following procedure shows the high-level programming flow to implement a
synchronous program switch operation from a JMP application.
1. Create an IMS JMP application object.
2. Create an IMSQueueConnectionFactory. The connection factory and

application objects are reusable.
3. Get an IMS message queue reference.
4. Create input and output message objects.
5. Configure the timeout and response area size of your connection factory and

create a connection.
6. From the connection, create a JMS queue session.
7. Configure the queue session object with the name of your IMSTRAN OTMA

destination descriptor and create a JMS queue requestor.
8. Create a BytesMessage object for the ICAL call input message area. For

synchronous program switch requests, only BytesMessage is supported.
9. Configure the message object with the target tran code, message length

information, and input data.
10. Submit the ICAL call.

744 Application Programming

http://www-01.ibm.com/software/data/ims/enterprise-suite/index.html
http://www-01.ibm.com/software/data/ims/enterprise-suite/index.html

11. Retrieve the output message, parse the response message length information,
and get the output message data.

12. Clean up the output message and terminate the application.

This example demonstrates how to make a synchronous program switch request
from a JMP application.

import javax.jms.BytesMessage;
import javax.jms.QueueConnection;
import javax.jms.QueueRequestor;
import javax.jms.QueueSession;
import com.ibm.ims.jms.IMSQueueConnectionFactory;
import com.ibm.ims.dli.tm.Application;
import com.ibm.ims.dli.tm.ApplicationFactory;
import com.ibm.ims.dli.tm.IOMessage;
import com.ibm.ims.dli.tm.MessageQueue;

public class SyncCalloutSample
{
private static IOMessage inputMessage = null;
private static IOMessage outputMessage = null;
private static MessageQueue msgQueue = null;
private static Application app = null;

public static void main(String args[])
{
// Create an IMS JMP application

app = ApplicationFactory.createApplication();

// Get the IMS JMS queue connection factory
IMSQueueConnectionFactory jmsConnectionFactory = app.getIMSQueueConnectionFactory();
QueueConnection jmsConnection = null;
QueueSession jmsQueueSession = null;
javax.jms.Queue jmsQueue = null;
QueueRequestor jmsQueueRequestor = null;

try {
// Get a reference to the IMS message queue
msgQueue = app.getMessageQueue();

// Create an input message object
inputMessage = app.getIOMessage("class://MyInputMessage");

// Create an output message object
outputMessage = app.getIOMessage("class://MyOutputMessage");

// Retrieve messages off the queue
while(msgQueue.getUnique(inputMessage)) {

// Setting the JMS settings to issue an ICAL call

// Specify the amount of time to wait for a response
// from an ICAL call. This value corresponds to the
// RSFLD value in the AIB
jmsConnectionFactory.setTimeout(999999);

// Specify the expected size of the response message
// from the ICAL call. This value corresponds to the
// OAUSE value in the AIB
jmsConnectionFactory.setResponseAreaLength(0x00000033);

// Create the JMS queue connection
jmsConnection = jmsConnectionFactory.createQueueConnection();

// Create the JMS queue session
jmsQueueSession = jmsConnection.createQueueSession(false, 1);

// Specify the OTMA Routing descriptor which describes the
// target that the ICAL call will be sent to. This value

Chapter 41. Programming Java dependent regions 745

// correponse with the RSNM1 value in the AIB
jmsQueue = jmsQueueSession.createQueue("DEST0001");

// Create the JMS queue requestor
jmsQueueRequestor = new QueueRequestor(jmsQueueSession, jmsQueue);

// Build the request area for the ICAL call
// For synchronous program switch a BytesMessage object must be used
BytesMessage sendMsg = jmsQueueSession.createBytesMessage();

// The content of the request area must follow the existing
// format for synchronous program switch:
// LL + ZZ + SWITCH-TO-TRAN + TRAN-INPUT
short ll = 50;
short zz = 0;
sendMsg.writeShort(ll); // Specify the LL value
sendMsg.writeShort(zz); // Specify the ZZ value

// The name of the SWITCH-TO-TRAN is 8 bytes long and encoded in CP1047
// This value must be converted to bytes to be written into the BytesMessage object
String trancode = new String("SWTCHTRN");
sendMsg.writeBytes(trancode.getBytes("Cp1047"));

// Specify the input data for the switch to transaction
sendMsg.writeUTF(inputMessage.getString("MYINPUT"));

// The length of the request area can be retrieved by calling the
// BytesMessage.getBodyLength() method
// This value corresponds to the OALEN value in the AIB
System.out.println("Request Message Length (AIBOALEN): " + sendMsg.getBodyLength());

// Submit the ICAL call
// For synchronous program switch, the reply message will be a BytesMessage object
BytesMessage replyMsg = (BytesMessage)jmsQueueRequestor.request(sendMsg);

// The response message will have the following format
// LL + ZZ + TRAN-OUTPUT

// Retrieve the LL field
replyMsg.readShort();

// Retrieve the ZZ field
replyMsg.readShort();

// Retrieve the output data from the switch to transaction and place it in
// the output message
outputMessage.setString("MYOUTPUT", replyMsg.readUTF());

// Send the output message back to IMS
msgQueue.insert(outputMessage, MessageQueue.DEFAULT_DESTINATION);

}

// Terminate the application and free up any associated resources
app.end();

}
catch(Exception e) {
// Error scenario, free up resources
app.end();

e.printStackTrace();
}

}

}

This example demonstrates how to make a synchronous program switch request
from a JBP application.

746 Application Programming

package testcases.udb.opendb.t2;

import javax.jms.BytesMessage;
import javax.jms.QueueConnection;
import javax.jms.QueueRequestor;
import javax.jms.QueueSession;

import com.ibm.ims.jms.IMSQueueConnectionFactory;
import com.ibm.ims.dli.tm.Application;
import com.ibm.ims.dli.tm.ApplicationFactory;

public class SyncPgmSwitchFromJBPSample {
private static Application app = null;

public static void main(String args[]) {
// Create an IMS JBP application
app = ApplicationFactory.createApplication();

// Get the IMS JMS queue connection factory
IMSQueueConnectionFactory jmsConnectionFactory = app.getIMSQueueConnectionFactory();
QueueConnection jmsConnection = null;
QueueSession jmsQueueSession = null;
javax.jms.Queue jmsQueue = null;
QueueRequestor jmsQueueRequestor = null;

try {

// Setting the JMS settings to issue an ICAL call

// Specify the amount of time to wait for a response from an
// ICAL call. This value corresponds to the RSFLD value in the AIB
jmsConnectionFactory.setTimeout(999999);

// Specify the expected size of the response message from the
// ICAL call. This value corresponds to the OAUSE value in the AIB

int expectedResponseLength = 50;
jmsConnectionFactory.setResponseAreaLength(expectedResponseLength);

// Create the JMS queue connection
jmsConnection = jmsConnectionFactory.createQueueConnection();

// Create the JMS queue session
jmsQueueSession = jmsConnection.createQueueSession(false, 1);

// Specify the OTMA Routing descriptor which describes the
// target that the ICAL call will be sent to. This value
// corresponds with the RSNM1 value in the AIB
jmsQueue = jmsQueueSession.createQueue("MYDEST");

// Create the JMS queue requester
jmsQueueRequestor = new QueueRequestor(jmsQueueSession,

jmsQueue);

// Build the request area for the ICAL call
// For synchronous program switch a BytesMessage object must be used
BytesMessage sendMsg = jmsQueueSession.createBytesMessage();

// The content of the request area must follow the existing
// format for synchronous program switch:
// LL + ZZ + SWITCH-TO-TRAN + TRAN-INPUT
short ll = 50;
short zz = 0;
sendMsg.writeShort(ll); // Specify the LL value
sendMsg.writeShort(zz); // Specify the ZZ value

// The name of the SWITCH-TO-TRAN is 8 bytes long and encoded in CP1047
// This value must be converted to bytes to be written into the

Chapter 41. Programming Java dependent regions 747

// BytesMessage object
String trancode = new String("SWTCHTRN");
sendMsg.writeBytes(trancode.getBytes("Cp1047"));

// Specify the input data for the switch to transaction
sendMsg.writeUTF("MYINPUT");

// The length of the request area can be retrieved by calling
// the BytesMessage.getBodyLength() method
// This value corresponds to the OALEN value in the AIB
System.out.println("Request Message Length (AIBOALEN): "

+ sendMsg.getBodyLength());

// Submit the ICAL call
// >>-ICAL--aib--request_area--responseArea------<<
// For synchronous program switch, the reply message will be a
// BytesMessage object
BytesMessage replyMsg = (BytesMessage) jmsQueueRequestor

.request(sendMsg);

// The response message will have the following format
// LL + ZZ + TRAN-OUTPUT

// Retrieve the LL field
replyMsg.readShort();

// Retrieve the ZZ field
replyMsg.readShort();

// Retrieve the Data field
byte[] messageBody = new byte[(int) replyMsg.getBodyLength()];
replyMsg.readBytes(messageBody);

// Terminate the application and free up any associated resources
app.end();

} catch (Exception e) {
// Error scenario, free up resources
app.end();
e.printStackTrace();

}
}

}

Related concepts:

Synchronous program switch requests (Communications and Connections)

IBM Enterprise COBOL for z/OS interoperability with JMP and JBP
applications

With the IBM Enterprise COBOL for z/OS support for COBOL and Java language
interoperability, you can write Java and Object-Oriented (OO) COBOL applications
that execute in a Java dependent region and invoke existing COBOL programs.

With this support, you can:
v Call an object-oriented (OO) COBOL application from a Java application by

building the frontend application, which processes messages, in Java, and the
back end, which processes databases, in OO COBOL.

v Build an OO COBOL application containing a main routine that can invoke Java
routines.

748 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_otma_admin_syncswitch.htm#ims_otma_admin_syncswitch

You can access COBOL code in a JMP or JBP region because Enterprise COBOL
provides object-oriented language syntax that enables you to:
v Define classes with methods and data implemented in COBOL
v Create instances of Java and COBOL classes
v Invoke methods on Java and COBOL objects
v Write classes that inherit from Java classes or other COBOL classes
v Define and invoke overloaded methods

In IBM Enterprise COBOL for z/OS programs, you can call the services provided
by the JNI to obtain Java-oriented capabilities in addition to the basic OO
capabilities available directly in the COBOL language.

In IBM Enterprise COBOL for z/OS classes, you can code CALL statements that
interface with procedural COBOL programs. Therefore, COBOL class definition
syntax can be especially useful for writing wrapper classes for procedural COBOL
logic, enabling existing COBOL code to be accessed from Java.

Java code can create instances of COBOL classes, invoke methods of these classes,
and can extend COBOL classes.

Related Reading: For details building applications that use IBM Enterprise
COBOL for z/OS and that run in an IMS dependent region, see Enterprise COBOL
for z/OS Programming Guide.
Related concepts:
“Overview of the IMS Java dependent regions” on page 717

IBM Enterprise COBOL for z/OS backend applications in a
JMP or JBP region

When you define an object-oriented (OO) COBOL class and compile it with the
IBM Enterprise COBOL for z/OS compiler, the compiler generates a Java class
definition with native methods and the object code to implement the native
methods. After compiling the class, you can create an instance and invoke the
methods of the compiled class from a Java program that runs in a JMP or JBP
region.

For example, you can define an OO COBOL class with the appropriate DL/I call in
COBOL to access an IMS database.

To make the implementation of this class available to a Java application running
with IMS:
1. Compile the COBOL class with the IBM Enterprise COBOL for z/OS compiler

to generate a Java source file, which contains the class definition, and an object
module, which contains the implementation of the native methods.

2. Compile the generated Java source file with the Java compiler to create the
application class file.

3. Link the object module into a dynamic link library (DLL) in the HFS file (.so).
4. Update the application class path (ibm.jvm.application.class.path) for the JMP

or JBP region to allow access to the Java class file.
5. Update the library path for the JMP or JBP region to allow access to the DLL.

Chapter 41. Programming Java dependent regions 749

IBM Enterprise COBOL for z/OS frontend applications in a
JMP or JBP region

The object-oriented syntax of IBM Enterprise COBOL for z/OS enables you to
build COBOL applications with a main method, which can be run directly in a JMP
or JBP region.

The JMP or JBP region locates, instantiates, and invokes the main method of an OO
COBOL application in the same way it does for the main method of a Java
application.

You can write an application for an JMP or JBP region entirely with OO COBOL,
but a more likely use for a frontend COBOL application is to call a Java routine
from a COBOL application.

When running within the JVM of an JMP or JBP region, the IBM Enterprise
COBOL for z/OS runtime support automatically locates and uses the JVM to
invoke methods on Java classes.

A frontend OO COBOL application with a main routine that runs in a JMP or JBP
region has the same requirements as a Java program that runs in a JMP or JBP
region.

Accessing DB2 for z/OS databases from JMP or JBP applications
A JMP or JBP application can access DB2 for z/OS Version 8 and DB2 for z/OS
Version 9 databases by using the JDBC driver for DB2 for z/OS (JCC driver
version 3.57.91).

Attention: If you access a DB2 for z/OS database using both Java and COBOL in
the same application, you might experience unexpected behavior, but only if the
commit or rollback processing is done in COBOL while active cursors are in the
Java portion.

The JMP or JBP region that the application is running in can also be defined with
DB2 for z/OS attached by the DB2 Recoverable Resource Manager Services
attachment facility (RRSAF).

Accessing DB2 for z/OS data from a JMP or JBP application is like accessing IMS
data. When writing a JMP or JBP application that accesses DB2 for z/OS data,
consider both the differences from IMS database access and the differences from
accessing DB2 for z/OS data in other environments:
v You must create a DB2 plan for each PSB (typically each Java application) that is

used to access DB2 for z/OS.
v You can have only one active DB2 for z/OS connection open at any time.
v If you are using the type-2 JDBC drivers for DB2 for z/OS, you must use the

default connection URL in the application program. For example,
jdbc:db2os390: or db2:default:connection.

v If you are using the type-4 DB2 JDBC drivers, you can use a specific connection
URL in the application program.

v To commit or roll back work, use the Transaction.commit method or the
Transaction.rollback method.
– For JMP applications, the Transaction.commit method commits all work,

including SQL calls. Calling the Transaction.commit and Transaction.rollback

750 Application Programming

methods does not automatically reset the connection to DB2 for z/OS. The
connection to DB2 for z/OS is reset when you issue a
MessageQueue.getUnique call.

– For JBP applications, the Transaction.commit method commits SQL calls.
v Because RRSAF is the coordinator, you cannot use the

Connection.setAutoCommit or Connection.commit method of the JDBC driver
for DB2 for z/OS.

Related concepts:
“Overview of the IMS Java dependent regions” on page 717
Related tasks:

Preparing your system to use the DB2 Attach Facility (Communications and
Connections)

DB2: Installing the IBM Data Server Driver for JDBC and SQLJ

Chapter 41. Programming Java dependent regions 751

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_usingdb2af.htm#ims_usingdb2af
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_usingdb2af.htm#ims_usingdb2af
http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.java/src/tpc/imjcc_jccinstall.dita#imjcc_jccinstall

752 Application Programming

Part 7. PL/I top-down development for IMS Enterprise Suite
SOAP Gateway web services

You can generate a PL/I application template from a web service description
language (WSDL) document that describes the operations and messages of a web
service by using IBM Rational Developer for System z. Then use the PL/I
segmentation APIs to add your business logic to the generated application before
enabling this application as a web service running on IMS Enterprise Suite SOAP
Gateway.

Rational Developer for System z has a batch processor that can generate an IMS
web service application template in Enterprise PL/I from a WSDL file. The
approach is known as the top-down approach, where the application to serve as a
web service is generated from a web service description file. The batch processor
generates the data structure, XML converters, and PL/I application template file
from the WSDL file that describes the web service.

© Copyright IBM Corp. 1974, 2015 753

754 Application Programming

Chapter 42. WSDL-to-PL/I segmentation APIs for adding
business logic in generated PL/I templates

Rational Developer for System z generates metadata to record the high-level
relationships between the WSDL file that you supply and the generated artifacts
based on the PL/I segmentation APIs. Use this set of APIs to add your business
logic before enabling it as a web service on IMS Enterprise Suite SOAP Gateway.

Important: The IRZPWSIO segmentation APIs in Rational Developer for System z
V9.0.1 or older versions is renamed to DFSPWSIO in IMS. Starting with IMS
Enterprise Suite V3.1 SOAP Gateway and Rational Developer for System z V9.0.1.1,
you must use the DFSPWSIO segmentation APIs in IMS.

Language structures are written to a single include file that begins with an
operation-to-language-structure dictionary comment. The metadata file is in XML
format and is used by the batch processor to generate XML converters, deployment
metadata, and template programs. Annotations are added to the generated source
code to describe the relationships between the generated language structures and
the XML schemas from which they are derived.

The annotations appear as language comments immediately preceding the
definitions of the language structures or language structure members to which they
apply. The WSDL2PLI component in Rational Developer for System z uses a set of
segmentation APIs in the DFSPWSH include file that is required during
compilation of the PL/I program. These APIs define how to consume and produce
IMS messages. The DFSPWSH include file in the SDFSSMPL data set provides the
PL/I binding and offers pointers to the data structures.

For each operation on the specified service and port, the following is generated:
v The PL/I structure(s) for operation input message
v The XSD to PL/I mapping session for operation input message
v The PL/I to XSD mapping session for operation output message
v The PL/I structure(s) for operation output message

For each operation in the WSDL, an operationNameHandler procedure and an
operationNameImpl procedure are created in the generated template. The
operationNameHandler procedure contains protocol logic while the
operationNameImpl procedure is ready to be filled out and customized with your
business logic.

A DFSPWSHK user exit is provided to demonstrate how you can inspect, modify,
or replace the buffer which contains the current data structure that is being
processed by the DFSPWSIO segmentation APIs. Customize the DFSPWSHK user
exit if you need to inspect, modify, or replace data structures as they are processed
by the DFSPWSIO APIs. The DFSPWSHK user exit allows you to keep track of
whether or not a data structure has been modified or replaced via the
dfs_in_struct_state and dfs_out_struct_state parameters. These and other
parameters are documented in detail in the sample procedure and in the

The DFSPWSHK user exit is invoked by DFSPWSIO segmentation APIs when the
APIs are called by XML converters in IMS Connect or by message processing

© Copyright IBM Corp. 1974, 2015 755

programs. Therefore the DFSPWSHK exit must be compiled and linked into a data
set such that IMS Connect and Message Processing Regions could find it by using
the standard MVS search order (for example, STEPLIB and LINKLIST). The
following diagram demonstrates how the DFSPWSHK exit is called by both the
XML converters in IMS Connect and by message processing programs.

v DFSXSETS: This API is used by the PL/I XML converter in IMS Connect to set
a language structure that contains either the SOAP header, SOAP body, or SOAP
fault. This API does not copy language structures into the IMS Connect output
buffer until it is instructed to do so through the parameter @dfs_commit_structs.
It is an error to deallocate or otherwise invalidate structure pointers passed to
the API via parameter @dfs_struct_ptr before instructing the API to commit
(copy) all structures to the IMS Connect output buffer.

v DFSQGETS: This API is used by the message processing PL/I program to get
that language structure from the IMS Message Queue by using the CEETDLI
in-terface. The language structure contains either a SOAP header, SOAP body, or
SOAP fault. All language structures must retrieved from the IMS Message
Queue prior to setting the language structures by using the DFSQSETS API.

v DFSQSETS: This API sets a language structure that contains either the SOAP
header, SOAP body, or SOAP fault. This API does not insert language structures
into the IMS Message Queue until it is instructed to do so via parameter
@dfs_commit_structs. Therefore it is an error to deallocate or otherwise
invali-date structure pointers that are passed to the API through the
@dfs_struct_ptr pa-rameter before instructing the API to commit (insert) all
structures to the IMS Message Queue.

v DFSXGETS: This API is used by the PL/I XML converter in IMS Connect to get
a language structure that contains either the SOAP header, SOAP body, or SOAP
fault. Since the IMS Message Queue is not available to XML Conversion in IMS
Connect, language structures are retrieved from the IMS Connect input buffer.
The expected format of the IMS Connect input buffer is an LLZZDATA byte
stream.

For more information about the generated DFSPWSH include file, see IMS Version
14 Application Programming APIs.
Related reference:

Output buffer

Input buffer

XML converter

IMS Connect

Message processing
region

Message
processing
program

Message
queue

IMS
Enterprise

Suite
SOAP

Gateway
DFSXSETS
DFSXGETS

DFSPWSHK DFSPWSHK

DFSQGETS
DFSQSETS

756 Application Programming

Include file DFSPWSH (Application Programming APIs)

WSDL-to-PL/I segmentation APIs exit routine (DFSPWSHK) (Exit Routines)

Chapter 42. WSDL-to-PL/I segmentation APIs for adding business logic in generated PL/I templates 757

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dfspwsio_apis_dfspwsh.htm#includefiledfspwsh
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/ims_dfspwshk.htm#ims_dfspwshk

758 Application Programming

Chapter 43. Sample of a generated PL/I application template

IMS PL/I application requires a message protocol and segmentation API
(DFSPWSIO) by the service provider message processing programs (MPPs) and
XML converters.

Here is an example operation defined in the FAST247.wsdl included in this sample.
The operation here is a check balance operation that takes in a request and returns
a response. A SOAP fault element is also defined.
<wsdl:operation name="CheckBalanceOperation">

<soap:operation soapAction="CheckBalanceOperation" style="document" />
<wsdl:input name="CheckBalanceRequest">

<soap:body parts="CheckBalancePart" use="literal" />
</wsdl:input>
<wsdl:output name="CheckBalanceResponse">

<soap:body parts="CheckBalancePart" use="literal" />
</wsdl:output>
<wsdl:fault name="ServiceExceptionFault">

<soap:fault use="literal" name="ServiceExceptionFault" />
</wsdl:fault>

</wsdl:operation>

The top-down application development tooling creates the corresponding operation
in the PL/I application template:
CheckBalanceOperationImpl: procedure(iopcb_mask_ptr, checkBalanceReques
t_ptr, checkBalanceResponse_ptr, ServiceException_ptr) internal;

dcl iopcb_mask_ptr pointer byvalue;
dcl checkBalanceRequest_ptr pointer byvalue;
dcl checkBalanceResponse_ptr pointer byaddr;
dcl ServiceException_ptr pointer byaddr;

return;

end CheckBalanceOperationImpl;

© Copyright IBM Corp. 1974, 2015 759

760 Application Programming

Chapter 44. Trace output for WSDL-to-PL/I segmentation APIs

Trace information for the segmentation APIs is typically written to standard out
and therefore can be found in the job log of the Message Processing Region.

Each API has a trace mode that when enabled writes out information from the
message header and a two-column hex dump of the language structure. These
dumps can be helpful, because an IMS Connect Recorder Trace shows only the first
670 bytes of an IMS message.

The following is an example of source code:
01: /* Invoke API DFSQSETS to set the SOAP body language
02: * structure and commit it to the IMS Message Queue.
03: */
04: @dfs_struct_name = ’gettteam_1_0Response’;
05: @dfs_struct_ptr = gettteam_1_0Response_ptr;
06: @dfs_struct_size = storage(getteam)1_0Response);
07: @dfs_commit_structs = ’1’b;
08: @dfs_cee_feedback_ptr = addr(@dfs_cee_feedback);
09: @dfs_debug = ’1’b;
10:
11: @return_code =
12: DFSQSETS(@dfs_async_msg_header_ptr,
13: @dfs_iopcb_mask_ptr, @dfs_soap_body_struct,
14: @dfs_struct_name, @dfs_struct_ptr,
15: @dfs_struct_size, @dfs_commit_structs,
16: @dfs_cee_feedback_ptr, @dfs_debug);
17:
18: if (@return_code != @dfs_success) then do;
19: display(’MYMPP#handle_getteam():
20: || ’ERROR, DFSQSETS @dfs_soap_body_struct, ’
21: || ’@return_code: ’|| trim(@return_code) || ’.’);
22: return;
23: end;

The corresponding trace output for this source code is as follows:
..:: DFSPWSIO#DFSQSETS() @20140415152643909 ::..
o @dfs_asyn_msg_header_ptr: 877656904.
o @dfs_iopcb_ptr: 110672.
o @dfs_struct_type: 2.
o @dfs_struct_name: getteam_1_0Response.
o @dfs_struct_ptr: 878837800.
o @dfs_struct_size: 150274.
o @dfs_commit_struct: 1.
o @dfs_cee_feedback_ptr: 875679616.
o DFSQSETS#setBodyStruct()
o body_struct_ptr: 878837800.
o body_struct_size: 150274.
o body_struct_ptr(1:body_struct_size):
00000000: 000001F4 00000001 00000002 000DE296 |...4..........So|
00000010: 86A3A681 998540E3 85A2A300 00000000 |ftware Test.....|
00000020: 00000000 00000000 00000000 00000000 |................|
...

© Copyright IBM Corp. 1974, 2015 761

762 Application Programming

Chapter 45. Limitations and restrictions of the segmentation
APIs

The APIs are designed to support SOAP header, body, and fault structures, but
currently the APIs implement only the SOAP body and fault structures.

© Copyright IBM Corp. 1974, 2015 763

764 Application Programming

Part 8. Appendixes

© Copyright IBM Corp. 1974, 2015 765

766 Application Programming

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1974, 2015 767

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

768 Application Programming

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
This information documents Product-sensitive Programming Interface and
Associated Guidance Information provided by IMS, as well as Diagnosis,
Modification or Tuning Information provided by IMS.

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this software product. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive
Programming Interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.
Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a section or topic,
or by a Product-sensitive programming interface label. IBM requires that the
preceding statement, and any statement in this information that refers to the
preceding statement, be included in any whole or partial copy made of the
information described by such a statement.

Diagnosis, Modification or Tuning information is provided to help you diagnose,
modify, or tune IMS. Do not use this Diagnosis, Modification or Tuning
information as a programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs, either
by an introductory statement to a section or topic, or by the following marking:
Diagnosis, Modification or Tuning Information.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Notices 769

http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software

770 Application Programming

Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Notices 771

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

772 Application Programming

Bibliography

This bibliography lists all of the publications in the IMS 14 library.

Title Acronym Order number
IMS Version 14 Application Programming APG SC19-4208
IMS Version 14 Application Programming APIs APR SC19-4209
IMS Version 14 Commands, Volume 1: IMS
Commands A-M

CR1 SC19-4210

IMS Version 14 Commands, Volume 2: IMS
Commands N-V

CR2 SC19-4211

IMS Version 14 Commands, Volume 3: IMS
Component and z/OS Commands

CR3 SC19-4212

IMS Version 14 Communications and Connections CCG SC19-4213
IMS Version 14 Database Administration DAG SC19-4214
IMS Version 14 Database Utilities DUR SC19-4215
IMS Version 14 Diagnosis DGR GC19-4216
IMS Version 14 Exit Routines ERR SC19-4217
IMS Version 14 Installation INS GC19-4218
IMS Version 14 Licensed Program Specifications LPS GC19-4231
IMS Version 14 Messages and Codes, Volume 1: DFS
Messages

MC1 GC18-4219

IMS Version 14 Messages and Codes, Volume 2:
Non-DFS Messages

MC2 GC18-4220

IMS Version 14 Messages and Codes, Volume 3: IMS
Abend Codes

MC3 GC18-4221

IMS Version 14 Messages and Codes, Volume 4: IMS
Component Codes

MC4 GC18-4222

IMS Version 14 Operations and Automation OAG SC19-4223
IMS Version 14 Release Planning RPG GC19-4224
IMS Version 14 System Administration SAG SC19-4225
IMS Version 14 System Definition SDG GC19-4226
IMS Version 14 System Programming APIs SPR SC19-4227
IMS Version 14 System Utilities SUR SC19-4228
Program Directory for Information Management
System Transaction and Database Servers V14.01.00

GI10-8988

Program Directory for Information Management
System Database Value Unit Edition V14.01.00

GI13-4602

Program Directory for Information Management
System Transaction Manager Value Unit Edition
V14.01.00

GI13-4601

© Copyright IBM Corp. 1974, 2015 773

774 Application Programming

Index

Numerics
274X

defining to operate with MFS 484
3270P Printer

defining to operate with MFS 484
3290 Display Panel

defining to operate with MFS 484
3601 workstation

defining to operate with MFS 484
3770 Data Communication System

defining to operate with MFS 484
3790 Communication System

defining to operate with MFS 484
6670 Printer

defining to operate with MFS 484

A
abend codes

pseudo- 53
S201 361
U0069 55
U0711 122
U0777 46
U1008 50
U119 122
U2478 46
U2479 46
U261 361
U3301 50
U3303 46
U476 361
U711 104

access methods
DEDB 78
description 73
GSAM 80
HDAM 75
HIDAM 76
HISAM 79
HSAM 79
MSDB 77
PHDAM 73, 75
PHIDAM 73, 76
SHISAM 80
SHSAM 80

access of
IMS databases through z/OS 80
segments through different paths 86

accessibility
features xiii
keyboard shortcuts xiii

accessing data
from an application program 590

accessing databases with application
programs 36

accessing GSAM databases 309
adding

data 587
addressability to UIB, establishing 237

addressing mode (AMODE) 252, 405
Advanced Function Printing (AFP) 463
AFPDS and IMS Spool API 463
aggregates, data 22
AIB (application interface block)

address return 246
AIB identifier (AIBID) 397
AIBERRXT (reason code) 232

AIB mask 397
AIBID (AIB identifier) field, AIB

mask 232
AIBLEN (DFSAIB allocated length)

field 397
AIBLEN (DFSAIB allocated length)

field, AIB mask 232
AIBOALEN (maximum output area

length) 232
AIB mask 397

AIBOAUSE (used output area length)
AIB mask 397
description 232

AIBREASN (reason code) 232
AIBRSA1 (resource address) 232

AIB mask 397
AIBRSNM1 (resource name)

AIB mask 397
description 232

AIBSFUNC (subfunction code)
AIB mask 397
description 232

defining storage 245, 400
description 245, 400
DFSAIB allocated length

(AIBLEN) 232, 397
fields 232, 397
mask 232, 397
program entry statement 246
specifying 232, 397

AIB (Application Interface Block)
supported commands 519

AIB identifier (AIBID)
description 232

AIB interface 12
AIB mask, specifying 232
AIBERRXT (reason code) 232
AIBOALEN (maximum output area

length) field, AIB mask 232
AIBOAUSE (used output area length)

field, AIB mask 232
AIBREASN (reason code) AIB mask,

field 232
AIBREASN (reason code) field, AIB

mask 232
AIBRSA1 (resource address) field, AIB

mask 232
AIBRSNM1 (resource name) field, AIB

mask 232
AIBSFUNC (subfunction code) field, AIB

mask 232
AIBTDLI interface 55, 245, 400
AJ status code 543

AL_LEN call 352, 356
allocation, dynamic 56
alternate destinations

sending messages 423
alternate PCB 525

alternate destinations 423
change call 423
CHNG call

description 423
using PURG with 423

defining in ISRT call 422
destination of modifiable alternate

PCBs 423
express 422
modifiable

description 422
use 423

modifiable alternate PCBs
changing the destination 423
CHNG call 423
description 423

modifiable PCBs 423
PURG call

description 423
using CHNG with 423

replying to one alternate
terminal 423

response 436
SAMETRM=YES 436
sending messages

to several alternate
destinations 423

using alternate PCBs 423
using the PURG call 423

sending messages to other
terminals 423

types and uses 397
use with program-to-program

message switching 425
using the CHNG call with 423

alternate PCB mask
description 397
format 397

alternate PCBs 107
alternate response PCBs 107
alternate terminals

responding 423
AM status code 543
AMODE 252
AMODE(31) 517
analysis of

processing requirements 35
required application data 17
user requirements 15

anchor point, root 75
AND operators

dependent 298
independent 298

API (application programming interface)
for LU 6.2 devices

explicit API 121

© Copyright IBM Corp. 1974, 2015 775

API (application programming interface)
for LU 6.2 devices (continued)

implicit API 121
APPC 361

application program types for LU 6.2
devices 111

basic conversation 114
description 111
entering IMS transactions from LU 6.2

devices 111
LU 6.2 partner program design

DFSAPPC message switch 144
flow diagrams 122
integrity after conversation

completion 142
mapped conversation 114
RRS 361

APPC conversational program
CPI-C driven 444
ending the conversation 442
message switching 439
modified application program

MSC 443
remote execution, MSC 443

modified IMS application 443
application data

analyzing required 17
identifying 17

application design
analyzing

processing requirements 57
the data a program must

access 58
user requirements 15, 17

data dictionary, using 20
DataAtlas 20
DB/DC Data Dictionary 20
debugging 463
designing a local view 22
documenting 15, 177
IMS Spool API interface 461
overview 15

application interface block (AIB) 232
Application Interface Block (AIB)

supported commands 519
application program 116, 666

checking success of SQL
statements 557

coding SQL statements 557
dynamic SQL 559
selecting rows using a cursor 595

design
tasks overview 13

documentation 177
HALDB environment,

scheduling 252
hierarchy examples 5
I/O areas, specifying 240, 399
including queries 557
preparation

preparing for running 598
sync point 279
test 147
TSO 46

application programming
catalog 254
database versioning 257

application programming (continued)
IMS catalog 254
SQL 553

application programming interface
(API) 121

application programs
accessing databases 36
assembler language 213, 379

DL/I call formats 213, 379
CICS

testing 169
DL/I calls 213, 379

sample call formats 213, 379
host structures 558
host variables 558
Pascal 221, 387
PL/I 224, 390
PL/I language 755, 759, 761, 763
PL/I top-down development 753
sample PL/I templates 759

application programs, IFP 525
applications

development tasks overview 13
APSB (allocate program specification

block) 121, 361
area, I/O 12
AREALIST call 358
assembler language

DL/I call-level sample 194
DL/I command-level sample 500
DL/I program structure 192
entry statement 246
MPP coding 453
program entry 246
register 1, program entry 246
return statement 246
skeleton MPP 453
SSA definition examples 242
UIB, specifying 237
UIBDLTR

introduction 237
UIBFCTR

introduction 237
UIBPCBAL

introduction 237
asynchronous conversation, description

for LU 6.2 transactions 113
AUTH call 99
authorization

ID DB2 for z/OS 99
security 99

availability enhancements, data 551
availability of data 10, 53, 69

sensitivity 70

B
back-out database changes 67
backing out

database changes 530
backout point 445

description 445
intermediate 530
intermediate (SETS/SETU) 449

backout point, intermediate 292
backout, dynamic 39
bank account database example 5

basic checkpoint 49, 65, 68
basic conversation, APPC 114
Basic edit

IMS TM 475
Basic Edit

input message 413
output message 413
translation to uppercase 413

basic edit, overview of 102
Batch Backout utility 39
batch environment 36
batch message processing (BMP)

programs
issuing checkpoints 529
PCBs 525

batch message processing program. 42
batch programs

assembler language 192
C language 196
COBOL 199
command-level samples

assembler 500
C 511
COBOL 504
PL/I 507

converting to BMPs 42
databases that can be accessed 36, 58
DB batch processing 39
differences from online 39
issuing checkpoints 50, 65, 529
maintaining integrity 288
Pascal 206
PL/I 208
recovery 39, 64
recovery of database 67

Batch Terminal Simulator (BTS) 148
batch-oriented BMPs. 42
BILLING segment 5
binder options with EXEC DLI 517
binding, reference 210
BKO execution parameter 39
block descriptor word (BDW)

IMS Spool API 463
BMP (batch message processing)

program 42
batch-oriented 42

checkpoints in 50, 65
databases that can be accessed 42
description of 42
limiting number of locks with

LOCKMAX= parameter 50
recovery 42

databases that can be accessed 36, 58
transaction-oriented

checkpoints in 50
databases that can be accessed 44
recovery 44

BMP (batch message processing)
programs

basic checkpoint
issuing 529

checkpoint (CHKP)
description 529
EXEC DLI command 529

checkpoint (CHKP) command
in a Batch or BMP Program 529
issuing 529

776 Application Programming

BMP (batch message processing)
programs (continued)

checkpoint (CHKP) EXEC DLI
command

current position 529
CHKP (Checkpoint)

description 529
EXEC DLI command 529

CHKP (Checkpoint) command
issuing in a Batch or BMP

Program 529
CHKP (Checkpoint) EXEC DLI

command
current position 529

committing your program’s changes
to a database 529

EXEC DLI recovery commands
CHKP (Checkpoint) 529
SYMCHKP (Symbolic

Checkpoint) 529
I/O area

symbolic CHKP 529
issuing checkpoints 529
PCBs 525
planning for database recovery

CHKP command checkpoints 529
taking checkpoints 529

recovery EXEC DLI commands
basic CHKP 529
SYMCHKP 529

SYMCHKP (Symbolic Checkpoint)
command

description 529
BMPs, transaction-oriented

ROLB 288
Boolean operators

dependent AND 298
independent AND 298
SSA, coding 240

BTS (Batch Terminal Simulator) 148
buffer pool, STAT call and OSAM 152
buffer subpool, statistics for debugging

enhanced STAT call and
OSAM 156
VSAM 154, 161

C
C language

__pcblist 246
application programming

IMS database 216
IMS Transaction Manager 382

batch program, coding 196
DL/I call formats 216, 382
DL/I calls

sample call formats 216, 382
DL/I program structure 196
entry statement 246
exit 246
I/O area 216, 382
PCBs, passing 246
return statement 246
skeleton MPP 453
SSA definition examples 242
system function 246

C program
DL/I command-level sample 511

C/MVS 55
CALL statement (DL/I test

program) 147
call-level programs

comparing with command-level
programs

command codes and options 549
commands and calls 547

DL/I calls available to IMS and CICS
command-level 547

call-level programs, scheduling a PSB 62
callout request

asynchronous callout
programming model 496

asynchronous callout request 487
comparison of synchronous and

asynchronous callout requests 487
IMS TM Resource Adapter

Enterprise JavaBeans (EJB) 488
Java EE application 488
message-driven bean (MDB) 488
web service 488

JMS (Java Message Service)
implementation

IMSQueueConnectionFactory 736
overview 487
resume tpipe

IRM_TIMER field 491
protocol 491
security 491
security exit routine

(DFSYRTUX) 491
RESUME TPIPE call 488
SOAP Gateway

web service 488
synchronous callout

COBOL code example 491
control data 494
JBP (Java batch processing)

regions 736
JMP (Java message processing)

regions 736
programming model 491

synchronous callout request 487
synchronous program switch

JBP (Java batch processing)
regions 744

JMP (Java message processing)
regions 744

synchronous program switch
request 487

user-written IMS Connect TCP/IP
application 488

calls, DL/I 12
calls, system service

calls,system service
SETS/SETU (set a backout

point) 292
PLITDLI 292
SETS (Set a Backout Point) call

description 292
SETS/SETU (set a backout point)

backing out to an intermediate
backout point 292

calls, system service (continued)
SETU (Set a Backout Point

Unconditional) call
description 292

SETU, call function 292
CCTL (coordinator controller)

restrictions
with BTS (Batch Terminal

Simulator) 148
with DL/I test program 147

CEETDLI
address return 246
program entry statement 246

character host variable
COBOL 574

checkpoint 65
basic 49, 65
calls, when to use 50
frequency, specifying 52, 65
IDs 65
in batch programs 50, 65
in batch-oriented BMPs 50, 65
in MPPs 50
in transaction-oriented BMPs 50
issuing 39
printing log records 65
restart 50, 68
summary of 49
symbolic 49, 65

checkpoint (CHKP) calls
considerations 191
description 287
issuing 287

checkpoints
relationship to commit point and sync

point 279
CHKP (checkpoint) 49
CHKP (checkpoint) call

considerations 191
CHKP (symbolic checkpoint) call

with GSAM 316
CHKPT=EOV 49
CHNG call

usage 466
with directed routing 429

CHNG system service call 461
CICS 12

command language translator 517
distributed transactions

accessing IMs 63
CICS applications

unit testing 169
CICS applicationsIMS batch regions

database logging 71
ESTAE routine 71
resource cleanup 71
STAE routine 71

CICS DL/I call program
compiling 192

CICS online programs
assembler language

sample 194
COBOL, sample 202
PL/I, sample 211

CIMS 361
classes schedule, example 29

Index 777

CLOSE
statement

description 598
WHENEVER NOT FOUND

clause 560, 562
closing a GSAM database explicitly 314
CMPAT option 525
CMPAT=YES PSB specification 39
COBOL 55

application programming 219, 385
copybook types 687
data types

mapped to COBOL 687
DL/I call formats 219, 385
DL/I call-level, sample 202
DL/I command-level sample 504
DL/I program structure 199
entry statement 246
mapping to IMS 687
return statement 246
skeleton MPP 455
SQL aggregate function

ASC 584
AVG 584
COUNT 584
DESC 584
GROUP BY 584
MAX 584
MIN 584
ORDER BY 584
SUM 584

SQL aggregate functions
supported 584

SSA definition examples 242
types

data, mapped to COBOL 687
UIB, specifying 237

COBOL application program
defining the SQLIMSDA 558, 573
host structure 578
host variable

use of hyphens 581
host variable, declaring 573
INCLUDE statement 581
including SQLIMSCA 573
naming convention 581
options 581
SQLIMSCODE host variable 573
SQLIMSSTATE host variable 573
WHENEVER statement 581

code
course 17
transaction 41

codes abend 46
codes, status

logical relationships 304
coding DC calls and data areas 452

in assembler language 453
in C Language 453
in COBOL 455
in Pascal 456
in PL/I 458
skeleton MPP 453, 455, 456, 458

coding rules, SSA 240
coding SQL statements

dynamic 559

colon
preceding a host variable 562

column
labels, usage 562
name, with UPDATE statement 588
retrieving, with SELECT 590

columns
fields, compared to 605
relational representation, in 605

command codes
D

examples 189
DEDBs 189
F

restrictions 351
overview 189
Q 295
qualified SSAs 189
restrictions 240
subset pointers 189
unqualified SSAs 189

command language translator, CICS 517
command-level program

DFHEIENT 500
DFHEIRET 500
DFHEISTG 500
parameters

EIBREG 500
RCREG 500

RCREG parameters 500
reentry 500
SCHD PSB command 500

command-level programs
adjustable character string 523
array, connected 523
assembler language

I/O area 523
automatic storage 507
C code standard header file 511
character string

adjustable 523
fixed-length 523

COBOL
I/O area 523

commands
SCHD PSB 507

comparing with call-level programs
command codes and options 549
commands and calls 547

concatenated key, segment 523
connected array 523
DIB (DL/I interface block) 519
DL/I calls available to IMS and

CICS 547
EIBREG parameter 500
fixed-length character string 523
GE status code 507, 511
I/O area

assembler language 523
COBOL 523
coding 523
PL/I 523
restriction 523

I/O area, defining 523
key feedback area, defining 523
major structure 523
minor structure 523

command-level programs (continued)
PL/I

I/O area 523
preparing EXEC DL/I program for

execution 517
reentrance 500
restrictions

I/O area 523
I/O area, PL/I 523

samples
assembler language 500
C 511
COBOL 504
PL/I 507

SCHD PSB command 507
segment

concatenated key 523
standard header file, C code 511
status codes

GE 507, 511
structure

major 523
minor 523

commands, EXEC DLI 12
COMMENTS statement 147
commit 280

single-phase 283
UOR 282

commit point 445
process 279
relationship to check point and sync

point 279
commit point processing

DEDB 350
MSDB 331

commit points 39, 46, 65
communicating with other IMS TM

systems 427
COMPARE statement 147
comparing EXEC DLI

commands with DL/I calls 547
options with command codes 549

comparison of symbolic CHKP and basic
CHKP 49

comparison to ROLB and ROLS call 445
comparison to ROLL and ROLB call 445
comparison to ROLL and ROLS call 445
compiler, COBOL 504
compiling, options with EXEC DLI 517
concatenated data sets, GSAM 320
concatenated segments, logical

relationships 301
concurrent access to full-function

databases 39
considerations in screen design 102
CONTINUE clause of WHENEVER

statement 572
CONTINUE-WITH-TERMINATION

indicator 55
continuing a conversation 104
control data

synchronous callout 494
control, passing processing 12
conventions, naming 15
conversation attributes

asynchronous 113

778 Application Programming

conversation attributes (continued)
MSC synchronous and

asynchronous 113
synchronous 113

conversation state, rules for APPC
verbs 115

conversational mode
description 107
LU 6.2 transactions 113

conversational processing
abnormal termination of, precautions

for 105
coding necessary information 442
deferred program switch 104
designing a conversation 104
DFSCONE0 105
example 431
for APPC/IMS 441
gathering requirements 104
how to continue the

conversation 104
how to end the conversation 104
immediate program switch 104
overview 104, 430
passing control and continuing the

conversation 437
passing the conversation to another

program 104
recovery considerations 105
replying to the terminal 436
SPA 105
structure 432
use with alternate response

PCBs 107
using a deferred program switch to

end the conversation 104
using ROLB, ROLL and ROLS in 436
what happens in a conversation 104

conversational program
definition 430

conversations, preventing abnormal
termination 105

converting an existing application 15
coordinator controller. 147
coordinator, sync-point 116
copybook types 687
course code 17
CPI Communications driven program

sync point 279
CPI Resource Recovery calls 279
creation of

a new hierarchy 86
reports 20

crossing a unit of work (UOW) boundary
when processing DEDBs 546

currency of data 3
current position

determining 261
current roster 17
cursor

closing 598
description 595, 596
non-scrollable 596
OPEN statement 597
result segment 595
row-positioned

declaring 596

cursor (continued)
row-positioned (continued)

description 595
end-of-data condition 597
steps in using 596

D
data

a program's view 10
accessing from an application

program 590
adding 587
aggregate 22
associated with WHERE clause 590
documentation 20
elements, homonym 19
elements, isolating repeating 23
elements, naming 19
hierarchical relationships 5
integrity, how DL/I protects 64
keys 23
modifying 587
recording its availability 20
relationships, analyzing 22
retrieval using SELECT * 593

variable-length segments 593
retrieving a set of rows 597
structuring 22
unique identifier 19

data areas
coding 191

data availability
considerations 53, 69
levels 10
recording 20

data availability enhancements 551
data capture 245, 400
data currency 3
data definition 15
data dictionary

DataAtlas 20, 177
DB/DC Data Dictionary 20, 177
documentation for other

programmers 177
in application design 20

data element
description 17
homonym 19
isolating repeating 23
listing 17
naming 19
synonym 19

data elements, grouping into
hierarchies 23

data entity 17
data entry database 36
data mask 12
data propagation

sync point 284
data redundancy 3
data redundancy, reducing 301
data sensitivity 10
data sensitivity, defined 91
data storage methods

combined file 3
in a database 3

data storage methods (continued)
separate files 3

data structure 10
data structure conflicts, resolving 81
data structures 191
data type

comparisons 562
compatibility

COBOL and SQL 580
DataAtlas 20, 177
database

access to 58
administrator 5
availability

obtaining information 551
status codes, accepting 551

calls
Fast Path 359

changes, backing out 67
DBCTL facilities

REFRESH command 551
description (DBD) 10
example, medical hierarchy 5
hierarchy 5
integrity, maintaining 529
options 73
planning for recovery

backing out database changes 530
position

determining 261
record, processing 12
recovery 529
recovery with ROLL call 288
recovery, back out changes 288
REFRESH command 551
unavailability 53, 69

database and data communications
security 15

DATABASE macro 95
database record 5
database recovery

backing out 446
backing out database changes 67
checkpoints, description 65
planning

XRST command 530
restarting your program,

description 68
Database Resource Adapter (DRA) 361
database statistics, retrieving 151
database types

areas 36
DB2 for z/OS 36, 58
DEDB 36, 78
description 36
full-function 36
GSAM 36, 80
HDAM 75, 76
HISAM 79
HSAM 79
MSDB 36, 77
PHDAM 73, 75
PHIDAM 73, 76
relational 36
root-segment-only 36
SHISAM 80
SHSAM 80

Index 779

databases
accessing with application

programs 36
versioning

application programming 257
DB batch processing 39
DB Control

DRA (Database Resource
Adapter) 361

DB Control DRA (Database Resource
Adapter) 361

DB PCB
definition 525

DB PCB (database program
communication block) 10

concatenated key and PCB mask 310
database

DB PCB, name 310
database name 310
entry statement, pointer 310
fields 230
fields in a DB PCB 310
key feedback area 310

length field in DB PCB 310
key feedback area length field 310
length of key feedback area 310
mask

fields 310
fields, GSAM 310
general description 230
name 310
relation 230
specifying 230

masks
DB PCB 230

multiple DB PCBs 277
processing options

field in DB PCB 310
processing options field 310
relation to DB PCB 230
RSA (record search argument)

overview 310
secondary indexing, contents 300,

301
status code field 310
status codes

field in DB PCB 310
undefined-length records 310
variable-length records 310

DB/DC
Data Dictionary 20, 177
environment 36

DB2 (DATABASE 2)
with IMS TM 421, 459

DB2 for z/OS
databases 36, 58

DB2 for z/OS access
application programming 750
committing work 750
drivers 750
IMS databases, compared to 750
rolling back work 750

DBA 5
DBASF, formatted OSAM buffer pool

statistics 152
DBASS, formatted summary of OSAM

buffer pool statistics 152

DBASU, unformatted OSAM buffer pool
statistics 152

DBCTL
environment 36

DBCTL (Database Control)
single-phase commit 283
two-phase commit 280

DBCTL environment 58
DBCTL facilities

ACCEPT command 551
data availability 551
QUERY command 551
ROLS (Roll Back to SETS or SETU)

command 530
SETS (Set a Backout Point)

command 530
DBCTLID parameter 361
DBD (database description) 10
DBESF, formatted OSAM subpool

statistics 156
DBESO, formatted OSAM pool online

statistics 156
DBESS, formatted summary of OSAM

pool statistics 156
DBESU, unformatted OSAM subpool

statistics 156
DCCTL

environment 36
DDL 666
DDM (distributed data

management) 612
deadlock, program 39
debug a program, How to 174
DECLARE CURSOR statement

description, row-positioned 596
prepared statement 560, 562

DEDB
DL/I calls

AL_LEN call 356
AREALIST call 358
DEDBINFO call 358
DEDSTR call 359
DI_LEN call 357
DS_LEN call 357
summary 352

DEDB (data entry database) 78, 326
call restrictions 351
crossing a unit of work (UOW)

boundary when processing 546
data entry database 533
database

processing, Fast Path 533
dependent segments

sequential 533
direct dependent segments, in

DEDBs 533
DL/I calls 351
Fast Path

database, processing 533
multiple qualification statements 188
processing

commit point 350
DEDBs 533
fast path 323
H option 351
overview 533
P option 350

DEDB (data entry database) (continued)
processing (continued)

POS (Position) command 544
POS call 347
secondary index 337
subset pointers 332, 533

segment
sequential dependent 533

sequential dependent segments
in DEDBs 533

updating segments 327
updating with secondary index 337
updating with subset pointers 332

DEDB (data entry database) and the
PROCOPT operand 93

DEDBINFO call 358
DEDSTR call 359
deferred program switch 104
defining application program elements to

IMS
AIB 519
AIB (Application Interface Block)

AIB mask 519
restrictions 519

Application Interface Block (AIB)
AIB mask 519
restrictions 519

DIB 519
execution diagnostic facility 519
I/O area 523
key feedback area 523
restrictions

AIB 519
Transaction Server, CICS 519

defining subset pointers 536
definition

data 15
dependent segment 5
root segment 5

Delete (DLET) call
with MSDB, DEDB or VSO

DEDB 327
DELETE statement

description 589
deleting

current rows 597
data 589
every row from a table 589
rows from a table 589

dependent AND operator 298
dependent segment 5
dependent segments

retrieving 86
sequential

identfying free space 545
locating a specific dependent 544
locating the last inserted

dependent 545
dependents

direct 36
sequential 36

dependents, direct 326
DESCRIBE statement

column labels 562
INTO clauses 562

description, segment 5
design efficiency, programs 499

780 Application Programming

design of
an application 15
conversation 104
local view 22

designing
terminal screen 102

determination of mappings 28
device input format (DIF), control

block 102
device output format (DOF), control

block 102
devices supported by MFS 484
DFSAPPC 439

DFSAPPC
format 439
option keywords 439

message switching 439
DFSAPPC message switch 144
DFSCONE0 (Conversational Abnormal

Termination exit routine) 105
DFSDDLT0 (DL/I test program) 147
DFSDLTR0 (DL/I image capture). 171
DFSHALDB ddname

selective partition processing 305
DFSLI000 (language interface module)

binding COBOL code to 202
DFSMDA macro 56
DI_LEN call 357
diagnosing multiple parsing error return

codes 466
DIB (DL/I interface block)

accessing information 519
assembler language program

DIB fields 519
variable names, mandatory 519

BA status code 519
BC status code 519
C program

DIB fields 519
variable names, mandatory 519

CICS
HANDLE ABEND command 519

COBOL program
DIB fields 519
variable names, mandatory 519

FH status code 519
fields 519
FW status code 519
GA status code 519
GB status code 519
GD status code 519
GE status code 519
GG status code 519
GK status code 519
II status code 519
label restriction 519
labels 519
LB status code 519
NI status code 519
PL/I

program variable names,
mandatory 519

restrictions
DIB label 519

status codes
BA 519
BC 519

DIB (DL/I interface block) (continued)
status codes (continued)

FH 519
FW 519
GA 519
GB 519
GD 519
GE 519
GG 519
GK 519
II 519
LB 519
NI 519
TG 519

structure 519
translator version 519

DIB (DLI interface block) 12
dictionary, data 20
DIF (device input format), control

block 102
direct access methods

characteristics 74
HDAM 75
HIDAM 76
PHDAM 73, 75
PHIDAM 73, 76
types of 74

direct dependents 36
directed routing 427
distributed data management

(DDM) 612
distributed presentation

management 486
Distributed Relational Database Access

(DRDA) 611, 612
distributed relational database

architecture (DRDA)
DDM commands 374
overview 373

Distributed Sync Point 120
DL/I

calls
for CICS and IMS programs 547

DL/I access methods
considerations in choosing 73
DEDB 78
direct access 74
GSAM 80
HDAM 75
HIDAM 76
HISAM 79
HSAM 79
MSDB 77
PHDAM 73, 75
PHIDAM 73, 76
sequential access 78
SHISAM 80
SHSAM 80

DL/I call trace 147
DL/I calls 12, 392

general information
coding 191

image capture
batch job 150

JDBC driver 676

DL/I calls (continued)
log data set

DFSERA50 call trace exit
routine 151

relationships to PCB types
I/O PCBs 392

sample call formats 219, 221, 385,
387

tracing
DLITRACE control statement 150
image capture 149, 150, 151, 368
IMS TRACE command 368
TRACE command 150

Universal JDBC driver 676
DL/I calls (general information)

qualification statements
overview 182

qualified calls 182
qualified SSAs (segment search

arguments)
structure 182

qualifying calls
command codes 189
field 182
segment type 182

segment search arguments
(SSAs) 182

SSAs (segment search arguments)
qualified 182

unqualified calls 182
DL/I calls, system service

ROLB 288
ROLL 288

DL/I calls, testing DL/I call
sequences 147, 171

DL/I database
access to 58
description 58

DL/I image capture (DFSDLTR0)
programs 171

DL/I interface block 519
DL/I language interfaces 213, 379

overview 213, 379
supported interfaces 213, 379

DL/I options
field level sensitivity 81
logical relationships 86, 301
secondary indexing 82, 297

DL/I program ROLB scenario 122
DL/I test program (DFSDDLT0)

call statements 147
checking program performance 147
comments statements 147
compare statements 147
control statements 147
description 147
status statements 147
testing DL/I call sequences 147, 171

DLET (Delete) call
with MSDB, DEDB or VSO

DEDB 327
DLI

GUR call 254
DLITPLI 248
documentation for users 177
documentation of

data 20

Index 781

documentation of (continued)
the application design process 15

DOF (device output format), control
block 102

DPM (distributed presentation
management)

using 486
with ISC 486

DRA (Database Resource Adapter)
description 361
startup table 361

DRDA (Distributed Relational Database
Access) 611, 612

DRDA (distributed relational database
architecture)

DDM commands 374
overview 373

DS_LEN call 357
duplicate values, isolating 23
DYNAM option of COBOL 581
dynamic allocation 56, 71
dynamic backout 39, 530
dynamic MSDBs (main storage

databases) 5
dynamic SQL

COBOL application program 581
description 559
EXECUTE 569
fixed-list SELECT statements 560
non-SELECT statements 566, 569
parameter marker 569
PREPARE 569
programming 559
SELECT 568
varying-list SELECT statements 562

E
EBCDIC 65
editing

considerations in your
application 102

messages
considerations in message and

screen design 102
overview 101

editing messages
edit routines

Basic Edit 412
Intersystem Communication (ISC)

Edit 412
Message Format Service

(MFS) 412
efficient program design 499
elements

data, description 17
data, naming 19

emergency restart 463
EMH (expedited message handler) 41
end a conversation, how to 104
end-of-data condition 597
enhanced STAT call formats for statistics

OSAM buffer subpool 156
VSAM buffer subpool 161

entity, data 17
entry and return conventions 246

entry point
AIB (application interface block)

address return 401
and program entry statement 401

assembler language
program entry 401
register 1 at program entry 401

C language
__pcblist 401
entry statement 401
exit 401
longjmp 401
passing PCBs 401
return 401
system function 401

CEETDLI
address return 401
program entry statement 401

COBOL
DLITCBL 401

entry point
assembler language 401

overview 401
Pascal

entry statement 401
passing PCBs 401

PL/I
passing PCBs 401
pointers in entry statement 401

environments
DB/DC 36
DBCTL 36
DCCTL 36
options in 36, 58
program and database types 36

equal-to relational operator 182
ERASE parameter 93
error

execution 174
handling 572
initialization 174
return codes 571

ESTAE routines 55
example

current roster 17
field level sensitivity 81
instructor schedules 29
instructor skills report 29
local view 29
logical relationships 86
schedule of classes 29

examples
bank account database 5
Boolean operators 188
conversational processing 431
D command code 189
FLD/CHANGE 330
FLD/VERIFY 330
medical database 5
multiple qualification statements 188
path call 189
UIB, defining 237

exception condition handling 572
EXEC DLI 536

binder options, required 517
compiler options, required 517
DLI option 517

EXEC DLI (continued)
preparing program for execution 517
PROCESS statement overrides 517
recovery commands

XRST (Extended Restart) 530
translator options, required 517
z/OS & VM 517
z/OS & VM translator 517

EXEC DLI commands 12
EXEC DLI program translating 517
EXECUTE statement

dynamic execution 569
parameter types 562

execution errors 174
existing application, converting an 15
explicit API for LU 6.2 devices 121
explicitly opening and closing a GSAM

database 314
express alternate PCB 422
express PCBs 107
Extended Restart 49, 68

F
F command code

restrictions 351
Fast Path 36

database calls 323, 324
databases 36
databases, processing 323
DEDB (data entry database) 78

processing 323
DEDB and the PROCOPT

operand 93
IFPs 41
MSDB (main storage database) 36, 77

processing 323
P (position) processing option 546
secondary index, using with

DEDBs 337
subset pointers with DEDBs 533
subset pointers, using with

DEDBs 332
types of databases 323

FETCH statement
description, single row 597
host variables 560

field
changing contents 330
checking contents: FLD/VERIFY 328

Field (FLD) call 327
field level sensitivity

as a security mechanism 91
defining 10
description 81
example 81
specifying 81
uses 81

field name
FSA 328
SSA

qualification statement 182
field search argument (FSA)

description 328
with DL/I calls 328

field value
FSA 329

782 Application Programming

field value (continued)
SSA qualification statement 182

fields
columns, compared to 605
in SQL queries 605

File Select and Formatting Print Program
(DFSERA10) 49

FIN (Finance Communication System)
defining to operate with MFS 484

fixed, MSDBs (main storage
databases) 5

FLD (Field) call
description 327
FLD/CHANGE 330
FLD/VERIFY 328

flow diagrams, LU 6.2 122
CPI-C driven commit scenario 122
DFSAPPC, synchronous

SL=none 122
DL/I program backout scenario 122
DL/I program commit scenario 122
local CPI communications driven

program, SL=none 122
local IMS Command

asynchronous SL=confirm 122
local IMS command, SL=none 122
local IMS conversational transaction,

SL=none 122
local IMS transaction

asynchronous SL=confirm 122
asynchronous SL=none 122
synchronous SL=confirm 122
synchronous SL=none 122

multiple transactions in same
commit 122

remote MSC conversation
asynchronous SL=confirm 122
asynchronous SL=none 122
synchronous SL=confirm 122
synchronous SL=none 122

formats
PSB 525

formatting
result tables 592

frequency, checkpoint 52
FROM clause

SELECT statement 590
FSA (field search argument)

description 328
with DL/I calls 328

full-function databases
and the PROCOPT operand 93
how accessed, CICS 58
how accessed, IMS 36

G
gather requirements

for conversational processing 104
gathering requirements

for database options 73
for message processing options 99

GC status code 546
general programming guidelines 499
Generalized Sequential Access Method

(GSAM) 80
program access 309

generalized sequential access method
(GSAM))

DB PCB (database program
communication block)

mask 245
GO processing option 50
GO TO clause of WHENEVER

statement 572
GPSB (generated program specification

block)
format 403

greater-than relational operator 182
greater-than-or-equal-to relational

operator 182
group data elements

into hierarchies 23
with their keys 23

GSAM (generalized sequential access
method

GSAM (generalized sequential access
method)

RSA 312
record search argument 312

GSAM (generalized sequential access
method)

accessing databases 309
BMP region type 321
call summary 316
CHKP 316
coding considerations 316
data areas 245
data set

attributes, specifying 320
characteristics, origin 317
concatenated 320
DD statement DISP

parameter 318
extended checkpoint restart 319

database, explicitly opening and
closing 314

DB PCB masks 245
DBB region type 321
description 309
designing a program 309
DLI region types 321
fixed-length records 314
I/O areas 315
record formats 314
records, retrieving and inserting 312
restrictions on CHKP and XRST 316
RSA 245
RSA (record search argument)

description 312
status codes 315
undefined-length records 314
variable-length records 314
XRST 316

GSAM (Generalized Sequential Access
Method)

accessing GSAM databases 58
database type 36
description 80

GSAM PCB 525
guidelines, general programming 499
guidelines, programming 181
GUR call 254

H
H processing option 351
HALDB

DFSHALDB ddname 305
HALDB control statement 305
partitions

selective partition processing 305
selective partition processing 305

HALDB (High Availability Large
Database) 83

application programs
scheduling against 252

initial load 252
HALDB control statement 305
HDAM

multiple qualification statements 188
HDAM (Hierarchical Direct Access

Method) 75
HIDAM (Hierarchical Indexed Direct

Access Method) 76
hierarchical database

example 605
relational database, compared to 605

hierarchical database example,
medical 5

Hierarchical Direct Access Method
(HDAM) 75

Hierarchical Indexed Direct Access
Method (HIDAM) 76

Hierarchical Indexed Sequential Access
Method (HISAM) 79

Hierarchical Sequential Access Method
(HSAM) 79

hierarchy
bank account database 5
data structures 191
description 5
grouping data elements 23
medical database 5

hierarchy examples 5
High Availability Large Database

(HALDB) 83
application programs

scheduling against 252
initial load 252

HISAM (Hierarchical Indexed Sequential
Access Method) 79

homonym, data element 19
Hospital database example 620
host structure

COBOL 578
description 558
indicator structure 559

host variable
COBOL 573, 574
description 558
FETCH statement 560
indicator variable 559
PREPARE statement 560
using 562

host variables 558
HOUSHOLD segment 5
HSAM (Hierarchical Sequential Access

Method) 79

Index 783

I
I/O area 12

command-level program 523
specifying 240, 399
XRST 530

I/O PCB 525
in different environments 60
mask

12-byte time stamp 226
general description 226
group name field 226
input message sequence

number 226
logical terminal name field 226
message output descriptor

name 226
specifying 226
status code field 226
userid field 226
userid indicator field 226

I/O PCB mask
general description 393
specifying 393

IBM Enterprise COBOL for z/OS
Java dependent region

interoperability 748
Java dependent regions

backend application for Java
applications 749

frontend application for Java
applications 750

issuing DL/I calls in COBOL 749
ICAL callout with control data

IMS Java dependent region resource
adapter 738

identification of
recovery requirements 50

identifying
application data 17
online security requirements 99
output message destinations 107
security requirements 91

IDs, checkpoint 65
IFP (IMS Fast Path) program

databases that can be accessed 36
differences from an MPP 41
recovery 41
restrictions 41

IFP application programs 525
ILLNESS segment 5
image capture program

CICS application program 171
IMS application program 148

immediate program switch 104
implicit API for LU 6.2 devices 121
IMS application

diagnosing
abnormal termination

(abend) 165
program execution errors 165
program initialization errors 165

IMS application programs, standard 442
IMS catalog

application programming 254
PSBs 254

IMS conversations
conversational program 430

IMS conversations (continued)
nonconversational program 430

IMS coprocessor 599
processing SQL statements 599

IMS database
database design

logical relationships 89
IMS Explorer for Development

com.ibm.ims.db.DLIDatabaseView
class

generating 620
DLIDatabaseView class

generating 620
Java metadata class

generating 620
IMS Fast Path (IFP) programs, description

of 41
IMS Java dependent region resource

adapter
Java batch processing (JBP)

regions 718
Java message processing (JMP)

regions 718
support for ICAL callout with control

data 738
IMS solutions for Java development

overview 603, 618
IMS Spool API

dynamic allocation
error messages 470

print data sets
CHNG call 470

z/OS services for Dynamic Output
(SVC109) 470

IMS Spool API application design 461
IMS support for DRDA 611
IMS TM

application program
message Type 407

DB2 considerations 421, 459
IMS Universal Database resource

adapter 611
CCI programming interface 636
configuring SSL support

container-managed
environment 713

WebSphere Application
Server 713

connectivity
RRSLocalOption 626
type-2 626
type-4 626

creating a CCI Connection
managed environment 626

creating a CCI ConnectionFactory
managed environment 626

DLIInteractionSpec class
deleting data 638
inserting data 638
retrieving data 638
updating data 638

JNDI lookup
connecting to IMS 626

logging 714
overview 624
sample application 636

IMS Universal Database resource
adapter (continued)

specifying IMSConnectionSpec
properties

managed environment 626
SQLInteractionSpec class

deleting data 642
inserting data 642
retrieving data 642
updating data 642

tracing 714
transaction management

bean managed 624
container managed 624
local transaction support 624
LocalTransaction interface 624
UserTransaction interface 624
XA transaction support 624

WebSphere Application Server for
distributed platforms support 626

WebSphere Application Server for
z/OS support 626

IMS Universal DL/I driver 611
adding segments

example 705
AIB

example 709
AIB interface 693
application programming 689
batchDelete

example 709
batchRetrieve 697

example 699
batchUpdate

example 707
com.ibm.ims.base 690
com.ibm.ims.dli 690
commit

example 710
configuring SSL support

stand-alone environment 713
connecting

IMS database 690
connections

IMS database 690
properties 690

create
example 705

creating segments
example 705

DBPCB
example 709

DBPCB interface 693
delete

example 707
deleting multiple segments

example 709
deleting segments

batch 709
example 707, 709

DL/I DLET 707
DL/I ISRT 705
DL/I REPL 706
fetch size 699

setting 701
getNext

example 697

784 Application Programming

IMS Universal DL/I driver (continued)
getNextWithinParent 697
getPathForBatchUpdate

example 707
getPathForInsert

example 705
getPathForRetrieveReplace

example 697, 706, 707
getUnique

example 697
GSAMPCB interface 693
IMSConnectionSpec

creating 690
example 690

IMSConnectionSpecFactory
example 690

IMSStatusCodes 709
insert

example 705
inserting segments

example 705
interfaces 693
Java packages 690
logging 714
overview 689
Path

data transformation 684, 702
retrieving java.sql data types 684,

702
Path interface 693
PathSet interface 693
PCB interface 693
programming model 689
PSB

creating 690
example 690

PSB interface 693
PSBFactory

example 690
query performance

improving 701
replace

example 706
retrieving

error code extension 709
reason code 709
return code 709
status code 709

retrieving data
example 697

retrieving multiple segments
example 699

retrieving segments
batch 699
example 697, 699

rollback
example 710

segment search arguments
specifying 694

setFetchSize 701
SSAList

adding intitial qualification 694
appending additional

qualifications 694
creating 694
debugging 694
qualified 694

IMS Universal DL/I driver (continued)
SSAList (continued)

setting command codes 694
setting lock classes 694
unqualified 694

SSAList interface 693
SSAs

specifying 694
tracing 714
transactions

example 710
local 710
one-phase commit 710
processing 710
scope 710
unit of recovery 710
unit of work 710

updating multiple segments
example 707

updating segments
batch 707
example 706, 707

IMS Universal drivers
application platforms 615
architecture 612
CICS support 612
com.ibm.ims.db.DLIDatabaseView

class
generating 620

configuring SSL support
container-managed

environment 713
stand-alone environment 713
WebSphere Application

Server 713
connectivity

distributed (type-4) 612
local (type-2) 612

data access methods 615
DB2 for z/OS stored procedures

support 612
DLIDatabaseView class

generating 620
Java dependent region support 612
Java metadata class

generating 620
JBP region support 612
JMP region support 612
overview 611
programming approaches 615
SSL support

container-managed
environment 713

stand-alone environment 713
transaction processing options 615
variable length database

segments 617
WebSphere Application Server for

distributed platforms support 612
WebSphere Application Server for

z/OS support 612
IMS Universal JCA/JDBC driver

connecting 631
data operations

DELETE 645
INSERT 645
PreparedStatement 645

IMS Universal JCA/JDBC driver
(continued)

data operations (continued)
SELECT 645
Statement 645
syntax 645
UPDATE 645

deploying 631
IMS Universal JDBC driver 611

columns compared to fields 661
configuring SSL support

stand-alone environment 713
connecting to IMS

DataSource 648
DriverManager 654

DDL-specific SQL usage
ALTER statement 669
CREATE statement 669
DROP statement 669

foreign key fields 666
example 666
SQL statement usage 666

hierarchical databases compared to
relational databases 661

IMS-specific SQL usage
AS clause 670
DELETE statement 673
DISTINCT clause 670
FROM clause 670
GROUP BY clause 670
INSERT statement 671
ORDER BY clause 670
SELECT statement 670
UPDATE statement 672
WHERE clause 674

interfaces
DataSource 648
DriverManager 654

JDBC programming interface 660
logging 714
rows compared to segment

instances 661
sample application 660
supported drivers 648
tables compared to segments 661
tracing 714

in-doubt UOR
definition 282

in-flight UOR
definition 282

independent AND operator 298
indexed field in SSA 297
indexing, secondary

DL/I Returns 300
effect on program 297
multiple qualification statements 298
status codes 301

indicator structure
description 559

indicator variable
description 559

INIT system service call 53
initialization errors 174
input for a DL/I program 191
input message

format 408
MFS 415

Index 785

INQY system service call 53
INSERT statement

description 587
single row 587
VALUES clause 587

inserting a segment
GSAM records 312

instructor
schedules 29
skills report 29

integrity
batch programs 288
how DL/I protects data 64
maintaining,database 288
read without 95
using ROLB 288

MPPs and transaction-oriented
BMPs 288

using ROLL 288
using ROLS 288

interface, AIB 12
intermediate backout point

backing out 292
intermediate backout points 530
Introduction to Resource Recovery 116
invalid processing and

ROLB/SETS/ROLLS calls 105
IPDS and IMS Spool API 463
ISC (intersystem communication)

defining to operate with MFS 486
ISC (Intersystem Communication) 41
isolation of

duplicate values 23
repeating data elements 23

ISRT (Insert) call
with MSDB, DEDB or VSO

DEDB 327
ISRT call

issuing to other terminals 422
message call

in conversational programs 432
referencing alternate PCBs 422
usage 422

ISRT system service call 461
issue checkpoints 39
issuing

checkpoints in batch or BMP
programs 529

J
Java Batch Processing (JBP)

applications 46
databases that can be accessed 36

Java batch processing (JBP) application
accessing GSAM data 732
program switching

immediate 740
programming models 728
restart 728
symbolic checkpoint 728

Java batch processing (JBP) regions
DB2 for z/OS access

application programming 750
IMS Java dependent region resource

adapter 718
JBP applications 717

Java batch processing (JBP) regions
(continued)

overview 717
Java Database Connectivity (JDBC) 611
Java EE Connector Architecture

(JCA) 611
Java Message Processing (JMP)

applications 45
databases that can be accessed 36

Java message processing (JMP)
application

DB2 for z/OS data access 721
IMS data access 721
IMSFieldMessage class

subclassing 719
input messages

defining 719
message handling 723

input messages 722
output messages

defining 719
program switching

deferred 742
immediate 740

programming models 721
transactions

commit 723
rollback 723

Java message processing (JMP)
applications

message handling
conversational transactions 723
multi-segment messages 725
multiple input messages 727
repeating structures 726
scratchpad area (SPA) 723

Java message processing (JMP) regions
DB2 for z/OS access

application programming 750
IMS Java dependent region resource

adapter 718
JMP applications 717
overview 717

Java metadata class
IMS Explorer for Development

generating 620
IMS Universal drivers 620, 679

JBP (Java Batch Processing)
applications 46
databases that can be accessed 36

JBP (Java batch processing) regions
DB2 for z/OS access

application programming 750
IMS Java dependent region resource

adapter 718
synchronous callout support 736
synchronous program switch

support 744
JCA (Java EE Connector

Architecture) 611
JDBC

ARRAY 684
BIGINT 684
BINARY 684
BIT 684
CHAR 684
CLOB 684

JDBC (continued)
DATE 684
DOUBLE 684
FLOAT 684
IMS-specific SQL usage

WHERE clause subfield
support 675

INTEGER 684
mapping SQL data types to Java 684
overview 647
PACKEDDECIMAL 684
ResultSet

data transformation 684, 702
retrieving java.sql data types 684,

702
SMALLINT 684
SQL aggregate function

AS 663
ASC 663
AVG 663
COUNT 663
DESC 663
GROUP BY 663
MAX 663
MIN 663
ORDER BY 663
SUM 663

SQL aggregate functions
supported 663

SQL keywords supported 662
STRUCT 684
TIME 684
TIMESTAMP 684
TINYINT 684
Universal drivers

portable SQL keywords
restrictions 665

XML support
Java metadata class 679
overview 679
retrieval 682
SQL INSERT 680
SQL SELECT 682
storage 680
type-4 connectivity 679

ZONEDDECIMAL 684
JDBC (Java Database Connectivity) 611
JDBC driver

DL/I calls 676
JES Spool/Print server 463
JMP (Java Message Processing)

applications 45
databases that can be accessed 36

JMP (Java message processing) regions
DB2 for z/OS access

application programming 750
IMS Java dependent region resource

adapter 718
synchronous callout support 736
synchronous program switch

support 744
JOURNAL parameter 462

K
key feedback area

command-level program 523

786 Application Programming

key sensitivity 91
keyboard shortcuts xiii
keys, data 23

L
label, column 562
Language Environment

characteristics of CEETDLI 251, 404
LANG= Option on PSBGEN for PL/I

Compatibility with Language
Environment 251, 404

Language Environment
LANG = option for PL/I

compatibility 251, 404
supported languages 251, 404

Language Environment, with IMS 251,
404

Large Data Sets 320
legal notices

notices 767
trademarks 767, 769

less-than relational operator 182
less-than-or-equal-to relational

operator 182
limit access with signon security 99
link editing, EXEC DLI 517
link to another online program 62
LIST parameter 149
listing data elements 17
LL field

in input message 408
in output message 409

local view
designing 22
examples 29

locating
a specific sequential dependent 544
last inserted sequential

dependent 545
locating dependents in DEDBs

last-inserted sequential dependent,
POS call 347

POS call 347
specific sequential dependent, POS

call 347
lock management 295
locking protocol 93
LOCKMAX= parameter, BMP

programs 50
log

records
sync points 283

LOG call
description 165
use in monitoring 174

log records
type 18 65
X'18' 49

LOG system service call 369
log, system 39
logical child 301
logical parent 301
logical relationships

defining 86
description 86
effect on programming 303

logical relationships (continued)
example 86
introduction 301
logical child 301
logical parent 301
physical parent 301
processing segments 301
programming, effect 301
status codes 304

logical structure 301
LTERM, local and remote 144
LU 6.2

conversations 441
support for APPC 111

LU 6.2 devices, signon security 99
LU 6.2 partner program design

DFSAPPC message switch 144
flow diagrams 122
integrity after conversation

completion 142
scenarios 122

LU 6.2 User Edit Exit
using 421

M
macros

DATABASE 95
DFSMDA 56
TRANSACT 44

main storage database (MSDB) 77
main storage database (MSDBs)

types
nonrelated 5

main storage databases (MSDBs)
dynamic 5
types

related 5
maintaining database integrity 529
managing subset pointers in DEDBs with

command codes 324
many-to-many mapping 28
mapped conversation, APPC 114
mappings, determining 28
mask

AIB 232
DB PCB 230

mask, data 12
master terminal

issuing timeout 427
medical database example 5

description 5
segments 5

message 407
editing

description 412
input message 413, 415
output 413
output message 421
skipping line 413
using Basic Edit 413
using ISC Edit 414
using LU 6.2 User Edit Exit 421
using MFS Edit 414

from terminals 407
I/O PCB 412
input 408, 415

message (continued)
input descriptor (MID), control

block 102
input fields

contents 408
ISC (intersystem communication)

editing output messages 414
ISC (intersystem communication) edit

output message 414
message formatting service 413
MFS (Message Format Service)

editing message 413
obtaining text

COBOL 581
output 107, 409, 421
output descriptor (MOD), control

block 102
output fields

contents 409
printing 413
processing of 407

summary 410
processing options 99
receiving by program 407
result 412
sending to other application

programs 425
type

message switch service 407
types 407

another terminal 407
Message Format Service 475
Message Format Service (MFS)

control blocks
relationship with screen

format 481
LU 6.2 device restriction 415
secondary logical unit (SLU) 415
terminal

message processing program
(MPP) 415

Message Input
Segment Format 408

message processing options
sending message to originating

terminal 107
message processing program 453
message-driven programs

definition 451
supported message destinations 451
usage restrictions 451

methods of data storage
combined file 3
database 3
separate files 3

MFS (Message Format Service)
components 483
control blocks 102

relationship with screen
format 481

editing output messages 414
example 480
input message

formats 415
MFS (message format service)

message editor 483
online performance 475

Index 787

MFS (Message Format Service)
(continued)

output message
formats 421

overview 102, 475
pool manager 483
remote programs 484
supported devices 484

MFS control blocks
DIF (device input format)

description 476
DOF (device output format)

description 476
MID (message input descriptor)

description 476
MOD (message output descriptor)

description 476
summary 476

MFS libraries
online change function 483

MFSTEST procedure (language utility)
pool manager 483

MID (message input descriptor), control
block 102

mixed-language programming 252, 405
MOD (message output descriptor),

control block 102
mode

multiple 50
processing 46
response 107
single 50

MODE parameter 46
modifying

data 587
MOVENEXT option

examples 536
use when moving subset pointer

forward 536
moving subset pointer forward 536
MPP (message processing program)

coding in assembler language 453
coding in C language 453
coding in COBOL 455
coding in Pascal 456
coding in PL/I 458
coding necessary information 452
databases that can be accessed 36, 41
description 41
executing 41
input 452
parmcount 458
PL/I

entry statement restrictions 458
MPP coding notes 458
optimizing compiler 458

MPPs 525
ROLB 288

MSC (multiple systems coupling)
description 427
directed routing 427
receiving messages from other IMS

TM systems 428
sending messages to other IMS TM

systems 429
MSDB (main storage database) 36, 77

call restrictions 325

MSDB (main storage database)
(continued)

commit point processing 331
updating segments 327

MSDBs (main storage database)
processing commit points 331

MSDBs (main storage databases)
nonrelated 325
terminal related 325
types

description 325
nonrelated 5
related 5

multiple
DB PCBs 277
processing 271
qualification statements 186

DEDB 188
HDAM 188
PHDAM 188

multiple mode 46, 50
multiple positioning

advantages of 274
effecting your program 274
resetting position 276

multiple systems coupling 427
multiple-row FETCH statement

SQLIMSCODE +100 571
MVS SJF (Scheduler JCL Facility) 462
MYLTERM 325

N
names of data elements 19
naming convention

COBOL 581
naming conventions 15
NDM (Non-Discardable Messages)

routine 46
network-qualified LU name 144
nonconversational program

definition 430
nonrelated (non-terminal-related)

MSDBs 325
NOSTAE and NOSPIE 55
NOT FOUND clause of WHENEVER

statement 572
not-equal-to relational operator 182
NTO (Network Terminal Option) 484
null value

column value of UPDATE
statement 588

O
ODBA 361

application execution environment
establishing 361, 365

application programs
testing 366
writing 361

CIMS 361
DB2 for z/OS stored procedures 365
DRA (Database Resource

Adapter) 361
RRS 361

ODBA (continued)
server program 364

ODBA (Open Database Access) 361
one-to-many mapping 28
online performance 475
online processing

databases that can be accessed 58
description 60
linking and passing control to other

applications 62
performance, maximizing 63

online programs 41
online programs, command-level samples

assembler 500
C 511
COBOL 504
PL/I 507

online security
password security 99
supplying information about your

application 99
terminal 99

OPEN
statement

opening a cursor 597
prepared SELECT 560
without parameter markers 562

Open Database Access (ODBA) program
application interface block (AIB)

fields 234
Open Database Access (ODBA) programs

abnormal termination (abend)
diagnosing 370
initialization errors 370
running errors 370

application interface block
(AIB)AERTDLI interface 251

tracing
DFSDDLT0 368
image capture 367, 368

operator
FSA 329
SSA 182

operators
AND operators

logical 186
Boolean 186
Boolean operators

logical AND operator 186
logical OR 186

OR operators
logical 186

relational 186
relational operators

independent AND 186
logical AND 186
logical OR 186

options
CMPAT 525
MOVENEXT 536
P processing 546

options for subset pointers
MOVENEXT 536

ORDER BY clause
SELECT statement 592

OSAM buffer pool, retrieving
statistics 152

788 Application Programming

OTMA, processing conversations
with 444

output message
format 409
printing 413
sending 425
to other application programs 425
to other IMS TM systems 429
using Basic Edit 413
using MFS 421
with directed routing 429

output messages, identifying destinations
for 107

overlap, storage 523

P
P processing option 350, 546
parameter marker

dynamic SQL 568, 569
values provided by OPEN 560
with arbitrary statements 562

parameters
BKO 39
DBCTLID 361
ERASE 93
JOURNAL 462
LIST 149
LOCKMAX 50
MODE 46
PROCOPT 93
TRANSACT 46
TXTU 462
WFI 44

parsing error return codes 466
Partitioned Hierarchical Direct Access

Method (PHDAM) 73, 75
Partitioned Hierarchical Indexed Direct

Access Method (PHIDAM) 73, 76
Partitioned Secondary Index

(PSINDEX) 83
partitions

DFSHALDB ddname 305
HALDB control statement 305
selective partition processing 305

Pascal
application programming 221, 387
batch program, coding 206
DL/I call formats 221, 387
DL/I program structure 206
entry statement 246
PCBs, passing 246
skeleton MPP 456
SSA definition examples 242
syntax diagram, DL/I call

format 221
pass control of processing 12
pass control to other applications 62
passing control

to a conversational program 437
to another program in a

conversation 437
password security 99
path call

definition 189
example 189
overview 189

PATIENT segment 5
PAYMENT segment 5
PCB (program communication block)

12-byte time stamp, field in I/O
PCB 226

address list, accessing 237
alternate 525
call 62
description 10
express 107
group name, field in I/O PCB 226
GSAM (generalized sequential access

method)
DB PCB mask, fields 310

I/O PCB mask
12-byte time stamp 393
group name field 393
input message sequence

number 393
logical terminal name field 393
message output descriptor

name 393
status code field 393
userid field 393

in application programs,
summary 525

input message sequence number, field
in I/O PCB 226

logical terminal name, field in I/O
PCB 226

masks
GSAM databases 310
I/O PCB 226, 393

message output descriptor name, field
in I/O PCB 226

modifiable alternate PCBs 287
PCB (program communication block)

types 525
RACF signon security 226, 393
RACROUTE SAF 226
signon security, RACF 226
status codes, field in I/O PCB 226
types 403
userid, field in I/O PCB 226

PCB lists 403
PCB parameter list in assembler language

MPPs 453
PCB, express alternate 422
performance

impact 462
maximizing online 63

PHDAM
multiple qualification statements 188

PHDAM (Partitioned Hierarchical Direct
Access Method) 73, 75

PHIDAM (Partitioned Hierarchical
Indexed Direct Access Method) 73, 76

physical parent 301
physical structure of a database 10
PL/I

application programming
DL/I call formats 224, 390
DL/I calls 224, 390

batch program, coding 208
DL/I call-level sample 211
DL/I command-level sample 507

PL/I (continued)
DL/I program, multitasking

restriction 208
entry statement 246
PCBs, passing 246
pointers in entry statement 246
return statement 246
skeleton MPP 458
UIB, specifying 237

PL/I language 55
PL/I segmentation APIs

language structures 755
limitations 763
restrictions 763
sample templates 759
top-down development 753
trace output 761

PLITDLI procedure
description 259

pool manager
MFS 483

POS (Position) call
description 347

POS (Position) command
identifying free space 545
locating a specific sequential

dependent 544
locating the last inserted sequential

dependent 545
using with DEDBs 544

Position (POS) command
identifying free space 545
locating a specific sequential

dependent 544
locating the last inserted sequential

dependent 545
using with DEDBs 544

position, reestablishing with checkpoint
calls 50, 65

positioning
after DLET 263
after ISRT 265
after REPL 265
after retrieval calls 263
after unsuccessful DLET or REPL

call 267
after unsuccessful retrieval or ISRT

call 267
CHKP, effect

modifiable alternate PCBs 287
current position

unsuccessful calls 267
database position

unsuccessful calls 267
determining 261
not-found status code

description 267
position after 267

positioning
after unsuccessful calls 267

understanding current 261
predicate

general rules 590
preloaded programs 252
PREPARE statement

dynamic execution 569
host variable 560

Index 789

preparing programs
for EXEC DLI 499
for EXEC DLI execution 517

primarily sequential processing 79
print checkpoint log records, how to 65
problem determination 174
procedures

CBLTDLI 259
PLITDLI 259

process database records 12
process of requests 12
process of requirements, analyzing 35,

57
processing

commit-point in DEDB 350
commit-point in MSDB 331
current position

multiple positioning 271
database position

multiple positioning 271
database, several views 277
DEDBs 332
Fast Path

P (position) option 546
Fast Path databases 323
GSAM databases 309
multiple

positioning 271
options

H (position), for Fast Path 351
P (position), for Fast Path 350

segments in logical relationships 301
single positioning 271

processing a message 410
processing mode 46
processing options

A (all) 93
D (delete) 93
defined 91
E (exclusive) 93
G (get)

description and concurrent record
access 93

general description 93
GO (read only)

description 93
invalid pointers and T and N

options 93
N option 93
risks of GOx options 93
T option 93

I (insert) 93
K (key) 91
R (replace) 93

PROCOPT parameter 93
PROCOPT=GO 50
program

design 191
design efficiency 499
restarting 288

program communication block 230
I/O PCB mask

userid indicator field 393
userid indicator, field in I/O

PCB 226
program communication block (PCB) 10
program deadlock 39

program restarting
EXEC DLI XRST command 530

program sensitivity 53
program specification block (PSB) 10
program structure

conversational 432
conversational processing

message formats 432
restrictions 432
ROLB call 432
ROLL call 432
ROLS call 432
steps in a conversational

program 432
deferred program switch

passing control to another 432
immediate program switch 432
LL field 432
message

in conversations 432
ROLB call

use in conversations 432
ROLL call

use in conversations 432
ROLS call

use in conversations 432
SPA (scratchpad area)

contents 432
format 432
inserting 432
restrictions on using 432
saving information 432

system service calls
ROLB call 432
ROLL call 432
ROLS call 432

program switch
deferred 104
immediate 104

program test 147
program types, environments and

database types 36
program waits 50
program-to-program message switching

conversational 437
conversational processing

by deferred switch 437
by immediate switch 437
ending the conversation and

passing control 437
passing control and continuing the

conversation 437
restrictions 437

deferred program switch
in conversational programs 437

ending a conversation and passing
control to another program 437

immediate program switch
in conversational programs 437

MSC (multiple systems coupling)
conversational programming 437

nonconversational 425
passing a conversation to another IMS

TM system 437
passing control

restrictions 437
restrictions 425

program-to-program message switching
(continued)

security checks 425
SPA (scratchpad area)

and program-to-program
switches 437

programming
guidelines 181
mixed language 252
secondary indexing 297

programming guidelines, general 499
programs

DL/I image capture 171
DL/I test 147
online 41
TM batch 40

programs, BMP 525
protected resources 116
protocol, locking 93
PSB (program specification block) 361

APSB (allocate program specification
block) 121

CMPAT=YES 39
defining subset pointers 536
description 10
format 403, 525

generated program specification
block (GPSB), format 249

GPSB (generated program
specification block), format 249

PCB (program communication
block) 249

PCB, types of 525
scheduling in a call-level program 62

pseudo-abend 53
PSINDEX (Partitioned Secondary

Index) 83
PURG system service call 462

Q
Q command code 295
QC status code 44
qualification statement

coding 240
field name 182
field value 182

SSA qualification statement 182
multiple qualification statements 186

DEDB 188
HDAM 188
PHDAM 188

qualification statement
field value 182

randomizing routine
exit routine 188

relational operator 182
segment name 182
structure 182

qualified calls
overview 182

qualified SSA
structure with command code 189

qualified SSAs (segment search
arguments)

qualification statement 182

790 Application Programming

qualifying
DL/I calls with command codes 189
SSAs 182

quantitative relationship between data
aggregates 28

queries
in application programs 557

R
read access, specify with PROCOPT

operand 93
read without integrity 95
read-only access, specify with PROCOPT

operand 93
reading segments in MSDBs 325, 328
receiving messages

other IMS TM systems 428
record

database processing 12
database, description of 5

record descriptor word (RDW)
IMS Spool API 463

recording
data availability 20
information about your program 177

recoverable in-doubt structure. 282
recoverable resources 116
recovering databases 529
recovery

considerations in conversations 105
identifying requirements 50
in a batch-oriented BMP 42
in batch programs 39
RIS 282
token

definition 282
recovery EXEC DLI commands

XRST 530
recovery of databases 67
Recovery process

distributed 116
local 116

Recovery, Resource 116
redundant data 3
reestablish position in database 50
related (terminal related) MSDBs 325
relational database

hierarchical database, compared
to 605

relational databases 36
relational operators

Boolean operators 186
list 182
overview 182
SSA qualification statement 182
SSA, coding 240

relationships
between data elements 22
data, hierarchical 5
defining logical 86
mapping data 28

relationships between data
aggregates 28

remote DL/I 58
repetitive data elements, isolating 23

REPL (Replace) call
with MSDB, DEDB or VSO

DEDB 327
reply to the terminal in a

conversation 104
replying to the terminal in a

conversation 436
report of instructor schedules 29
reports, creating 20
requests, processing 12
required application data, analyzing 17
requirements, analyzing processing 35
reserving

place for command codes 351
segment

command code 295
lock management 295

residency mode (RMODE) 252, 405
resolving data structure conflicts 81
resource managers 116
Resource Recovery

application program 116
Introduction to 116
protected resources 116
recoverable resources 116
resource managers 116
sync-point manager 116

Resource Recovery Services/Multiple
Virtual Storage (RRS)

introduction to 116
Resource Recovery Services. 280
resources

protected 116
recoverable 116
security 15

response mode, description 107
restart your program

code for, description 68
with basic CHKP 50
with symbolic CHKP 50

Restart, Extended 49, 68
restarting your program, basic

checkpoints 288
restrictions

CHKP and XRST with GSAM 316
database calls

to DEDBs 351
to MSDBs 325

XRST (Extended Restart) call with
GSAM 316

result segment
description 592
example 592
of SELECT statement 592

result segments
formatting 592

retrieval of IMS database statistics 151
retrieving

data using SELECT * 593
variable-length segments 593

dependent segments 86
RETRY option 55
return codes

UIB 237
RIS (recoverable in-doubt structure) 282
risks to security, combined files 3
RMODE 252

ROLB
in MPPs and transaction-oriented

BMPs 288
ROLB (Roll Back) call

compared to ROLL call 289
description 288
maintaining database integrity 288
usage 288

ROLB call 445
description 446

ROLB command
compared to ROLL and ROLS 445

ROLB system service call 39, 67
ROLB, ROLL, ROLS 445
ROLL (Roll) call

compared to ROLB call 289
description 288
maintaining database integrity 288

roll back point 445
ROLL call 445

description 446
ROLL command

compared to ROLB and ROLS 445
ROLL system service call 67
ROLS

backing out to an intermediate
backout point 292

ROLS (Roll Back to SETS) call
maintaining database integrity 288
TOKEN 288, 291

ROLS (Rollback to SETS or SETU)
command

backout point, intermediate 530
ROLS call 445

with LU 6.2 448
with TOKEN 448
without TOKEN 448

ROLS command
compared to ROLB and ROLL 445

ROLS system service call 39, 53, 70
root anchor point 75
root segment, definition 5
roster, current 17
routines

ESTAE 55
STAE 55

row
selecting with WHERE clause 590
updating 588

rows
relational representation, in 605
segment instances, compared to 605

RRS (z/OS Resource Recovery
Services) 280, 361

summary of IMS support 119
RSA (record search argument)

GSAM, reference 245
rules

coding an SSA 240

S
SAA resource recovery interface

calls 279
SAMETRM=YES 436

Index 791

sample programs
call-level assembler language

CICS online 194
call-level COBOL, CICS online 202
call-level PL/I, CICS online 211

sample programs, command level
assembler language 500
C 511
COBOL 504
PL/I 507

schedule a PSB, in a call-level program,
how to 62

schedule, classes example 29
screen design considerations 102
SCS1 devices

meaning of designation 484
SCS2 devices

meaning of designation 484
SDSF (Spool Display and Search

Facility) 463
search condition

comparison operators 590
WHERE clause 590

secondary index
description 337
preparing to use 337
using 337

secondary indexes
multiple qualification statements 298

secondary indexing
DB PCB contents 300, 301
description 82
effect on programming 297
examples of uses 83
information returned by DL/I 300
Partitioned Secondary Index

(PSINDEX) 83
specifying 83
SSAs 297
status codes 301

secondary logical unit 484
secondary processing sequence 297
security 99

and the PROCOPT= operand 93
database 91
field level sensitivity 91
identifying online requirements 99
key sensitivity 91
of databases and data

communications 15
of resources 15
password security 99
risks of combined files 3
segment sensitivity 91
signon 99
supplying information about your

application 99
terminal 99

security checks in program-to-program
switching 425

segment
description 5
preventing access to by other

programs 64
retrieving 595
sensitivity 91

segment (continued)
sequential dependent

identifying free space 545
locating a specific dependent 544
locating the last inserted

dependent 545
segment name

SSA qualification statement 182
segment search argument (SSA)

coding rules 240
segment search arguments (SSAs) 182
segment, information needed 191
segments

in medical database example 5
in SQL queries 605
medical database example 5
tables, compared to 605

Segments
Message Input Format 408

SELECT keyword
example query 605

SELECT statement
AS clause

with ORDER BY clause 592
clauses

FROM 590
ORDER BY 592
WHERE 590

dynamic execution 568
fixed-list 560
named columns 590
ORDER BY clause

derived columns 592
with AS clause 592

parameter markers 562
selecting a set of rows 595
using with

* (to select all columns) 590
column-name list 590
DECLARE CURSOR

statement 596
varying-list 562

selecting
all columns 590
named columns 590
rows 590
some columns 590

selective partition processing
DFSHALDB ddname 305
HALDB control statement 305

sending messages
defining alternate PCBs for 422
other IMS TM systems 429
overview 407
to other application programs 425
to other IMS TM systems 427
using ISRT 422

sensitivity
data 10
field level 10, 91
general description 91
key 91
program 53
segment 91

sequence field
virtual logical child, in 182

sequence numbers
COBOL application program 581

sequential access methods
characteristics of 78
HISAM 79
HSAM 79
types of 78

sequential dependent segments
how stored 326
identifying free space 545
locating a specific dependent 544
locating the last inserted

dependent 545
POS (Position) command 544

sequential dependents 36, 326
overview 326

sequential processing only 79
SET clause of UPDATE statement 588
SETO call

usage 466
SETO system service call 461
SETS

backing out to an intermediate
backout point 292

SETS call
description 449

SETS system service call 39, 53, 70
SETU

backing out to an intermediate
backout point 292

SETU system service call 70
shared queues option 99
SHISAM (Simple Hierarchical Indexed

Sequential Access Method) 80
SHSAM (Simple Hierarchical Sequential

Access Method) 80
signon security 99
simple HISAM (SHISAM) 80
simple HSAM (SHSAM) 80
single mode 41, 46, 50
skeleton programs

assembler language 192, 453
C language 196, 453
COBOL 199, 455
Pascal 206, 456
PL/I 208, 458

skills report, instructor 29
SLU 484

type 1
defining to operate with MFS 484

type 2
defining to operate with MFS 484

type 6.1
defining to operate with MFS 484

type P
defining to operate with MFS 484

sort key
ORDER BY clause 592
ordering 592

SPA (scratchpad area) 105
specification of

field level sensitivity 81
frequency, checkpoint 52

specifying
DB PCB mask 230
GSAM data set attributes 320
processing options for DEDBs 350

792 Application Programming

SPIE routine 55
Spool API

CHNG call, keywords 466
code examples

Application PCB structure 471
CHNG call to alternate PCB 471
GU call to I/O PCB 471
ISRT call to alternate PCB 471

error codes
description 466
diagnosis, examples 468

parsing errors
diagnosis, examples 468
error codes 466
status codes 466

print data set characteristics 466
SETO call, keywords 466
status codes 466

Spool Display and Search Facility
(SDSF) 463

SQL
application programming 553
writing application programs 557

SQL (Structured Query Language) 36
checking execution 570
coding 559
cursors 595
dynamic

coding 559
example query 605
return codes

checking 571
varying-list 562

SQL communication area (SQLIMSCA)
description 571

SQL statements
checking for successful execution 557
CLOSE 560, 598
COBOL program sections 581
comments

COBOL 581
continuation

COBOL 581
DECLARE CURSOR

description 596
example 560, 562

DELETE
description 597
example 589

DESCRIBE 562
EXECUTE 569
FETCH

description 597
example 560

in application programs 557
INSERT 587
labels

COBOL 581
margins

COBOL 581
OPEN

description 597
example 560

PREPARE 569
SELECT 568

description 590

SQL statements (continued)
UPDATE

description 597
example 588

WHENEVER 572
SQLERROR clause of WHENEVER

statement 572
SQLIMSCA (SQL communication area)

checking SQLIMSCODE 571
checking SQLIMSERRD(3) 571
checking SQLIMSSTATE 571
deciding whether to include 557
description 571

SQLIMSCA (SQL communications area)
COBOL 573

SQLIMSCODE
+100 572
values 571

SQLIMSCODE host variable
deciding whether to declare 557

SQLIMSDA (SQL descriptor area)
allocating storage 562
COBOL 573
dynamic SELECT example 562
no occurrences of SQLIMSVAR 562
OPEN statement 560
parameter markers 562
requires storage addresses 562
varying-list SELECT statement 562

SQLIMSN field of SQLIMSDA 562
SQLIMSSTATE

values 571
SQLIMSSTATE host variable

deciding whether to declare 557
SQLIMSVAR field of SQLIMSDA 562
SQLWARNING clause of WHENEVER

statement 572
SSA (segment search argument)

coding
formats 242
restrictions 240
rules 240

coding rules 240
command codes 189
qualification statement 240
reference 240
relational operators 182
restrictions 240
segment name field 240
structure with command code 189
usage

command codes 189
guidelines 185
multiple qualification

statements 186
virtual logical child 182

SSAs (segment search argument)
overview 182
segment name field 182

SSAs (segment search arguments) 182
definition 182
unqualified 182
usage

secondary indexing 297
STAE routines 55
standard application programs and

MSC 442

STAT call
formats for statistics

OSAM buffer pool, STAT call 152
OSAM buffer subpool, enhanced

STAT call 156
VSAM buffer subpool, enhanced

STAT call 161
VSAM buffer subpool, STAT

call 154
system service 369
use in debugging 151, 174

static SQL
description 559

statistics, database 151
status code, QC 44
status codes

AJ 543
AM 543
FSA 328
GSAM 315
H processing option 351
logical relationships 304
P processing option 350, 546
subset pointers 336, 543

STATUS statement 147
storage

acquiring
retrieved row 562
SQLIMSDA 562

addresses in SQLIMSDA 562
storage of data

in a combined file 3
in a database 3
in separate files 3

storage overlap 523
structure

data 10
physical, of a database 10

structure of data, methods 22
Structured Query Language (SQL) 36
subset pointer command codes

restrictions 189
subset pointers

command codes
subset pointers 332

DEDB
managed by command codes 189

defining DBD 536
defining PSB 536
defining, DBD 332
defining, PCB 332
description 332, 533
MOVENEXT option 536
moving forward 536
preparation for using 535
preparing to use 332
specifying

command codes for DEDBs 332
status codes 336, 543
using 332

summary of command codes 189
summary of symbolic CHKP and basic

CHKP 49
supply security information, how to 99
symbolic checkpoint

description 49, 65
IDs, specifying 65

Index 793

symbolic checkpoint (continued)
issuing 68
restart 68
restart with 50

Symbolic Checkpoint (SYMCHKP)
command

restart 530
XRST 530

SYMCHKP (Symbolic Checkpoint)
command

restart 530
XRST 530

sync point
application program 279
CPI Communications driven

programs 279
data propagation 284
log records 283
relationship to commit point and

check point 279
sync_level values 115
sync-point manager (SPM) 116
synchronization point 445
synchronization point manager 115
synchronous conversation, description for

LU 6.2 transactions 113
synchronous program switch request

JMS (Java Message Service)
implementation

IMSQueueConnectionFactory 744
SYNCLVL 279
synonym, data element 19
syntax diagram

how to read xii
sysplex data-sharing 42
system log

on tape 39
storage 39

system service calls 361
CHNG 461
INIT 53
INQY 53
ISRT 461
LOG 165, 369
PURG 462
ROLB 39, 67
ROLB call 446
ROLL 67
ROLL call 446
ROLS 39, 53, 70
SETO 461
SETS 39, 53, 70
SETU 70
STAT 151, 369

T
table

deleting rows 589
inserting single row 587
updating rows 588

tables
relational representation, in 605
segments, compared to 605

take checkpoints, how to 65
terminal screen, designing 102
terminal security 99

termination of a PSB, restrictions 62
termination, abnormal 46
test of application programs

using BTS 148
using DFSDDLT0 171
using DL/I test program 147
what you need 147, 169

test of DL/I call sequences 147, 171
test, unit 147
testing

CICS programs
tools 169

timeout
activating 427

TM batch program 40
token, definition of 105
trademarks 767, 769
TRANSACT macro 46
transaction code 41
transaction response mode 41
transaction-oriented BMPs

ROLB 288
transaction-oriented BMPs. 50
translator

options required for EXEC DLI 517
TREATMNT segment 5
TSO application programs 46
two-phase 280
two-phase commit

overview 280
single-phase 283
UOR 282

two-phase commit process
UOR 116

two-phase commit protocol 116
TXTU parameter 462
type 18 log record 65

U
UIB (user interface block)

defining, in program 237
field names 237
PCB address list, accessing 237
return codes, accessing 237

unavailability of data 53, 69
Unicode

data, retrieving from IMS 562
unique identifier, data 19
unit of recovery (UOR)

definition 282
unit of work 46
unit of work (UOW)

crossing a boundary when processing
DEDBs 546

unit test 147
Universal JDBC driver

DL/I calls 676
unqualified calls

command codes
C 182
SSAs (segment search

arguments) 182
definition 182
DL/I calls (general information)

types 182
overview 182

unqualified calls (continued)
qualified calls

definition 182
SSAs (segment search arguments)

qualified 182
unqualified 182

unqualified SSA
structure with command code 189
usage with command codes 189

unqualified SSAs
segment name field 182

UOR (unit of recovery) 116
definition 282
in-doubt

definition 282
in-flight

definition 282
UOW (unit of work)

crossing a boundary when processing
DEDBs 546

UOW boundary, processing DEDB 350,
351

updatable cursor 596
update access, specify with PROCOPT

operand 93
UPDATE statement

description 588
SET clause 588

updating
segments in an MSDB, DEDB or VSO

DEDB 327
uppercase, using Basic Edit 413
user interface block 237
user requirements, analyzing 15
USER special register

value in UPDATE statement 588
USING DESCRIPTOR clause

EXECUTE statement 562
FETCH statement 562
OPEN statement 562

utilities
Batch Backout 39
DFSERA10 65, 369
File Select and Formatting Print

program 49

V
VALUES clause, INSERT statement 587
values, isolating duplicate 23
variable

COBOL 574
variable-length database segments

IMS Universal drivers 617
SQL support for 617

VBASF, formatted VSAM subpool
statistics 154

VBASS, formatted summary of VSAM
subpool statistics 154

VBASU, unformatted VSAM subpool
statistics 154

VBESF, formatted VSAM subpool
statistics 161

VBESS, formatted summary of VSAM
subpool statistics 161

VBESU, unformatted VSAM subpool
statistics 161

794 Application Programming

versioning
databases

application programming 257
view of data, a program's 10
view, local 29
virtual logical child 182
VisualGen 20
VSAM buffer subpool, retrieving

enhanced subpool statistics 161
statistics 154, 161

VTAM I/O facility
effects on VTAM terminals 427

VTAM terminal
activating a timeout 427

W
wait-for-input (WFI)

transactions 41, 44
waits, program 50
WFI parameter 44
WHENEVER statement

COBOL 581
CONTINUE clause 572
GO TO clause 572
NOT FOUND clause 572, 597
specifying 572
SQL error codes 572
SQLERROR clause 572
SQLWARNING clause 572

WHERE clause
SELECT statement

description 590
writing

DDL 666
writing application programs

SQL 557
writing information to the system

log 165

X
X'18' log record 49
XRST (Extended Restart) 49

Z
z/OS

extended addressing capabilities
addressing mode (AMODE) 405
DCCTL environment 405
preloaded program 405
residency mode (RMODE) 405

z/OS files
access to 36, 58
description 58

z/OS Resource Recovery Services 121,
279

z/OS Resource Recovery Services (RRS)
ODBA interface 361
summary of IMS support 119

z/OS Scheduler JCL Facility (SJF) 462
Z1 field 409
Z2 field 409
ZZ field

in input message 408

ZZ field (continued)
in output message 409

Index 795

796 Application Programming

IBM®

Product Number: 5635-A05
5655-DSE
5655-TM3

Printed in USA

SC19-4208-00

Sp
in

e
in

fo
rm
at
io
n:

IM
S

Ve
rs

io
n

14
Ap

pl
ic

at
io

n
Pr

og
ra

m
m

in
g

I
B

M

	Contents
	About this information
	Prerequisite knowledge
	How new and changed information is identified
	How to read syntax diagrams
	Accessibility features for IMS 14
	How to send your comments

	Part 1. Application programming design
	Chapter 1. Designing an application: Introductory concepts
	Storing and processing information in a database
	Database hierarchy examples
	Your program's view of the data
	Processing a database record

	Tasks for developing an application

	Chapter 2. Designing an application: Data and local views
	An overview of application design
	Identifying application data
	Listing data elements
	Naming data elements
	Documenting application data

	Designing a local view
	Analyzing data relationships
	Grouping data elements into hierarchies
	Determining mappings

	Local view examples

	Chapter 3. Analyzing IMS application processing requirements
	Defining IMS application requirements
	Accessing databases with your IMS application program
	Accessing data: the types of programs you can write for your IMS application
	DB batch processing
	TM batch processing
	Processing messages: Message Processing Programs
	Processing messages: IMS Fast Path Programs
	Batch message processing: BMPs
	Batch processing online: batch-oriented BMPs
	Batch message processing: transaction-oriented BMPs

	Java message processing: JMPs
	Java batch processing: JBPs

	IMS programming integrity and recovery considerations
	How IMS protects data integrity: commit points
	Planning for program recovery: checkpoint and restart
	Introducing checkpoint calls
	When to use checkpoint calls
	Specifying checkpoint frequency

	Data availability considerations
	Use of STAE or ESTAE and SPIE in IMS programs

	Dynamic allocation for IMS databases

	Chapter 4. Analyzing CICS application processing requirements
	Defining CICS application requirements
	Accessing databases with your CICS application program
	Writing a CICS program to access IMS databases
	Writing a CICS online program

	Using data sharing for your CICS program
	Scheduling and terminating a PSB (CICS online programs only)
	Linking and passing control to other programs (CICS online programs only)
	How CICS distributed transactions access IMS
	Maximizing the performance of your CICS system
	Programming integrity and database recovery considerations for your CICS program
	How IMS protects data integrity for CICS online programs
	Recovering databases accessed by batch and BMP programs
	Taking checkpoints in batch and BMP programs
	Backing out database changes
	Restarting your program

	Data availability considerations for your CICS program
	Unavailability of a database
	Unavailability of some data in a database
	The SETS or SETU and ROLS functions

	Use of STAE or ESTAE and SPIE in IMS batch programs
	Dynamic allocation for IMS databases

	Chapter 5. Gathering requirements for database options
	Analyzing data access
	Direct access
	Primarily direct processing: HDAM
	Direct and sequential processing: HIDAM
	Main storage database: MSDB
	Data entry database: DEDB

	Sequential access
	Sequential processing only: HSAM
	Primarily sequential processing: HISAM

	Accessing z/OS files through IMS: GSAM
	Accessing IMS data through z/OS: SHSAM and SHISAM

	Understanding how data structure conflicts are resolved
	Using different fields: field-level sensitivity
	Resolving processing conflicts in a hierarchy: secondary indexing
	Retrieving segments based on a different key
	Retrieving segments based on the qualification of a dependent segment

	Creating a new hierarchy: logical relationships
	Accessing a segment through different paths
	Inverting a parent-child relationship

	Providing data security
	Keeping a program from accessing the data: data sensitivity
	Preventing a program from updating data: processing options

	Read without integrity

	Chapter 6. Gathering requirements for message processing options
	Identifying online security requirements
	Analyzing screen and message formats
	An overview of MFS
	An overview of basic edit
	Editing considerations in your application

	Gathering requirements for conversational processing
	What happens in a conversation
	Designing a conversation
	Important points about the scratchpad area (SPA)
	Recovery considerations in conversations

	Identifying output message destinations
	The originating terminal
	To other programs and terminals

	Chapter 7. Designing an application for APPC
	Overview of APPC and LU 6.2
	Application program types
	Application objectives
	Conversation type
	Conversation state
	Synchronization level
	Introduction to resource recovery
	Summary of z/OS Resource Recovery Services support
	Distributed sync point
	Application programming interface for LU type 6.2
	LU 6.2 partner program design
	LU 6.2 flow diagrams
	Integrity tables
	DFSAPPC message switch

	Chapter 8. Testing an IMS application program
	Recommendations for testing an IMS program
	Testing DL/I call sequences (DFSDDLT0) before testing your IMS program
	Using BTS to test your IMS program
	Tracing DL/I calls with image capture for your IMS program
	Using image capture with DFSDDLT0
	Restrictions on using image capture output
	Running image capture online
	Running image capture as a batch job
	Retrieving image capture data from the log data set

	Requests for monitoring and debugging your IMS program
	Retrieving database statistics: the STAT call
	Format of OSAM buffer pool statistics
	Format of VSAM buffer subpool statistics
	Format of enhanced/extended OSAM buffer subpool statistics
	Format of enhanced VSAM buffer subpool statistics

	Writing Information to the system log: the LOG request

	What to do when your IMS program terminates abnormally

	Chapter 9. Testing a CICS application program
	Recommendations for testing a CICS program
	Testing your CICS program
	Tracing DL/I calls with image capture

	Requests for monitoring and debugging your CICS program
	What to do when your CICS program terminates abnormally

	Chapter 10. Documenting your application program
	Documentation for other programmers
	Documentation for end users

	Part 2. Application programming for IMS DB
	Chapter 11. Writing your application programs for IMS DB
	Programming guidelines
	Segment search arguments (SSAs)
	SSA guidelines
	Multiple qualification statements
	Example of how to use multiple qualification statements
	Multiple qualification statements for HDAM, PHDAM, or DEDB

	SSAs and command codes

	Considerations for coding DL/I calls and data areas
	Preparing to run your CICS DL/I call program
	Examples of how to code DL/I calls and data areas
	Coding a batch program in assembler language
	Coding a CICS online program in assembler language
	Coding a batch program in C language
	Coding a batch program in COBOL
	Binding COBOL code to the IMS language interface module

	Coding a CICS online program in COBOL
	Coding a program in Java
	Coding a batch program in Pascal
	Coding a batch program in PL/I
	Binding PL/I code to the IMS language interface module

	Coding a CICS online program in PL/I

	Chapter 12. Defining application program elements for IMS DB
	Formatting DL/I calls for language interfaces
	Assembler language application programming
	C language application programming
	COBOL application programming
	Java application programming for IMS
	Pascal application programming
	Application programming for PL/I
	Specifying the I/O PCB mask
	Specifying the DB PCB mask
	Specifying the AIB mask
	Specifying the AIB mask for ODBA applications
	Specifying the UIB (CICS online programs only)
	Specifying the I/O areas
	Formatting segment search arguments (SSAs)
	SSA coding rules
	SSA coding formats

	Data areas in GSAM databases
	AIBTDLI interface
	Language specific entry points
	Program communication block (PCB) lists
	The AERTDLI interface
	Language environments
	Special DL/I situations for IMS DB programming
	Application programming with the IMS catalog

	Chapter 13. Database versioning and application programming
	Chapter 14. Establishing a DL/I interface from COBOL or PL/I
	Chapter 15. Current position in the database after each call
	Current position after successful calls
	Position after retrieval calls
	Position after DLET
	Position after REPL
	Position after ISRT

	Current position after unsuccessful calls
	Multiple processing
	Advantages of using multiple positioning
	Multiple DB PCBs

	Chapter 16. Using IMS application program sync points
	Commit process
	Two-phase commit in the synchronization process
	Unit of recovery
	DBCTL single-phase commit

	Sync-point log records
	Sync points with a data-propagation manager

	Chapter 17. Recovering databases and maintaining database integrity
	Issuing checkpoints
	Restarting your program from the latest checkpoint
	Maintaining database integrity (IMS batch, BMP, and IMS online regions)
	Backing out to a prior commit point: ROLL, ROLB, and ROLS
	Backing out to an intermediate backout point: SETS, SETU, and ROLS

	Reserving segments for the exclusive use of your program

	Chapter 18. Secondary indexing and logical relationships
	How secondary indexing affects your program
	SSAs with secondary indexes
	Multiple qualification statements with secondary indexes
	DL/I returns with secondary indexes
	Status codes for secondary indexes

	Processing segments in logical relationships
	How logical relationships affect your programming
	Status codes for logical relationships

	Chapter 19. HALDB selective partition processing
	Chapter 20. Processing GSAM databases
	Accessing GSAM databases
	PCB masks for GSAM databases
	Retrieving and inserting GSAM records
	Explicit open and close calls to GSAM

	GSAM record formats
	GSAM I/O areas
	GSAM status codes
	Symbolic CHKP and XRST with GSAM
	GSAM coding considerations
	Origin of GSAM data set characteristics
	DD statement DISP parameter for GSAM data sets
	Extended checkpoint restart for GSAM data sets
	Concatenated data sets used by GSAM
	Specifying GSAM data set attributes
	DLI, DBB, and BMP region types and GSAM

	Chapter 21. Processing Fast Path databases
	Fast Path database calls
	Main storage databases (MSDBs)
	Restrictions on using calls for MSDBs

	Data entry databases (DEDBs)
	Updating segments: REPL, DLET, ISRT, and FLD
	Checking the contents of a field: FLD/VERIFY
	Changing the contents of a field: FLD/CHANGE
	Example of using FLD/VERIFY and FLD/CHANGE
	Commit-point processing in MSDBs and DEDBs

	Processing DEDBs (IMS and CICS with DBCTL)
	Processing Fast Path DEDBs with subset pointer command codes
	Subset pointer status codes

	Processing DEDBs with a secondary index
	Retrieving location with the POS call (for DEDB only)
	Commit-point processing in a DEDB
	P processing option
	H processing option

	Calls with dependent segments for DEDBs
	DEDB DL/I calls to extract DEDB information
	AL_LEN Call
	DI_LEN Call
	DS_LEN Call
	AREALIST Call
	DEDBINFO Call
	DEDSTR Call

	Fast Path coding considerations

	Chapter 22. Writing ODBA application programs
	General application program flow of ODBA application programs
	Server program structure
	DB2 for z/OS stored procedures use of ODBA

	Testing an ODBA application program
	Tracing DL/I calls with image capture to test your ODBA program
	Using image capture with DFSDDLT0 to test your ODBA program
	Running image capture online
	Retrieving image capture data from the log data set
	Requests for monitoring and debugging your ODBA program
	What to do when your ODBA program terminates abnormally
	Recommended actions after an abnormal termination of an ODBA program
	Diagnosing an abnormal termination of an ODBA program

	Chapter 23. Programming with the IMS support for DRDA
	DDM commands for data operations with the IMS support for DRDA

	Part 3. Application programming for IMS TM
	Chapter 24. Defining application program elements for IMS TM
	Formatting DL/I calls for language interfaces
	Application programming for assembler language
	Application programming for C language
	Application programming for COBOL
	Java application programming for IMS
	Application programming for Pascal
	Application programming for PL/I
	Relationship of calls to PCB types
	Specifying the I/O PCB mask
	Specifying the alternate PCB mask
	Specifying the AIB mask
	Specifying the I/O areas
	AIBTDLI interface
	Specifying language-specific entry points
	Program communication block (PCB) lists
	Language environments
	Special DL/I situations for IMS TM programming

	Chapter 25. Message processing with IMS TM
	How your program processes messages
	Message types
	Input message format and contents
	Output message format and contents

	When a message is processed
	Results of a message: I/O PCB

	How IMS TM edits messages
	Printing output messages
	Using Basic Edit
	Using Intersystem Communication Edit
	Using Message Format Service
	Terminals and MFS
	MFS input message formats
	MFS output message formats

	Using LU 6.2 User Edit exit routine (optional)

	Message processing considerations for DB2
	Sending messages to other terminals and programs
	Sending messages to other terminals
	Sending messages to other IMS application programs
	How the VTAM I/O facility affects your VTAM terminal

	Communicating with other IMS TM systems using Multiple Systems Coupling
	Implications of MSC for program coding
	Receiving messages from other IMS TM systems
	Sending messages to alternate destinations in other IMS TM systems

	IMS conversational processing
	A conversational example
	Conversational structure
	Replying to the terminal
	Conversational processing using ROLB, ROLL, and ROLS
	Passing the conversation to another conversational program
	Message switching in APPC conversations

	Processing conversations with APPC
	Ending the APPC conversation
	Coding a conversational program
	Standard IMS application programs
	Modified IMS application programs
	CPI-C driven application programs

	Processing conversations with OTMA
	Backing out to a prior commit point: ROLL, ROLB, and ROLS calls
	Comparison of ROLB, ROLL, and ROLS
	ROLL
	ROLB
	ROLS

	Backing out to an intermediate backout point: SETS/SETU and ROLS
	Writing message-driven programs
	Coding DC calls and data areas
	Before coding your program
	MPP code examples
	Coding your MPP program in assembler language
	Coding your MPP program in C language
	Coding your MPP program in COBOL
	Coding your MPP program in Pascal
	Coding your MPP program in PL/I

	Message processing considerations for DB2

	Chapter 26. IMS Spool API
	Managing the IMS Spool API overall design
	IMS Spool API design
	Sending data to the JES spool data sets
	IMS Spool API performance considerations
	JES initiator considerations
	Application managed text units
	BSAM I/O area

	IMS Spool API application coding considerations
	Print data formats
	Message integrity options

	Understanding parsing errors
	Diagnosis examples

	Understanding allocation errors
	Understanding dynamic output for print data sets
	Sample programs using the Spool API

	Chapter 27. IMS Message Format Service
	Advantages of using MFS
	MFS control blocks
	MFS examples
	Relationship between MFS control blocks and screen format

	Overview of MFS components
	Devices and logical units that operate with MFS
	Using distributed presentation management (DPM)

	Chapter 28. Callout requests for services or data
	Callout request approaches
	Resume tpipe protocol
	Implementing the synchronous callout function
	Control data in synchronous callout requests
	Implementing the asynchronous callout function

	Part 4. Application programming for EXEC DLI
	Chapter 29. Writing your application programs for EXEC DLI
	Programming guidelines
	Coding a program in assembler language
	Coding a program in COBOL
	Coding a program in PL/I
	Coding a program in C

	Preparing your EXEC DLI program for execution
	Translator, compiler, and binder options required for EXEC DLI

	Chapter 30. Defining application program elements
	Specifying an application interface block (AIB)
	Specifying the DL/I interface block (DIB)
	Defining a key feedback area
	Defining I/O areas

	Chapter 31. EXEC DLI commands for an application program
	PCBs and PSB

	Chapter 32. Recovering databases and maintaining database integrity
	Issuing checkpoints in a batch or BMP program
	Restarting your program and checking for position
	Backing out database updates dynamically: the ROLL and ROLB commands
	Using intermediate backout points: the SETS and ROLS commands

	Chapter 33. Processing Fast Path databases
	Processing Fast Path DEDBs with subset pointer options
	Preparing to use subset pointers
	Designating subset pointers
	Subset pointer options
	Subset pointer status codes

	The POS command
	Locating a specific sequential dependent segment
	Locating the last inserted sequential dependent segment
	Identifying free space with the POS command
	The P processing option

	Chapter 34. Comparing command-level and call-level programs
	DL/I calls for IMS and CICS
	Comparing EXEC DLI commands and DL/I calls
	Comparing command codes and options

	Chapter 35. Data availability enhancements
	Part 5. Application programming for SQL
	Chapter 36. SQL considerations and restrictions for COBOL
	Chapter 37. Writing application programs for SQL
	Coding SQL statements in application programs: General information
	Defining the items that your program can use to check whether an SQL statement executed successfully
	Defining SQL descriptor areas
	Declaring host variables and indicator variables
	Host variables
	Host structures
	Indicator variables, arrays, and structures

	Using SQL statements in your application
	Dynamic SQL
	Dynamically executing SQL for fixed-list SELECT statements
	Dynamically executing SQL for varying-list SELECT statements
	Dynamically executing SQL for non-SELECT statements
	Dynamically executing a SELECT SQL statement with parameter markers
	Dynamically executing a non-select SQL statement with parameter markers

	Checking the execution of SQL statements
	Checking the execution of SQL statements by using the SQLIMSCA
	Checking the execution of SQL statements by using SQLIMSCODE and SQLIMSSTATE
	Checking the execution of SQL statements by using the WHENEVER statement

	Coding SQL statements in COBOL application programs
	Defining the SQL communications area in COBOL
	Defining SQL descriptor areas in COBOL
	Declaring host variables and indicator variables in COBOL
	Host variables in COBOL
	Host structures in COBOL

	Equivalent SQL and COBOL data types
	SQL statements in COBOL programs
	Delimiters in SQL statements in COBOL programs

	SQL aggregate functions supported for COBOL

	Adding and modifying data
	Inserting rows
	Updating segment data
	Deleting data from segments

	Accessing data
	Retrieving data by using the SELECT statement
	Formatting the result segment
	Optimizing retrieval for a small set of rows
	Implications of using SELECT *
	Support for variable-length database segments

	Retrieving a set of rows by using a cursor
	Cursors
	Accessing data by using a row-positioned cursor

	Commit or roll back data
	Preparing an application to run on IMS
	Processing SQL statements
	Processing SQL statements by using the IMS coprocessor

	Part 6. Java application development for IMS
	Chapter 38. IMS solutions for Java development overview
	Chapter 39. Comparison of hierarchical and relational databases
	Chapter 40. Programming with the IMS Universal drivers
	IMS Universal drivers overview
	Distributed and local connectivity with the IMS Universal drivers
	Comparison of IMS Universal drivers programming approaches for accessing IMS
	Support for variable-length database segments with the IMS Universal drivers
	Support for flattening complex structures
	Generating the runtime Java metadata class
	Hospital database example

	Programming using the IMS Universal Database resource adapter
	Overview of the IMS Universal Database resource adapter
	Transaction types and programming interfaces supported by the IMS Universal Database resource adapter
	Connecting to IMS with the IMS Universal Database resource adapter
	Connecting using the IMS Universal Database resource adapter in a managed environment
	Connecting using the IMS Universal JCA/JDBC driver in a managed environment

	Sample EJB application using the IMS Universal Database resource adapter CCI programming interface
	Accessing IMS data with the DLIInteractionSpec class
	Accessing IMS data with the SQLInteractionSpec class
	Accessing IMS data with the IMS Universal JCA/JDBC driver

	Programming with the IMS Universal JDBC driver
	Supported drivers for JDBC
	Connecting to IMS using the IMS Universal JDBC driver
	Connecting to an IMS database using the JDBC DataSource interface
	Connecting to an IMS database by using the JDBC DriverManager interface

	Sample application for the IMS Universal JDBC driver
	Writing SQL queries to access an IMS database with the IMS Universal JDBC driver
	SQL keywords supported by the IMS JDBC drivers
	SQL aggregate functions supported by the IMS JDBC drivers
	Portable SQL keywords restricted by the IMS Universal JDBC drivers
	Writing DDL statements to modify IMS resources with the IMS Universal JDBC driver
	SQL statement usage with the IMS Universal JDBC driver

	Writing DL/I calls to access an IMS database with the IMS Universal JDBC driver
	IMS Universal JDBC driver support for XML
	Defining XML datatype column fields in the Java metadata class
	Storing XML data by using the IMS Universal JDBC driver
	Retrieving XML data by using the IMS Universal JDBC driver

	Data transformation support for JDBC
	Supported JDBC data types
	Methods for retrieving and converting data types
	COBOL copybook types that map to Java data types

	Programming with the IMS Universal DL/I driver
	Basic steps in writing a IMS Universal DL/I driver application
	Java packages for IMS Universal DL/I driver support
	Connecting to an IMS database by using the IMS Universal DL/I driver
	IMS Universal DL/I driver interfaces for executing DL/I operations
	Specifying segment search arguments using the SSAList interface
	Retrieving data in a IMS Universal DL/I driver application
	Batch data retrieval in a IMS Universal DL/I driver application
	Methods for retrieving and converting data types
	Creating and inserting data in a IMS Universal DL/I driver application
	Updating data in a IMS Universal DL/I driver application
	Making batch data updates in IMS Universal DL/I driver applications
	Deleting data in a IMS Universal DL/I driver application
	Making batch data deletions in a IMS Universal DL/I driver application

	Inspecting the PCB status code and related information using the com.ibm.ims.dli.AIB interface
	Committing or rolling back DL/I transactions

	Configuring the IMS Universal drivers for SSL support
	Configuring the IMS Universal Database resource adapter for SSL support in a container-managed environment
	Configuring IMS Universal drivers for SSL support in a stand-alone environment

	Tracing IMS Universal drivers applications

	Chapter 41. Programming Java dependent regions
	Overview of the IMS Java dependent regions
	Programming with the IMS Java dependent region resource adapter
	Developing JMP applications with the IMS Java dependent region resource adapter
	Defining the input and output message classes
	JMP programming models
	Additional message handling considerations for JMP applications

	Developing JBP applications with the IMS Java dependent region resource adapter
	Accessing GSAM data from a JBP application

	Issuing synchronous callout requests from a Java dependent region
	IMS Java dependent region resource adapter support for ICAL callout with control data
	Program switching in JMP and JBP applications
	Immediate program switching for JMP and JBP applications
	Deferred program switching for conversational JMP applications
	Issuing synchronous program switch requests from a Java dependent region

	IBM Enterprise COBOL for z/OS interoperability with JMP and JBP applications
	IBM Enterprise COBOL for z/OS backend applications in a JMP or JBP region
	IBM Enterprise COBOL for z/OS frontend applications in a JMP or JBP region

	Accessing DB2 for z/OS databases from JMP or JBP applications

	Part 7. PL/I top-down development for IMS Enterprise Suite SOAP Gateway web services
	Chapter 42. WSDL-to-PL/I segmentation APIs for adding business logic in generated PL/I templates
	Chapter 43. Sample of a generated PL/I application template
	Chapter 44. Trace output for WSDL-to-PL/I segmentation APIs
	Chapter 45. Limitations and restrictions of the segmentation APIs
	Part 8. Appendixes
	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Bibliography
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

