
© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM i

IMS Locking
with Program Isolation or the IRLM

Rich Lewis

IMS Advanced Technical Support
IBM Americas

August 2009

���

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM ii

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM iii

Contents

Contents ... iii
Abstract .. vi
Trademarks and Service Marks ... vi
Locking Overview .. 1

Purpose of Locking ... 1
Why a Knowledge of Locking is Needed ... 1
Lock Managers.. 1
Locking Environments.. 2

Online Subsystems.. 2
Block Level Data Sharing... 2
Database Level Data Sharing.. 2

Resources Locked ... 3
Full Function Databases.. 3
Fast Path Databases... 3

Lock Levels and Lock Compatibility ... 3
Private Attribute.. 4
Sync Points.. 5
Abends and ROLL, ROLB, and ROLS Calls ... 5
Deadlocks.. 6

Full Function Locking... 8
Database Record Locks... 8

Database Record Lock Summary.. 9
Segment Locks.. 10

Segment Lock Summary... 11
Block Locks .. 11

Block Lock Summary ... 12
Busy Locks.. 12

Busy Lock Summary... 13
Extend Locks .. 13

Extend Lock Summary ... 13
Data Set Reference Locks... 14

Data Set Reference Lock Summary.. 14
Command Lock... 14

Command Lock Summary .. 14
Other Locking ... 15

Locks for the Q Command Code and Get Hold Calls .. 15
Lock Summary Table.. 15
Logical Relationships.. 16
Secondary Indexes .. 18

Fast Path Locking ... 20
Fast Path Lock Manager ... 20
DEDB Locking ... 20

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM iv

CI Locks.. 20
HSSP and UOWs .. 21
FLD Call Locking for DEDBs.. 22
Q Command Code and DEQ Call... 22
Segment Level Locking .. 23
Changing Lock Ownership ... 23

MSDB Locking... 23
RLSE Call ... 25
Area Lock.. 25

Area Lock Summary ... 25
Multiple Area Structure Lock ... 26

Multiple Area Structure Lock Summary... 26
Command Lock... 26

Command Lock Summary .. 26
VUNLOAD Lock.. 27

VUNLOAD Lock Summary ... 27
Buffer Overflow (OBA) Lock .. 27

Buffer Overflow (OBA) Lock Summary.. 27
Special Locking Cases .. 29

PROCOPTs of GO, GON and GOT ... 29
PROCOPT of E... 29

Without Block Level Data Sharing (BLDS)... 29
With Block Level Data Sharing (BLDS) .. 30

HALDB Online Reorganization ... 30
Limiting the Number of Locks Held by a Program .. 31
PI Limit on Number of Waiters .. 32
Lock Timeouts .. 33

IRLM TIMEOUT Value ... 33
IMS LOCKTIME Values.. 33

Deadlocks.. 35
Example of Deadlock between Multiple Programs .. 35
Deadlock Detection Timing.. 36
Choosing a Victim .. 36
INIT STATUS GROUPB Call ... 37
Handling a Deadlock Victim .. 38
Deadlocks with CICS Resources .. 40
Deadlocks with DB2 Resources.. 40

Retained Locks and Lock Rejects... 42
Database Level Data Sharing.. 43
Virtual Storage Use for Locks .. 44

PI Lock Manager Virtual Storage ... 44
IRLM Virtual Storage ... 44

Design Advice... 45
Minimize PROCOPT values... 45
Frequent Sync Points .. 45

Communications within a Sync Interval... 46

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM v

Frequently Updated Records... 47
Using the RLSE Call... 47
Using a "Get Lost" Technique .. 48
Using PROCOPT=E to Avoid Checkpointing.. 48
Deadlock Detection... 49

Locking Traces and Report Programs... 50
Lock Resource Names .. 50

IMS subsystem ID with IRLM local locking.. 50
Full function locks .. 50
Lock Resource Name Formats.. 51
Fast Path Locks ... 52

IMS Monitor Trace ... 54
PI and Lock Traces ... 54
IMS Monitor (DFSUTR20) .. 55

Reporting of Waits for Space Management.. 56
PI Trace (DFSPIRP0) ... 56
RMF II ILOCK (IRLM Long Lock Detection) Report .. 57
KBLA Deadlock Trace Record Analysis Report (DFSKTDL0) .. 58
KBLA IRLM Lock Trace Analysis Utilities (DFSKLTx0).. 58
File Select and Formatting Print Utility (DFSERA10)... 61

Record Format and Print Module (DFSERA30) .. 61
PI Trace Record Format and Print Module (DFSERA40).. 62
IMS Trace Table Record Format and Print Module (DFSERA60) 65

Trace and Report Matrix... 65
IMS Performance Analyzer for z/OS Reports .. 66

Deadlock Summary... 66
Deadlock List .. 66
Fast Path DEDB Resource Contention Summary... 68

Glossary .. 69
Index ... 74

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM vi

Abstract

This White Paper is based on IMS Program Isolation Locking, GG66-3193, which was published as a IBM
Technical Bulletin in December 1990. The document has been extensively revised to include block level data
sharing and changes in locking that have been made since 1990. The revisions include coverage of block level
data sharing, HALDB, Fast Path Segment Level Locking, the Q command code with DEDBs, the RLSE call,
LOCKMAX, LOCKTIME, the Long Lock Report, the KBLA Lock Trace Report, and other changes
introduced since 1990.

This white paper is intended to give design advice in the area of locking for installations developing systems
that use IMS. The advice applies to both database design and application program design. This advice is
given by first presenting an explanation of why and how IMS uses locking and then by explaining its
implications for designs. Information on monitoring locking activity is included.

The information in this white paper pertains to IMS Versions 9, 10, and 11. Both IMS TM and DBCTL
environments are covered.

I thank Kevin Stewart, Frank Ricchio, Jeff Fontaine, Steve Nathan, and Dave Viguers of IMS Development
and Suzie Wendler and Kenny Blackman of Advanced Technical Support for their reviews of drafts of this
document and for their assistance with my understanding of IMS locking.

Trademarks and Service Marks

The following terms, used in this publication, are registered trademarks or service marks of the IBM
Corporation in the United States and other countries:

 IBM
 CICS
 DB2
 WebSphere
 z/OS

The following terms, used in the publication, have been adopted by the IBM Corporation as trademarks or
service marks in the United States and other countries:

 IMS

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 1

Locking Overview

Purpose of Locking

IMS uses locking for integrity reasons. Locking isolates database changes made by a program from other
concurrently executing programs.

Originally, IMS used the term Program Isolation (PI) to describe its locking capability. PI prevents programs
from changing data that other programs are accessing and prevents programs from accessing data that other
programs have changed but not committed. When a program changes data the isolation occurs until the
changes are completed and committed. The isolation typically lasts only for the time required to process one
online transaction or for a batch job to reach a checkpoint. The locking provided by PI is limited to one IMS
online subsystem. This is either an IMS TM with DB subsystem or a DBCTL subsystem.

Later, IMS added Block Level Data Sharing (BLDS). BLDS allows updates by programs in multiple IMS
online subsystems and by multiple IMS batch jobs. BLDS added the Internal Resource Lock Manager (IRLM)
to IMS. The IRLM is capable of handling locks from multiple IMS subsystems. It is required with BLDS
and optionally may be used without BLDS.

Why a Knowledge of Locking is Needed

Locking makes some parts of databases temporarily unavailable to other programs. This can lead to
performance problems. Typically locking does not cause performance problems because locks are usually held
for a very short time and a very small percentage of resources are locked at any time. On the other hand, it
sometimes can have a noticeable effect on the performance of programs that concurrently use the same
databases. Database and application designers need to be aware of locking schemes so that they may design
these databases and programs to work efficiently. Problems caused by locking are sometimes addressed with
database design changes, sometimes with application program changes, sometimes with operational changes,
and sometimes with combinations of these.

Lock Managers

IMS has three lock managers: the PI lock manager, the Internal Resource Lock Manager (IRLM), and the Fast
Path lock manager. A subsystem never uses both the PI lock manager and the IRLM. One of these two is
selected. If Fast Path databases are used, the Fast Path lock manager is also used. A subsystem is an IMS
TM/DB system, an IMS DBCTL system, or an IMS batch job.

PI Lock Manager The PI lock manager can manage only PI locks. It cannot be used with

block level data sharing (BLDS). The PI lock manager runs as part of its
host subsystem and provides locking services only to the subsystem. Most
installations that do not use BLDS choose the PI lock manger.

IRLM The IRLM can manage lock requests from multiple IMS subsystems or a

single subsystem. It also may manage DB2 locks. If BLDS is used, the
IRLM must be chosen. The IRLM runs as a separate subsystem in MVS.
One IRLM may provide locking services to one or multiple IMS subsystems
or one DB2 subsystem. It cannot provide locking services to both IMS and
DB2.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 2

Fast Path Lock Manager The Fast Path lock manager is used with Fast Path databases. Fast Path lock

requests are first processed by this lock manager. When a lock request
conflicts with a previous lock request, the Fast Path lock manager also
invokes the other lock manager in the subsystem so that deadlock detection
may be done.

Locking Environments

Locking is used in any environment where multiple application programs may access and update databases
concurrently while maintaining data integrity. These include IMS TM with DB subsystems and Database
Control (DBCTL) subsystems and IMS BLDS environments.

This document discusses locking for both non-BLDS and BLDS environments.

Online Subsystems

IMS online TM with DB subsystems and DBCTL subsystems require locking to provide integrity. This is
required since multiple programs may be updating a database at the same time. Either PI or the IRLM may be
used.

Block Level Data Sharing

Block Level Data Sharing (BLDS) adds locks in addition to those for PI. BLDS allows multiple subsystems to
share and update databases. BLDS locks are used to provide integrity in this more complex environment.
BLDS users must use the Internal Resource Lock Manager (IRLM) to manage IMS locks. When BLDS is
used, it does not have to be used for all databases. It is only used for those databases registered to DBRC with
SHARELVL(2) or SHARELVL(3). SHARELVL(2) allows sharing by multiple IMS subsystems using the
same IRLM. SHARELVL(3) allows sharing by multiple IMS subsystems using multiple IRLMs. Databases
which are not registered or which are registered with SHARELVL(1) or SHARELVL(0) do not use BLDS and
do not use the locks that are only used by BLDS. SHARELVL(0) does not allow the database to be shared by
multiple IMS subsystems. SHARELVL(1) allows restrictive sharing. If one IMS subsystem is allowed to
update, others can read but without integrity. If there are no updaters, multiple IMS subsystems may read with
integrity.

Database Level Data Sharing

Database Level Data Sharing allows databases to be shared between IMS subsystems, however, updates to a
database are allowed in only one subsystem. When updates to a database are allowed in a subsystem, other
subsystems may read the database but these reads are without integrity. If no subsystem is allowed to update a
database, all subsystems may read it with integrity. Database level data sharing is implemented for a database
when it is registered to DBRC with SHARELVL(1).

Database level data sharing may be implemented with either the IRLM or PI as the lock manager for online
systems. If IRLM is used, both online subsystems and batch jobs may use it. This provides an advantage for
those subsystems which read a database without integrity. The read subsystems can receive notifications of

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 3

data set extensions by the updating subsystem. They also may use the Coupling Facility cache structures to
receive buffer invalidations. When the IRLM is used with database level data sharing a small number of locks
are used in addition to those used with PI locking; however, database level data sharing uses fewer locks than
those used with BLDS. The locking differences are explained below under "Database Level Data Sharing" on
page 43.

Resources Locked

Full Function Databases

The basic item that is locked for full function databases is a database record. This is a root segment and all of
its dependents. When an application program is positioned in a database record it must hold the lock on the
database record.

BLDS adds locks for updated blocks. These are either VSAM CIs or OSAM blocks. The purpose of these
locks is to serialize updates in different IMS subsystems.

Other resources are also locked. They will be discussed later in this paper.

Fast Path Databases

The basic item that is locked for Fast Path DEDBs is a CI. When an application program is positioned in a
database record it must hold the lock on the CI containing the root. As other CIs for the database record are
accessed, locks for them are also obtained.

There is an exception to the locking of CIs for DEDBs. This is segment level locking. It will be discussed
under "Segment Level Locking" on page 23.

The basic item locked for the Fast Path MSDBs is a segment.

Other resources are also locked. They will be discussed later in this paper.

Lock Levels and Lock Compatibility

Locks for IMS resources are obtained at a level. Four levels are used with the PI lock manager. Five levels
are used with IRLM. If the resource represented by the lock is already locked by another program, the new
lock request may or may not be granted. This depends on the level at which the lock is held and the level
requested. The following tables show the lock levels, their names, and the compatibility of locks with other
levels. You should be careful when using the lock names because they are sometimes misleading. In fact,
sometimes the same names are used for different levels. The first name listed on each row in the "Level
Names" column of the table is the one used in reports created by the PI Trace Record Format and Print Module
(DFSERA40). More information on this module is given under “Locking Traces and Report Programs” on
page 50.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 4

Table 1. Lock Levels

 Level Number
PI IRLM

Level Names

1 2 Read or Read Only
Not Used 3 Erase

2 4 Share or Read
3 6 Update, Single Update, or Hold
4 8 Exclusive or Update

A program may request a lock that it already holds. This will never cause a conflict. That is, a request by a
user will never conflict with the same user. The compatibility matrix is for lock requests from different
programs. A yes in the table indicates that the lock request will be granted. A no in the table indicates that the
lock request will not be granted immediately. The requestor will have to wait until the holder has released the
lock.

Table 2. Lock Compatibility Matrix Using PI Level Numbers

 1 2 3 4
1 yes yes yes no
2 yes yes no no
3 yes no no no

Level
Held

4 no no no no

Table 3. Lock Compatibility Matrix for IRLM

 2 3 4 6 8
2 yes yes yes yes no
3 yes yes no no no
4 yes no yes no no
6 yes no no no no

Level
Held

8 no no no no no

Private Attribute

The IRLM includes a capability for locks to be compatible within a subsystem but incompatible across
different subsystems. This is done by using the private attribute with a lock. The private attribute is used only
with the IRLM and with a data sharing environment. If the private attribute is included in a lock request, the
lock will not be granted if there is a holder of the lock in another IMS subsystem. The holder may be at any
lock level and the requestor may be at any level. This allows the lock manager to grant concurrent lock
requests within a subsystem while preventing concurrent holders in different subsystems.

Level Requested

Level Requested

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 5

Sync Points

The length of time that locks are held by a program affects the performance of other programs requesting the
locks. All locks held by a program are released when a synchronization point is reached. Synchronization
points are usually called “sync points” and sometimes called “commit points”. Some locks are released at
other times, but frequent sync points are usually needed to provide good system performance. A sync point
occurs when an application program commits the work that it has done. Sync points are created by the
conditions shown in the following table.

Table 4. Sync Points
 Program Type Sync Point Condition

IMS MPP
GU to IOPCB with MODE=SNGL
CHKP call
Program termination

IMS Message-driven BMP
GU to IOPCB with MODE=SNGL
CHKP call
Program termination

IMS Non-message-driven BMP
CHKP call
SYNC call
Program termination

IMS FP EMH (IFP) program GU to IOPCB with MODE=SNGL
CHKP call

IMS JMP
IMSTransaction.commit()
GU to IOPCB with MODE=SNGL
Program termination

IMS JBP
IMSTransaction.commit()
IMSTransaction.checkpoint()
Program termination

CICS task
Term command or call
CICS sync point
Transaction termination

ODBA thread RRS Commit (ATRCMIT or SRRCMIT)

A GU to the IOPCB with MODE=MULT does not create a sync point. Sync points are created for
MODE=MULT applications by program termination, CHKP calls, or Java IMSTransaction commit().

Abends and ROLL, ROLB, and ROLS Calls

Locks are also released by application program abends and ROLL, ROLB, and ROLS calls.

In IMS online subsystems the abend of an application program results in IMS backing out its database updates
and releasing its locks.

Abends of batch (DLI or DBB) jobs which participate in block level data sharing may be dynamically backed
out. This only occurs when the BKO=Y parameter is specified, a DASD log is used, and the abend is an IMS
pseudo abend. When dynamic backout is invoked for a batch job all of its locks are released. If dynamic
backout is not invoked, the locks are released by the Batch Backout (DFSBBO00) utility.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 6

The ROLL, ROLB, and ROLS calls may be used to either abend an application program or backout some or
all of its work. The ROLL call creates a U0778 abend. The ROLB call backs out all database updates since
the last commit point and returns control to the application program. All locks are released by this processing.

The ROLS call may be used to back out to the last commit point or to an intermediate point which was set by a
SETS or SETU call. When the backout is to the last commit point, all locks are released. When the backout is
to an intermediate point, no locks are released. In this case, IMS does not have information about which locks
are no longer needed. Database record locks and block locks that were required for the backed out updates
might still be required since they may have been obtained for processing before the back out point.

Deadlocks

Occasionally, lock requestors become deadlocked. This happens when two requestors are waiting on each
other. The following example illustrates such a situation.

Program A Program B

Figure 1. Deadlock example

1. Program A requests a lock on resource X at level 3. The lock is granted.

2. Program B requests a lock on resource Y at level 3. The lock is granted.

3. Program B requests a lock on resource X at level 3. The lock request can not be granted because program
 A already holds the lock at level 3. Program B must wait.

4. Program A requests a lock on Resource Y at level 3. The lock request cannot be granted because program
 B already holds the lock at level 3. Program A must wait.

Since both are waiting, neither will give up the locks they hold. Special action is required by the lock manager
to resolve this deadlock. The lock manager, either PI or IRLM, will detect the existence of a deadlock. When
one is found, one of the participants is selected to be the victim. Its updates are backed out and its locks
released. This allows the other participant in the deadlock to continue. The backout and release of locks is
done by either abending the program or issuing an internal ROLB call. Some deadlocks involve more than
two programs and, possibly, more than two resources. More information on deadlocks is available under
“Deadlocks” on page 35.

1. Lock X level 3

4. Request lock Y level 3
 WAIT
 DEADLOCK

2. Lock Y level 3

3. Request lock X level 3
 WAIT

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 7

Deadlock resolution has an interesting implication about the acquisition of locks during backout. Backout
processing never requires new locks. If it did, a backout would be exposed to creating a deadlock. This is not
allowed since backouts are used to resolve deadlocks and a deadlock created during the resolution of another
deadlock would be very difficult to handle.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 8

Full Function Locking

This section documents the locks used with full function databases.

Database Record Locks

As mentioned in the Locking Overview section above, the basic item locked for full function databases is a
database record. The database record is identified in different ways for the different access methods. The
following table shows the resources that are locked.

Table 5. Full Function Database Record Locks
Access Method Lock Resource
HISAM Hashed key of root segment
HIDAM and
PHIDAM

RBA of root segment
Hashed key of root segment

HDAM and
PHDAM RBA of RAP

The resource that is locked is the value in this table plus an identification of the database and database data set.

For HISAM, IMS hashes the key of the root segment. This produces a resource name that is locked. There are
millions of possible values that the hashing algorithm produces. This tends to minimize the possibility of
different keys hashing to the same value and producing lock conflicts.

For HIDAM and PHIDAM, the RBA of the root is always used to identify the database record. The root
segment resides in the prime HIDAM or PHIDAM database, not the index. The RBA is from this prime
HIDAM or PHIDAM database. There are times when the hashed value of the key of the root segment is also
used. This is the key in the index. Locking of the hashed key occurs when IMS is either inserting a root
segment or erasing it. These are the only times that changes are made to the index. When a record is being
inserted into or deleted from the index, IMS locks the hashed key to prevent two programs from adding or
deleting the same root segment concurrently.

IMS locks the RBA of the Root Anchor Point (RAP) from which the root is chained for HDAM and PHDAM
databases. Since multiple roots may be chained from the same RAP, this is really a lock on one or more
database records. When one root is locked, all the roots on the RAP chain are locked.

The level for a lock on a database record depends on the processing option (PROCOPT) of the PCB used for
the call that acquires the position in the record. If the PROCOPT allows updates, the lock is acquired at PI
level 3 or IRLM level 6. If the PROCOPT does not allow updates, the lock is acquired at PI level 2 or IRLM
level 4. Since PI level 3 (IRLM level 6) is not compatible with other PI level 3 or 2 (IRLM level 6 or 4)
holders, updaters do not share a database record. Since PI level 2 (IRLM level 4) is compatible with other PI
level 2 (IRLM level 4) holders, multiple non-updaters may share a database record.

A program may have update sensitivity to a database, but lock a database record at PI level 2 (IRLM level 4).
This occurs when the PSB has multiple PCBs referencing the same database. The level of the lock request is
determined by the PROCOPT of the PCB used for the call.

Database record locks are released either when position is moved to another database record, when a sync
point is reached, or when a RLSE call is issued. The RLSE call is discussed below. If no updates are done

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 9

while the program is positioned in the database record, the lock is released when position for the PCB is
moved to another database record. There is one exception to this release. In a BLDS environment with a
PROCOPT which includes E, the lock on the database record is not released until the application sync point is
reached. Moving position to another database record will not release the lock in this case.

In a PI locking environment the database record lock may be demoted from level 3 to level 1 when an update
has been done and position is moved to another database record. This depends on the access method being
used and the segment which is updated. If HISAM is being used and there are no updates in the primary
logical record, that is, in the logical record holding the root, the lock is demoted to level 1. If there are any
updates in the primary logical record, the database record is retained at level 3. For other access methods if the
root is updated, the lock is retained at level 3, otherwise it is demoted to level 1. Database record locks held at
level 1 or 3 are kept until a sync point is reached. The use of the level 1 locks on database records is explained
below under the discussion of segment locks.

The RLSE call may be used to release locks not protecting updates. When the call is issued using a full
function PCB, only the locks for that PCB are released. Typically, this is the lock for the current database
position. If the PCB references a logical database or a secondary index, there may be multiple database record
locks for the current position. RLSE calls that use a Fast Path PCB do not release any full function locks.

HALDB Online Reorganization always requests the database record lock at PI level 3 or IRLM level 6. It
processes a partition sequentially and requests the locks on a set of database records at a time. This is a unit of
reorganization. It releases these locks at the end of each unit of reorganization.

Database record locks are also used for locking with the Q command code when the IRLM is the lock manager.
This is explained on page 15 under "Locks for the Q Command Code and Get Hold Calls."

Database Record Lock Summary

Purpose: Controls access to database records. Database record locks prevent access to uncommitted updates
or to database records for which the Q command code is used.

Locking environments: Online systems and BLDS

Resource locked: Database record. For HISAM and secondary indexes this is a hash value for the key. For
HIDAM and PHIDAM this is the location of the root segment. For HDAM and PHDAM this is the location of
the RAP from which the root segment is chained.

Level: The level depends on the PROCOPT for the PCB used by the call. PROCOPTs allowing updates use
PI level 3 or IRLM level 6. PI locks at level 3 may be demoted to level 1 when position is moved to another
record. PROCOPT=G uses PI level 2 or IRLM level 4.

Requested: When database record is first accessed.

Released: If the database record is not updated, the lock is released when position for the PCB is moved to
another database record. In a PI locking environment when the root segment (or the primary logical record for
HISAM) is not updated, the lock is released when position is moved to another record even when a dependent
segment in the database record is updated. Otherwise, the lock is released at application sync point.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 10

Segment Locks

The choice of lock managers, PI or IRLM, affects locking for dependent segments. If the PI lock manager is
used, individual segments are locked when they are updated. Other segments in the database record may be
accessed when the updating program moves its position to another database record. If the IRLM is used,
individual segments are not locked, instead, the lock on the database record is held until the updates are
committed. This locks the entire database record.

The rest of the discussion of the segment locks applies to installations using the PI lock manager.

Locks for segment updates are always obtained at level 3. This prevents two programs from updating a
segment concurrently. The locking of root segments and dependent segments are handled differently. Roots
are locked with the database record lock. This works well since there is a one-to-one relationship between
roots and database records. Dependent segments are locked by their RBA or relative record number (RRN).

Locks for segment updates are always held until a sync point is reached.

The following table shows the resources that are locked for segments.

Table 6. Full Function Segment Locks
Access Method Locked Resource

HISAM Hashed key of root segment
RRN of overflow logical record

HIDAM and
PHIDAM RBA of segment

HDAM and
PHDAM

RBA of RAP for roots
RBA of segment for dependents

For HDAM, PHDAM, HIDAM, and PHIDAM, the RBA of the dependent segment is used to identify the
segment when the lock request is made.

HISAM database segments are not individually locked. Instead, IMS treats the primary logical record as a root
segment and the overflow logical records as dependent segments. A change to any segment in the primary
logical record is protected by the lock of the database record. A change to any segment in an overflow logical
record causes the overflow logical record to be locked. Overflow logical records are identified by the database,
data set, and RRN in the data set.

PI level 1 locks for database records have a special use. They are used in conjunction with segment locking in
a PI locking environment. When a segment is updated, its database record must be locked at level 3. When
position is moved to another database record, IMS sometimes demotes the lock on the database record to level
1. This is explained above in the discussion of database record locks. The level 1 lock is used as an indicator
to other programs which may establish position in the database record. If the record is locked at level 1, it
indicates that there is at least one segment in the record that has been updated. The second program must see if
a dependent segment is locked before it can access it. If the database record is not locked, the second program
does not have to check for locks of any dependent segments before accessing them. When IMS asks for a lock
on a database record, an indication of whether or not the database record is locked at level 1 is returned as part
of the lock request. If it is locked at level 1, IMS must test to see if each of its dependents is locked before
accessing them. It does this with a special type of request which is sometimes called a test enqueue (TENQ).
If a dependent is locked at level 3, the test enqueue causes the requestor to wait. If it is not locked, the test
enqueue does not cause a wait. In either case, this test enqueue request does not cause the segment to be
locked.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 11

Segment locks are also used for locking with the Q command code. This is explained on page 15 under
"Locks for the Q Command Code and Get Hold Calls."

Segment Lock Summary

Purpose: Prevents access to updated dependent segments. It is only used in a PI locking environment.

Locking environments: Online systems using the PI lock manager

Resource locked: Segment. For HDAM, PHDAM, HIDAM, and PHIDAM this is the location of the segment.
For HISAM this is the location of the logical record in which the segment resides.

Level: The level is always PI level 3.

Requested: When a dependent segment is updated in a PI locking environment.

Released: At application sync point.

Block Locks

Blocks locks are used only with BLDS. They are used to serialize updates to the same physical block by
different subsystems. These are locks on VSAM CIs or OSAM blocks. These block locks are typically
requested at IRLM level 4. Since IRLM level 4 is compatible with other level 4 requests, the level does not
prevent concurrent holders of the lock. Instead, a different mechanism is used. This is the private attribute.
Block locks are always requested with the private attribute. The private attribute applies to the IMS subsystem,
not to the individual requestor. Multiple transactions or programs running in the same IMS subsystem may
hold the block lock concurrently. Transactions or programs running in different IMS subsystems cannot hold
the block lock concurrently. There is a good reason for this handling of block locks. Updaters of a block in
the same IMS subsystem will never attempt to update the same part of a block. The database record lock
prevents this. They will be updating different database records in the same block. Since all programs and
transactions in one IMS subsystem use the same buffer pools, these updates will be done to the same copy of
the block. There is no need to serialize these updates. On the other hand, updates made in different IMS
subsystems use different buffer pools and, therefore, different copies of the block or CI. These must be
serialized. If they were not, updates from one system would overwrite the updates for another when the buffer
was written to disk.

All updates to OSAM and VSAM ESDS data sets use level 4 locks. There is special handling of block locks
for KSDSs. Replaces and inserts of logical records in a KSDS request a level 4 lock. Deletes of logical
records in a KSDS request a level 3 lock. Level 3 locks are compatible with other level 3 requests, but
incompatible with level 4. This allows multiple concurrent deletes of records in the same KSDS CI by
programs in the same IMS subsystem. It does not allow concurrent deletes with inserts or replaces. This is
done to ensure that a backout of a delete will have space available in the CI for the reinsertion of the logical
record. If inserts were allowed before the delete was committed, the space might not be available. The second
case of special handling for KSDSs is used with CI/CA splits. When a CI or CA split occurs, the lock request
for the CI is upgraded to level 6. This is incompatible with all other levels which are used. It prevents any
other program or transaction from updating the CI while the split occurs.

HALDB Online Reorganization requests block locks when BLDS is used for the reorganized database.
Obviously, the output data sets are updated and there are block locks for these blocks or CIs. There are also

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 12

updates to the input data sets and block locks are requested for them. The cursor is written in the second block
or CI of the input data set. There is a block lock for this block or CI for every unit of reorganization. When
twin backward (TB) pointers are used with PHIDAM, the twin chain between roots must be maintained across
the input and output data sets. When pointers are updated in the input data set, block locks are requested for
their CIs or blocks. Block locks for HALDB Online Reorganization are released at the end of the unit of
reorganization.

Block Lock Summary

Purpose: Serializes updates to an OSAM block or VSAM CI from different IMS subsystems. It also is used to
prevent concurrent inserts and deletes to the same KSDS CI within an IMS subsystem and to prevent CI/CA
splits concurrent with other updates to the same CI.

Locking environments: BLDS

Resource Locked: The location of the OSAM block or VSAM CI.

Level: IRLM level 4 is always used for OSAM and VSAM ESDSs. IRLM level 4 is used for KSDS record
inserts and replaces. IRLM level 3 is used for KSDS record deletes. IRLM level 6 is used for CI/CA splits.

Attribute: The private attribute is always used.

Requested: When an update occurs for a VSAM CI or OSAM block in a database using BLDS.

Released: At application sync point.

Busy Locks

IMS uses busy locks to serialize some activities to database data sets. These are OPENs, CLOSEs, new block
creations, and updates to KSDSs. New block creation is either the use of a new block at the end of an HDAM,
PHDAM, HIDAM, or PHIDAM database data set or the addition of a new logical record to a HISAM data set.
There is a busy lock for each database data set. The serialization for OPENs and CLOSEs is done to ensure
that two programs are not trying to open at the same time. OPENs and CLOSEs will not occur when other
programs are accessing the database data set. New block creations are different. They are likely to occur
while other programs are using the data set. Before a new block is created, IMS asks for the busy lock on the
data set. This does not prevent other use of the data set but it ensures that only one program will be creating
new blocks at the end of a data set at any time. Busy locks for OPEN, CLOSE, and new block processing are
always requested at PI level 4 or IRLM level 8.

Busy locks for KSDS updates are used to protect against updates to a CI while a CI/CA split is occurring in a
block level data sharing environment. Even though different programs might be updating different records in a
KSDS CI, there is a potential problem. A CI split due to the insert of a record could cause other records in the
CI to be moved to another CI. This problem is avoided by serializing all updates to CIs while an insert is
being processed. When an insert to a KSDS is done, a busy lock at IRLM level 8 for the data set is requested.
Other updates to KSDSs request the busy lock at IRLM level 2 for the data set.

Busy locks are only held while processing of the KSDS update, new block, OPEN, or CLOSE is being done.
They are requested and released as part of one DL/I call or one operation.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 13

Busy Lock Summary

Purpose: Serializes opens and closes of database data sets. Serializes the creation of new blocks in database
data sets. Prevents updates to a KSDS in one IMS system while a CI/CA split is being processed in another
IMS system in a BLDS environment.

Locking environments: Online systems and BLDS

Resource Locked: Database data set which is identified by its DMB number and data set number.

Level: PI level 4 or IRLM level 8 is used for open, close, and new block creation. IRLM level 8 is used for
KSDS inserts. IRLM level 2 is used for KSDS updates other than inserts.

Requested: When a database data set is opened or closed or when a new block is created. In a block level data
sharing environment, the lock is requested when an update to a KSDS is done.

Released: At the end of the operation.

Extend Locks

Extend locks are used for extending database data sets. This is adding new allocations. Extend locks are used
only with the IRLM for databases registered to DBRC with a SHARELVL of 1, 2, or 3. The locks are used to
serialize these extensions between IMS systems. Since open and closes should not be done while an extension
is in process by another subsystem, the extend lock is also acquired when a data set is opened for update or
closed after an open for update. Extend locks are only used in a block level data sharing environment. The
locks are requested at IRLM level 2 with the private attribute. The private attribute prevents requestors from
different IMS subsystems from holding the lock concurrently.

Extend Lock Summary

Purpose: Serializes extensions of database data sets across multiple IMS subsystems.

Locking environments: BLDS and database level data sharing using IRLM

Resource Locked: Database data set which is identified by its DMB number and data set number.

Level: IRLM level 2 is always used.

Attribute: The private attribute is always used.

Requested: When a database data set is extended, opened, or closed.

Released: At the end of the extend operation.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 14

Data Set Reference Locks

Data set reference locks are used only with the IRLM for databases registered to DBRC with a SHARELVL of
1, 2, or 3. The data set reference lock for a database data set is held by all IMS subsystems which have a data
set open. These locks are not used to serialize access to anything. Instead, they are used in conjunction with
notifications. For example, when an IMS subsystem extends a data set, it sends a notification to other IMS
subsystems which have the data set open. It does this by sending the notification through the IRLM with a
reference to the data set reference lock. The IRLMs then send the notification to all holders of this data set
reference lock. Since the data set reference lock is held by all IMS subsystems which have the data set open,
all of these IMS subsystems receive the notification.

Data Set Reference Lock Summary

Purpose: Used for routing notifications to IMS subsystems which have a data set open

Locking environments: BLDS and database level data sharing using IRLM

Resource Locked: Database data set which is identified by its DMB number and data set number.

Level: IRLM level 2 is always used.

Requested: When a database data set is opened

Released: When a database data set is closed

Command Lock

The command lock is requested by each IMS subsystem using an IRLM. It is requested when the IMS
subsystem is started. The lock is requested at a share level. It is held until the subsystem terminates. The lock
is not used to serialize access to anything. Instead, it is used in conjunction with notifications that are not
associated with a database. For example, type-1 commands with the GLOBAL parameter are sent between
IMS systems by using notifications to holders of this lock.

Command Lock Summary

Purpose: Used for routing notifications to IMS subsystems

Locking environments: IMS subsystems using the IRLM

Resource Locked: A "dummy" resource

Level: IRLM level 2 is always used.

Requested: When an IMS subsystem is started

Released: When an IMS subsystem is terminated.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 15

Other Locking

Locks for the Q Command Code and Get Hold Calls

The use of the Q command code causes additional locking. The Q command code may be specified when
accessing a segment. It ensures that the retrieved segment will not be updated by another program when
position is moved to another database record. The Q command does not prevent other application programs
from retrieving the segment. Locking for the Q command code differs between the PI lock manager and the
IRLM. When the PI lock manager is used and the Q command code is specified, IMS gets the lock for the
segment at level 2. For HDAM and PHDAM roots, this is a lock on the RAP. Of course, if the application
program also updates a dependent segment, the lock is promoted to level 3. The Q command code may be
released by a DEQ call. The DEQ call will cause IMS to release the level 2 lock on segment. If a DEQ call is
not used, the locks for the Q command code are released at sync point time. When the IRLM is used
individual segments are not locked. Instead, the Q command code causes the database record to be held at
IRLM level 4 until sync point time or a DEQ call is issued. If the application also updates a segment in the
database record, the level 6 lock is held until sync point.

The use of the Q command code affects the processing of get hold calls. Since the Q command code is used to
prevent updates of segments, it must prevent get hold calls from retrieving them. With PI the lock on the
segment is used for this. With the IRLM the lock on the database record is sufficient. If there are no Q
command codes used, IMS does not need to make a lock request when retrieving a dependent segment unless
the database record is locked at level 1 and the PI lock manager is used. If Q command codes are used with
the PI lock manager, IMS must see if a segment is locked when processing a get hold call for it. The following
describes the processing with PI. When a Q command code is issued for a database, IMS turns on an indicator
associated with the database. When this indicator is on any get hold call for the database will cause a special
lock request to be issued. This lock request is similar to the one used for accessing dependent segments in
database records locked at level 1. It is sometimes called a test enqueue (TENQ). The lock request for get
hold calls test to see if the dependent segment is locked at PI level 2. If it is, the get hold call waits. If it is not
locked, the requestor does not have to wait. In either case, the get hold call does not cause the segment to be
locked. Only update calls and Q command code calls cause dependent segments to be locked. As mentioned
above, the indicator that Q command codes have been used is associated with a database. Each database has
one indicator. As long as the indicator is turned on, all dependent segment get hold requests in a database
require the test for the level 2 lock. The indicator is turned off only when there are no application programs
scheduled with intent against the database.

When EXEC DLI commands are used. Q command codes and get hold calls are not explicitly used. They are
implied by certain commands. The use of either the LOCKED or LOCKCLASS option with a get function in
an EXEC DLI command is equivalent to the use of a Q command code with a call. With EXEC DLI all get
processing implies get hold processing. That is, each EXEC DLI command which specifies a function of GN,
GNP, or GU is equivalent to a get hold call. If Q command codes or LOCKED or LOCKCLASS options are
used in the system, the locking for EXEC DLI gets calls will be affected as explained above for Q command
codes and get hold calls.

Lock Summary Table

The following table summarizes the locks used for full function databases, the levels at which they are held,
and the use of each level.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 16

Table 7. Full Function Locks Summary
Level

Lock Type
PI IRLM

Meaning

1 N/A Updated dependent segment in database record

2 4
Non-update program positioned in database record or
Q command code held for root (PI) or any segment in database
record (IRLM) Database Record

3 6 Update program positioned in database record or Updated root
segment

2 Q command code held for segment
Segment

3
N/A

Updated segment
3 Delete of KSDS record

4 Update of OSAM block, update of ESDS CI, or insert or
replace of KSDS record Block N/A

6 CI/CA split for KSDS
1 2 KSDS non-insert operation

Busy
4 8 OPEN, CLOSE, new block, or KSDS insert being processed

Extend N/A 2 Data set extension

Data Set Reference N/A 2 Data set open

Logical Relationships

The use of logical relationships affects locking. IMS locks database records in physical databases, but logical
database records may be comprised of multiple physical database records from one or more physical databases.
When a logical database record is accessed, IMS locks the physical database records as it accesses them. The
following is an example of this locking.

 Physical Databases Logical Databases

 LP

 LC - Logical Child LP - Logical Parent

Figure 2. Logical Relationship Example 1

 A

 B LC

Database X

LP

Database Y

Database Z

 C

 D

A

B C

D

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 17

If a program using logical database Z gets segment A, it will get a database record lock for database X. If it
gets segment BC, it will get a database record lock for database Y.

The following figure illustrates a slightly more complicated case and the processing needed to lock the
database records.

 Physical Databases Logical Database

 LC – Log. Child
 LP – Log. Parent

Figure 3. Logical Relationship Example 2

If a program using logical database P gets segment E, it will get a database record lock for database M. If it
gets segment FI, it will get a database record lock for database N. This database record lock is associated with
root segment G.

IMS may need to access other segments in the database containing the destination parent (segment I). This
may be required so that IMS may lock the database record. The processing depends on the type of pointers
that are used.

 If symbolic pointers are used for the logical relationship, the root is traversed to get the destination parent

 segment and the data needed to lock the database record is found on the way to the destination parent.

 If direct pointers are used for the logical relationship, IMS may have to find the resource to lock after

 reaching the destination parent segment.

 - If HIDAM is used for database N, the root’s RBA must be determined. This is the value in
 the physical parent pointer of the root’s child (segment H). Physical parent pointers are used to do this. In
 our example the physical parent pointer in segment I would be used to reach segment H. The value in the
 physical parent pointer in segment H would be the RBA of segment G. This RBA is used to lock the
 database record. PHIDAM simplifies this processing. The HALDB extended pointer set (EPS) in
 segment F contains the RBA of segment G. This is used to lock the database record.

 - For HDAM databases the RAP must be found. If the concatenated key of the destination
 parent (segment I) is stored in the logical child (segment F), the root (segment G) key is used as input to

 E

 F

 Database P Database N

Database M

G

H

I

J

E

F I

H J

G

LP

LC

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 18

 the randomizing routine. The routine is used to find the RBA of the RAP. If the concatenated key of the
 destination parent is not stored in the logical child segment, physical parent pointers are used to access the
 root. The root is then used to find the RAP. PHDAM simplifies this. The HALDB extended pointer set
 (EPS) in segment F contains the RBA of the RAP. This is used to lock the database record.

As the previous discussion illustrates, decisions to use symbolic keys or direct pointers and whether or not to
store the concatenated key in the logical child affect the processing that IMS must do to lock database records
for HDAM and HIDAM databases. These considerations do not apply to PHDAM and PHIDAM databases.

Secondary Indexes

Secondary indexes are special databases used for alternative accessing of other databases. There are special
locking considerations for these secondary indexes.

The following figure illustrates a database with a secondary index. Segment C is the source segment. That is,
the secondary index is based on data in segment C. Segment B is the target segment, that is, the secondary
index points to segment B.

Figure 4. Secondary Index

When an entry is added or deleted in a secondary index, a level 3 database record lock on the secondary index
is obtained. The locked resource is the key of the index entry and it is held until a sync point is reached. This
is the same way that HISAM databases are locked. If a source segment for a secondary index is replaced and
the source field is changed, two changes must be made to the secondary index. One secondary index record
must be deleted and another must be inserted. Locks on both of these secondary index database records must
be obtained.

Updates to secondary indexes are generally made due to changes in source segments of primary databases;
however, secondary indexes also may be processed as databases. When this is done, locking for them is the
same as for HISAM databases.

When a secondary index is used to access a database by an alternate processing sequence (PROCSEQ= is
specified on the PCB), the database records in the primary database are locked. The same locking that would
occur if the database records were accessed through the root of the primary database is done. The secondary
index may also be locked. This depends on the pointers in the secondary index and the primary database
organization. No lock on the secondary index is requested for some cases. This is true for symbolic pointers
to HDAM, for direct pointers to HIDAM roots, and for all HALDB secondary indexes. For all other cases

S

Database

 A

B

 C

Secondary
Index

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 19

(direct pointers to HDAM, direct pointers to HIDAM dependents, and symbolic pointers to HISAM and
HIDAM), the secondary index entry’s database record lock is obtained.

A secondary index may also be used to process qualifications in a segment search argument (SSA). This may
be done when INDICES = is specified on the SENSEG statement in the PSB. There is no locking of the
secondary index entries when this use is made of the index. Locking of the secondary index is not required
because the database record lock in the primary database is held. Since the secondary index can only be
modified by changing its source segment in the primary database, the lock on the primary database record is
sufficient.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 20

Fast Path Locking

Fast Path Lock Manager

IMS Fast Path databases have their own lock manager which is used in conjunction with either the PI lock
manager or the IRLM. The Fast Path lock manager is used only for Data Entry Databases (DEDBs) and Main
Storage Databases (MSDBs). When a lock for one of these databases is needed, a request is made to the Fast
Path lock manager. If the lock can be granted, no request is made to the PI lock manager or the IRLM. This
tends to save instructions because the Fast Path Lock manager is specialized for locking Fast Path resources. If
the lock request must wait, the Fast Path lock manager must check to see if a deadlock situation exists. Since a
deadlock could include a full function database resource, the other lock manager, either PI or the IRLM, must
be consulted. The other lock manager does all of the deadlock detection processing. To do this processing, it
must be aware of all the waiters for locks and all the holders of locks on which other programs are waiting. To
give the other lock managers this information, the Fast Path lock manager must do more than just make the last
lock request. It must first request the lock for the current holder or holders of the lock. After these requests
are processed, the Fast Path Lock manager then requests the lock for the new requestor. This provides the
other lock manager with all of the lock information to do deadlock detection processing.

There is an exception to the use of the Fast Path lock manager. It is not used for DEDBs with block level data
sharing. BLDS requires that the locks be managed across multiple IMS subsystems. BLDS requires the IRLM
to manage all locks. This means that when DEDBs are registered with SHARELVL(2) or SHARELVL(3) and
the IRLM is used, the Fast Path lock manager will not be used for locks on these databases.

DEDB Locking

CI Locks

When Data Entry Databases (DEDBs) are used, locks are obtained on CIs in the DEDB Area data sets. When
a database record is entered, the CI holding the RAP is locked. When the root and direct dependents in the
database record are accessed, additional CIs may have to be processed and each of these CIs is locked. CIs
containing sequential dependent segments are not locked. For the CIs containing roots or direct dependent
segments, PI level 1 (IRLM level 2) locks are used when the PROCOPT in the PCB does not allow updates. If
updates are allowed, PI level 4 (IRLM level 8) locks are used. These locks are not released when position is
moved to another database record. They are released or their level is modified at one of three other times.

1. If the Fast Path buffer stealing facility is invoked it may release a lock. The buffer stealing facility is

invoked when the program has used all of its normal buffers. The facility will keep a CI locked at PI level
4 (IRLM level 8) if any of the following conditions are met.

• The CI has been modified

• The root of the current position is in the CI and the processing intent (PROCOPT) allows updates.

• If delete or insert of roots is permitted and the root of the database record which precedes the current

position on the RAP chain is in the CI.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 21

The facility will keep a CI locked at PI level 1 (IRLM level 2) if it contains the root of the current position
and the processing intent does not allow updates. The facility releases locks for all other CIs.

2 If the CI is not updated, the lock on the CI is released at sync point time.

3. If the CI is updated, its lock is released after it is written as part of output thread processing.

DEDB CIs are identified to the lock manager by their RBA, database number, and area number. There is also
an indicator that signifies that this lock is a CI lock.

HSSP and UOWs

When High Speed Sequential Processing (HSSP) is used, the locking for DEDBs is altered. HSSP requests do
not lock individual CIs except those in independent overflow (IOVF). Instead, they lock units of work
(UOWs). This substantially reduces the number of lock requests. To provide integrity, other concurrently
running programs must also lock the UOWs for the DEDB Area against which HSSP is being run. So when
HSSP is being used, HSSP requests lock UOWs at level 4 but do not lock CIs in the root addressable part, and
other requests using the DEDB lock both CIs and UOWs in the Area. These requests lock the UOWs at PI
level 1 (IRLM level 2). PI level 1 (IRLM level 2) locks on UOWs are released when the holder has released
all of its locks on CIs in the UOW. HSSP’s PI level 4 (IRLM level 8) UOW locks may be thought of as
substitutes for locks on CIs in the UOW. These UOW locks are released when HSSP would have released all
of its locks on CIs in the UOW if it had obtained locks on CIs. If any CIs have been updated, the lock on the
UOW is released at sync point time.

UOW locking is also used by the preload process for DEDB VSO areas when shared VSO is not used. During
the preload process, CIs are loaded into the address space by UOW and UOW locks are used for integrity.
With shared VSO, CIs are loaded into the Coupling Facility structure one CI at a time and CI locking is used
for integrity.

DEDB UOWs are identified to the lock manager by their database number, area number, and RBA. There is
also an indicator that signifies that this is a UOW lock.

The following table summarizes DEDB locks.

Table 8. DEDB Locks Summary
Level Resource PI IRLM Released

without VSO 4 8 Output thread Update with VSO 4 8 Sync pt.
with update PCB 4 8 Buffer steal or sync pt. Root or DDEP CI No

update with non-update PCB 1 2 Buffer steal or sync pt.
Seq. Dep. CI No locks

Sync pt. if no updates HSSP request 4 8
Output thread if updates

Non-HSSP request with HSSP active 1 2 When locks on CIs in UOW
released

UOW

Non-HSSP request with HSSP not active No locks

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 22

FLD Call Locking for DEDBs

The locking of DEDBs for FLD calls sometimes depends on the VIEW= specification in the PSB.
Unfortunately, the IMS publications are incomplete in this area. They document VIEW=MSDB, but do not
document VIEW=MSDBL. VIEW=MSDBL indicates that a lock should be requested during FLD call
processing. VIEW=MSDB indicates that a lock should not be requested during FLD call processing. In either
case, a lock is requested during sync point processing.

When a FLD call with VERIFY is used for DEDBs, the CI may be locked twice. First, if VIEW=MSDBL is
specified in the PCB, the CI is locked at PI level 1 (IRLM level 2) for the duration of the call. This lock is
released as part of call processing. Second, the CI is locked at PI level 3 (IRLM level 6) and then released
during sync point processing. The lock during sync point processing does not depend on the VIEW=
specification.

When a FLD call with both VERIFY and CHANGE is used, the CI may be locked twice. First, if
VIEW=MSDBL is specified in the PCB, the CI is locked at PI level 1 (IRLM level 2) for the duration of the
call. This lock is released as part of the call processing. Second, the CI is locked at PI level 4 (IRLM level 8)
and then released during sync point processing. The lock during sync point processing does not depend on the
VIEW= specification.

When a FLD call with CHANGE but without a VERIFY specification is used, the CI is not locked during call
processing but is locked at PI level 4 (IRLM level 8) and then released during sync point processing

Table 9. FLD Call Locking for DEDBs Summary

Lock Level CALL VIEW PI IRLM Lock Duration

1 2 During call MSDBL 3 6 During sync point FLD/VERIFY
MSDB or not specified 3 6 During sync point

1 2 During call MSDBL 4 8 During sync point FLD/VERIFY/CHANGE
MSDB or not specified 4 8 During sync point

FLD/CHANGE MSDB, MSDBL, or not specified 4 8 During sync point

Fast Path converts some GU calls to FLD calls. This occurs when VIEW=MSDB or VIEW=MSDBL is
specified in the PCB and the database is root only. If non-shared VSO is also used, there is no lock during the
call with VIEW=MSDB. Locking is only done during sync point processing. Without VSO, with shared VSO,
or when VIEW=MSDBL is specified, the lock is also held during the call, but released at the end of the call.
In all cases the lock is held during sync point processing.

Q Command Code and DEQ Call

The Q command code may be used with DEDBs. It causes a lock on a CI to be held until sync point or a DEQ
call releases the lock. The level of the lock depends on the PROCOPT of the PCB used for the call. That
means that the level of the lock for the CI is the same as it would be without the Q command code. The
difference is that the lock will not be released by Fast Path's "buffer stealing" routine. Buffer stealing occurs
when the program runs out of buffers. IMS examines the CIs in the programs Fast Path buffers and "steals"
the buffers whose CIs are no longer required to be in the buffers. It also releases the locks on these CIs. The
Q command code keeps the buffer holding a CI from being stolen and the lock on the CI from being released.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 23

The Q command code is typically used to ensure that no change is made to a segment while a transaction is
running.

The DEQ call may be issued with a DEDB PCB. This will cause IMS to release the program's DEDB locks
except those for altered CIs and for CIs protecting the current root position. It will release the locks which
were obtained with the Q command code unless they are altered or are protecting a current root position. Even
though the call is issued with a specific Fast Path PCB, locks acquired using other Fast Path PCBs may be
released.

Segment Level Locking

Fast Path DEDBs have an exception to their normal locking when several conditions are met. This exception
is called segment level locking. It is used only when the following conditions are met:

• DEDB is a root-only database
• Area uses VSO, but does not use shared VSO
• Root is defined as fixed length
• Segment edit/compression routine is not defined
• PROCOPT=G or PROCOPT=GR is used

Segment level locking is designed to provide greater concurrency for accesses to these areas. It provides
concurrency that is similar to that for MSDBs. This facilitates the conversion of MSDBs to VSO DEDBs.

With segment level locking the CI is still locked, but it is locked at PI level 1 (IRLM level 2) even with
PROCOPT=GR. In addition to the CI lock, the individual segment is locked. For get hold (GHU and GHN)
calls, the segment lock is at PI level 4 (IRLM level 8). For get calls without hold (GU and GN), the segment
lock is at PI level 1 (IRLM level 2) with one exception. When PROCOPT=GR is used and VIEW=MSDB is
not specified, get calls without hold (GU and GN) lock the segment at PI level 4 (IRLM level 8).

FLD calls get the segment lock at PI level 4 (IRLM level 8) and release it as part of the call processing. This
lock is acquired and released again as part of sync point processing.

When multiple CIs are read to find the root which satisfies the call, each CI is locked. With segment level
locking the locks on CIs which do not contain the root satisfying the call are released at the end of the call.

Changing Lock Ownership

When updates to DEDBs are made by an application, the ownership of the DEDB locks is changed at the end
of sync point processing. The ownership is transferred from the application program (PST) to the output
threads which write the updates. The locks are released at the end of output thread processing. This is done
because the PST will request new locks which are associated with the next transaction that it processes. The
locks from the previous unit of work cannot be released before the updates are written by output thread
processing. This change of ownership will be seen in any lock traces which are done during this processing.

MSDB Locking

The locks on Main Storage Databases (MSDBs) are on the segments. Since there are no dependent segments
in an MSDB, this is equivalent to locking a database record. The locking scheme for MSDBs is different from

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 24

that for full function or DEDB databases. There is generally less locking associated with calls against MSDBs
and much of the locking is postponed until sync point processing is done.

When a get hold call is used to access an MSDB, the segment is locked until sync point time. If the processing
intent (PROCOPT) includes delete or replace, a PI level 3 (IRLM level 6) lock is requested. If the processing
intent does not include delete or replace a PI level 1 (IRLM level 2) lock is requested.

When a get call without a hold is used to access an MSDB, the segment is locked at PI level 1 (IRLM level 2)
during the call. The lock is released as part of the call processing.

When a REPL or DLET call is used for an MSDB, a PI level 4 (IRLM level 8) lock is requested during sync
point processing. The segment is already locked at PI level 3 (IRLM level 6) due to the get hold call that
preceded the update. The PI level 3 (IRLM level 6) lock is promoted to a PI level 4 (IRLM level 8) lock.

When an ISRT call is used for an MSDB, a PI level 3 (IRLM level 6) lock is requested. This lock is promoted
to PI level 4 (IRLM level 8) during sync point processing.

FLD calls may be used with MSDBs to verify the values of fields in a segment and to change them. A FLD
call may have any mixture of verify and change operations for multiple fields in one segment. In the following
discussion, FLD/VERIFY is used to indicate a FLD call with verify but no change operations. FLD/CHANGE
is used to indicate a FLD call with change but no verify operation. FLD/VERIFY + CHANGE is used to
indicate a FLD call with both verify and change operations.

When a FLD/VERIFY call is used, the segment is locked twice. First, the segment is locked at PI level 1
(IRLM level 2) for the duration of the call. This lock is released as part of call processing. Second, the
segment is locked at PI level 3 (IRLM level 6) during sync point processing.

When a FLD/VERIFY + CHANGE call is used, the segment is locked twice. First, the segment is locked at PI
level 1 (IRLM level 2) for the duration of the call. This lock is released as part of the call processing. Second,
the segment is locked at PI level 4 (IRLM level 8) during sync point processing.

When a FLD/CHANGE call without a VERIFY specification is used, the segment is not locked during call
processing but is locked at PI level 4 (IRLM level 8) during sync point processing

MSDB segments are identified to the lock manager by the address of a control block associated with the
segment and its MSDB serial number. The control block is either the segment prefix or the ECNT.
The following table summaries MSDB locks.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 25

Table 10. MSDB Locks Summary
Lock Level Call Type PI IRLM Lock Duration

without PROCOPT = R or D 1 2
Get Hold

with PROCOPT = R or D 3 6
From call through sync pt.

Get without Hold 1 2 During call

REPL 4 8 During sync pt.

DLET 4 8 During sync pt.

3 6 From call until sync pt.
ISRT

4 8 During sync pt.
1 2 During call

FLD/VERIFY
3 6 During sync pt.

1 2 During call
FLD/VERIFY + CHANGE

4 8 During sync pt.
FLD/CHANGE 4 8 During sync pt.

RLSE Call

The RLSE call provides a way to release locks without sync point processing or committing any updates.
When the RLSE call is used with a Fast Path PCB, all Fast Path locks which are not protecting updates are
released. These locks may be for multiple Fast Path databases. Full function locks are not released when a
Fast Path PCB is referenced.

Area Lock

The area lock is used to serialize several activities for Fast Path DEDB areas. These include open, close,
sequential dependent (SDEP) inserts, SDEP utility processing, and many commands. The commands include
/START AREA, /START DB, /STOP AREA, /STOP DB, /STOP ADS, /DBR DB, /DBR AREA, and the
equivalent UPDATE commands.

Area Lock Summary

Purpose: Used to serialize certain activities against an area

Locking environments: IMS subsystems with Fast Path

Resource Locked: An identification of the area.

Level: PI level 3 or IRLM level 6

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 26

Requested: When the operation begins

Released: When the operation ends

Multiple Area Structure Lock

The multiple area structure lock is used to serialize connect, disconnect, and deletion of structure entries for a
multiple area structure with shared VSO. The lock is requested at the read level (ILRM level 2) when IMS
connects to or disconnects from a multiple area structure. The lock is requested at the exclusive level (IRLM
level 8) when IMS deletes entries from a multiple area structure.

Multiple Area Structure Lock Summary

Purpose: Used to serialize connect, disconnect, and entry deletions for a multiple area structure

Locking environments: IMS BLDS systems using multiple area structures

Resource Locked: An identification of the structure

Level: IRLM levels 2 and 8

Requested: When the operation begins

Released: When the operation ends

Command Lock

The Fast Path command lock is similar to the full function command lock. It is requested by each IMS
subsystem with Fast Path that is using an IRLM. It is requested when the IMS subsystem is started. The lock
is requested at a share level. It is held until the subsystem terminates. The lock is not used to serialize access
to anything. Instead, it is used in conjunction with notifications that are not associated with a database. For
example, type-1 commands with the GLOBAL parameter for Fast Path resources are sent between IMS
systems by using notifications to holders of this lock.

Command Lock Summary

Purpose: Used for routing notifications to IMS subsystems

Locking environments: IMS subsystems with Fast Path that use the IRLM

Resource Locked: A "dummy" resource

Level: IRLM level 2 is always used.

Requested: When an IMS subsystem is started

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 27

Released: When an IMS subsystem is terminated.

VUNLOAD Lock

The Fast Path VUNLOAD lock is used to serialize the /VUNload command across multiple IMS systems in a
Parallel Sysplex using shared VSO. The serialization is for all /VUNLOAD commands, even when they
specify different areas. The lock is also requested for the /START, /STOP, and /DBR commands for shared
VSO areas and for open processing for a shared VSO area. This locking also prevents deadlocks between lock
processing across the sysplex and latch processing within IMS subsystems.

VUNLOAD Lock Summary

Purpose: Used for serializing the /VUNLOAD command across multiple IMS subsystems in order to prevent
deadlocks between command processing by different subsystems.

Locking environments: IMS subsystems with Fast Path that use the IRLM

Resource Locked: A "dummy" resource associated with the /VUNLOAD command

Level: IRLM level 8 is used for commands. IRLM level 2 is used for area open processing.

Requested: When an IMS subsystem processes a /VUNLOAD, /START, /STOP, or /DBR command for a
shared VSO area and when a shared VSO area is opened by an IMS subsystem.

Released: When the command or open process completes.

Buffer Overflow (OBA) Lock

The Fast Path buffer overflow (OBA) lock is used to serialize the use of OBA buffers by a dependent region or
thread. Only one region or thread may be using its overflow buffers at any time unless the 64-bit Fast Path
buffer manager is used. This buffer manager was introduced in IMS Version 11 and is optional. When the 64-
bit Fast Path buffer manager is used, the OBA lock is not used. The OBA lock is requested when a dependent
region has used its normal buffer allocation (NBA) and requires more buffers. It is released when the
dependent region no longer needs the overflow buffers.

Buffer Overflow (OBA) Lock Summary

Purpose: Used for serializing the use of OBA buffers by a dependent region or thread. It is not used with the
Fast Path 64-bit buffer manager. With the 64-bit buffer manager multiple regions and threads may be using
their overflow buffer allocation concurrently.

Locking environments: IMS subsystems with Fast Path which are not using the 64-bit buffer manager.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 28

Resource Locked: A "dummy" resource associated with the buffer overflow.

Level: IRLM level 8 is always used.

Requested: When a dependent region needs overflow buffers.

Released: When the dependent region or thread releases its overflow buffers.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 29

Special Locking Cases

There are some settings for PROCOPT parameters in PSBs which have special effects on locking. These are
PROCOPT values of GO, GON, GOT, and E.

PROCOPTs of GO, GON and GOT

IMS allows a user to specify a “read without integrity” option for a database. This is done by specifying
PROCOPT=GO in the PSB. When this PROCOPT is used, no locking is done for the database. GO is not
valid for MSDBs. It is valid for full function databases and DEDBs. When PROCOPT=GO is used, other
programs in the subsystem may be updating the database. Since they may be inserting, deleting, or replacing
segments or their pointers, the lack of locking may cause data integrity problems. This is why PROCOPT=GO
is called “read without integrity.”

To limit, but not eliminate the integrity exposure, additional options are available with GO for full function
databases. These are GON and GOT. If GON is used and IMS recognizes a potential integrity exposure, such
as an invalid pointer, it will return a ‘GG’ status code for the call instead of abending the application program.
If GOT is used an additional procedure is sometimes used. This additional procedure includes the use of locks.
It is only used for HDAM, PHDAM, HIDAM, and PHIDAM databases and is not used when a secondary
index is being used to provide an alternate processing sequence. It also is not used when a logical relationship
has been crossed so that the position is not in the same physical database with the root segment of the database
record. IF GOT is used and IMS recognizes an integrity exposure, the procedure checks to see if there is a
lock on the database record being processed. If there is a lock, it waits until the lock is released. When any
wait completes, IMS accesses the data again. This does not provide complete integrity, but somewhat
decreases the probability of an integrity problem. This testing for a lock that is done with GOT is a special
type of lock request that is sometimes called a test enqueue (TENQ). It is the same type of lock request that is
used to test for locks on dependent segments when a full function database record is locked at PI level 1. The
test enqueue waits for the lock to be released, but does not acquire the lock for the program using
PROCOPT=GOT.

PROCOPT of E

IMS allows users to specify that a program is to have exclusive use of a database or segment types in the
database. This is done by specifying an E in a PSB PROCOPT value. It is used in conjunction with other
options, such as, G or A. E is only valid for full function databases. Specifying PROCOPT=E on a PCB
statement establishes a default for SENGSEG statement PROCOPTs. PROCOPT of E has different
implications with and without BLDS.

Without Block Level Data Sharing (BLDS)

If BLDS is not used for a database and a PROCOPT of E is used for the root segment in a database, the
program will have exclusive use of the database. No other programs with sensitivity to the database will be
scheduled concurrently with this program. Since there can be no conflicting users, there is no locking for the
program’s use of the database.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 30

If E is not used for the root segment, but used for dependents, the program will have exclusive use of the
specified dependents, but may share the root segments. That is, no other programs with sensitivity to the
specified dependent segment will be scheduled concurrently with this program. If the program has exclusive
use of a segment, no locking for the segment will be done, however, locks for database records, and other
segments will be requested.

With Block Level Data Sharing (BLDS)

If BLDS is used for a database, a PROCOPT of E does not provide exclusive scheduling of the database across
the data sharing IMS subsystems. It only provides for exclusive scheduling within an IMS subsystem. This
means that locking must always occur to provide integrity across the IMS subsystems. Database record locks
are always held until application sync point or an RLSE call. This means that a PROCOPT of E in a BLDS
environment does not provide exclusive use of the database or its segment types across the sysplex. Instead, it
provides exclusive access to database records from when they are accessed until sync point or an RLSE call.

HALDB Online Reorganization

HALDB Online Reorganization (OLR) uses the same locks that are used by application programs. These
include database record locks, block locks, and busy locks. OLR reorganizes a set of database records at a
time. This is called a unit of reorganization (UOR). The database records in a UOR are locked before any
copies of the segments are made to the output data sets. OLR never waits for a database record lock while
holding other locks after building the minimum UOR of a single record. It does this by making conditional
lock requests. If the lock request cannot be granted immediately, OLR regains control and lessens the number
of database records in the UOR. Only the database records whose locks have already been obtained remain in
the UOR. These database records are copied to the output data sets. At the end of the copies for a UOR, OLR
commits. This releases the locks. OLR then moves to the next UOR.

The number of database records in a UOR is dynamically adjusted. OLR attempts to hold a minimal number of
locks at any time and to hold them for a short time. It may be observed that OLR rarely, if ever, holds more
than 1,000 locks and rarely, if ever, holds them for more than a second. This minimizes the locking impact on
concurrently running application programs.

When OLR is executed in a BLDS environment, block locks are requested for the blocks in the output data sets
into which segments are copied. Block locks are also requested for the input data set. The cursor is written in
the second block or CI of the input data set. There is a block lock for this block or CI for every unit of
reorganization. When twin backward (TB) pointers are used with PHIDAM, the twin chain between roots
must be maintained across the input and output data sets. When pointers are updated in the input data set,
block locks are requested for their CIs or blocks. Block locks are required since concurrently executing
application programs may be making inserts or updates of other segments in these blocks.

OLR may be involved in a deadlock. When it is, it is almost always chosen as the victim. As mentioned in
"Choosing a Victim" on page 36, OLR has a very low "worth" value. Only Fast Path (IFP) regions have a
lower value. This value is used in determining which of the participants in a deadlock is chosen as the victim.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 31

Limiting the Number of Locks Held by a Program

The LOCKMAX specification may be used to limit the number of locks held by any program instance. If this
limit is exceeded, the program abends with U3301. LOCKMAX may be specified in two ways. First, it may
be specified on the PSBGEN statement during the PSBGEN process. Second, it may be specified as an
execution time parameter for IMS dependent regions (MPP, BMP, JMP, JBP, and IFP) and IMS batch (DLI
and DBB) regions. For IMS batch regions, it only applies when block level data sharing is used. If it is
specified for a dependent region or IMS batch region, this specification overrides any specification on the
PSBGEN statement. The only way that the PSBGEN value is used is when the LOCKMAX value for the
region is not specified.

Valid values for LOCKMAX are 0 through 255. A value of 0 indicates that there is no limit to the number of
locks that may be held. Other values are in units of 1000. For example, LOCKMAX=5 indicates that the limit
is 5000 locks.

Users may determine the maximum number of locks held by a program by examining log records. For each
application program sync point, IMS will write either a x'37', x'5937', or x'41' log record with the "high water
mark" lock count for the sync interval. The value in the x'41' log record is non-zero only for IMS batch jobs
using block level data sharing. The value in the x'37' or x'5937' should be used for all online regions.

The following table shows the macros which may be used to create DSECTs for these log records. The fields
containing the "high water mark" log counts are shown.

Table 11. Log records with lock held "high water marks"
Log Record Mapping macro Field
x'37' DFSXFER XFERLHLD
x'41' DFSLOG41 LOG41LKH
x'5937' DBFLGSYN SYNCLKS

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 32

PI Limit on Number of Waiters

The PI lock manager limits the number of programs that may be waiting for a lock at any time to 63. If there
are 63 waiters and another program makes a lock request that would wait, it is abended with U2478.
Obviously, this should rarely, if ever, occur. For a U2478 abend, the application program is backed out. If it
is an MPP or JMP transaction, it is rescheduled. This is similar to the action taken on a U0777 abend for
deadlocks.

For APPC CPIC driven application programs and modified standard application programs, the U2478 abend is
not issued. Instead, a U0124 abend is issued and the program is not rescheduled.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 33

Lock Timeouts

PI does not have a lock timeout facility. IMS lock requests never timeout when PI is the lock manager.
The IRLM has a lock request timeout facility. It is controlled by the TIMEOUT value for IRLM and the
LOCKTIME value for IMS.

IRLM TIMEOUT Value

The TIMEOUT value for IRLM controls the timing of IRLM time out actions. It defaults to 300 seconds but
may be changed with the following command.

F irlmproc,SET,TIMEOUT=seconds,imssubsystemname

If any lock request waits for this time, the IRLM issues a DXR162I message and drives an IMS exit which
creates an SMF record type 79 subtype 15 (79.15). This record contains information about the lock holders
and waiters for the resource. By default, no other action is taken. The DXR162I message is:

DXR162I irlmx CYCLE NUMBER nnnnnnnn PROCESSED FOR TIMEOUT.

The DXR162I message does not identify the waiter, the holder, or the resource with the lock conflict. These
are identified in the IRLM Long Lock Detection Report which is generated from the SMF 79.15 records. Long
Lock detection is explained under "RMF II ILOCK (IRLM Long Lock Detection) Report" on page 57.

IMS LOCKTIME Values

The IMS wait time for the IRLM is defined with the LOCKTIME statement in the DFSVSMxx PROCLIB
member for online systems or in the DFSVSAMP DD data set for batch (DLI or DBB) jobs. The format of the
statement is:

LOCKTIME=(mtime,maction,btime,baction)

Where:

mtime is the timeout value for MPP, JMP, and IFP regions, CCTL(CICS) and ODBA threads, or system
processes. It is specified in seconds from 1 to 32767.

maction is either ABEND or STATUS. ABEND indicates that MPP, JMP, IFP, CCTL, and ODBA
programs which timeout will abend with U3310. STATUS indicates that these programs which
timeout will receive a 'BD' status code for the DL/I call. The default is ABEND.

btime is the timeout value for BMP, JBP, DLI, and DBB regions. If btime is not specified, the value for
mtime applies to all regions.

baction has the same meaning as maction but applies to BMP, JBP, DLI, and DBB regions. If baction is not
specified, the value for maction applies to all regions.

Some system processes, such as commands, ask for locks. If they time out, the process is ended. For example,
a command would fail.

The IMS lock timeout capability is related to the IRLM TIMEOUT value for the IMS subsystem. The IRLM
TIMEOUT value controls the timing within IRLM. When the IRLM TIMEOUT value is exceeded by a lock
request, IRLM informs IMS. IMS then checks its LOCKTIME value to see if it has been exceeded. If it has

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 34

not been exceeded, the lock request is not ended. If it has been exceeded, the lock request is ended with either
a 'BD' status code being returned for the call or the program being abended with a U3310. Since IMS only
checks its LOCKTIME value when IRLM's TIMEOUT value has been exceeded, the IRLM TIMEOUT value
must not be larger than the smaller of the two IMS LOCKTIME values. To ensure that this is true, IMS
initialization processing communicates with IRLM. It tells IRLM to set its TIMEOUT value to the smaller of
its two LOCKTIME values. If IMS does not have a LOCKTIME value specified in DFSVSMxx of
DFSVSAMP a default value of 300 seconds is used. The IRLM TIMEOUT value must be a multiple of the
IRLM local deadlock detection time. If the requested TIMEOUT value is not a multiple of the deadlock
detection time, the IRLM rounds up the TIMEOUT value. This is rarely a problem since deadlock detection
times are typically one second or smaller and TIMEOUT values are typically many seconds.

You should be careful when using the "F irlmproc,SET,TIMEOUT=seconds,imssubsystemname"
command. The command changes the IRLM TIMEOUT value but does not cause IMS to change its
LOCKTIME values. Nevertheless, it could affect the timing of lock timeouts by IMS. If the IRLM
TIMEOUT value exceeds an IMS LOCKTIME value, the timeouts of lock requests will occur only after the
lock has waited for the IRLM TIMEOUT value. Increasing the TIMEOUT value may cause IMS to time out
lock requests later than the time indicated by its LOCKTIME values. Since the IRLM TIMEOUT value is
used for the timing of Long Lock detection, the command will always set this timing.

An enhancement to IMS Versions 10 and 11 is planned. The enhancement will allow users to change the IMS
LOCKTIME values for an online system with an UPDATE IMS command. The format of the command is:

UPDATE IMS SET(LOCKTIME(MSG(mtime),MSGOPT(maction),
 BMP(btime),BMP(baction),
 TELLIRLM(Y|N)))

The meanings of mtime, maction, btime and baction are the same as in the IMS LOCKTIME statement in the
DFSVSMxx PROCLIB member as shown above. TELLIRLM(Y) indicates that the IRLM TIMEOUT value
for this IMS subsystem should be set to the lower of mtime and btime.

Table 12. Lock timer values
 IRLM DEADLOK value IRLM TIMEOUT value IMS LOCKTIME values

Specified to IRLM for an IMS
Specification Only the first

subparameter is used Multiple of DEADLOK time

Specified to IMS; two values;
one is for transactions and the
other is for batch

Used for Long Lock reporting
Use Used for deadlock

detection Used to drive IMS for lock
wait timeout determination

Used for lock wait timeout

Action

When lock waits exceed
this time, IRLM
determines if they are
deadlocked

When lock waits exceed this
time, message DXR162I is
issued and waits are reported
by Long Lock but the waits
continue

IMS exit is driven by IRLM
when a lock has waited for the
IRLM TIMEOUT value; IMS
determines if it has waited for
the LOCKTIME value

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 35

Deadlocks

An overview of deadlocks was covered under “Deadlocks” on page 6. This section provides more information
on deadlocks, including how they are resolved.

The overview section showed a simple example of a deadlock between two programs, but deadlocks may be
more complex. They may involve more than two programs. The following examples illustrate this situation.

Example of Deadlock between Multiple Programs

The following is an example of a deadlock involving three programs.

 Program A Program B Program C

Figure 5. Deadlock Between Multiple Programs

1. Program A requests a lock on resource X at level 3. The lock is granted.

2. Program B requests a lock on resource Y at level 3. The lock is granted.

3. Program C requests a lock on resource Z at level 3. The lock is granted.

4. Program C requests a lock on resource Y at level 3. The lock request cannot be granted because program C
 already holds the lock at level 3. Program C must wait.

5. Program B requests a lock on resource X at level 3. The lock request cannot be granted because program A
 already holds the lock at level 3. Program B must wait.

 A deadlock does not exist yet. Program A is not waiting. If it releases its lock on resource X, Program B
 may be given the lock and proceed. It could then release its lock on resource Y, which would allow
 program C to proceed.

 On the other hand, the following could happen.

 .
1. Lock X Level 3
 .
 .
 .
 .
 .
6. Request Z Level 3
 WAIT
 DEADLOCK

 .
 .
2. Lock Y Level 3
 .
 .
 .
5. Request X Level 3
 WAIT

 .
 .
 .
3. Lock Z Level 3
4. Request Y Level 3
 WAIT

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 36

6. Program A requests a lock on resource Z at level 3. The lock request cannot be granted because program C
 already holds the lock at level 3. Program A must wait.

 Now, all of the programs are waiting and cannot give up their locks. A deadlock exists.

Deadlock Detection Timing

The two lock managers, PI and the IRLM, use different techniques to trigger their search for deadlocks.

The PI lock manager checks for a deadlock whenever a program’s lock request would cause it to wait. Before
making the program wait, PI checks to see if the lock request will cause a deadlock.

The IRLM does not check for deadlocks as part of the lock request processing. It has an independent process
which is triggered by a user selected time interval. This is the local deadlock cycle which is specified by the
first subparameter of the DEADLOK parameter on the IRLM execution procedure, DXJRPROC. Values from
100 to 9999 are interpreted as milliseconds. Values from 1 to 99 are interpreted as seconds. The IRLM only
investigates those lock requests which were also waiting at the previous interval, that is, have waited at least
the local deadlock cycle time. If one is found, the IRLM will see if it is involved in a deadlock. The other
requests in the deadlock do not necessarily have to have waited for the cycle time. This means that no
deadlock is detected before the specified interval has elapsed. Some deadlocks may not be detected until a
program has waited almost two intervals. A typical value for the local deadlock detection time is 1 second.
The second subparameter of the DEADLOK parameter is sometimes described as the number of local
deadlock detection cycles in a global cycle. The IRLM does not use this subparameter. All local cycles are
global cycles. If there are multiple IRLMs, they coordinate their local cycles, that is, they make them the same
value. Multiple IRLMs check for deadlocks between subsystems at each deadlock cycle.

Choosing a Victim

When a deadlock occurs, the lock manager selects a program to be a victim. This means that the program’s
updates will be backed out and its locks released. This clears the deadlock and allows the other program or
programs to continue. Either of two things may occur when the victim is an IMS dependent region. It may be
terminated with a U0777 abend or an internal ROLB call may be issued and control returned to the program
with status code BC or FD. CICS programs receive an ADCD abend. ODBA threads are terminated and the
call receives an AIB return code, reason code, and error extension information indicating the deadlock.

In most cases IMS attempts to choose a victim whose backout will cause the least disturbance to the system.
For example, in an IMS TM environment it is much easier to handle the abend of a message processing
program than the abend of a non-message driven BMP. The system automatically reschedules the MPP but an
operator would have to restart the BMP. For this reason, the lock managers have a scheme for choosing the
victim which is based on the type of programs that are involved. The lock managers assign a worth value to
each participant in the deadlock. This worth value is assigned based on the type of program. The victim is
typically the program with the lowest worth value. IMS assigns worth values in the following order with the
first in the list having the highest values.

1. Batch (DLI or DBB) program which has done an update or a Fast Path online utility

2. Message driven BMP with MODE=MULT

3. Non-message driven BMP or JBP

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 37

4. Message driven BMP with MODE=SNGL

5. CPI-C driven program

6. Batch (DLI or DBB) program which has not done an update

7. CICS task or ODBA thread

8. MPP or JMP with MODE=MULT

9. MPP or JMP with MODE=SNGL

10. HALDB Online Reorganization utility

11. Fast Path (IFP) program

The program types at the top of the list are least likely to be chosen as victims. For example, if a deadlock
between a non-message driven BMP (item 3) and a MPP with MODE=SNGL (item 9) occurred, the MPP
would be the victim. Not all items in the list apply to all environments. For example, items 2, 4, 5, 8, 9, and
11 do not apply to DBCTL subsystems.

Frequently, a deadlock will occur between two programs that are of the same type. When this occurs, the PI
and IRLM lock managers have different algorithms for choosing which program will be the victim. PI chooses
the one which has run the shortest time since its last sync point. IRLM chooses the one which has waited the
shortest time for its lock request. There are exceptions to the ILRM algorithm. For example, in some cases the
IRLM will not choose a program which is processing a message which deadlocked on its previous schedule.
This is done to lessen the probability of multiple reoccurrences of the same deadlock. Similarly, if both
programs are in IFP regions, the IRLM chooses the one which has run the shortest time since its last sync point.

Even when the program types differ there are exceptions to using the worth value ranking for choosing a
victim. When there are multiple programs involved in the deadlock, the lock manager sometimes does not
select the program with lowest worth as the victim. It does this for some complex situations. For example,
selecting the program with the lowest worth may not eliminate the deadlock. Consider the following example.
Program 1 and program 2 both hold a share level lock on resource A. Program 3 holds an exclusive level lock
on resource B. Program 1 requests a share level lock on resource B. It waits. Program 2 requests a share
level lock on resource B. It waits. Program 3 requests an exclusive level lock on resource A. This creates a
deadlock. In this case, program 3 will be chosen as the victim even if its worth value is higher than that of
programs 1 and 2. If either program A or program B were chosen as the victim, the deadlock would not be
resolved. Instead of making both programs A and B victims, only program C is chosen to be a victim.
Another instance when the ranking is not used occurs with a block lock for an insert in a KSDS. If the request
for the block lock causes a deadlock, the inserting program will not be chosen as the victim.

INIT STATUS GROUPB Call

Application programs may issue an INIT call with STATUS GROUPB in the I/O area or the equivalent EXEC
DLI ACCEPT STATUSGROUP ('B') command. This call indicates that the program should receive control
when it is chosen as the victim in a deadlock. When the deadlock occurs, the DL/I call that creates the
deadlock receives a 'BC' status code in the database PCB. IMS backs out its database resources, with the
exception of GSAM, to the last commit point. If IMS is the syncpoint coordinator, DB2 database resources are
backed out, any persistent MQ input messages are requeued, and any persistent MQ output messages are

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 38

backed out. If there are users of the External Subsystem Interface, their updates are also backed out. IMS
Transaction Manager output messages issued since the last commit point are backed out unless they were
inserted and purged using an EXPRESS=YES PCB. Input messages are returned to the message queue for
MPPs, JMPs, and message-driven BMPs. For IFP regions all input messages are returned to balancing group
queues.

Handling a Deadlock Victim

The following explains what happens to the victim in a deadlock when it has not issued the INIT STATUS
GROUPB call.

When a victim is chosen, all updates are backed out. The victim program is either abended or it is given an
indication that the back out has occurred. The abend is either an IMS U0777 abend for MPP, JMP, IFP, BMP,
or JBP regions, a U0123 abend for CPIC driven application programs or modified standard application
programs, or a CICS ADCD abend for CICS tasks. An FD status code is returned only when Fast Path
databases are being processed by a victim that is a non-message driven BMP or JBP. This is discussed below.
A U0777 or U0123 abend will cause a back out of the program to its last sync point. A CICS ADCD abend
will cause a back out of the program to its last sync point if dynamic transaction back out (DTB) is specified.
This will back out non-IMS resources, such as CICS file control data sets. IMS database updates are always
backed out when deadlocks occur. If the program has not created a sync point, the back out is to the beginning
of the program’s execution.

When an ODBA thread is the victim of a deadlock, the database updates are backed out and the DL/I call
completes with AIB "system failure" return code of x'00000108', a "thread termination" reason code of
x'00000244' and error extension code x'10000309'. The AIB error extension code is the hexadecimal value for
the 777 abend code with the high order bit on. The ODBA thread is terminated. The application program can
no longer make calls on the thread.

For IMS TM systems, the application program may have processed one or more input messages since its last
sync point. If this is true, the input message or messages for MPP, JMP, or BMP regions are returned to the
queue. Multiple input messages will have been processed only if MODE=MULT is used. For a Fast Path
region, the input message is retained in its buffer. MPP, JMP, and IFP region transactions are rescheduled
automatically unless they are CPIC driven application programs or modified standard application programs.
No message is sent to the terminal operator and the operator is unlikely to be aware of the backout and
rescheduling.

BMPs, JBPs, and Fast Path utilities must be rescheduled if they are abended.

If HALDB Online Reorganization is the victim of a deadlock, it is automatically restarted by IMS.

When the victim is a CICS task an ADCD abend is created. The task may be restarted. For restart to be done,
the installation must specify that it wants both dynamic transaction backout (DTB) in the CICS system and
transaction restart for the transaction. Transaction restart is specified by the RESTART parameter when
defining the transaction to CICS.

As was mentioned above, not all victims receive abends. There are three exceptions.

The first exception is a program which issues an INIT STATUS GROUPB call. This is described above under
"INIT STATUS GROUPB Call" on page 37.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 39

The second exception is for a non-message driven BMP or JBP which has a PCB that references a Fast Path
resource. It may create a deadlock situation with a call to either a Fast Path or full function database. If the
BMP or JBP is chosen as the victim, it is not abended. Instead, an internal ROLB call is processed to backout
the program’s processing and the call that caused the deadlock receives an FD status code. The application
program is allowed to handle the situation. The program may continue processing or choose to abend itself.
Generally, it is preferable to continue since this will avoid the need to restart the job. The call that receives the
FD status code does not have to use a Fast Path PCB. If any PCB in the PSB references a DEDB or MSDB,
the non-message driven BMP or JBP will get the FD status code instead of the U0777 abend.

The third exception is for deadlocks found during sync point processing. This must involve MSDB resources
because locks for DEDBs and full function databases are not requested during sync points. This situation does
not apply to CICS tasks or ODBA threads because they do not have access to MSDBs. When deadlocks are
found during sync point processing, a U0777 abend is not issued. Instead, an internal ROLB call is issued to
back out any updates and release locks. If the program is a BMP or JBP, an FD status code is returned to the
call the caused the sync point. This could be a GU to IO PCB, a SYNC call, or a CHKP call. For message
driven BMPs, any input messages processed since the last sync point are returned to the queue. BMPs remain
scheduled and may retrieve any input messages again. Other types of programs do not get the FD status code.
For MPPs and JMPs the input message or messages are returned to the queue. For an IFP region, the input
message is retained in its buffer. MPP, JMP, and IFP region input messages are reprocessed automatically.
The MPP, JMP, or Fast Path program remains scheduled and will receive the same or another input message as
a result of the GU to the IO PCB that caused the sync point. In either case, the situation does not require that
the program take any special action.

The following table summarizes the action taken on a deadlock victim when an INIT STATUS GROUPB call
has not been issued.

Table 13. Deadlock Actions without INIT STATUS GROUPB call

Program Type Deadlock in
Sync Point? 1 Action2

MPP or JMP Y or N U0777, input message is reprocessed on reschedule

N U0777, input message is reprocessed when BMP is
rescheduled. BMP rescheduling is not automatic. Message driven BMP

Y Original input message is returned to the GU IO-PCB call
which caused the deadlock

Non-message driven BMP
or JBP without FP PCB in
PSB

N U0777

Non-message driven BMP
or JBP with FP PCB in
PSB

Y or N FD status code

Fast Path (IFP) Y or N U0777, input message is reprocessed automatically
CICS DBCTL N ADCD, backout and retry depend on CICS specifications

ODBA thread N
AIB return code, reason code, and error extension codes
are set. Thread is terminated and the program can no
longer make calls on the thread.

Notes:

1. This can only occur with MSDBs. MSDBs are not supported with CICS or ODBA.
2. The deadlock action always includes a backout

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 40

Deadlocks with CICS Resources

CICS application programs may access CICS resources, such as VSAM data sets, that are not controlled by
IMS. CICS uses enqueuing mechanisms to protect these resources. These include both CICS enqueuing
mechanisms, which it sometimes calls exclusive control, and VSAM’s own exclusive control facilities.

For more information on CICS enqueuing facilities and their use with CICS resources, see the CICS Recovery
and Restart Guide and the CICS Application Programming Guide for the version of CICS you are using.

It is possible for a deadlock to occur which includes both IMS and CICS resources. The following is an
example of such a deadlock.

1. Program A requests a lock on IMS resource X. The lock is granted.

2. Program B requests a VSAM record Y, causing an enqueue of Y. The request is granted.

3. Program B requests a lock on IMS resource X. The lock request cannot be granted because program A

already holds the lock at an incompatible level. Program B must wait.

4. Program A requests a VSAM record Y, causing an enqueue Y. The request cannot be granted because

program B has a conflicting enqueue for Y. Program A must wait.

A deadlock has occurred but IMS’s lock manager cannot detect it. It is not aware of the enqueue conflict for
the VSAM record. Similarly, CICS enqueuing facility is not aware of the locks on IMS resources; however,
the deadlock may be broken by a lock timeout. If the IRLM is the lock manager and the LOCKTIME
parameter is used, the IMS lock request may be timed out by IMS. See "Lock Timeouts" on page 33 for an
explanation of this time out capability.

CICS can also handle these situations by using a timeout facility. If a CICS task is suspended for longer than a
user specified time, the task is timed out and abended. One can view this as CICS deciding that a deadlock
must exist and choosing the waiter as a deadlock victim. In the example above, only Program A is waiting on
a CICS resource, so it would be abended. This would cause Program A to release its lock on IMS resource X
and allow Program B to continue. The time that the program is allowed to wait is specified in the DTIMOUT
value for each transaction. This should be specified for all CICS transactions using both IMS and CICS
recoverable resources. This should include the mirror tasks and CECI transactions. If DTIMOUT is not
specified and the IRLM TIMEOUT facility is not used, there is no timeout facility for the transaction and a
deadlock would persist until a system operator abended one of the waiting tasks.

Deadlocks with DB2 Resources

Deadlocks involving both IMS and DB2 resources may occur. This is similar to the situation with IMS and
CICS resources that is discussed above. The following is an example of a deadlock involving IMS and DB2.
It could occur in either an IMS TM, CICS, or DBCTL environment.

 1. Program A requests a lock on IMS resource X. The lock is granted.

 2. Program B requests a lock on DB2 resource Y. The lock is granted.

 3. Program B requests a lock on IMS resource X. The lock request cannot be granted because program A
 already holds the lock at an incompatible level. Program B must wait.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 41

 4. Program A requests a lock on DB2 resource Y. The lock request cannot be granted because program B
 already holds the lock at an incompatible level. Program A must wait.

A deadlock has occurred but the lock managers cannot detect it. IMS and DB2 always use different lock
managers. Either IMS uses PI and DB2 uses IRLM, or IMS and DB2 use different IRLMs.

As mentioned above in the "Lock Timeouts" section on page 33, a lock request for an IMS DL/I call may
timeout. This would resolve the deadlock. Similarly, DB2 also has a lock timeout function. DB2 lock
requests always have a timeout value. Any DB2 lock request that waits for longer than the specified time is
assumed to be in deadlock. In our case, Program A would be the selected victim if the DB2 request times out.
The DB2 wait time for the IRLM can be defined on the DB2 DSNTIPI installation panel. The default value is
60 seconds. This means that no deadlock between IMS and DB2 resources would be broken by a DB2 timeout
before 60 seconds has elapsed.

When a program’s DB2 lock request times out, the actions taken depend on the type of program that issued the
SQL call. MPPs, JMPs, message driven BMPs, and Fast Path (IFP) programs receive U0777 abends which
cause a back out to the last sync point. The input message or messages for a MPP, JMP, or BMP are returned
to the queue. For a Fast Path (IFP) region transactions are rescheduled automatically. A message driven BMP
must be restarted by an operator. For non-message driven BMPs and JBPs, DB2 updates are backed out, an
internal ROLB call is issued to back out the IMS updates, and the SQL call receives a -911 return code. The
application program continues after receiving the -911. If the DB2 request that times out was issued by a
CICS task, the SQL call receives either a -911 or -913 return code. In either case, the CICS program continues
after receiving the return code. A -913 indicates that the SQL statement was unsuccessful but no backout of
previous SQL or IMS calls was done. A -911 indicates that all DB2 and IMS updates have been backed out to
the last sync point. The program may continue processing after either a -911 or -913 is returned. The setting
of the ROLBI parameter in DB2’s CICS Resource Control Table (RCT) determines whether the -911 or -913
will be used. If the DB2 request that times out was issued by a an ODBA thread, such as a DB2 stored
procedure, backout is not done automatically and the SQL call receives a -913 return code. The program
should invoke a rollback as soon as possible using SRRBACK or ATRBACK.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 42

Retained Locks and Lock Rejects

Retained locks are locks held for a failed subsystem. Retained locks are still known to the lock manager, but
the holders of these locks are no longer active. The failed subsystem must be restarted before the locks can be
released. Requestors of these locks at an incompatible level do not wait. This is reasonable since a wait would
likely be for a very long time, possibly many minutes. Instead of waiting these lock requests are rejected.

Retained locks may occur in a BLDS environment. If one of the IMS subsystems fails, its IRLM fails, or the
LPAR on which it is running fails, its locks are retained. If only the IMS subsystem fails, its IRLM maintains
its locks in a retained status. If the IRLM fails or the LPAR fails, the other IRLMs in the data sharing group
maintain the locks in a retained status. With BLDS the coupling facility lock structure contains information
about all locks protecting updates. This information is kept in the lock structure record list. If an IRLM fails,
the record list for its locks is copied by the other IRLMs in the data sharing group into their storage. This
ensures that the locks are always stored in at least two locations. If a lock request is processed and it is
incompatible with one of these retained locks, the lock request is rejected.

Retained locks may also occur with DBCTL services using either PI or the IRLM. If the CCTL subsystem,
such as CICS, fails, it may be holding locks in an in-doubt status. IMS does not know if CICS will commit or
abort, so it cannot back out the updates and release the locks. Neither can it commit the updates and release
the locks. IMS maintains the locks in a retained status. Requests for these locks at an incompatible level are
rejected. When CICS is restarted and reconnected to IMS, the in-doubt units of work are resolved. They are
either committed or aborted. These actions cause the locks to be released.

The effect of a lock reject depends on the use of the INIT STATUS GROUPx call or the EXEC DLI ACCEPT
STATUSGROUP('x') command. If either of these is used, lock rejects result in a BA or BB status for the call
requesting the lock. The BB status code indicates that updates made since the last commit are backed out. The
BA indicates that only the current call is backed out. In either case, the call fails and the program may take
other actions. If neither INIT STATUS nor EXEC DLI ACCEPT is used, the application program receiving
the lock reject is abended. This is a U3303 abend. For IMS message processing programs, the input message
is placed on the suspend queue with the following exceptions. For IMS transactions involved in protected
conversations with RRS, the input message is discarded. For APPC CPIC driven application programs and
modified standard application programs, the U3303 abend is not issued. Instead, a U0125 abend is issued and
the transaction is not rescheduled. For CICS applications, the IMS U3303 abend results in an ADCI abend
code.

When a U3303 abend occurs it is accompanied by a DFS3304I message.

DFS3304I IRLM LOCK REQUEST REJECTED. PSB=psb_name DBD=dbd_name
 JOBNAME=job_name RGN=nnn SUBSYSTEM=subsystem

psb_name The name of the PSB issuing the failed call
dbd_name The name of the database with the retained lock
job_name The name of the z/OS job receiving the 3303 abend
nnn The number (decimal) of the PST receiving the 3303 abend
subsystem The name of the IMS subsystem that holds the lock

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 43

Database Level Data Sharing

Database level data sharing is used when a database is registered to DBRC with SHARELVL(1).
SHARELVL(1) ensures that if an IMS subsystem has authorization to update a database no other IMS
subsystem will be authorized to update it or to read it with integrity. Authorizations to read without integrity
are allowed. SHARELVL(1) also allows multiple IMS subsystems to have concurrent authorizations to read
the database with integrity when no subsystem has update authority. Locks do not have to be shared between
the subsystems in these situations. Of course, locks are required within an IMS online subsystem.

Even though locks between subsystems are not required for databases using database level data sharing, they
can be used. In fact, when the subsystems are using IRLMs in the same data sharing group, a small subset of
locks are used. These are data set reference locks and extend locks. These are used so that when an updating
IMS subsystem extends a database data set, the other subsystems will receive the new extent information. This
avoids abends where the systems using read without integrity attempt to read blocks or CIs in the new extents.
The locks do not directly provide the new extent information to the reading subsystems, but they are used in
the process. The following explains how this process works.

When the IRLM is used with a SHARELVL of 1, 2, or 3, the database reference lock is acquired when a
database data set is opened. When a new extent is created for a database data set, the extending subsystem
uses the IRLMs to send information about the new extents to all other holders of the data set reference lock.
The information sent is the set of control blocks for the new extent. The receiving subsystems add these
control blocks. This allows them to read the blocks or CIs in the new extent. This does not provide full
integrity to the subsystems. Instead, it reduces the probability of abends by the readers when the updating
subsystem extends a data set.

There is a second advantage to using the IRLM with database level data sharing. In a Parallel Sysplex data
sharing environment the use of the IRLM also allows the use of IMS's cache structures in the Coupling
Facilities. These structures are used to implement buffer invalidations between IMS subsystems. These
invalidations are used to limit the chance that a system reading without integrity will use an old copy of a
block or CI which has been updated to a different state in another IMS subsystem. This does not provide full
integrity to the subsystems. Instead, it reduces the probability of reading uncommitted updates or following
incorrect pointers to invalid data.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 44

Virtual Storage Use for Locks

Both the PI lock manager and the IRLM keep their information which represents locks in control blocks. This
section explains the effects that these control blocks have on the use of virtual storage.

If the storage available for locks is exhausted, the lock manager will abend the first program to request a lock
that would exceed the limit. Usually, this will occur when a “runaway” program causes many lock requests to
occur without creating a sync point; however, the program receiving the abend will not necessarily be the
“runaway” program. It may be any other program in the system that happens to make the request that causes
the limit to be exceeded.

For MPP, JMP, IFP, BMP, and JBP regions, if the virtual storage available for locks is exhausted, the
application program will be abended and backed out. With the PI lock manager this will be a U0775 abend.
With the IRLM it will be a U3300 abend. With either lock manager, CICS tasks receive an ADLA transaction
abend and are backed out if dynamic transaction backout (DTB) is specified. In all cases the IMS updates are
backed out. MPP, JMP, and message-driven BMP input messages are reprocessed unless a CPIC driven
application program or modified standard application program receives the abend.

PI Lock Manager Virtual Storage

For IMS TM and DBCTL environments, the PI lock manager keeps its control blocks above the 16 megabyte
line in the DL/I address space or in ECSA. The DL/I address space is used unless Fast Path databases are
included in the system. When Fast Path databases are in the system, all PI control blocks, including those for
full function databases are in ECSA.

The maximum amount of virtual storage that may be used for PI control blocks is determined by the PIMAX
execution parameter. If this parameter is not specified, the second parameter specified for CORE= on the
system definition IMSCTF macro determines the maximum storage for PI control blocks. The specification is
in 1K blocks. Of course, the storage may also be limited by the virtual storage available in the region or ECSA.

Each PI lock requires about 48 bytes of virtual storage.

IRLM Virtual Storage

The IRLM keeps most of its lock control blocks above the 2-gigabyte bar in 64-bit storage of its address space.
Each IRLM lock requires about 540 bytes of virtual storage. The space for these control blocks may be limited
by the z/OS MEMLIMIT parameter for the job or job step.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 45

Design Advice

This section provides general advice for designing databases, application programs, and systems to avoid
locking problems.

Minimize PROCOPT values

PROCOPT specifications in PSBs affect potential processing concurrency. For this reason, PROCOPT values
should be minimized, that is, PROCOPTs allowing updates should not be specified when updates will not be
done. The PROCOPT value determines the level at which full function database record locks and Fast Path
DEDB CI locks are requested. These locks may be shared by multiple programs which specify PROCOPT=G.
If an update PROCOPT is used, the locks may not be shared. If no updates are going to be done, the
PROCOPT should not include update values. This will allow greater concurrency in the system.

Sometimes it may be advisable to generate a PSB with two PCBs for the same database. One PCB would have
PROCOPT=G and the other would have PROCOPT= A. This is useful when a program reads frequently used
segment occurrences and sometimes updates these or other segment occurrences. If the PCB with
PROCOPT=G is used for the reads, the program may share the segment with other concurrently running
programs. The PCB with PROCOPT=A may be used for the processing which requires updates. This
technique is not required for all programs because most programs do not have lock conflict problems. On the
other hand, this technique is useful in addressing some lock conflict problems.

Frequent Sync Points

Since locks have the potential to prevent other programs from accessing data, systems need to be designed so
that locks are not held for excessive lengths of time. Typically, this requires frequent sync points to release the
locks. The time between sync points usually varies by program type and these are discussed below.

Holding locks is usually not a problem for online transactions. They usually run for a short time, a second or
less, and then reach a sync point. This releases their locks and allows other programs to access the data that
they had locked. On the other hand, there are some types of online transactions which may cause problems.

CICS online transactions may use conversational programming which allows the program to wait on input
from a terminal user while holding locks. These waits are typically for a much longer time. They may last for
15 seconds, 30 seconds, or even several minutes. Usually, CICS conversational programming is unacceptable
when locks are held across communications with terminal users.

Some online transactions do so much processing that they run for minutes. If they hold locks for this amount
of time, they may cause problems. Sometimes these programs may be broken into multiple units of work or
sync intervals. In IMS TM environments this is usually done by having a transaction do part of the work, do a
program-to-program message switch, and then create a sync point (GU to I0-PCB). The next program then
continues the work. This next program actually may be another execution of the same program. In CICS
environments, the application program may use a SYNCPOINT command or TERM call to terminate one PSB
and then schedule another PSB. In either the IMS TM or CICS case, breaking the work into multiple units of
work reduces the length of the time any lock is held. Of course, the application designer must consider
recovery requirements for the work that is broken into multiple pieces. If the system fails or an application
abends while one of these processes is active, the designer must ensure that it is recoverable and restartable.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 46

Batch jobs are usually the ones that cause locking problems because of the lengths of time that they hold locks.
These may be either BMPs, JBPs, or ODBA threads, such as DB2 stored procedures which perform batch
processing. These batch jobs usually require frequent checkpoints to create sync points. The required
frequency of the sync points will vary between jobs. There is a trade-off between the lack of concurrency from
holding locks and the overhead of taking checkpoints. Sometimes it is difficult to predict the required
frequency because the installation may not be able to predict data reference patterns or because the use of the
data may vary from time to time. Since this required frequency is difficult to predict, it is usually desirable to
make the checkpoint frequently easily modifiable. This may be done by having the program read the desired
checkpoint frequency from a control data set or database record when it begins.

Most installations base checkpoint frequency on elapsed time or the amount of processing done. Processing is
usually measured by the number of segments or database records which are read or updated. Checkpoints
must be done at a point from which a program may be restarted. Usually, batch programs go through a
processing iteration and see if a checkpoint should be taken. That is, they check the elapsed time since the last
checkpoint or the number of database records or segments processed. If a checkpoint is not yet needed,
another iteration is made and the check repeated. This process is repeated until a checkpoint is taken and the
timers or counters are reset.

Almost all batch jobs require sync points, but there can be exceptions. If a batch job does not hold any
individual lock for a long time, it probably does not require sync points. Locks for updates are held until a
sync point is reached, so update jobs almost always require sync points. Locks that are associated with
position in a full function database record are released either at a sync point or when position is moved to
another database record. If a batch job does no updates and does not hold position on any database record for a
long time, it probably does not require sync points. Remember that IMS can maintain a position for each PCB
in the PSB, so programs that use a lot of PCBs usually hold positions on several dataset records.

Communications within a Sync Interval

Communication flows within a sync interval may delay the sync point. This could prevent the implementation
of frequent sync points.

OTMA and APPC may delay sync points while waiting on remote partners to respond to a sync point request.
This occurs with OTMA using commit mode 1 (send-then-commit) or with APPC when either uses
synclevel=confirm or synclevel=syncpt. In these cases locks are not released until the response from the
remote partner is received and processed. Communications delays may cause locking problems in these
environments. If locking is a potential problem, it may be advisable to use synclevel=none to avoid these
problems.

The use of synchronous callout which was introduced in IMS Version 10 is another way that communications
may occur within a sync interval. Synchronous callout allows IMS applications to invoke services from
outside the IMS system. The application program waits within its sync interval for the response. Obviously, a
slow response could cause locks to be held a long time. Synchronous callout is invoked with the DL/I ICAL
call. Users may specify a timeout value for the call. If the response is not received within the timeout value,
the callout request is terminated and control is returned to the application program with a return code of x'0100'
and reason code of x'0104' in the AIB control block. The application program can then do any further
processing and commit or back out. The default timeout value is 10 seconds, but the application may set any
other value in the 4-byte field. Times are specified in units of 0.01 seconds. All ICALs should set the
appropriate time out value and include logic to handle the timeout.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 47

Frequently Updated Records

Frequently updated records often create locking problems. When a segment is updated, the lock protecting the
update is held until a sync point is reached. This means that no other program may access the data. For high
volume systems it is important to avoid such “single thread” access. There are several designs that may lead to
frequent updated segments. Two of them are particularly significant.

The first design is one that uses control segments. A control segment is one that contains control information
that many programs access. If these programs update the data or access it using a PCB with update processing
intent, it is likely to cause a problem. An example of this kind of segment is one which contains the next
sequential number to assign, such as an invoice number. As each new invoice is processed, the program gets
the number and increments it. In such a system, only one program could be assigning numbers at any time.
There are several techniques to avoid or minimize the locking conflict. First, it may be sufficient to delay the
retrieval and update of the number until the program is about to create a sync point. This will minimize the
time that the lock is held and allow more transactions to process in a time period. Second, it may be necessary
to use several series of numbers. For example, there may be several "next invoice numbers" stored in different
database records. Different types of invoices would get their numbers from the different database records.
Third, it may be necessary not to use sequential numbers. A randomizing technique may be used to choose a
number. If a duplicate is created, another number would have to be chosen but with large enough numbers this
could be minimized. Of course, a combination of these techniques may also be used. Besides sequential
numbers control segments may have totals from different processes or from other segments. A segment might
keep totals from all terminal operations in the system. Such a segment is very likely to cause a locking
problem. It is more preferable to keep totals for each operator in separate segments and combine them when a
grand total is needed.

A second design that may lead to frequently updated records is a database with few roots. When a program is
positioned in a database record while using an update PCB, no other program may be positioned in the record.
When there are few records, this often leads to contention for database records. When a program has updated a
segment and moved to another database record, other programs may not be able to process updated database
record. If the IRLM is being used, no other program may enter the database record before the updater reaches
a sync point. If the PI lock manager is being used, there may be more concurrency but updated segments or
pointers may prevent programs from accessing other segments in the database record. When HDAM is being
used, few RAPs have the same effect as few roots because IMS locks RAPs, not roots, to lock database records.
Database administrators should be aware of the danger or implementing databases with few database records
or HDAM RAPs.

Using the RLSE Call

The solution to some locking problems requires that a program give up its lock on a full function database
record or Fast Path CI. This will allow other programs to access the record. It may be desirable to give up the
lock without requiring the original program to reach a sync point. Of course, the original program cannot have
updated the database record or CI because this would cause the lock to be held until a sync point is reached.
To give up the database record lock or the CI lock the program may issue a RLSE call. The RLSE call uses a
database PCB. For full function PCBs the call releases the database record lock held for the position of this
PCB when there are no uncommitted updates in the record. For Fast Path PCBs the call releases all Fast Path
locks for unmodified data. These locks may be for multiple Fast Path databases.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 48

Using a "Get Lost" Technique

Before the introduction of the RLSE call in IMS Version 9, some installations used a "get lost" technique to
release locks held by a program. To give up the database record lock, the program either used the PCB to get
position on another database record or issued a call which resulted in no lock being held. This type of
movement off of a database record is sometimes called a “Get Lost” technique. If a program needs to move
from a database record and not cause further lock conflicts it may move to a database record that will not he
accessed by any other program. This generally requires that a special root segment be reserved for this
program. The root may be associated with a user or terminal operator to ensure that no two concurrently
executing programs try to “get lost” on the same database record. If there are no such reserved roots, a special
technique may be used. This special call is a get unique (GU) call with a segment search argument (SSA) that
requests a root with a key equal to high values (X’FF…’). This will result in no lock being held for a database
record for this PCB. A ‘GE’ status code will be returned on the call. With the introduction of the RLSE call,
the get lost is not required.

Using PROCOPT=E to Avoid Checkpointing

An explanation of PROCOPT= E appears under “PROCOPT of E” on page 29. Specifying PROCOPT= E for
a root segment avoids locking for the database. This may eliminate the need for checkpoints in a special
circumstance.

Some installations have batch IMS jobs with no checkpoints. They would like to run these jobs as BMPs
under either IMS TM or DBCTL. This would give them two advantages. First, logging for the job would go
to the online system’s log instead of a separate log for the batch job. The installation could produce and
manage fewer logs when using BMPs. Second, dynamic backout would be invoked for all jobs abends, not the
subset that is backed out when BKO=Y is specified for a batch job. This can simplify operating procedures.
On the other hand, BMPs usually need frequent checkpoints to release locks. Locks need to be released for
two reasons.

 1. Other programs may want access to the resources that are locked. When PROCOPT=E is used, this access

will not be granted because other programs that could access the resources will not be scheduled
concurrently with the PROCOPT=E program. This means that PROCOPT=E cannot be used, with or

 without checkpoints, if concurrent use of the database is desired.

 2. Locks need to be released to free virtual storage. Even though this storage is above the line, it is limited.

If the limit is exceeded, the application program will be abended. An IMS U0775 or U3300 abend or
CICS ADLA abend will occur. This is explained under “Virtual Storage Use for Locks” on page 44.
Since PROCOPT=E avoids locking, checkpoints are not needed to free this virtual storage. PROCOPT=E
may be used to avoid these abends when checkpoints are not taken.

In summary, PROCOPT=E may be used to run batch jobs as BMPs without adding checkpoints to release
locks if concurrent access to the database by other programs is not needed. The use of PROCOPT=E
eliminates locking and, therefore, the abends that would occur if virtual storage limits for locks were exceeded.

If the implementation of block level data sharing is planned, be careful about the use of PROCOPT=E to avoid
locking. When block level data sharing is used, locks are acquired for the database. PROCOPT=E forces
exclusive use of the database only in the IMS system where the PROCOPT=E job executes. Other systems
still have access to the database. When multiple systems share a database, locks are required to provide
integrity across the systems.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 49

Deadlock Detection

When a deadlock occurs, some time is required to detect and handle the deadlock. Since the detection time is
part of the time required to process a lock request, this may affect response times in a system. The importance
of this depends on the frequency of deadlocks in the system.

The choice of lock manager and the use of DB2 or CICS resources may effect this detection time. If the PI
lock manager is used and no DB2 or CICS resources are involved, the deadlock will be detected as soon as a
call creates it. The deadlock may be broken and resolved before a noticeable effect occurs. Deadlock
detection is different with the IRLM. The IRLM only detects deadlocks after they have existed for at least the
deadlock detection cycle. The minimum cycle time is 100 milliseconds and maximum is 99 seconds. A
deadlock detection cycle time of a few seconds or more may make deadlocks more noticeable. Typically,
installations use IRLM deadlock detection cycle times of one second or less. If DB2 or CICS resources are
involved with IMS resources, a deadlock is only broken by a timeout in CICS or DB2. The time specified for
the timeout cannot be so short that it would lead to timeouts when no problem exists; therefore, almost any
deadlock between IMS and either DB2 or CICS resources will have a noticeable effect on response times.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 50

Locking Traces and Report Programs

IMS has traces and report programs that may be used to monitor locking activity. This section discusses those
traces and the information in the report programs. Instructions for executing the report programs are included
in the IMS System Utilities publication.

Lock Resource Names

When IMS requests a lock from PI or the IRLM, it requests the lock on a resource name. This is a string of
bytes that uniquely identifies the resource and type of lock. For example, a lock on a database record in a
HIDAM database would include the RBA of the root segment and the identity of the database and data set in
which it resides. These lock resource names often appear in lock traces and lock reports. The following
explains the resource names used for the different types of locks.

IMS subsystem ID with IRLM local locking

When the IRLM is used for local locking, the subsystem ID is added to lock resource name. Local locking is
locking without data sharing. Adding the subsystem ID allows an IRLM to service multiple IMS systems
where not all databases are shared. Locks only need to protect resources within an IMS subsystem. Adding
the subsystem ID to the lock resource name prevents lock conflicts between local locks within different IMS
subsystems which otherwise would have the same resource name.

Full function locks

In full function lock resource names the DMB# identifies a database. When the database is registered and the
IRLM is used, the DMB# is the global DMB# from the RECON database record. When PI is used or when the
IRLM is used but the database is not registered, the DMB# is the local DMB#. This is the relative number of
the DDIR control block for the database in the IMS online system.

In lock resource names the DCB# identifies the data set within the database. It is one byte. For a full function
non-HALDB database this is the same number that is used to assign database data sets to buffer subpools in
the DFSVSMxx member. The DCB# is 1 for primary indexes, unique secondary indexes, the primary data set
for non-unique secondary indexes and the data set containing root segments for HISAM databases. The DCB#
is 2 for overflow data sets in non-unique secondary indexes and HISAM databases. The DCB# is 1 for the
data set containing HDAM or PHIDAM roots. If there are multiple data set groups for HDAM or HIDAM,
successive data set groups use the successive DCB numbers. HALDB uses different schemes for different
database types. The DCB# for PSINDEX database data sets is always 1. The following tables show the DCB#
that is associated with each data set in PHDAM and PHIDAM databases. When the DDNAME letter is Y or
M through V, the DCB# also has the x'80' bit turned on. For KSDSs the RBA address has the low order bit on.

Table 14. DCB numbers used with PHDAM databases
DDNAME letter A/M L B/N C/O D/P E/Q F/R G/S H/T I/U J/V
DCB# 1 21 32 4 5 6 7 8 9 10 11 12

1. Index component
2. Data component

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 51

Table 15. DCB numbers used with PHIDAM databases
DDNAME letter A/M L X/Y B/N C/O D/P E/Q F/R G/S H/T I/U J/V
DCB# 1 21 32 41 52 6 7 8 9 10 11 12 13 14

1. Index component
2. Data component

Lock resource names for HALDB include the partition ID number when the IRLM is used with
SHARELEVEL 2 or 3 databases. This is added to the end of the lock resource name. The partition ID is
needed to create a unique resource name since multiple partitions in the same database could have identical
DCB numbers and RBA values. The partition ID is not used with PI or with SHARELVL 0 or 1 databases
since the each partition has its own DDIR control block and the relative number of the DDIR is used instead of
a global DMB#.

Lock Resource Name Formats

PI always uses eight-byte lock resource names. Lock resource name lengths vary with the IRLM. The lock
resource names used with the IRLM begin with a one-byte length field. The length includes the one-byte
length field. This length field is not shown in the formats which follow.

Database Record Lock

for HDAM or PHDAM using OSAM or ESDS

RBA of RAP DMB#2 DCB# C'P'3 1

for HIDAM or PHIDAM using OSAM or ESDS

RBA of root segment DMB#2 DCB# C'P'3 1

for KSDS

Hashed value of root key DMB#2 DCB# C'P'3 1

Segment Lock

for HDAM or PHDAM dependent segments and HIDAM or PHIDAM segments

RBA of segment DMB#2 DCB# X'40' 1

for HDAM or PHDAM root segments

RBA of RAP DMB#2 DCB# X'40' 1

for KSDS

Hashed value of root key DMB#2 DCB# X'40' 1

for HISAM ESDS

RRN of the logical record DMB#2 DCB# X'40' 1

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 52

Block Lock

RBA of block or CI DMB#2 DCB# C'P'3 1

Busy Lock

X'FF' C'ZID' DMB#2 DCB# C'B'3 1

Extend Lock

X'FF' C'XID' DMB#2 DCB# C'P' 1

Data Set Reference Lock

X'FF' C'DID' DMB#2 DCB# C'B' 1

Command Lock

X'FF' C'CID' X'7FFF' X'FF' C'B'

Notes:

1. For SHARELVL 2 and 3 databases if the IRLM is used and the database is HALDB, the partition ID (2
bytes) is added to the end of the lock resource name.

2. If the database is not registered or if PI is used, the DMB# is the local number as determined by the
definitions in the IMS subsystem and the high order bit is off. If the IRLM is used and the database is
registered in the RECONs, the DMB# is the global number from the RECONs and has the high order
bit turned on. There is one exception to this. If the database is HALDB and registered at SHARELVL 0
or 1, the DMB# is the local number as determined by the definition in the IMS subsystem and the high
order bit is off.

3. This is a blank (x'40) with local locking. Local locking is used with the PI lock manager and with the
IRLM when the database is not registered with a SHARELVL of 2 or 3.

Fast Path Locks

In lock resource names the area identification includes either the global DMCB# or the DMAC number. The
global DMCB# is used when the database is registered and the IRLM is used. When the DEDB is not
registered or PI is used, the DMAC number is used. This is a number assigned by the IMS system.

Fast Path CI Lock

X'00' RBA1 Area identification2 C'F'

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 53

Fast Path Segment Lock3

B'10' Low order 30 bits of CI RBA Area identification2 C'F'

Fast Path UOW Lock

X'E4' RBA of first CI in UOW1 Area identification2 C'F'

Fast Path Area Lock with IRLM

X'F8' Database Name (8 bytes) Area Name (8 bytes) C'F'

Fast Path Area Lock with PI

X'F8' C'AID' Area identification2 C'F'

Fast Path Buffer Overflow (OBA) Lock3

X'F2' Address of ESCDMOBU4 X'FFFF' C'F'

Fast Path MSDB Lock3

X'F1' Address of MSDB Control Word5 MSDB Serial # C'F'

Fast Path VUNLOAD Lock

X'F9' C'VUNLOAD ' (16 bytes) C'F'

Fast Path Multiple Area Structure Lock

X'FA' Structure Name (16 bytes) C'F'

Fast Path Command Lock

X'FF' C' CID' x'7FFFFF' C'F'

Notes:

1. This is the high order 3 bytes of the CI RBA
2. With PI the area identification is a 2-byte DMAC number and a byte of x'00'. With IRLM the area

identification is the 2-byte DMCB number followed by the area number. The area number is one byte

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 54

when the number of areas in the database is 240 or less. Otherwise, it is two bytes and the C'F' suffix
follows the two bytes.

3. When the IRLM is used, the 2-byte subsystem ID is added to the end of the resource name. This
prevents conflicts between locks in different IMS subsystems. This applies to systems with and without
data sharing since these resources cannot participate in data sharing.

4. This is the address of the ESCDMOBU. The content of ESCDMOBU identifies the current owner of the
OBA lock.

5. The MSDB Control Word is an address which uniquely identifies a record in an MSDB.

IMS Monitor Trace

The IMS Monitor Trace is used to collect information that is reported by the IMS Monitor report program. It
collects information on waits for locks when either PI or the IRLM is used as the lock manager.

The IMS Monitor trace is available in either an IMS TM or DBCTL environment. It is turned on with either of
the following commands.

 1. /TRACE SET ON MONITOR ALL

 2. /TRACE SET ON MONITOR APDS

The trace information is collected on the IMS Monitor data set which is processed by the IMS Monitor report
program (DFSUTR20).

PI and Lock Traces

IMS has two closely associated traces of lock information. They are the PI trace and the lock trace. These
traces are written in the same table in virtual storage and optionally written to the IMS log or an external trace
data set. All events traced by the PI trace are also traced by the lock trace. The additional events in the lock
trace appear when the IRLM is used. This includes information about waits for locks. The PI trace is written
to the log or trace data set when any of the first three commands in the following list are issued in an IMS TM
or DBCTL environment.

The first two commands are equivalent since LOG is the default when OPTION is used. ALL adds wait times
to the PI trace. The keyword TIME may be used after OPTION. It requests that the wait time be included in
the trace record, but it does not cause the trace to be written to the log or external trace data set. The fourth
command causes the lock trace to be written to the log or external trace data set. It includes tracing of wait
times.

 1. /TRACE SET ON PI OPTION

 2. /TRACE SET ON PI OPTION LOG

 3. /TRACE SET ON PI OPTION ALL

 4. /TRACE SET ON TABLE LOCK OPTION LOG

The trace records written by the PI and lock traces are the following.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 55

 . Written by PI and lock trace.

- X‘CA‘– Entry for a DLI call. Used with PI lock manager and IRLM.

- X’CA’ – Lock request using PI lock manager

- X’CB’ – Lock request waited with PI lock manager.

- X’C7’ – Deadlock.

- X’C8’ – Lock request using IRLM. Entry into lock manager.

- X’C9’ – Lock request using IRLM. Exit from lock manager.

- X’CC’ – Exit from lock request handler. Used with PI and IRLM.

 . Written only by lock trace.

- X’C8’ – Lock request suspended by IRLM. Beginning of wait.

- X’C8’ - Lock request resumed by IRLM. End of wait

- X’D0’ - Data sharing notify sent.

- X’D2’ - IRLM status exit driven

The lock trace information is described in the IMS Diagnosis publications under "DL/I Trace." These
publications are IMS Version 9 Diagnosis and Reference, IMS Version 10 Diagnosis Reference, and IMS
Version 11 Diagnosis. CSECTs for these and other trace records may be generated by assembling the
following macro from IMS’s MACLIB (SDFSMAC).

 IDLIVSAM TRACENT

There is no tracing by the Fast Path Lock Manager. Locks for Fast Path resources are only traced when a wait
is required and another lock manager is called.

IMS Monitor (DFSUTR20)

The IMS monitor is available in IMS TM and DBCTL environments. The IMS Monitor reports are created
from IMS Monitor trace records. For lock IWAITs, IMS writes a record when the wait begins and another
when the wait ends. The report uses these records to report on the elapsed time for these waits. Lock wait
times are shown in two of the IMS Monitor reports, the Program I/O report and the Region IWAIT report.
Deadlocks are shown in the Deadlock Event Summary section following the heading “***Reports***”.

The program I/O report shows IWAITs by PCB within programs. The programs are identified by their PSBs.
IWAITs are identified by the characters “PI” in the DDN/FUNC column. "PI" is used even when IRLM is the
lock manager. This is followed by the physical database’s DBD name and the segment code for the segment
being processed. If PI waits occur for different segments, there will be a line in the report for each segment.
The number of waits, the mean wait times, and the maximum wait time are reported for each segment in each

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 56

PCB for the program. This report is an excellent source for use in determining if locking is a problem for a
program.

The following is an example of the reporting of two lock waits for database RZCMA001.

PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC MODULE

 RZCMA001 2 3419 1709 1991 PI RZCMA001...1

The Region IWAIT report shows IWAITs by region. It accumulates the IWAITs for all programs that execute
in the region. It is similar to the Program I/O report. Waits for locks are identified by the characters “PI” in
the FUNCTION column under the DL/I CALLS section of the report. As in the program I/O report, "PI" is
used even when IRLM is the lock manager. The characters “PI” are followed by the physical database’s DBD
name and the segment code for the segment being processed. The number of waits, the mean wait times, and
the maximum wait time are reported for each segment in the region.

The following is an example of the reporting of waits for locks for databases SMWLJ001 and RZCMA001 in
region 45.

 IMS MONITOR *** REGION IWAIT ***
 IWAIT TIME..........
 **REGION 45 OCCURRENCES TOTAL MEAN MAXIMUM FUNCTION MODULE

DL/I CALLS
 16 20959 1309 4696 PI=SMWLJ001...1
 19 48901 2573 26494 PI=RZCMA001...1

The Deadlock Event Summary report may be used to determine how long it took to backout a program when it
was the victim in one or more deadlocks. The elapsed time for the backouts is listed in the MEAN ELAPSED
TIME column for the call with level code ‘00’ and a blank status code. This is the call for which the victim in
the deadlock was waiting. The level code of ‘00’ is used to indicate the call by the victim that caused the
deadlock.

Reporting of Waits for Space Management

Occasionally the report program will include lines which appear to be lock IWAITs but actually are not lock
waits. Instead, these are waits for space management which are handled by a latch mechanism, not locking.
When one of these latch waits occurs, IMS writes lock IWAIT monitor records; therefore, these latch waits are
reported as if they were lock IWAITs. You can recognize these waits in the report since they include a zero
for the segment number in the report. For example, you might see a line such as:

**REGION 15 OCCURRENCES TOTAL MEAN MAXIMUM FUNCTION MODULE

DL/I CALLS
 1 172 172 172 PI=RZCMA001...0

These space management latch waits never cause deadlocks since the holder never asks for a lock or another
space management latch while holding one of these latches.

PI Trace (DFSPIRP0)

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 57

The Program Isolation Trace Report Utility is used to report waits for locks when the PI trace has been written
to an IMS log or external trace data set for a system using the PI lock manager. Although the trace will include
records for every request made to the PI lock manager, the report will only include those requests that had
waits. For each of these requests, the report lists the following:

 . Resource requested. This is the DBD name, DCB number, and 4-byte resource ID. The 4-byte ID is
 either the RBA, RRN, or hashed key.

. Time of the request.

. Elapsed time of wait except for Fast Path resources.

. Names of requesting and holding PSBs

The report is sorted by database, data set, and resource ID. The report also includes the total number of waits
for each resource.

This report is particularly useful for finding locking problems when the PI lock manager is used.

RMF II ILOCK (IRLM Long Lock Detection) Report

The RMF II ILOCK report is available when IRLM is used as the lock manager. It uses information from
SMF records to gather information about lock requests that have waited longer than the IRLM TIMEOUT
value. When these "long locks" occur, the report lists the holder of the locks and the waiters. The IRLM
TIMEOUT value defaults to 300 seconds but may be set to another value with the following command:

F irlmproc,SET,TIMEOUT=seconds,imssubsystemname

See "Lock Timeouts" on page 33 for information on using this command and its relationship to IMS lock
timeouts.

The ILOCK report requires the writing of SMF type 79 subtype 15 records. These may be specified with the
following z/OS command:

S RMF,,,(SMFBUF(RECTYPE(79(15))))

The SMF records are written by IMS when its timeout exit routine is driven by IRLM. IRLM drives this exit
routine when a lock request has waited longer than the number of seconds specified for its TIMEOUT value.
This value is set during IMS initialization. IMS provides its LOCKTIME value from the DFSVSMxx
PROCLIB member for online subsystems or the DFSVSAMP DD data set for batch jobs. If IMS does not
have a LOCKTIME value specified in DFSVSMxx of DFSVSAMP, a default value of 300 seconds is used.
The TIMEOUT value may be modified with the F irlmproc,SET,TIMEOUT=time,imssubsystemname
command.

Reporting is generated by issuing the RMF Monitor II ILOCK ALL command.

In the ILOCK report a lock holder or waiter is identified as one of the following:

BLOCKER: This is a program that holds a lock for which another program is waiting.
TOP BLOCKER: This is a BLOCKER which is not waiting on a lock.
WAITER: This is a program that is waiting for a lock.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 58

BLOCKER/WAITER: This is a program that is both a blocker and a waiter.

The following is a sample report.
 __
 | |
 | RMF - ILOCK IRLM Long Lock Detection Line 1 of 15 |
 | Command ===> Scroll ===> HALF |
 | CPU= 37/ 35 UIC=2540 PR= 0 System= RMF5 Total |
 | State Type Lock_Name PSB_Name Elap_Time CICS_ID |
IMS_ID Recovery_Token PST# Trx/Job Wait_Time DB/Area
CF Structure ACOXLOCK at 07/28/2006 13:02:10 Deadlock Cycle 00002EC7
--
TOP BMP 09C943CFA7800101D700000000000000 DFSSAMB1 00:06:04
BLOCKER ACO3 ACO3 0000000300000000 0006 IRLMTOPZ
--
TOP BMP 09C3614505800101D700000000000000 DFSSAMB1 00:06:09
BLOCKER ACO1 ACO1 0000000600000000 0006 IRLMTOPA
--
WAITER BMP 09C3614505800101D700000000000000 DFSSAMB2
ACO2 ACO2 0000000800000000 0007 IRLMWTA1 00:05:52 DI21PART
--
WAITER BMP 09C943CFA7800101D700000000000000 DFSSAMB7
ACO2 ACO2 0000000900000000 0008 IRLMWTZ2 00:05:42 DI21PART
--
__

The ILOCK report is documented in the z/OS RMF Report Analysis and the z/OS RMF User's Guide
publications.

KBLA Deadlock Trace Record Analysis Report (DFSKTDL0)

The KBLA (Knowledge Based Log Analysis) Deadlock Trace Record Analysis Report utility (DFSKTDL0)
formats and summarizes data extracted from IMS x’67FF’ log records which are written when deadlocks occur.
It produces a summary report, a victim report, and a detail report. This utility does not read trace records, it
only processes x'67FF' log records which do not require tracing.

The summary report includes the number of deadlocks on the log and summaries of deadlocks by hour, IMS
system, state, lock type, database, PSB, lock name, and RBA. This information is useful in understanding if
deadlocks are a problem and identifying the high volume deadlocks and their cause.

The victim report shows the participants in each deadlock and which participant was chosen as the victim.

The detail report provides more detailed information about each deadlock. This includes the holders of locks,
the locked resources, the levels of locks, database names, PST numbers, and IMS calls that produced the lock
requests.

KBLA IRLM Lock Trace Analysis Utilities (DFSKLTx0)

The KBLA (Knowledge Based Log Analysis) Lock Trace Analysis utilities may be used to report on lock
waits when using the IRLM. As the name implies, these utilities produce reports by processing IRLM lock

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 59

traces. There are three utilities. The first is the KBLA Lock Analysis Control File Creation utility
(DFSKLTA0). It reads the RECONs and produces a control file. This file is used to match global DMB
numbers in the lock trace to their database names so that the names may be used in the report. The second
utility is the KBLA Lock Trace Analysis Reduction utility (DFSKLTB0) utility. It reads the lock trace records
and produces an intermediate file. This file contains data on lock requests which resulted in waits as well as
detailed information on all lock requests. This file is read by the KBLA Lock Trace Detailed Print Program
(DFSKLTC0) to produce its reports. These utilities may be invoked either through the KBLA IRLM Lock
Analysis panel or by creating and running your own JCL.

DFSKLTC0 has options to limit reporting to a subset of databases, PSTs (dependent regions or threads), or to a
minimum wait time. There are three standard output reports. These reports list the output in database name
order, wait time order, and request completion order. The execution of these utilities is documented in the IMS
System Utilities manual.

The following is a sample summary report:

 Suspended IRLM Lock Requests Summary Report - Wait Time Order Page 001
Trace Date = 01/12/2005 Trace Start Time = 16:01:47 Trace End Time = 16:06:26
Trace Elapsed Time (secs) = 278
Trace Input DSN = IMS.ISA1.DFSTRA01

 Database DS Lock Req Wait Not Int Total Average Maximum
 Name Id Count Count Count Time Time Time

 BFLMSGY3 01 8628 115 110 9.198 0.079 2.76
 BFLMSGY7 01 8452 102 98 4.813 0.047 4.36
 BFLMSGP 01 15862 181 169 4.401 0.024 0.64
 BFLSUMP 01 3929 40 37 3.703 0.092 2.39
 BCMTLRD 09 1153 1 1 3.400 3.400 3.40

The wait count includes internal latch waits. The "Not Int Count" column is the count of "not internal" waits.
These are lock waits and the count does not include internal latch waits.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 60

The following is a sample detailed report:

S
u
s
p
e
n
d
e
d

I
R
L
M

L
o
c
k

R
e
q
u
e
s
t
s

R
e
p
o
r
t

-

R
e
q

C
o
m
p

O
r
d
e
r

P
a
g
e

0
0
4
3

T
r
a
c
e

D
a
t
e

=

0
1
/
1
2
/
2
0
0
5

D
S
N

=

I
M
S
.
I
S
A
1
.
D
F
S
T
R
A
0
1

L
o
c
k

R
e
q
u
e
s
t

L
o
c
k

R
e
q
u
e
s
t

-
-
-
-
W
a
i
t
-
-
-
-
-

P
S
T

-
-
L
o
c
k
-
-

-
-
-
-
-
-
-
R
e
s
o
u
r
c
e
-
-
-
-
-
-
-

F
l
a
g

-
-
I
R
L
M
-
-
-

-
-
-
-
-
-
-
-
C
a
l
l
-
-
-
-
-
-
-
-
-

T
r
a
c
e

S
t
a
r
t

T
i
m
e

E
n
d

T
i
m
e

E
l
a
p
s
e
d

T
y
p
e

N
u
m

T
y
p
e

L
v
l

D
B

D
S

R
B
A
/
H
A
S
H

S

R
C
F
B

T
R
A
C

T
y
p
e

N
u
m

T
i
m
e

S
e
q
#

1
6
:
0
6
:
0
9
.
7
2
3

1
6
:
0
6
:
0
9
.
7
2
4

0
.
0
0
0

F

1
0
0

B
I
D
P

4

B
C
I
C
I
N
Y
1

0
1

0
9
9
D
E
0
0
1

P

C
P
R

0
0
0
0

0
8
C
0

I
S
R
T

0
0
1

1
6
:
0
6
:
0
9
.
6
9
0

0
9
7
5

1
6
:
0
6
:
0
9
.
7
2
7

1
6
:
0
6
:
0
9
.
7
2
7

0
.
0
0
4

F

1
0
0

B
I
D
P

4

B
C
I
C
I
N
Y
1

0
1

0
9
9
D
E
0
0
1

P

C
P
K
F

0
0
0
0

0
8
C
0

I
S
R
T

0
0
1

1
6
:
0
6
:
0
9
.
6
9
0

0
C
9
8

1
6
:
0
6
:
0
9
.
5
6
7

1
6
:
0
6
:
0
9
.
9
5
2

0
.
3
8
5

G

0
6
7

F
P
C
I

8

B
C
M
T
R
M
D

0
8

0
0
0
2
4
C
E
0

F

K

0
4
4
0

0
8
F
0

F
0
7
3

1
6
:
0
6
:
1
0
.
1
7
0

1
6
:
0
6
:
1
0
.
1
7
0

0
.
0
0
4

G

0
6
7

B
I
D
P

4

B
A
G
T
X
1
P

0
1

3
2
1
1
7
8
0
0

P

C
P
K
F

0
8
4
0

0
8
F
0

I
S
R
T

0
0
1

1
6
:
0
6
:
1
0
.
1
7
0

8
B
6
9

1
6
:
0
6
:
1
0
.
2
0
9

1
6
:
0
6
:
1
0
.
2
4
2

0
.
0
3
2

G

1
0
0

F
P
C
I

8

B
G
L
A
C
A
D

0
6

0
0
5
2
0
3
A
0

F

K

0
4
4
0

0
8
F
0

9
A
6
7

1
6
:
0
6
:
1
0
.
3
5
4

1
6
:
0
6
:
1
0
.
3
5
4

0
.
0
0
4

L

1
2
2

F
P
C
I

8

B
C
M
R
D
A
D

1
0

0
0
0
5
3
A
E
0

F

K

0
4
4
0

2
0
8
0

D
0
3
0

1
6
:
0
6
:
1
0
.
3
9
7

1
6
:
0
6
:
1
0
.
3
9
8

0
.
0
0
1

L

1
2
2

F
P
C
I

8

B
C
M
R
D
A
D

1
1

0
0
1
4
3
8
2
0

F

K

0
4
4
0

2
0
8
0

D
F
D
E

1
6
:
0
6
:
1
0
.
4
3
8

1
6
:
0
6
:
1
0
.
4
3
8

0
.
0
0
0

L

1
2
2

F
P
C
I

8

B
C
M
R
D
A
D

1
3

0
0
0
9
E
0
0
0

F

K

0
4
4
0

2
0
8
0

E
B
9
D

1
6
:
0
6
:
1
0
.
9
5
9

1
6
:
0
6
:
1
0
.
9
9
2

0
.
0
3
2

L

0
3
8

B
I
D
P

6

B
C
M
T
R
P
P

0
1

0
4
1
2
E
8
0
4

P

P
K
F

0
0
0
0

2
0
8
0

I
S
R
T

0
0
1

1
6
:
0
6
:
1
0
.
9
5
9

B
B
D
8

1
6
:
0
6
:
1
1
.
0
1
1

1
6
:
0
6
:
1
1
.
0
1
2

0
.
0
0
1

L

1
2
2

F
P
C
I

8

B
C
M
R
D
A
D

1
1

0
0
1
6
8
3
6
0

F

K

0
4
4
0

2
0
8
0

D
7
9
D

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 61

File Select and Formatting Print Utility (DFSERA10)

This File Select and Formatting Print Utility (DFSERA10) is used to print and produce reports from IMS logs
and external trace data sets. There are several exit modules that are used to produce particular reports. This
section includes information on three of these modules which produce reports of locking information.

Record Format and Print Module (DFSERA30)

The Record Format and Print Module (DFSERA30) is one of the exits used with the File Select and
Formatting Print Utility (DFSERA10). This module has the capability to produce a Deadlock Analysis report.
The report is produced from the X’67FF’ log record that is created when a U0777 abend occurs. The log
record is created with both the PI lock manager and the IRLM. This log record contains information about
resources and lock requestors involved in the deadlock. For each resource involved in the deadlock, the report
includes the database name, the lock’s resource ID and the root segment’s key if it is available. For the
requestor waiting on the resource, the report includes the following

• Job name or transaction code

• PSB name

• Region type (MPP, BMP, etc.)

• Type of call made (GET, ISRT, etc.)

• Lock request function (used to identify database record locks, dependent segment locks, etc.)

• Lock level (called state in the report)

For the requestor holding the lock on the resource, the report includes the following

• Job name or transaction code

• PSB name

• Region type (MPP, BMP, etc.)

• Lock level (called state in the report)

This information makes it easy to discover the programs and resources involved in deadlocks.

The report is usable with any log containing a U0777 abend. The X’67FF’ log record from which the report is
generated is created whether or not any traces are on.

The following is a sample deadlock report. In this report the deadlock has occurred because transaction
TRLDDC1 in IMS2 is waiting on a block lock in database CMLDDCDB at RBA 7EB22000. This lock is
currently held by transaction USMEED2 in IMS1. At the same time transaction USMEED2 is waiting on the

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 62

database record lock in the same database at RBA 7EB22B3E. This lock is held by transaction TRLDDC1.
The database record locks are held and requested at IRLM level 6.

**

DEADLOCK ANALYSIS REPORT - LOCK MANAGER IS IRLM

...

RESOURCE DMB-NAME LOCK-LEN LOCK-NAME - WAITER FOR THIS RESOURCE IS VICTIM

01 OF 02 CMLDDCDB 08 7EB22000843A01D7

KEY FOR RESOURCE IS FROM DELETE WORK AREA

KEY=(200414913326180)

 IMS-NAME TRAN/JOB PSB-NAME PCB--DBD PST# RGN CALL LOCK LOCKFUNC STATE

WAITER IMS2 TRLDDC1 CMLDDCDB CMLDDCDB 00003 MPP DLET GBIDP 22400318 04-P

HOLDER IMS1 USMEED2 CMLDDCDB -------- 00007 MPP ---- ----- -------- 04-P

...

RESOURCE DMB-NAME LOCK-LEN LOCK-NAME

02 OF 02 CMLDDCDB 08 7EB22B3E843A01D7

KEY IS ROOT KEY OF DATA BASE RECORD ASSOCIATED WITH LOCK

KEY=(200414913326180)

 IMS-NAME TRAN/JOB PSB-NAME PCB--DBD PST# RGN CALL LOCK LOCKFUNC STATE

WAITER IMS1 USMEED2 CMLDDCDB CMLDDCDB 00007 MPP GET GRIDX 30400358 06-P

HOLDER IMS2 TRLDDC1 CMLDDCDB -------- 00003 MPP ---- ----- -------- 06-P

DEADLOCK ANALYSIS REPORT - END OF REPORT

**

More detailed information about the report is included in the description of the Record Format and Print
Module (DFSERA30) in the IMS System Utilities publication.

PI Trace Record Format and Print Module (DFSERA40)

The PI Trace Record Format and Print Module (DFSERA40) is one of the exits used with the File Select and
Formatting Print Utility (DFSERA10). It formats the trace records produced by the PI and lock traces.

When the PI lock manager is used, a typical sequence for a DLI call with two locks requests, the second of
which must wait, would be the following.

 1. X'CA' – Entry for a DLI call.

2. X'CA' – Lock request.

3, X'CC' – Exit from lock request handler.

4. X'CA' – Lock request.

5. X'CB' – Lock request. Request waited.

6. X'CC' – Exit from lock request handler

If the IRLM were used, the same call and lock requests would produce the following records.

 1. X'CA' – Entry for DLI call.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 63

 2. X'C8' – Lock request entry into lock manager.

 3. X'C9' – Lock request exit from lock manager.

 4. X'CC' – Exit from lock request handler.

 5. X'C8' – Lock request entry into lock manager.

 6. X'C8' – Lock request entry suspended.

 7. X'C8' – Lock request resumed.

 8. X'C9' - Lock request exit from lock manager.

 9. X'CC' – Exit from lock request handler.

The printing of X'CC' trace records by DFSERA40 indicates a lock request function in the column headed
"ACT". These request functions include GRIDX, RRIDX, GSEGL, and similar five character designations.
The following is a summary of these functions.

The format is ‘abbbc’ where:

. a – The first character is usually one of the following:

 G Get – a lock

 R Release – release a lock

 T Test – test a lock

. bbb – The middle three characters are usually one of the following:

 RID database record lock

 SEG segment lock

 ZID data set busy lock (open, close, extend)

 QCM Q command code lock

 TLK test a lock (wait if conflict, but do not lock)

 ALL all locks (used to release all locks)

 BID block or CI lock (used only by data sharing)

 XID data set extension (used only by data sharing)

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 64

. c – The last character is usually one of the following:

 L local lock (used for local locking; with data sharing only used for Fast Path)

 X local lock and global lock (used for both local locking and data sharing)

 B global lock (used for data sharing, but not local locking)

 P global lock (used for data sharing, but not local locking)

 U This is a combination of two requests used with GRID. It indicates a request to get a new root

lock (GRIDX) and then release the old root lock (RRIDX)

 W This is a special case of X. It is used with RRID to indicate that the lock and global alternate lock

should be released. The alternate lock is associated with a previously locked database record, not
the last one locked. It is held while other database records are locked and then examined in
attempting to satisfy a call

Using this information, we can interpret the following common function requests.

GRIDX get a lock (local lock and data sharing) on a database record

RRIDX release a lock (local lock and data sharing) on a database record

GRIDU get a lock (local lock and data sharing) on a database record and release the lock on the

 previous database record

RRIDW release a lock (local lock and data sharing) on the alternate database record, that is, not the

last one locked.

GSEGL get a PI lock on a dependent segment

RSEGL release a PI lock on a dependent segment

GQCMX get a Q command code lock (local lock and data sharing) on a segment

GFPLL get a Fast Path lock

RFPLL release a Fast Path lock

TTLKL test a PI lock

GZIDL get a PI data set busy lock

RZIDL release a PI data set busy lock

RALLX release all locks (sync point processing)

 More information on the lock request function may be found by assembling the following macro from IMS’s
MACLIB (SDFSMAC).

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 65

 DFSLR FUNC = HELP

IMS Trace Table Record Format and Print Module (DFSERA60)

The IMS Trace Table Record Format and Print Module (DFSERA60) is one of the exits with the File Select
and Formatting Print Utility (DFSERA10). It writes all trace records that are on the log or external trace data
set. It does minimal formatting of these records and produces a "dump-like" output. For the X’CC’ records it
decodes some of the fields in the record to list the lock request type, whether the lock request is conditional or
unconditional, and the lock level. The lock request types, such as GRIDX, are the same as are documented for
the DFSERA40 module in the IMS System Utilities publication. The lock levels used are the following:

• E – PI level 4

• U – PI level 3

• S – PI level 2

• R – PI level 1

Since DFSERA60 does minimal formatting of the trace records, descriptions of the records are usually needed
when working with the output this module. They are described in the IMS Diagnosis publication under “DL/I
Trace”. DSECTs for these trace records may be generated by assembling the following macro from IMS’s
MACLIB.

 IDLIVSAM TRACENT

Trace and Report Matrix

 The following table summarizes the programs that produce reports on locking activity.

 * Only for locks which are participants in deadlocks.

Table 16. Locking Trace and Report Programs
Report

Program
Trace

 Required Lock Mgr. Information Reported

 PI IRLM Lock
Requests Waits Dead-

Locks FP

IMS Monitor Monitor Y Y N Y Y Y
DFSPIRP0 PI or Lock Y N N Y N N

RMF II ILOCK SMF N Y N Y N Y
DFSERA30 None Y Y N N Y Y
DFSERA40 PI or Lock Y Y N N Y Y
DFSERA60 PI or Lock Y Y Y Y Y Y
DFSKLTC0 Lock N Y Y Y N Y
DFSKTDL0 None Y Y Y* Y* Y Y

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 66

IMS Performance Analyzer for z/OS Reports

The IMS Performance Analyzer for z/OS is an IBM product which produces performance reports from IMS
logs and IMS Monitor data sets. Several of these reports include locking information. Three sample reports
are shown below. Information about all of the available reports and their contents is available in the IMS
Performance Analyzer for z/OS Report Reference publication.

Deadlock Summary

The IMS Performance Analyzer for z/OS Deadlock Summary report provides a summary of deadlocks by
database. It may be used to identify databases with a high incidence of deadlocks. The following is an
example of the Deadlock Summary report.

Start 21May2006 16.24.57.06 IMS Performance Analyzer End 21May2006 16.30.22.96 Page
3
 Deadlock Summary

**************** Losing Program **************** *************** Winning Program ****************
DMB-name IMS-name Tran/Job PSB-name PCB--DBD Deadlocks DMB-name IMS-name Tran/Job PSB-name PCB--DBD # Waits
-------- -------- -------- -------- -------- --------- -------- -------- -------- -------- -------- --------
DBD01P IMD3 MKR#LK1A FUNPSB01 DBD01P 1 DBD01P IMD3 MKR#LK1B FUNPSB01 DBD01P 1
 DBD01P IMD3 MKR#LK1C FUNPSB01 DBD01P 1
 DBD01P IMD3 MKR#LK1D FUNPSB01 DBD01P 1

DBD01P IMD3 MKR#LK1D FUNPSB01 DBD01P 1 DBD01P IMD3 MKR#LK1A FUNPSB01 DBD01P 1
 DBD01P IMD3 MKR#LK1B FUNPSB01 DBD01P 1
 DBD01P IMD3 MKR#LK1C FUNPSB01 DBD01P 1

 Total number of Deadlocks = 2

Deadlock List

The IMS Performance Analyzer for z/OS Deadlock List report is similar to the Deadlock Analysis report
created by DFSERA30 as shown on page 62. The Deadlock List report enhances this report to include
explanations of some of the data in the report. The following is an example of this report.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 67

S
t
a
r
t

2
1
M
a
y
2
0
0
6

1
6
.
2
4
.
5
7
.
0
6

I
M
S

P
e
r
f
o
r
m
a
n
c
e

A
n
a
l
y
z
e
r

P
a
g
e

1

De

ad
lo

ck
 L

is
t

P
s
e
u
d
o

a
b
e
n
d

r
e
c
o
r
d

A
b
e
n
d

N
o

=

U
0
7
7
7

T
i
m
e

1
6
:
3
0
:
2
2
:
7
3

D
a
t
e

2
1
M
a
y
2
0
0
6

R
e
c
n
o

=

0
0
0
0
0
0
0
0
C
D
F
1
C
E
A
3

 D
e
a
d
l
o
c
k

A
n
a
l
y
s
i
s

R
e
p
o
r
t

-

L
o
c
k

M
a
n
a
g
e
r

i
s

I
R
L
M

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

R
e
s
o
u
r
c
e

D
M
B
-
n
a
m
e

L
o
c
k
-
l
e
n

L
o
c
k
-
n
a
m
e

0
1

o
f

0
2

V
I
B
2
2
0
1

0
8

0
0
0
0
8
C
4
0
8
1
5
E
0
1
C
6

(
R
B
A

=

0
0
8
C
4
0
0
0
,

D
M
C
B
#

=

8
1
5
E
,

A
N

=

0
1
,

F
-
L
o
c
k
)

 K
e
y

f
o
r

r
e
s
o
u
r
c
e

i
s

n
o
t

a
v
a
i
l
a
b
l
e

I
M
S
-
n
a
m
e

T
r
a
n
/
J
o
b

P
S
B
-
n
a
m
e

P
C
B
-
-
D
B
D

P
S
T
#

R
G
N

C
a
l
l

L
o
c
k

S
t
a
t
e

L
o
c
k
f
u
n
c

B
l
o
c
k
e
r

I
M
S
B
X
R
F

V
I
T
2
2
8

V
I
P
2
2
8

0
0
1
0
3

M
P
P

0
8

(
E
x
c
l
)

W
a
i
t
e
r

I
M
S
B
X
R
F

V
I
T
2
2
8

V
I
P
2
2
8

V
I
B
2
2
P

0
0
0
1
8

M
P
P

I
S
R
T

G
F
P
L
L

0
8

(
E
x
c
l
)

9
0
4
0
0
4
F
0

F
u
n
c
=
G
e
t

F
P

L
o
c
k

M
o
d
e
=
U
n
c
o
n
d

S
t
a
t
e
=
E
x
c
l

F
l
a
g
=
G
e
t
,
F
a
s
t

P
a
t
h
,
L
o
c
a
l

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

R
e
s
o
u
r
c
e

D
M
B
-
n
a
m
e

L
o
c
k
-
l
e
n

L
o
c
k
-
n
a
m
e

*
*

W
a
i
t
e
r

f
o
r

t
h
i
s

r
e
s
o
u
r
c
e

i
s

V
I
C
T
I
M

*
*

0
2

o
f

0
2

A
W
B
0
2
P

1
0

0
2
4
2
E
A
E
C
8
0
9
C
0
1
4
0
0
0
0
2

(
R
B
A

=

0
0
4
2
E
A
E
C
,

D
M
B
#

=

8
0
9
C
,

D
C
B

=

0
1
,

L
o
c
a
l
,

S
S
I
D

=

0
0
0
2
)

 L
o
c
k
i
n
g

o
n

H
D
A
M

a
n
c
h
o
r
,

k
e
y

d
i
s
p
l
a
y
e
d

i
s

H
D
A
M

k
e
y

r
e
q
u
e
s
t
e
d
.
.
.

0
0
0
0
0
0

0
1
3
1
0
7
9
0

C
6
D
4
F
0
F
0

F
8
4
0

*
.
.
.
.
F
M
0
0
8

*

I
M
S
-
n
a
m
e

T
r
a
n
/
J
o
b

P
S
B
-
n
a
m
e

P
C
B
-
-
D
B
D

P
S
T
#

R
G
N

C
a
l
l

L
o
c
k

S
t
a
t
e

L
o
c
k
f
u
n
c

B
l
o
c
k
e
r

I
M
S
B
X
R
F

V
I
T
2
2
8

V
I
P
2
2
8

0
0
0
1
8

M
P
P

0
6
-
P

(
U
p
d
a
t
e
,
P
r
i
)

W
a
i
t
e
r

I
M
S
B
X
R
F

V
I
T
2
2
8

V
I
P
2
2
8

A
W
B
0
2
P

0
0
1
0
3

M
P
P

G
E
T

G
R
I
D
X

0
6
-
P

(
U
p
d
a
t
e
,
P
r
i
)

3
0
4
0
0
3
7
8

F
u
n
c
=
G
e
t

L
o
c
a
l

a
n
d

G
l
o
b
a
l

R
o
o
t

L
o
c
k
s

M
o
d
e
=
U
n
c
o
n
d

S
t
a
t
e
=
U
p
d
a
t
e

F
l
a
g
=
G
e
t
,
R
o
o
t

L
o
c
k

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 68

Fast Path DEDB Resource Contention Summary

The IMS Performance Analyzer for z/OS includes a Fast Path DEDB Resource Contention Summary report.
This report provides summary information about IWAITs on DEDB locks of various types, including CI,
UOW, segment level, area, buffer overflow, MSDB and command locks.

The following is an example of this report.

Report from 09Jun2006 14.25.56.36 IMS 8.1.0 IMS Performance Analyzer 4.1 Report to 09Jun2006 14.30.06.71
 Fast Path DEDB Resource Contention Summary

 From 09Jun2006 14.26.11.74 To 09Jun2006 14.29.21.57 Elapsed= 0 Hrs 3 Mins 09.836.240 Secs
 **** CI Lock IWAIT **** Sharing Types:
Area Sharing Elap/Count Max IWAIT Pct Tot Pct Tot A : Area / Non Level Share
Name Type Counts Sc.Mil.Mic StDev Sc.Mil.Mic Counts IW Elp B : 1 IRLM Block Level Share
 C : 2 IRLM Block Level Share
DB23AR0 A 3 3.313 0.466 5.498 9.09% 0.05%
DB23AR1 A 4 2.222 0.551 3.386 12.12% 0.04%
DB23AR3 A 1 4.871.974 0.000 4.871.974 3.03% 24.50%
DB23AR4 A 1 0.257 0.000 0.257 3.03% 0.00%
DB23AR5 A 11 1.358.286 1.620 4.981.761 33.33% 75.15%
DD01AR0 A 13 3.880 0.499 6.863 39.39% 0.25%

** Total 33 602.504 2.668 4.981.761 100.00% 100.00%

**** Area Lock IWAIT **** Sharing Types:
 Area Sharing Elap/Count Max IWAIT Pct Tot Pct Tot A : Area / Non Level Share
 Name Type Counts Sc.Mil.Mic StDev Sc.Mil.Mic Counts IW Elp B : 1 IRLM Block Level Share
 C : 2 IRLM Block Level Share

 BANKC00 C 11 18.813 0.129 22.795 39.29% 15.18%
 BANKC01 C 17 68.036 2.828 837.022 60.71% 84.82%

** Total 28 48.699 3.118 837.022 100.00% 100.00%

 **** CI Lock IWAIT ****

 | Average SD/Avg Max-Value| Average SD/Avg Max-Value| Average SD/Avg Max-Value| Average SD/Avg Max-Value
 | 3.313 .471 5.498| 2.222 .556 3.386| 4.871.974 .005 4.871.974| 0.257 .005 0.257
 | | | |
 Range|Count in Areaname=DB23AR0 |Count in Areaname=DB23AR1 |Count in Areaname=DB23AR3 |Count in Areaname=DB23AR4
Sc Mil Mic| Range Share Type=A | Range Share Type=A | Range Share Type=A | Range Share Type=A
To Maximum| 0| | 0| | 1|******************** | 0|
 256.000| 0| | 0| | 0| | 0|
 128.000| 0| | 0| | 0| | 0|
 64.000| 0| | 0| | 0| | 0|
 32.000| 0| | 0| | 0| | 0|
 16.000| 0| | 0| | 0| | 0|
 8.000| 1|************* | 0| | 0| | 0|
 4.000| 2|********************| 2|******************** | 0| | 0|
 2.000| 0| | 1|********** | 0| | 0|
 1.000| 0| | 1|********** | 0| | 1|********************
 | | | |
 | ___________________ | ____________________ | ____________________ | ____________________
 |-------| | | | | | |-------| | | | | | |-------| | | | | | |------| | | | | |
 Total=| 3 10 20 30 40 50%| 4 10 20 30 40 50%| 1 10 20 30 40 50%| 1 10 20 30 40 50%
--
 | Average SD/Avg Max-Value| Average SD/Avg Max-Value| Average SD/Avg Max-Value|
 | 1.358.286 1.624 4.981.761| 3.880 .503 6.863| 602.504 2.673 4.981.761|
 | | | |
 Range|Count in Areaname=DB23AR5 |Count in Areaname=DD01AR0 |Count in Areaname=** Total |
Sc Mil Mic| Range Share Type=A | Range Share Type=A | Range Share Type= |
To Maximum| 3|*********** | 0| | 4|***** |
 256.000| 0| | 0| | 0| |
 128.000| 0| | 0| | 0| |
 64.000| 1|**** | 0| | 1|* |
 32.000| 0| | 0| | 0| |
 16.000| 2|******* | 3|********* | 5|****** |
 8.000| 1|**** | 2|****** | 4|***** |
 4.000| 2|******* | 3|********* | 9|*********** |
 2.000| 1|**** | 5|*************** | 7|******** |
 1.000| 1|**** | 0| | 3|**** |
 | ___________________ | ____________________ | ___________________ |
 |-------| | | | | | |------| | | | | | |------| | | | | | |
 Total=| 11 10 20 30 40 50%| 13 10 20 30 40 50% | 33 10 20 30 40 50%|
--

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 69

Glossary

APPC. Advanced program-to-program communications, a programming interface standard for
communications using SNA LU 6.2.

BLDS. See block level data sharing

Block level data sharing (BLDS). A kind of data sharing that enables application programs in different IMS
subsystems to update concurrently.

Commit point. The point at which an application program commits that a section of work is done and that the
data it has modified or created is consistent and complete. Its output, which has been held up to that time, is
sent to its destination(s); its input (if any) is removed from the message queues; and its database updates are
confirmed and made available to other applications. A commit point occurs when a program terminates
normally, when it issues a checkpoint call or command, or when it issues a commit verb. If a program
processes messages, a commit point may also occur when it retrieves a new message. Commit points are also
called synchronization points or sync points.

CPIC driven application program. An application program that uses CPI communications calls to receive
an incoming message and to send a reply.

Database Control (DBCTL). An IMS facility that provides an IMS Database Manager subsystem without the
IMS Transaction Manager. It may be used by CICS, ODBA threads, and BMPs for access to IMS databases.

Database level data sharing. A kind of data sharing that enables one IMS subsystem to update a database
while other IMS subsystems read the database without integrity or allows multiple IMS subsystems to read a
database with integrity.

Database record. In a database, a collection of segments that contains one occurrence of the root segment
type and all of its dependents arranged in a hierarchic sequence. It may be smaller than, equal to, or larger
than the access method logical record.

Data entry database (DEDB). A Fast Path database that consists of one or more areas, with each area
containing both root segments and dependent segments.

Data sharing. The concurrent access of databases by two or more IMS subsystems. The IMS subsystems
can be in one processor or in separate processors. They can share data at either the database level or the block
level.

DBCTL. See Database Control

DDIR. Database directory control block. An IMS system contains one of these control blocks for each
database defined to the system.

DEDB. See data entry database

ECNT. Extended Communications Name Table, a control block related to an IMS terminal and used as an
index to terminal related MSDBs.

EPS. See Extended pointer set

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 70

Extended pointer set (EPS). In a HALDB, an expanded segment prefix that includes information that allows
the use of indirect pointers. An EPS is created for logical child segments and secondary index segments.

Fast Path databases. Two types of IMS databases designed to provide high availability and fast processing
for IMS applications. See also main storage database (MSDB) and data entry database (DEDB).

Full function databases. IMS databases that provide a wide range of capabilities, including logical
relationships and secondary indexing. Full function databases include HDAM, HIDAM, PHDAM, PHIDAM,
PSINDEX, HSAM, HISAM, SHSAM, SHISAM, and INDEX.

HALDB. See High Availability Large Database.

HALDB Online Reorganization (OLR). A function of IMS that allows non-disruptive, online
reorganization of PHDAM and PHIDAM partitions.

High Availability Large Database (HALDB). A partitioned full function database. The supported database
organizations are PHDAM, PHIDAM, and PSINDEX.

Independent overflow (IOVF). In a Data Entry Database (DEDB) the part of the area which contains roots
and direct dependents which have overflowed from the UOWs containing RAP CIs and dependent overflow
CIs.

Internal Resource Lock Manager (IRLM). An IMS component that provides lock management for use by
IMS subsystems that share data at the block level. The IRLM also may be used to provide lock management
for resources accessed in a single system.

IOVF. See Independent overflow

IRLM. See Internal Resource Lock Manager

Logical relationship. In a database, a path between two independent segments where the relationship is user
defined.

Logical child. In a database, a pointer segment that establishes an access path between its physical parent
and its logical parent. It is a physical child of its physical parent and a logical child of its logical parent.

Logical parent In a database, the segment to which a logical child points. It can also be a physical parent.
Furthermore, it contains the common reference data. The pointer in the logical child to the logical parent can
be symbolic or direct.

Main storage database (MSDB). A Fast Path root segment database which resides in main storage.

Modified standard application program. An IMS application program that uses CPI-C calls to allocate
LU 6.2 conversations and sends and receives data.

MSDB. See Main Storage Database

ODBA. See Open Database Access

OLR. See HALDB Online Reorganization

Open Database Access (ODBA). A callable interface that can be used by a z/OS application program to issue
DL/I calls to an IMS DB system. The application program must use Resource Recovery Services (RRS) of

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 71

z/OS as a sync point manager. ODBA is used by DB2 Stored Procedures, WebSphere Application Server,
ODBM, and other address spaces to access IMS databases.

Output Thread. An asynchronous task which writes committed DEDB updates to disk, a VSO data space, or
a Coupling Facility structure.

PHDAM. A partitioned Hierarchical Direct Access Method database organization, one type of High
Availability Large Database (HALDB).

PHIDAM. A partitioned Hierarchical Indexed Direct Access Method database organization, one type of High
Availability Large Database (HALDB).

Physical child. In a database, a segment type that is dependent on a segment type defined in the next higher
level in the database hierarchy. All segment types in a database, except the root, are physical children since
each is dependent on its parent.

Physical parent. In a database, a segment type that has a dependent segment type defined at the next lover
level in the physical database hierarchy.

PI. See program isolation

Pointer segment. In a secondary index, the segment that contains the data and pointers used to index the
target segments.

Private attribute. With the IRLM, the private attribute in a lock requests prevents the lock from being held
by requestors from different subsystems.

Program isolation (PI). An IMS facility that separates all activity of an application program from any other
active application program until that application program indicates, by reaching a synchronization point, that
the data it has modified or created is consistent and complete.

Program isolation (PI) lock manager. An IMS lock manager that supports only local locking. The PI lock
manager is used in systems for which no IRLM has been defined.

Protected conversation. A protected conversation links separate pieces of a distributed application into a
single transaction using RRS. All resource managers participating in the protected conversation either commit
or back out together.

PSINDEX. A partitioned secondary index database organization, one type of High Availability Large
Database (HALDB).

RAP. See root anchor point

RBA. See relative byte address

Relative byte address (RBA). Address in a database data set that is expressed as a number of bytes from the
beginning of the data set.

Relative record number (RRN). Address in a database data set that is expressed as a number of logical
records from the beginning of the data set.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 72

Resource Recovery Services (RRS). A component of z/OS which provides a global syncpoint manager that
any resource manager on z/OS can exploit.

Root addressable part. In a DEDB, the part of the area which contains CIs with root anchor points and the
dependent overflow CIs.

Root anchor point (RAP). In a DEDB, HDAM, or PHDAM database, a pointer at the beginning of a
physical block or CI that points to a root segment whose key randomizes to that RAP.

RRN. See relative record number.

RRS. See resource recovery services.

SDEP. See sequential dependent segment.

Secondary index. See secondary index database

Secondary index database. An index used to establish accessibility to a database by a path different from
the one provided by the database definition. It contains pointer segments.

Sequential dependent segment (SDEP). A segment of a data entry database that is chained off the root
segment and inserted (last-in first-out) into the last part of a DEDB area. After being inserted by an online
program, the SDEP cannot be modified.

Shared VSO. The implementation of VSO in which an area is read into a coupling facility structure so that it
may be shared by multiple IMS systems.

Source segment. A database segment containing the data used to construct the secondary index pointer
segment.

Sync interval. See unit of work

Sync point. See commit point

Synchronization point. See commit point

Target segment. In a database, the segment pointed to by a secondary index entry, that is, from an index
pointer segment.

Unit of reorganization (UOR). A set of database records which are reorganized by HALDB online
reorganization in one unit of work.

Unit of work (UOW). (1) For a DEDB, a number of contiguous CIs in the root-addressable part of an area.
(2) A set of updates which are committed by a program at the same time. This time is called a commit point or
sync point. If a commit point is not reached, which would happen if the program abends, all of the updates in
a unit of work are undone or backed out. A unit of work is sometimes called a sync interval.

UOR. See unit of reorganization

UOW. See unit of work

Virtual Storage Option. An option for DEDB areas that maps an area into a data space or a coupling facility
structure when the area is opened. The share level of the database determines whether a data space or coupling

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 73

facility structure is used. Any VSO area CI that has been loaded into a data space or structure is subsequently
read from the data space rather than from DASD.

VSO. See Virtual Storage Option

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 74

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 75

Index
-911... 41
-913... 41
abend..........................32, 33, 36, 38, 39, 44, 48, 61
ACCEPT STATUSGROUP 37, 42
ADCD... 36, 38, 39
ADCI... 42
ADLA ... 44, 48
APPC .. 32, 42, 69
ATRBACK ... 41
BA... 42
Batch Backout utility .. 5
BB... 42
BC... 36, 37
BKO=.. 5
BKO=Y... 48
BLDS1, 2, 3, 9, 11, 12, 13, 14, 29, 30, 42, 69
block ...1, 11, 12, 13, 16, 24, 31, 37, 43, 48, 50, 52,

63, 69, 70, 72
block level data sharing1, 12, 13, 31, 48, 69
block lock.. 11, 37
BMP.....5, 31, 33, 34, 36, 37, 38, 39, 41, 44, 58, 61
busy lock... 12, 63, 64
CCTL .. 42
CHANGE.. 22, 24, 25
CHKP.. 5, 39
CI 3, 11, 12, 13, 16, 20, 21, 22, 23, 43, 45, 47, 52,

53, 63, 72, 73
CICS ...5, 33, 36, 37, 38, 39, 40, 41, 42, 44, 45, 48,

49, 58, 69
close .. 13, 63
command5, 9, 11, 14, 15, 16, 22, 23, 25, 26, 27, 28,

34, 45, 54, 57, 63, 64, 69
command lock... 25, 26
commit point ... 37, 69, 72
CORE= ... 44
coupling facility .. 42
CPIC driven application program32, 38, 42, 69
data set reference lock................................... 14, 43
data sharing...1, 2, 4, 12, 13, 14, 30, 31, 43, 48, 50,

63, 64, 69
database record ...3, 8, 9, 10, 11, 15, 16, 17, 18, 19,

20, 23, 29, 45, 46, 47, 48, 50, 61, 63, 64
DB2..1, 37, 40, 41, 49, 71
DBB ...31, 33, 36, 37
DBCTL1, 2, 37, 39, 40, 44, 46, 48, 54, 55, 69
DBFLGSYN ... 31
DCB# .. 50, 51, 52
DDIR... 50, 51, 69
deadlock..2, 6, 7, 20, 34, 35, 36, 37, 38, 39, 40, 41,

49, 56, 58, 61

Deadlock Analysis report61, 66
Deadlock List report..66
Deadlock Summary report...................................66
DEADLOK..34
DEDB........ 6, 20, 21, 23, 24, 39, 45, 69, 70, 71, 72
DEQ...15, 22, 23
DFS3304I ..42
DFSBBO00 ...5
DFSERA10..61, 62, 65
DFSERA30.. 61, 62, 65, 66
DFSERA40.. 3, 62, 63, 65
DFSERA60..65
DFSKLTA0...59
DFSKLTB0 ...59
DFSKLTC0 ...59, 65
DFSKTDL0...58, 65
DFSLOG41 ...31
DFSLR ..65
DFSPIRP0 ...56, 65
DFSUTR20..54, 55
DFSXFER ...31
DLET...24, 25
DLI 15, 31, 33, 36, 37, 55, 62
DMB#..50, 52
DMCB# ...52
DTB...38, 44
DXR162I ...33
dynamic transaction backout38, 44
ECSA...44
EMH..5
EPS..17, 18, 70
ESDS ...11, 16, 51
exclusive...................................... 29, 30, 37, 40, 48
EXEC DLI...15
extend lock ..13
extended pointer set.................................17, 18, 70
F irlmproc..33, 34, 57
Fast Path ... 1, 2, 3, 9, 20, 22, 23, 25, 26, 27, 28, 36,

37, 38, 39, 41, 44, 45, 47, 52, 53, 55, 64, 69, 70
Fast Path DEDB Resource Contention Summary

report...68
FD..36, 38, 39
File Select and Formatting Print Utility ..61, 62, 65
FLD ... 22, 23, 24, 25
full function .. 3, 8, 9, 15, 20, 24, 25, 26, 29, 39, 44,

45, 47, 50, 57
GET ...61
get hold..15, 23, 24
get lost ...48
GFPLL...64

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 76

global cycle ... 36
GQCMX ... 64
GRIDU.. 64
GRIDX.. 63, 64, 65
GSEGL ... 63, 64
GZIDL .. 64
HALDB Online Reorganization 11, 30
HDAM ..8, 9, 10, 11, 12, 15, 17, 18, 29, 47, 50, 51,

70, 72
HIDAM..............8, 9, 10, 11, 12, 17, 18, 29, 50, 51
HISAM8, 9, 10, 11, 12, 18, 19, 50, 51, 70
hold3, 6, 11, 15, 23, 24, 37, 45, 46
HSSP... 21
IFP5, 31, 33, 37, 38, 39, 41, 44
ILOCK .. 57, 58, 65
IMS Monitor54, 55, 65, 66
IMS Performance Analyzer for z/OS.................. 66
independent overflow ... 21
INDICES... 19
INIT ...37, 38, 39, 42
insert ..12, 16, 20, 37
IOVF... 21, 70
IRLM ..1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16,

20, 23, 26, 27, 28, 33, 34, 36, 37, 41, 42, 43, 44,
47, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
65, 70, 71

IRLM Lock Trace Analysis Utilities 58
ISRT...24, 25, 60, 61
JBP...31, 33, 36, 39
JMP..31, 32, 33, 38, 39, 41
KBLA ... 58
Knowledge Based Log Analysis 58
KSDS11, 12, 13, 16, 37, 51
level...2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20,

21, 22, 23, 24, 26, 27, 28, 29, 35, 36, 37, 40, 41,
43, 45, 48, 56, 61, 65, 69, 70, 71, 72

local cycle ... 36
lock reject.. 42
lock structure .. 42
LOCKMAX .. 31
LOCKTIME.. 33, 34, 57
LOG41LKH.. 31
logical relationship.. 17, 29
modified standard application program .. 32, 38, 42
Modified standard application program.............. 70
MPP5, 31, 32, 33, 36, 37, 38, 39, 41, 44, 61
MSDB..........................6, 23, 24, 25, 39, 53, 54, 70
OBA.. 27, 53
ODBA..........................5, 33, 36, 37, 38, 39, 69, 70
OLR .. 30, 70
open..................................12, 13, 14, 16, 27, 28, 63
OSAM..3, 11, 12, 16, 51
output thread ... 23

PCB 8, 9, 18, 20, 21, 22, 23, 29, 37, 39, 45, 46, 47,
48, 55, 56

PHDAM 8, 9, 10, 11, 12, 15, 17, 29, 50, 51, 70, 71
PHIDAM 8, 9, 10, 11, 12, 17, 29, 50, 70, 71
PI 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 15, 16, 20, 23,

32, 33, 36, 37, 41, 42, 44, 47, 49, 50, 52, 53, 54,
55, 56, 57, 61, 62, 64, 65, 71

PI Trace ...3
PI Trace Record Format and Print Module3, 62
pointer.............................. 12, 17, 18, 29, 69, 70, 72
private attribute.............................. 4, 11, 12, 13, 71
PROCOPT... 8, 9, 20, 22, 23, 24, 25, 29, 30, 45, 48
PROCOPT=E ..29, 48
Program Isolation ..1, 57
protected conversation...42
Protected Conversation..71
PSB.............................. 8, 19, 29, 39, 45, 46, 58, 61
PSINDEX..50, 70, 71
PST..23, 58, 60
Q command code...15, 22
RALLX..64
RAP 8, 9, 10, 15, 17, 18, 20, 51, 52, 71, 72
RBA8, 10, 17, 18, 21, 50, 51, 52, 53, 57, 58, 60, 71
RCT ...41
read.................. 2, 23, 29, 43, 46, 58, 59, 69, 72, 73
Record Format and Print Module61, 65
release.... 6, 9, 15, 20, 23, 35, 39, 40, 45, 48, 63, 64
REPL ...24, 25
Resource Recovery Services72
Retained locks ...42
RFPLL...64
RLSE ... 8, 9, 25, 30, 47, 48
RMF ..57, 58, 65
ROLB .. 5, 6, 36, 39, 41
ROLL ..5
ROLS...5
root addressable part......................................21, 72
RRIDW..64
RRIDX ..63, 64
RRN... 10, 51, 57, 71, 72
RRS ...42, 72
RSEGL ..64
RZIDL ...64
secondary index....................... 9, 18, 19, 29, 71, 72
segment lock..23, 63
SENSEG..19
SETS..6
SETU...6
share 2, 8, 14, 26, 30, 37, 45, 48, 69, 70, 72
SHARELVL ..2
space management...56
SQL ...41
SRRBACK ..41

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 77

SSA... 19, 48
SYNC.. 5, 39
sync point 5, 8, 9, 10, 11, 12, 15, 18, 21, 22, 23, 24,

30, 31, 37, 38, 39, 41, 44, 45, 46, 47, 64, 72
SYNCLKS .. 31
SYNCPOINT.. 45
TENQ.. 10, 15, 29
TERM ... 45
test enqueue .. 10, 15, 29
thread5, 21, 23, 37, 38, 39, 47
TIMEOUT .. 33, 34, 57
trace............................54, 55, 57, 58, 59, 62, 63, 65
TTLKL.. 64
U0123 ... 38
U0124 ... 32
U0125 ... 42
U0775 ... 44, 48
U077732, 36, 38, 39, 41, 61
U0778 ... 6
U2478 ... 32, 42

U3300..44, 48
U3301..31
U3303..42
unit of reorganization 9, 12, 30, 72
unit of work ...21, 72
UOR ..30, 72
UOW ...21, 53, 72
update2, 8, 9, 11, 12, 13, 15, 16, 21, 24, 36, 37, 43,

45, 46, 47, 69
VERIFY ..22, 24, 25
virtual storage..44, 48, 54
VSAM ... 3, 11, 12, 40
VSO....................................... 21, 23, 27, 71, 72, 73
VUNLOAD ...27, 28, 53
x'37' ...31
x'41' ...31
x'5937' ...31
x'67FF' ...58
XFERLHLD ..31

