IMS
Version 14

Application Programming

<||IH

IMS
Version 14

Application Programming

—

—

- - -

- I
- I — -
- - . . .-
I Y B W
I - . Y

Note
FBefore you use this information and the product it supports, read the information in ["Notices” on page 767/

This edition applies to IMS 14 (program number 5635-A05), IMS Database Value Unit Edition, V14.01.00 (program
number 5655-DSE), IMS Transaction Manager Value Unit Edition, V14.01.00 (program number 5655-TM3), and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1974, 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information . Xi
Prerequisite knowledge . .ooxi
How new and changed mformatlon is 1dent1f1ed .ooxi
How to read syntax diagrams . xii
Accessibility features for IMS 14 . xiii
How to send your comments . xiv
Part 1. Application programming
design. 1
Chapter 1. Designing an application:
Introductory concepts. I |
Storing and processing information in a database .. 3
Database hierarchy examples . 5
Your program's view of the data 10
Processing a database record 12
Tasks for developing an application 13
Chapter 2. Designing an application:
Data and local views. 15
An overview of application design 15
Identifying application data . 17
Listing data elements . 17
Naming data elements. 19
Documenting application data . 20
Designing a local view 22
Analyzing data relatronshlps 22
Local view examples 29
Chapter 3. Analyzing IMS application
processing requirements . 35
Defining IMS application requirements . 35
Accessing databases with your IMS application
program 36
Accessing data: the types of programs you can wr1te
for your IMS application . 38
DB batch processing 39
TM batch processing 40
Processing messages: Message Processmg
Programs . .40
Processing messages IMS Fast Path Programs 41
Batch message processing: BMPs 42
Java message processing: JMPs . 45
Java batch processing: JBPs . 45
IMS programming integrity and recovery
considerations 46
How IMS protects data mtegrlty commlt pomts 46
Planning for program recovery: checkpoint and
restart . . 49
Data availability consrderatrons 53
Use of STAE or ESTAE and SPIE in IMS
programs . 55
Dynamic allocation for IMS databases 56

© Copyright IBM Corp. 1974, 2015

Chapter 4. Analyzing CICS appllcatlon
processing requirements .
Defining CICS application requirements .

Accessing databases with your CICS application

program

Writing a CICS program to access IMS databases .

Writing a CICS online program . .
Using data sharing for your CICS program

Scheduling and terminating a PSB (CICS online

programs only) . . .
Linking and passing control to other programs
(CICS online programs only) .

How CICS distributed transactions access IMS

Maximizing the performance of your CICS system

Programming integrity and database recovery
considerations for your CICS program

How IMS protects data integrity for CICS onhne

programs .

Recovering databases accessed by batch and BMP

programs .
Data availability con51derat10ns for your CICS
program
Unavallablhty of a database .
Unavailability of some data in a database
The SETS or SETU and ROLS functions .
Use of STAE or ESTAE and SPIE in IMS batch
programs .
Dynamic allocation for IMS databases

Chapter 5. Gathering requirements for
database options
Analyzing data access .

Direct access .

Sequential access
Accessing z/0S files through IMS GSAM

Accessing IMS data through z/0OS: SHSAM and

SHISAM .
Understanding how data structure confhcts are
resolved
Using different f1elds f1e1d level sens1t1v1ty
Resolving processing conflicts in a hierarchy:
secondary indexing.
Creating a new hierarchy: logrcal relatronshrps
Providing data security

Keeping a program from accessmg the data data

sensitivity . .
Preventing a program from updatmg data
processing options .

Read without integrity.

Chapter 6. Gathering requirements for

message processing options .
Identifying online security requirements.
Analyzing screen and message formats.

57
57

58
60
60
61
62
62
63
63
64
64
64
69
69
70
70

71
71

73
73
74
78
80
80

81
81

82
91
91

93
95

99
99
101

iii

An overview of MFS . 102
An overview of basic edit . 102
Editing considerations in your apphcation 102
Gathering requlrements for conversational
processing . 103
What happens in a conversation . 104
Designing a conversation 104
Important points about the scratchpad area
(SPA) . . .o . 105
Recovery consrderations in conversations . 105
Identifying output message destinations 106
The originating terminal. . 107
To other programs and terminals . 107
Chapter 7. Designing an application
for APPC Ce e 111
Overview of APPC and LU 6 2 1
Application program types 111
Application objectives 113
Conversation type. 114
Conversation state. 115
Synchronization level. 115
Introduction to resource recovery. 116
Summary of z/OS Resource Recovery Services
support . . . o)
Distributed sync pomt 120

Application programming 1nterface for LU type 6 2 121

LU 6.2 partner program design 122
LU 6.2 flow diagrams 122
Integrity tables . . 142
DFSAPPC message sw1tch 144

Chapter 8. Testing an IMS appllcatlon

program 147

Recommendations for testing an IMS program 147

Testing DL/I call sequences (DFSDDLTO) before

testing your IMS program . .. 147

Using BTS to test your IMS program . 148

Tracing DL/I calls with image capture for your

IMS program . . 148
Using image capture W1th DFSDDLTO . 149
Restrictions on using image capture output 149
Running image capture online. . 149
Running image capture as a batch job . 150
Retrieving image capture data from the log data
set 150

Requests for monitoring and debugging your IMS

program 151
Retrieving database statlstlcs the STAT call . 151
Writing Information to the system log: the LOG
request 165

What to do when your IMS program terminates

abnormally . 165

Chapter 9. Testing a CICS application

program 169

Recommendations for testing a CICS program 169

Testing your CICS program. 169
Tracing DL/I calls with image capture . 170

iv Application Programming

Requests for monitoring and debugging your CICS

program . 174
What to do when your CICS program termmates
abnormally . e 174
Chapter 10. Documenting your
application program 177
Documentation for other programmers . 177
Documentation for end users . 177
Part 2. Application programming
for IMS DB . 179
Chapter 11. Writing your application
programs for IMS DB . 181
Programming guidelines 181
Segment search arguments (SSAs) 182
SSA guidelines . 185
Multiple qualification statements 186
SSAs and command codes . . 189
Considerations for coding DL/I calls and data
areas . . 191
Preparing to run your CICS DL/ I call program . 192
Examples of how to code DL/I calls and data areas 192
Coding a batch program in assembler language 192
Coding a CICS online program in assembler
language . 194
Coding a batch program in C language 196
Coding a batch program in COBOL . 199
Coding a CICS online program in COBOL. 202
Coding a program in Java . .o 206
Coding a batch program in Pascal 206
Coding a batch program in PL/T . 208
Coding a CICS online program in PL/I. 210
Chapter 12. Defining application
program elements for IMS DB 213
Formatting DL/I calls for language interfaces 213
Assembler language application programming 213
C language application programming . 215
COBOL application programming 218
Java application programming for IMS . 221
Pascal application programming . 221
Application programming for PL/T . 224
Specifying the I/O PCB mask . 226
Specifying the DB PCB mask . 230
Specifying the AIB mask . 232
Specifying the AIB mask for ODBA apphcations 234
Specifying the UIB (CICS online programs only) 237
Specifying the I/O areas. . 240
Formatting segment search arguments (SSAs) 240
SSA coding rules . 240
SSA coding formats . 242
Data areas in GSAM databases 245
AIBTDLI interface . . 245
Language specific entry pomts . 246
Program communication block (PCB) lists 249
The AERTDLI interface . 251
Language environments . 251

Special DL/I situations for IMS DB programming 252
Application programming with the IMS catalog 254

Chapter 13. Database versioning and
application programming 257

Chapter 14. Establishing a DL/I
interface from COBOLor PL/1 259

Chapter 15. Current position in the
database after eachcall. 261

Current position after successful calls 261
Position after retrieval calls. 263
Position after DLET 263
Position after REPL 265
Position after ISRT. 265

Current position after unsuccessful Calls .. 207

Multiple processing 271
Advantages of using multlple p051t10n1ng . 274
Multiple DB PCBs. 277

Chapter 16. Using IMS application
program sync points 279

Commit process 279
Two-phase commit in the synchronlzatlon process 280
Unit of recovery . . oL 282
DBCTL single-phase commlt oo ... 283
Sync-point log records 283
Sync points with a data-propagation manager .. 284

Chapter 17. Recovering databases

and maintaining database integrity .. 287
Issuing checkpoints 287
Restarting your program from the latest checkpoint 288
Maintaining database integrity (IMS batch, BMP,

and IMS online regions) 288
Backing out to a prior commit p01nt ROLL
ROLB, and ROLS 288
Backing out to an 1nterrned1ate backout p01nt
SETS, SETU, and ROLS L. 292
Reserving segments for the exclusive use of your
program 29

Chapter 18. Secondary indexing and

logical relationships 297
How secondary indexing affects your program .. 297
SSAs with secondary indexes 297
Multiple qualification statements with
secondary indexes. 298
DL/I returns with secondary 1ndexes 300
Status codes for secondary indexes 301
Processing segments in logical relationships . .. 301
How logical relationships affect your
programming 303
Status codes for logrcal relatlonshrps .. . 303

Chapter 19. HALDB selective partition
processing 305

Chapter 20. Processing GSAM

databases. . . . « e e o .. 309
Accessing GSAM databases G (0
PCB masks for GSAM databases 309
Retrieving and inserting GSAM records . .. 312
Explicit open and close calls to GSAM 313
GSAM record formats 314
GSAM I/Oareas 315
GSAM status codes 315
Symbolic CHKP and XRST w1th GSAM .. . 3l6
GSAM coding considerations 316
Origin of GSAM data set characterlstlcs . 317
DD statement DISP parameter for GSAM data
sets. . . 318
Extended checkpomt restart for GSAM data sets 319
Concatenated data sets used by GSAM. . .. 320
Specifying GSAM data set attributes. . . 320

DLI, DBB, and BMP region types and GSAM 321

Chapter 21. Processing Fast Path
databases. 323

Fast Path database calls 324
Main storage databases (MSDBs). 325

Restrictions on using calls for MSDBs 325
Data entry databases (DEDBs). . . . 326

Updating segments: REPL, DLET, ISRT, and FLD 326
Checking the contents of a field: FLD/VERIFY 327
Changing the contents of a field:

FLD/CHANGE. 329
Example of using FLD/ VERIFY and
FLD/CHANGE. . . . 330

Commit-point processing in MSDBs and DEDBs 331
Processing DEDBs (IMS and CICS with DBCTL) 332
Processing Fast Path DEDBs with subset pointer

command codes 332
Processing DEDBs with a secondary 1ndex . 337
Retrieving location with the POS call (for DEDB
only) 347
Commit-point processmg ina DEDB .. . 350
P processing option 350
H processing option 350
Calls with dependent segments for DEDBS . . 351
DEDB DL/I calls to extract DEDB information .. 352
AL_LENCall 356
DILENCall 357
DS IENCall 357
AREALISTCall. 357
DEDBINFOCall 358
DEDSTR Call R o
Fast Path coding c0n51derat10ns oo oo 359

Chapter 22. Writing ODBA application

programs 361
General application program flow of ODBA

application programs. 361
Server program structure 364

Contents V

DB2 for z/OS stored procedures use of ODBA 365
Testing an ODBA application program . . 366

Tracing DL/I calls with image capture to test

your ODBA program . . 367

Using image capture with DFSDDLTO to test

your ODBA program . . 368

Running image capture online. 368

Retrieving image capture data from the log data
set . . 369
Requests for monitoring and debugging your

ODBA program. . 369

What to do when your ODBA program

terminates abnormally . 370
Chapter 23. Programming with the
IMS support for DRDA 373
DDM commands for data operations with the IMS
support for DRDA 374
Part 3. Application programming
forIMSTM. 377
Chapter 24. Defining application
program elements for IMS TM 379
Formatting DL/I calls for language interfaces 379
Application programming for assembler language 379
Application programming for C language . 382
Application programming for COBOL . 384
Java application programming for IMS . 387
Application programming for Pascal 387
Application programming for PL/T . 390
Relationship of calls to PCB types 392
Specifying the I/O PCB mask . 393
Specifying the alternate PCB mask 397
Specifying the AIB mask 397
Specifying the I/0O areas. 399
AIBTDLI interface . 400

Specifying language-specific entry pomts ... 40

Program communication block (PCB) lists . 403
Language environments . . 404
Special DL/I situations for IMS TM programming 405
Chapter 25. Message processing with
IMS TM . 407
How your program processes messages 407
Message types . . 407
When a message is processed 410
Results of a message: 1/O PCB 412
How IMS TM edits messages . 412
Printing output messages 413
Using Basic Edit 413
Using Intersystem Communication Edit 414
Using Message Format Service 414
Using LU 6.2 User Edit exit routine (optional) 421
Message processing considerations for DB2 421
Sending messages to other terminals and programs 422
Sending messages to other terminals 423
Sending messages to other IMS application
programs. e e 425

vi Application Programming

How the VTAM 1/0 facility affects your VTAM
terminal . .
Communicating with other IMS TM systems us1ng
Multiple Systems Coupling. . .
Implications of MSC for program coding .
Receiving messages from other IMS TM systems
Sending messages to alternate destinations in
other IMS TM systems
IMS conversational processing.
A conversational example
Conversational structure.
Replying to the terminal.
Conversational processing using ROLB ROLL
and ROLS . o
Passing the conversation to another
conversational program . . .
Message switching in APPC conversations
Processing conversations with APPC
Ending the APPC conversation
Coding a conversational program
Standard IMS application programs .
Modified IMS application programs .
CPI-C driven application programs .
Processing conversations with OTMA .
Backing out to a prior commit point: ROLL, ROLB
and ROLS calls. . .o
Comparison of ROLB, ROLL and ROLS
ROLL . e e
ROLB .
ROLS . .
Backing out to an 1ntermed1ate backout p01nt
SETS/SETU and ROLS .
Writing message-driven programs
Coding DC calls and data areas .
Before coding your program
MPP code examples .
Message processing consrderations for DB2

Chapter 26. IMS Spool API.
Managing the IMS Spool API overall design .

IMS Spool API design

Sending data to the JES spool data sets

IMS Spool API performance considerations

IMS Spool API application coding

considerations . Lo
Understanding parsing errors .

Diagnosis examples .
Understanding allocation errors . .
Understanding dynamic output for print data sets
Sample programs using the Spool APT .

Chapter 27. IMS Message Format

Service . .

Advantages of using MFS .

MFS control blocks
MFS examples .
Relationship between MFS control blocks and
screen format . .

Overview of MFS components

Devices and logical units that operate Wlth MFS

427

427
427
428

429
430
431
432
436

436

437
439
441
441
442
442
443
443
444

445
445
446
446
448

448
451
452
452
453
459

461
461
461
462
462

463
466
467
470
470
471

475
475
476
477

481
482
484

Using distributed presentation management (DPM) 486

Chapter 28. Callout requests for
servicesordata 487

Callout request approaches. 488
Resume tpipe protocol 491
Implementing the synchronous callout funct10n 491
Control data in synchronous callout requests. .. 494

Implementing the asynchronous callout function 495

Part 4. Application programming
forEXECDLI. 497

Chapter 29. Writing your application
programs for EXECDLI. 499

Programming guidelines 499
Coding a program in assembler language . .. 500
Coding a program in COBOL 504
Coding a programin PL/I. 507
Coding a program in C . . 511

Preparing your EXEC DLI program for executlon 517
Translator, compiler, and binder options
required for EXECDLI 517

Chapter 30. Defining application
programelements 519

Specifying an application interface block (AIB) .. 519
Specifying the DL/I interface block (DIB) 519
Defining a key feedback area 523
Defining I/O areas 523

Chapter 31. EXEC DLI commands for
an application program 525
PCBsandPSB B525

Chapter 32. Recovering databases

and maintaining database integrity .. 529
Issuing checkpoints in a batch or BMP program 529
Restarting your program and checking for position 530
Backing out database updates dynamically: the

ROLL and ROLB commands . . . 530
Using intermediate backout points: the SETS and
ROLS commands 530

Chapter 33. Processing Fast Path

databases. . . . 533
Processing Fast Path DEDBS w1th subset pomter
options 533
Preparing to use subset pomters 53
Designating subset pointers 536
Subset pointer options 536
Subset pointer status codes. 543
The POS command 544
Locating a specific sequential dependent
segment 544
Locating the last mserted sequentlal dependent
segment 545

Identifying free space with the POS command 545
The P processing option. 546

Chapter 34. Comparing
command-level and call-level

programs . . . « -« bA7
DL/I calls for IMS and CICS b47
Comparing EXEC DLI commands and DL/I calls 547
Comparing command codes and options 549

Chapter 35. Data availability
enhancements. 551

Part 5. Application programming
forsQL b53

Chapter 36. SQL considerations and
restrictions forCOBOL 555

Chapter 37. Writing application

programsforSQL 557

Coding SQL statements in application programs:

General information b57
Defining the items that your program can use to
check whether an SQL statement executed

successfully B 1 74
Defining SQL descrlptor areas. . . 558
Declaring host variables and indicator Varlables 558
Using SQL statements in your application. .. 559
Checking the execution of SQL statements. .. 570
Coding SQL statements in COBOL apphcatlon
programs. . . . 572
Defining the SQL communlcatlons area in
coBoL 573
Defining SQL descrlptor areas in COBOL . 573
Declaring host variables and indicator variables
inCOBOL 573
Equivalent SQL and COBOL data types . .. 580
SQL statements in COBOL programs . . 581
SQL aggregate functions supported for COBOL 584
Adding and modifying data 587
Insertingrows 587
Updating segmentdata 588
Deleting data from segments 58
Accessing data . . . 590
Retrieving data by usmg the SELECT statement 590
Retrieving a set of rows by using a cursor. .. 595
Commit or roll back data 598
Preparing an application to run on IMS .. . 598
Processing SQL statements 599

Part 6. Java application
development foriIMS 601

Contents Vil

Chapter 38. IMS solutions for Java
development overview

Chapter 39. Comparison of
hierarchical and relational databases .

Chapter 40. Programming with the IMS

Universal drivers .

IMS Universal drivers overview .

Distributed and local connectivity w1th the IMS
Universal drivers .

Comparison of IMS Uruversal drlvers
programming approaches for accessing IMS ..
Support for variable-length database segments
with the IMS Universal drivers .
Support for flattening complex structures .
Generating the runtime Java metadata class ..
Hospital database example . .

Programming using the IMS Universal Database

resource adapter .
Overview of the IMS Umversal Database
resource adapter
Transaction types and programmmg 1nterfaces
supported by the IMS Universal Database
resource adapter .

Connecting to IMS with the IMS Umversal
Database resource adapter .

Sample EJB application using the IMS Umversal
Database resource adapter CCI programming
interface .

Accessing IMS data w1th the DLIInteractlonSpec
class .

Accessing IMS data w1th the
SQLInteractionSpec class . .
Accessing IMS data with the IMS Umversal
JCA/JDBC driver .

Programming with the IMS Umversal]DBC drlver
Supported drivers for JDBC .
Connecting to IMS using the IMS Umversal
JDBC driver .

Sample apphcatlon for the IMS Umversal]DBC
driver .

Writing SQL querles to access an IMS database
with the IMS Universal JDBC driver.

Writing DL/T calls to access an IMS database
with the IMS Universal JDBC driver.

IMS Universal JDBC driver support for XML
Data transformation support for JDBC .

Programming with the IMS Universal DL/I driver
Basic steps in writing a IMS Universal DL/I
driver application .

Java packages for IMS Umversal DL / I drlver
support .
Connecting to an IMS database by usmg the
IMS Universal DL/I driver . .
IMS Universal DL/I driver mterfaces for
executing DL /I operations .

Inspecting the PCB status code and related
information using the com.ibm.ims.dli.AIB
interface .

viii Application Programming

603

605

611
611

612
615
617
618
620
620
623

624

624

625

636
637
642
645
647
648
648
660
661
676
679
683
689
689
690
690

693

709

Committing or rolling back DL/I transactions 710
Configuring the IMS Universal drivers for SSL
support . . 712
Configuring the IMS Umversal Database
resource adapter for SSL support in a
container-managed environment . . 713
Configuring IMS Universal drivers for SSL
support in a stand-alone environment . 713
Tracing IMS Universal drivers applications 714
Chapter 41. Programming Java
dependent regions . 717
Overview of the IMS Java dependent regions. 717
Programming with the IMS Java dependent region
resource adapter 718

Developing JMP apphcatlons w1th the IMS]ava
dependent region resource adapter . . . 719
Developing JBP applications with the IMS]ava

dependent region resource adapter . . 728
Issuing synchronous callout requests from a
Java dependent region . 736
IMS Java dependent region resource adapter
support for ICAL callout with control data 738
Program switching in JMP and JBP applications 740
IBM Enterprise COBOL for z/OS interoperability
with JMP and JBP applications . 748

IBM Enterprise COBOL for z/OS backend
applications in a JMP or JBP region 749
IBM Enterprise COBOL for z/OS frontend

applications in a JMP or JBP region . . . 750
Accessing DB2 for z/OS databases from JMP or
JBP applications e 750
Part 7. PL/I top-down development
for IMS Enterprise Suite SOAP
Gateway web services 753
Chapter 42. WSDL-to-PL/I
segmentation APIs for adding
business logic in generated PL/I
templates . 755
Chapter 43. Sample of a generated
PL/l application template 759
Chapter 44. Trace output for
WSDL-to-PL/I segmentation APIs . 761
Chapter 45. Limitations and
restrictions of the segmentation APIs . 763
Part 8. Appendixes . 765
Notices . . e e 767
Programming interface mformatlon 769
Trademarks 769

Terms and conditions for product documentation 770
IBM Online Privacy Statement. 770

Bibliography. 773

Index. 775

Contents 1X

X Application Programming

About this information

These topics provide guidance information for writing application programs that
access IMS" databases or IMS transactions. The topics describe how to gather and
analyze program requirements, and how to develop and debug IMS application
programs. They also describe how to use different programming languages to issue
DL/I calls, and include information about the IMS solutions for SQL and]avaw
development. They also describe how to use different programming languages to
issue EXEC DL/I calls. Application programming interface (API) information is in
IMS Version 14 Application Programming APIs.

This information is available in IBM® Knowledge Center at [www.ibm.com /|
[support/knowledgecenter|

Prerequisite knowledge

This information is a guide to IMS application programming for any of the
following environments:

* IMS Database Manager (IMS DB), including IMS Database Control (DBCTL)
* IMS Transaction Manager (IMS TM)

» CICS® EXEC DLI

* WebSphere® Application Server for z/OS®

* WebSphere Application Server for distributed platforms

* Java dependent regions (JMP and JBP)

* Any environment for stand-alone Java application development

This book provides guidance information for writing application programs that
access IMS databases or process IMS messages. It also describes how to use
different programming languages to make DL/I, EXEC DLI, or JDBC calls that
interact with IMS. API (application programming interface) information is in IMS
Version 14 Application Programming APIs.

You can learn more about z/OS by visiting the “z/OS basic skills” topics in
[Knowledge Center]

You can gain an understanding of basic IMS concepts by reading An Introduction to
IMS, an IBM Press publication. An excerpt from this publication is available in the
[[BM Knowledge Center

IBM offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list of courses available, go to the IMS home page at

and link to the Training and Certification page.

How new and changed information is identified

New and changed information in most IMS library PDF publications is denoted by
a character (revision marker) in the left margin. The first edition (-00) of Release
Planning, as well as the Program Directory and Licensed Program Specifications, do not
include revision markers.

Revision markers follow these general conventions:

© Copyright IBM Corp. 1974, 2015 xi

http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome
http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.imsintro.doc.intro/Intro.html
http://www.ibm.com/software/data/ims/

* Only technical changes are marked; style and grammatical changes are not
marked.

* If part of an element, such as a paragraph, syntax diagram, list item, task step,
or figure is changed, the entire element is marked with revision markers, even
though only part of the element might have changed.

* If a topic is changed by more than 50%, the entire topic is marked with revision
markers (so it might seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the
information because deleted text and graphics cannot be marked with revision
markers.

How to read syntax diagrams

xii

The following rules apply to the syntax diagrams that are used in this information:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line. The following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.

— The -—-> symbol indicates that the syntax diagram is continued on the next
line.

— The >--- symbol indicates that a syntax diagram is continued from the
previous line.

— The --->< symbol indicates the end of a syntax diagram.
* Required items appear on the horizontal line (the main path).

»>—required item >

* Optional items appear below the main path.

»>—required_item |_0 _|
ptional item

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

ptional item
»>—required_item |_O —l

v
A

* If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

»>—required i tem—Erequ ired_choicel >
requi red_choiceZ—l

If choosing one of the items is optional, the entire stack appears below the main
path.

»>—required item >
i:opt ional_choi cel:‘
optional_choiceZ

Application Programming

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

|—de faul t_choice—l
»>—required_item i:;

ptional_choice:l
ptional_choice

* An arrow returning to the left, above the main line, indicates an item that can be
repeated.

»—required_item——repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

v

v
A

»>—required_item

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

* Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

»—r‘equired_item—' fragment-name i ><

fragment-name:

f—required_item }
I—optionol_i tem—l

* In IMS, a b symbol indicates one blank position.

* Keywords, and their minimum abbreviations if applicable, appear in uppercase.
They must be spelled exactly as shown. Variables appear in all lowercase italic
letters (for example, column-name). They represent user-supplied names or
values.

* Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

* Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

* Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 14

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

About this information Xxiii

Accessibility features

The following list includes the major accessibility features in z/OS products,
including IMS 14. These features support:

* Keyboard-only operation.
* Interfaces that are commonly used by screen readers and screen magnifiers.

* Customization of display attributes such as color, contrast, and font size.
Keyboard navigation

You can access IMS 14 ISPF panel functions by using a keyboard or keyboard
shortcut keys.

For information about navigating the IMS 14 ISPF panels using TSO/E or ISPF,
refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and the z/OS ISPF
User’s Guide Volume 1. These guides describe how to navigate each interface,
including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their
functions.

Related accessibility information
Online documentation for IMS 14 is available in IBM Knowledge Center.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at[www.ibm.com/able| for more
information about the commitment that IBM has to accessibility.

How to send your comments

Your feedback is important in helping us provide the most accurate and highest
quality information. If you have any comments about this or any other IMS
information, you can take one of the following actions:

* Click the Feedback link at the bottom of any [[BM Knowledge Center] topic.

* Send an email to imspubs@us.ibm.com. Be sure to include the book title and the
publication number.

xiv Application Programming

http://www.ibm.com/able
http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

Part 1. Application programming design

To design an application program for IMS, you need to identify the application
data and analyze requirements for application processing. You may also need to
perform other tasks, such as gathering requirements for database and message
processing options, and testing an application program.

© Copyright IBM Corp. 1974, 2015

2 Application Programming

Chapter 1. Designing an application: Introductory concepts

This section provides an introduction to designing application programs. It
explains some basic concepts about processing a database, and gives an overview
of the tasks covered in this information.

Storing and processing information in a database

The advantages of storing and processing data in a database are that all of the data
needs to appear only once and that each program must process only the data that
it needs.

One way to understand this is to compare three ways of storing data: in separate
files, in a combined file, and in a database.

Storing data in separate files

If you keep separate files of data for each part of your organization, you can
ensure that each program uses only the data it needs, but you must store a lot of
data in multiple places simultaneously. Problems with keeping separate files are:

* Redundant data takes up space that could be put to better use
* Maintaining separate files can be difficult and complex

For example, suppose that a medical clinic keeps separate files for each of its
departments, such as the clinic department, the accounting department, and the
ophthalmology department:

* The clinic department keeps data about each patient who visits the clinic, such
as:

Identification number

Name

Address

Illnesses

Date of each illness

Date patient came to clinic for treatment
Treatment given for each illness

Doctor that prescribed treatment
Charge for treatment

* The accounting department also keeps information about each patient. The
information that the accounting department might keep for each patient is:

Identification number
Name

Address

Charge for treatment
Amount of payments

* The information that the ophthalmology department might keep for each patient
is:

Identification number

© Copyright IBM Corp. 1974, 2015 3

Name

Address

Ilinesses relating to ophthalmology

Date of each illness

Names of members in patient's household

Relationship between patient and each household member

If each of these departments keeps separate files, each department uses only the
data that it needs, but much of the data is redundant. For example, every
department in the clinic uses at least the patient's number, name, and address.
Updating the data is also a problem, because if a department changes a piece of
data, the same data must be updated in each separate file. Therefore, it is difficult
to keep the data in each department's files current. Current data might exist in one
file while defunct data remains in another file.

Storing data in a combined file

Another way to store data is to combine all the files into one file for all
departments to use. In the medical example, the patient record that would be used
by each department would contain these fields:

Identification number

Name

Address

Ilinesses

Date of each illness

Date patient came to clinic for treatment
Treatment given for each illness

Doctor that prescribed treatment

Charge for treatment

Amount of payments

Names of members in patient's household
Relationship between patient and each household member

Using a combined file solves the updating problem, because all the data is in one
place, but it creates a new problem: the programs that process this data must
access the entire file record to get to the part that they need. For example, to
process only the patient's number, charges, and payments, an accounting program
must access all of the other fields also. In addition, changing the format of any of
the fields within the patient's record affects all the application programs, not just
the programs that use that field.

Using combined files can also involve security risks, because all of the programs
have access to all of the fields in a record.

Storing data in a database
Storing data in a database gives you the advantages of both separate files and

combined files: all the data appears only once, and each program has access to the
data that it needs. This means that:

* When you update a field, you do it in one place only.

4 Application Programming

* Because you store each piece of information only in one place, you cannot have
an updated version of the information in one place and an out-of-date version in
another place.

* Each program accesses only the data it needs.
* You can prevent programs from accessing private or secured information.

In addition, storing data in a database has two advantages that neither of the other
ways has:

* If you change the format of part of a database record, the change does not affect
the programs that do not use the changed information.

* Programs are not affected by how the data is stored.

Because the program is independent of the physical data, a database can store all
the data only once and yet make it possible for each program to use only the data
that it needs. In a database, what the data looks like when it is stored is different
from what it looks like to an application program.

Database hierarchy examples

In an IMS DB, a record is stored and accessed in a hierarchy. A hierarchy shows
how each piece of data in a record relates to other pieces of data in the record.

IMS connects the pieces of information in a database record by defining the
relationships between the pieces of information that relate to the same subject. The
result is a database hierarchy.

Medical hierarchy example

The medical database shown in following figure contains information that a
medical clinic keeps about its patients. The hierarchies used in the medical
hierarchy example are used with full-function databases and Fast Path data entry
databases (DEDBs).

PATIENT

ILLNESS BILLING HOUSHOLD

TREATMNT PAYMENT

Figure 1. Medical hierarchy

Each piece of data represented in the figure above is called a segment in the
hierarchy. Each segment contains one or more fields of information. The PATIENT
segment, for example, contains all the information that relates strictly to the
patient: the patient's identification number, name, and address.

Definitions: A segment is the smallest unit of data that an application program can
retrieve from the database. A field is the smallest unit of a segment.

The PATIENT segment in the medical database is the root segment. The segments
below the root segment are the dependents, or children, of the root. For example,

Chapter 1. Designing an application: Introductory concepts 5

ILLNESS, BILLING, and HOUSHOLD are all children of PATIENT. ILLNESS,
BILLING, and HOUSHOLD are called direct dependents of PATIENT, TREATMNT
and PAYMENT are also dependents of PATIENT, but they are not direct
dependents, because they are at a lower level in the hierarchy.

A database record is a single root segment (root segment occurrence) and all of its
dependents. In the medical example, a database record is all of the information
about one patient.

Definitions: A root segment is the highest-level segment. A dependent is a segment
below a root segment. A root segment occurrence is a database record and all of its
dependents.

Each database record has only one root segment occurrence, but it might have
several occurrences at lower levels. For example, the database record for a patient
contains only one occurrence of the PATIENT segment type, but it might contain
several ILLNESS and TREATMNT segment occurrences for that patient.

The tables that follow show the layouts of each segment in the hierarchy.

The segment’s field names are in the first row of each table. The number below
each field name is the length in bytes that has been defined for that field.

* PATIENT Segment
The following table shows the PATIENT segment.
It has three fields:
— The patient’s number (PATNO)
— The patient’s name (NAME)
— The patient's address (ADDR)

PATIENT has a unique key field: PATNO. PATIENT segments are stored in
ascending order based on the patient number. The lowest patient number in the
database is 00001 and the highest is 10500.

Table 1. PATIENT segment

Field name Field length
PATNO 10

NAME 5

ADDR 30

* ILLNESS Segment
The following figure shows the ILLNESS segment.
It has two fields:
— The date when the patient came to the clinic with the illness (ILLDATE)
— The name of the illness ILLNAME)

The key field is ILLDATE. Because it is possible for a patient to come to the
clinic with more than one illness on the same date, this key field is non-unique,
that is, there may be more than one ILLNESS segment with the same (an equal)
key field value.

Usually during installation, the database administrator (DBA) decides the order
in which to place the database segments with equal or no keys. The DBA can
use the RULES keyword of the SEGM statement of the DBD to specify the order
of the segments.

6 Application Programming

For segments with equal keys or no keys, RULES determines where the segment

is inserted. Where RULES=LAST, ILLNESS segments that have equal keys are
stored on a first-in-first-out basis among those with equal keys. ILLNESS
segments with unique keys are stored in ascending order on the date field,
regardless of RULES. ILLDATE is specified in the format YYYYMMDD.

Table 2. ILLNESS segment

Field name

Field length

ILLDATE

8

ILLNAME

10

* TREATMNT Segment

The following table shows the TREATMNT segment.

It contains four fields:

— The date of the treatment (DATE)

— The medicine that was given to the patient (MEDICINE)
— The quantity of the medicine that the patient received (QUANTITY)
— The name of the doctor who prescribed the treatment (DOCTOR)

The TREATMNT segment’s key field is DATE. Because a patient may receive
more than one treatment on the same date, DATE is a non-unique key field.
TREATMNT, like ILLNESS, has been specified as having RULES=LAST.
TREATMNT segments are also stored on a first-in-first-out basis. DATE is
specified in the same format as ILLDATE—YYYYMMDD.

Table 3. TREATMNT segment

Field name

Field length

DATE 8
MEDICINE 10
QUANTITY 4
DOCTOR 10

* BILLING Segment

The following table shows the BILLING segment. It has only one field: the
amount of the current bill. BILLING has no key field.

Table 4. BILLING segment

Field name

Field length

BILLING

6

* PAYMENT Segment

The following table shows the PAYMENT segment. It has only one field: the
amount of payments for the month. The PAYMENT segment has no key field.

Table 5. PAYMENT segment

Field name

Field length

PAYMENT

6

* HOUSHOLD Segment

The following table shows the HOUSHOLD segment.

It contains two fields:

Chapter 1. Designing an application: Introductory concepts

— The names of the members of the patient's household (RELNAME)
— How each member of the household is related to the patient (RELATN)
The HOUSHOLD segment’s key field is RELNAME.

Table 6. HOUSHOLD segment

Field name Field length
RELNAME 10
RELATN 8

Bank account hierarchy example

The bank account hierarchy is an example of an application program that is used
with main storage databases (MSDBs). In the medical hierarchy example, the
database record for a particular patient comprises the PATIENT segment and all of
the segments underneath the PATIENT segment. In an MSDB, such as the one in
the bank account example, the segment is the whole database record. The database
record contains only the fields that the segment contains.

The two types of MSDBs are related and nonrelated. In related MSDBs, each segment
is “owned” by one logical terminal. The "owned" segment can only be updated by
the terminal that owns it. In nonrelated MSDBs, the segments are not owned by
logical terminals. The following examples of a related MSDB and a nonrelated
MSDB illustrate the differences between the two types of databases.

Related MSDBs

Related MSDBs can be fixed or dynamic. In a fixed related MSDB, you can store
summary data about a particular teller at a bank. For example, you can have an
identification code for the teller's terminal. Then you can keep a count of that
teller's transactions and balance for the day. This type of application requires a
segment with three fields:

TELLERID
A two-character code that identifies the teller

TRANCNT
The number of transactions the teller has processed

TELLBAL
The balance for the teller

The following table shows what the segment for this type of application program

looks like.
Table 7. Teller segment in a fixed related MSDB
TELLERID TRANCNT TELLBAL

Some of the characteristics of fixed related MSDBs include:

* You can only read and replace segments. You cannot delete or insert segments.
In the bank teller example, the teller can change the number of transactions
processed, but you cannot add or delete any segments. You never need to add or
delete segments.

* Each segment is assigned to one logical terminal. Only the owning terminal can
change a segment, but other terminals can read the segment. In the bank teller

8 Application Programming

example, you do not want tellers to update the information about other tellers,
but you allow the tellers to view each other’s information. Tellers are responsible
for their own transactions.

* The name of the logical terminal that owns the segment is the segment's key.
Unlike non-MSDB segments, the MSDB key is not a field of the segment. It is
used as a means of storing and accessing segments.

* Alogical terminal can only own one segment in any one MSDB.

In a dynamic related MSDB, you can store data summarizing the activity of all
bank tellers at a single branch. For example, this segment contains:

BRANCHNO
The identification number for the branch

TOTAL
The bank branch's current balance

TRANCNT
The number of transactions for the branch on that day

DEPBAL
The deposit balance, giving the total dollar amount of deposits for the
branch

WTHBAL
The withdrawal balance, giving the dollar amount of the withdrawals for
the branch

The following table shows what the branch summary segment looks like in a
dynamic related MSDB.

Table 8. Branch summary segment in a dynamic related MSDB
BRANCHNO TOTAL TRANCNT DEPBAL WTHBAL

How dynamic related MSDBs differ from fixed related MSDBs:

* The owning logical terminal can delete and insert segments in a dynamic related
MSDB.

* The MSDB can have a pool of unassigned segments. This kind of segment is
assigned to a logical terminal when the logical terminal inserts it, and is
returned to the pool when the logical terminal deletes it.

Nonrelated MSDBs

A nonrelated MSDB is used to store data that is updated by several terminals
during the same time period. For example, you might store data about an
individuals' bank accounts in a nonrelated MSDB segment, so that the information
can be updated by a teller at any terminal. Your program might need to access the
data in the following segment fields:

ACCNTNO
The account number

BRANCH
The name of the branch where the account is

TRANCNT
The number of transactions for this account this month

Chapter 1. Designing an application: Introductory concepts 9

BALANCE
The current balance

The following table shows what the account segment in a nonrelated MSDB
application program looks like.

Table 9. Account segment in a nonrelated MSDB

ACCNTNO BRANCH TRANCNT BALANCE

The characteristics of nonrelated MSDBs include:

* Segments are not owned by terminals as they are in related MSDBs. Therefore,
IMS programs and Fast Path programs can update these segments. Updating
segments is not restricted to the owning logical terminal.

* Your program cannot delete or insert segments.

* Segment keys can be the name of a logical terminal. A nonrelated MSDB exists
with terminal-related keys. The segments are not owned by the logical terminals,
and the logical terminal name is used to identify the segment.

* If the key is not the name of a logical terminal, it can be any value, and it is in
the first field of the segment. Segments are loaded in key sequence.

Your program's view of the data

IMS uses two kinds of control blocks to enable application programs to be
independent of your method of storing data in the database, the database
description (DBD), and the database program communication block (DB PCB).

Database Description (DBD)

A database description (DBD) is physical structure of the database. The DBD also
defines the appearance and contents, or fields, that make up each of the segment
types in the database.

For example, the DBD for the medical database hierarchy shown in “Medical
hierarchy example” describes the physical structure of the hierarchy and each of
the six segment types in the hierarchy: PATIENT, ILLNESS, TREATMNT, BILLING,
PAYMENT, and HOUSHOLD.

Related Reading: For more information on generating DBDs, see IMS Version 14
Database Utilities.

Database Program Communication Block (DB PCB)

A database program communication block (DB PCB) is a control block that defines an
application program's view of the database. An application program often needs to
process only some of the segments in a database. A PCB defines which of the
segments in the database the program is allowed to access—which segments the
program is sensitive to.

The data structures that are available to the program contain only segments that
the program is sensitive to. The PCB also defines how the application program is
allowed to process the segments in the data structure: whether the program can

only read the segments, or whether it can also update them.

10 Application Programming

To obtain the highest level of data availability, your PCBs should request the
fewest number of sensitive segments and the least capability needed to complete
the task.

All the DB PCBs for a single application program are contained in a program
specification block (PSB). A program might use only one DB PCB (if it processes only
one data structure) or it might use several DB PCBs, one for each data structure.

Related Reading: For more information on generating PSBs, see IMS Version 14
Database Utilities.

The following figure illustrates the concept of defining a view for an application
program. An accounting program that calculates and prints bills for the clinic's
patients would need only the PATIENT, BILLING, and PAYMENT segments. You
could define the data structure shown in the following figure in a DB PCB for this
program.

PATIENT

BILLING

PAYMENT

Figure 2. Accounting program's view of the database

A program that updates the database with information on patients' illnesses and
treatments, in contrast, would need to process the PATIENT, ILLNESS, and
TREATMNT segments. You could define the data structure shown in the following
figure in a DB PCB for this program.

Chapter 1. Designing an application: Introductory concepts 11

PATIENT

ILLNESS

TREATMNT

Figure 3. Patient illness program's view of the database

Sometimes a program needs to process all of the segments in the database. When
this is true, the program's view of the database as defined in the DB PCB is the
same as the database hierarchy that is defined in the DBD.

An application program processes only the segments in a database that it requires;
therefore, if you change the format of a segment that is not processed, you do not
change the program. A program is affected only by the segments that it accesses. In
addition to being sensitive to only certain segments in a database, a program can
also be sensitive to only certain fields within a segment. If you change a segment
or field that the program is not sensitive to, it does not affect the program. You
define segment and field-level sensitivity during PSBGEN.

Definition: Field-level sensitivity is when a program is sensitive to only certain
fields within a segment.

Related Reading: For more information, see IMS Version 14 Database Administration.

Processing a database record

To process the information in the database, your application program
communicates with IMS in three ways: by passing control, by communicating
processing requests, and by exchanging information using DL/I calls.

* Passing control—IMS passes control to your application program through an
entry statement in your program. Your program returns control to IMS when it
has finished its processing.

When you are running a CICS online program, CICS passes control to your
application program, and your program schedules a PSB to make IMS requests.
Your program returns control to CICS. If you are running a batch or BMP
program, IMS passes control to your program with an existing PSB scheduled.

* Communicating processing requests—You communicate processing requests to
IMS in one of two ways:

— In IMS, you issue DL/I calls to process the database.

— In CICS, you can issue either DL/I calls or EXEC DLI commands. EXEC DLI
commands more closely resemble a higher-level language than do DL/I calls.

12 Application Programming

* Exchanging information using DL/I calls—Your program exchanges information
in two areas:

— A DL/I call reports the results of your request in a control block and the AIB
communication block when using one of the AIB interfaces. For programs
written using DL/I calls, this control block is the DB PCB. For programs
written using EXEC DLI commands, this control block is the DLI interface
block (DIB). The contents of the DIB reflect the status of the last DL/I
command executed in the program. Your program includes a mask of the
appropriate control block and uses this mask to check the results of the
request.

— When you request a segment from the database, IMS returns the segment to
your I/O area. When you want to update a segment in the database, you
place the new value of the segment in the 1/O area.

An application program can read and update a database. When you update a
database, you can replace, delete, or add segments. In IMS, you indicate in the
DL/I call the segment you want to process, and whether you want to read or
update it. In CICS, you can indicate what you want using either a DL/I call or an
EXEC DLI command.

Tasks for developing an application

The following tasks are involved in developing an IMS application, and the
programs that are part of the application.

Designing the application

Application program design varies from place to place, and from one application
to another.

Therefore, this information does not try to cover the early tasks that are part of
designing an application program. Instead, it covers only the tasks that you are
concerned with after the early specifications for the application have been
developed. The tasks for designing the application are:

* Analyzing Application Data Requirements

Two important parts of application design are defining the data that each of the
business processes in the application requires and designing a local view for
each of the business processes.

* Analyzing Application Processing Requirements

When you understand the business processes that are part of the application,
you can analyze the requirements of each business process in terms of the
processing that is available with different types of application programs.

* Gathering Requirements for Database Options

You then need to look at the database options that can most efficiently meet the
requirements, and gather information about your application's data requirements
that relates to each of the options.

* Gathering Requirements for Message Processing Options

If your application communicates with terminals and other application
programs, look at the message processing options and the requirements they
satisfy.

For more information about designing a CICS application, see CICS Transaction
Server for z/OS CICS Application Programming Guide.

Chapter 1. Designing an application: Introductory concepts 13

Developing specifications

Developing specifications involves defining what your application will do, and
how it will be done. The task of developing specifications is not described in this
information because it depends entirely on the specific application and your
standards.

Implementing the design

When the specifications for each of the programs in the application are developed,
you can structure and code the programs according to those specifications. The
tasks of implementing the design are:

Writing the Database Processing Part of the Program

When the program design is complete, you can structure and code your requests
and data areas based on the programming specifications that have been
developed.

Writing the Message Processing Part of the Program

If you are writing a program that communicates with terminals and other

programs, you need to structure and code the message processing part of the
program.

Analyzing APPC/IMS Requirements

The LU 6.2 feature of IMS TM enables your application to be distributed
throughout the network.

Testing an Application Program

When you finish coding your program, test it by itself and then as part of a
system.

Documenting an Application Program

Documenting a program continues throughout the project and is most effective
when done incrementally. When the program is completely tested, information
must be suppled to those who use and maintain your program.

14 Application Programming

Chapter 2. Designing an application: Data and local views

Designing an application that meets the requirements of end users involves a
variety of tasks and, usually, people from several departments. Application design
begins when a department or business area communicates a need for some type of
processing. Application design ends when each of the parts of the application
system—for example, the programs, the databases, the display screens, and the
message formats—have been designed.

An overview of application design

The application design process varies from place to place and from application to
application. The overview that is given in this section and the suggestions about
documenting application design and converting existing applications are not the
only way that these tasks are performed.

The purpose of this overview is to give you a frame of reference so that you can
understand where the techniques and guidelines explained in this section fit into
the process. The order in which you perform the tasks described here, and the
importance you give to each one, depend on your settings. Also, the individuals
involved in each task, and their titles, might differ depending on the site. The tasks
are as follows:

* Establish your standards

Throughout the design process, be aware of your established standards. Some of
the areas that standards are usually established for are:

Naming conventions (for example, for databases and terminals)

Formats for screens and messages

Control of and access to the database
— Programming and conventions (for common routines and macros)
Setting up standards in these areas is usually an ongoing task that is the
responsibility of database and system administrators.

* Follow your security standards

Security protects your resources from unauthorized access and use. As with
defining standards, designing an adequate security system is often an ongoing
task. As an application is modified or expanded, often the security must be
changed in some way also. Security is an important consideration in the initial
stages of application design.

Establishing security standards and requirements is usually the responsibility of
system administration. These standards are based on the requirements of your
applications.

Some security concerns are:
— Access to and use of the databases
— Access to terminals
— Distribution of application output
— Control of program modification
— Transaction and command entry

* Define application data

© Copyright IBM Corp. 1974, 2015 15

Identifying the data that an application requires is a major part of application
design. One of the tasks of data definition is learning from end users what
information will be required to perform the required processing.

* Provide input for database design
To design a database that meets the requirements of all the applications that will
process it, the database administrator (DBA) needs information about the data
requirements of each application. One way to gather and supply this
information is to design a local view for each of the business processes in your
application. A local view is a description of the data that a particular business
process requires.

* Design application programs
When the overall application flow and system externals have been defined, you
define the programs that will perform the required processing. Some of the most
important considerations involved in this task are: standards, security
requirements, privacy requirements, and performance requirements. The
specifications you develop for the programs should include:
- Security requirements
— Input and output data formats and volumes
— Data verification and validation requirements
— Logic specifications
— Performance requirements
- Recovery requirements
— Linkage requirements and conventions
— Data availability considerations
In addition, you might be asked to provide some information about your
application to the people responsible for network and user interface design.

* Document the application design process

Recording information about the application design process is valuable to others
who work with the application now and in the future. One kind of information
that is helpful is information about why you designed the application the way
you did. This information can be helpful to people who are responsible for the
database, your IMS system, and the programs in the application—especially if
any part of the application must be changed in the future. Documenting
application design is done most thoroughly when it is done during the design
process, instead of at the end of it.

» Convert an existing application

One of the main aspects in converting an existing application to IMS is to know
what already exists. Before starting to convert the existing system, find out
everything you can about the way it works currently. For example, the following
information can be of help to you when you begin the conversion:

— Record layouts of all records used by the application
— Number of data element occurrences for each data element
— Structure of any existing related databases

Related concepts:

[“Providing data security” on page 91|

[“Identifying online security requirements” on page 99|

[‘Identifying application data” on page 17|

[‘Designing a local view” on page 22|

16 Application Programming

Identifying application data

Two important aspects of application design are identifying the application data
and describing the data that a particular business process requires.

One of the steps of identifying application data is to thoroughly understand the
processing the user wants performed. You need to understand the input data and
the required output data in order to define the data requirements of the
application. You also need to understand the business processes that are involved
in the user's processing needs. Three of the tasks involved in identifying
application data are:

* Listing the data required by the business process
* Naming the data

* Documenting the data

When analyzing the required application data, you can categorize the data as
either an entity or a data element.

Definitions: An entity is anything about which information can be stored. A data
element is the smallest named unit of data pertaining to an entity. It is information
that describes the entity.

Example: In an education application, “students” and “courses” are both entities;
these are two subjects about which you collect and process data. The following
table shows some data elements that relate to the student and course entities. The
entity is listed with its related data elements.

Table 10. Entities and data elements.

Entity Data elements

Student Student Name

Student Number

Course Course Name

Course Number

Course Length

When you store this data in an IMS database, groups of data elements are potential
segments in the hierarchy. Each data element is a potential field in that segment.

Related concepts:

[“An overview of application design” on page 15|

Listing data elements
To identify application data, you list its data elements.

For example, to identify application data, consider a company that provides
technical education to its customers. The education company has one headquarters
office, called Headquarters, and several local education centers, called Ed Centers.

A class is a single offering of a course on a specific date at a particular Ed Center.
One course might have several offerings at different Ed Centers; each of these is a
separate class. Headquarters is responsible for developing all the courses that will
be offered, and each Ed Center is responsible for scheduling classes and enrolling
students for its classes.

Chapter 2. Designing an application: Data and local views 17

Suppose that one of the education company's requirements is for each Ed Center to
print weekly current rosters for all classes at the Ed Center. The current roster is to
give information about the class and the students enrolled in the class.
Headquarters wants the current rosters to be in the format shown in the following

figure.
/EHICAGO 01/04/04 h
TRANSISTOR THEORY 41837
10 DAYS
INSTRUCTOR(S) : BENSON, R.J. DATE: 01/14/04
STUDENT CUST LOCATION STATUS ABSENT GRADE
1.ADAMS, J.W. XYz SOUTH BEND, IND CONF
2.BAKER, R.T. ACME BENTON HARBOR, MICH WAIT
3.DRAKE, R.A. XYz SOUTH BEND, IND CANC
33.WILLIAMS, L.R. BEST CHICAGO, ILL CONF
CONFIRMED = 30
WAIT-LISTED = 1
CANCELED = 2

Figure 4. Current roster for technical education example

To list the data elements for a particular business process, look at the required
output. The current roster shown in the previous figure is the roster for the class,
“Transistor Theory” to be given in the Chicago Ed Center, starting on January 14,
2004, for ten days. Each course has a course code associated with it—in this case,
41837. The code for a particular course is always the same. For example, if
Transistor Theory is also offered in New York, the course code is still 41837. The
roster also gives the names of the instructors who are teaching the course.
Although the example only shows one instructor, a course might require more than
one instructor.

For each student, the roster keeps the following information: a sequence number
for each student, the student's name, the student's company (CUST), the company's
location, the student's status in the class, and the student's absences and grade. All
the above information on the course and the students is input information.

The current date (the date that the roster is printed) is displayed in the upper right
corner (01/04/04). The current date is an example of data that is output only data;
it is generated by the operating system and is not stored in the database.

The bottom-left corner gives a summary of the class status. This data is not
included in the input data. These values are determined by the program during
processing.

When you list the data elements, abbreviating them is helpful, because you will be
referring to them frequently when you design the local view.
The data elements list for current roster is:

EDCNTR
Name of Ed Center giving class

DATE Date class starts

18 Application Programming

CRSNAME
Name of course

CRSCODE
Course code

LENGTH
Length of course

INSTRS
Names of instructors teaching class

STUSEQ#
Student's sequence number

STUNAME
Student's name

CUST Name of student's company

LOCTN
Location of student's company
STATUS
Student's status in class—confirmed, wait list, or cancelled
ABSENCE
Number of days student was absent
GRADE

Student's grade for the course

After you have listed the data elements, choose the major entity that these
elements describe. In this case, the major entity is class. Although a lot of
information exists about each student and some information exists about the
course in general, together all this information relates to a specific class. If the
information about each student (for example, status, absence, and grade) is not
related to a particular class, the information is meaningless. This holds true for the
data elements at the top of the list as well: The Ed Center, the date the class starts,
and the instructor mean nothing unless you know what class they describe.

Naming data elements

Some of the data elements your application uses might already exist and be
named. After you have listed the data elements, find out if any of them exist by
checking with your database administrator (DBA).

Before you begin naming data elements, be aware of the naming standards that
you are subject to. When you name data elements, use the most descriptive names
possible. Remember that, because other applications probably use at least some of
the same data, the names should mean the same thing to everyone. Try not to limit
the name's meaning only to your application.

Recommendation: Use global names rather than local names. A global name is a
name whose meaning is clear outside of any particular application. A local name is
a name that, to be understood, must be seen in the context of a particular
application.

One of the problems with using local names is that you can develop synonym:s,
two names for the same data element.

Chapter 2. Designing an application: Data and local views 19

For example, in the current roster example, suppose the student's company was
referred to simply as “company” instead of “customer”. But suppose the
accounting department for the education company used the same piece of data in
a billing application—the name of the student's company—and referred to it as
“customer”. This would mean that two business processes were using two different
names for the same piece of data. At worst, this could lead to redundant data if no
one realized that “customer” and “company” contained the same data. To solve
this, use a global name that is recognized by both departments using this data
element. In this case, “customer” is more easily recognized and the better choice.
This name uniquely identifies the data element and has a specific meaning within
the education company.

When you choose data element names, use qualifiers so that each name can mean
only one thing.

For example, suppose Headquarters, for each course that is taught, assigns a
number to the course as it is developed and calls this number the “sequence
number”. The Ed Centers, as they receive student enrollments for a particular
class, assign a number to each student as a means of identification within the class.
The Ed Centers call this number the “sequence number”. Thus Headquarters and
the Ed Centers are using the same name for two separate data elements. This is
called a homonym. You can solve the homonym problem by qualifying the names.
The number that Headquarters assigns to each course can be called “course code”
(CRSCODE), and the number that the Ed Centers assign to their students can be
called “student sequence number” (STUSEQ#).

Homonym
One word for two different things.

Choose data element names that identify the element and describe it precisely.
Make your data element names:

Unique
The name is clearly distinguishable from other names.

Self-explanatory
The name is easily understood and recognized.

Concise
The name is descriptive in a few words.

Universal
The name means the same thing to everyone.

Documenting application data

After you have determined what data elements a business process requires, record
as much information about each of the data elements as possible.

This information is useful to the DBA. Be aware of any standards that you are
subject to regarding data documentation. Many places have standards concerning
what information should be recorded about data and how and where that
information should be recorded. The amount and type of this information varies
from place to place. The following list is the type of information that is often
recorded.

20 Application Programming

The descriptive name of the data element
Data element names should be precise, yet they should be meaningful to
people who are familiar and also to those who are unfamiliar with the
application.

The length of the data element
The length of the data element determines segment size and segment
format.

The character format
The programmer needs to know if the data is alphanumeric, hexadecimal,
packed decimal, or binary.

The range of possible values for the element
The range of possible values for the element is important for validity
checking.

The default value
The programmer also needs the default value.

The number of data element occurrences
The number of data element occurrences helps the DBA to determine the
required space for this data, and it affects performance considerations.

How the business process affects the data element
Whether the data element is read or updated determines the processing
option that is coded in the PSB for the application program.

You should also record control information about the data. Such information
should address the following questions:

* What action should the program take when the data it attempts to access is not
available?

* If the format of a particular data element changes, which business processes
does that affect? For example, if an education database has as one of its data
elements a five-digit code for each course, and the code is changed to six digits,
which business processes does this affect?

* Where is the data now? Know the sources of the data elements required by the
application.

* Which business processes make changes to a particular data element?

* Are there security requirements about the data in your application? For example,

you would not want information such as employees' salaries available to
everyone?

* Which department owns and controls the data?

One way to gather and record this information is to use a form similar to the one
shown in the following table. The amount and type of data that you record
depends on the standards that you are subject to. For example, the following table
lists the ID number, data element name, length, the character format, the allowed,
null, default values, and the number of occurrences.

Chapter 2. Designing an application: Data and local views 21

Table 11. Example of data elements information form

Data
element Char. Null Default
ID # name Length format Allowed values values value Number of occurrences
5 Course 5 bytes Hexa- 0010090000 00000 N/A There are 200 courses in
Code decimal the curriculum. An
average of 10 are new or
revised per year. An
average of 5 are dropped
per year.
25 Status 4 bytes Alpha- CONF WAIT blanks WAIT 1 per student
numeric CANC
36 Student 20 bytes Alpha- Alpha only blanks N/A There are 3 to 100
Name numeric students per class with
an average of 40 per
class.

A data dictionary is a good place to record the facts about the application's data.
When you are analyzing data, a dictionary can help you find out whether a
particular data element already exists, and if it does, its characteristics. With the
IBM OS/VS DB/DC Data Dictionary, you can determine online what segments
exist in a particular database and what fields those segments contain. You can use
either tool to create reports involving the same information.

Designing a local view

A local view is a description of the data that an individual business process
requires.

It includes the following:
¢ A list of the data elements

* A conceptual data structure that shows how you have grouped data elements by
the entities that they describe

* The relationships between each of the groups of data elements

Definitions: A data aggregate is a group of data elements. When you have grouped
data elements by the entity they describe, you can determine the relationships
between the data aggregates. These relationships are called mappings. Based on the
mappings, you can design a conceptual data structure for the business process. You
should document this process as well.

Related concepts:

[“An overview of application design” on page 15|

Analyzing data relationships

When you analyze data relationships, you are developing conceptual data
structures for the business processes in your application.

This process, called data structuring, is a way to analyze the relationships among
the data elements a business process requires, not a way to design a database. The
decisions about segment formats and contents belong to the DBA. The information
you develop is input for designing a database.

Data structuring can be done in many different ways.

22 Application Programming

Grouping data elements into hierarchies

The data elements that describe a data aggregate, the student, might be
represented by the descriptive names STUSEQ#, STUNAME, CUST, LOCTN,
STATUS, ABSENCE, and GRADE. We call this group of data elements the student
data aggregate.

Data elements have values and names. In the student data elements example, the
values are a particular student's sequence number, the student's name, company,
company location, the student's status in the class, the student's absences, and
grade. The names of the data aggregate are not unique—they describe all the
students in the class in the same terms. The combined values, however, of a data
aggregate occurrence are unique. No two students can have the same values in
each of these fields.

As you group data elements into data aggregates and data structures, look at the
data elements that make up each group and choose one or more data elements that
uniquely identify that group. This is the data aggregate's controlling key, which is
the data element or group of data elements in the aggregate that uniquely
identifies the aggregate. Sometimes you must use more than one data element for
the key in order to uniquely identify the aggregate.

By following the three steps explained in this section, you can develop a
conceptual data structure for a business process's data. However, you are not
developing the logical data structure for the program that performs the business
process. The three steps are:

1. Separate repeating data elements in a single occurrence of the data aggregate.
2. Separate duplicate values in multiple occurrences of the data aggregate.
3. Group each data element with its controlling keys.

Step 1. separating repeating data elements

Look at a single occurrence of the data aggregate. The following table shows what
this looks like for the class aggregate; the data element is listed with the class
aggregate occurrence.

Table 12. Single occurrence of class aggregate

Data element Class aggregate occurrence
EDCNTR CHICAGO
DATE(START) 1/14/96

CRSNAME TRANSISTOR THEORY
CRS CODE 41837

LENGTH 10 DAYS

INSTRS multiple

STUSEQ# multiple

STUNAME multiple

CUST multiple

LOCTN multiple

STATUS multiple

ABSENCE multiple

GRADE multiple

Chapter 2. Designing an application: Data and local views 23

The data elements defined as multiple are the elements that repeat. Separate the
repeating data elements by shifting them to a lower level. Keep data elements with
their controlling keys.

The data elements that repeat for a single class are: STUSEQ#, STUNAME, CUST,
LOCTN, STATUS, ABSENCE, and GRADE. INSTRS is also a repeating data
element, because some classes require two instructors, although this class requires
only one.

When you separate repeating data elements into groups, you have the structure
shown in the following figure.

In the following figure, the data elements in each box form an aggregate. The
entire figure depicts a data structure. The data elements include the Course

aggregate, the Student aggregate, and the Instructor aggregate.

The following figure shows these aggregates with the keys indicated with leading
asterisks (*).

Course aggregate

*EDCNTR
*DATE
CRSNAME
*CRSCODE
LENGTH
Student Instructor
aggregate aggregate
* STUSEQ# *INSTRS
STUNAME
CUST
LOCTN
ABSENCE
GRADE
STATUS

Figure 5. Current roster after step 1

The keys for the data aggregates are shown in the following table.

Table 13. Data aggregates and keys for current roster after step 1

Data aggregate Keys

Course aggregate EDCNTR, DATE, CRSCODE

Student aggregate EDCNTR, DATE, CRSCODE, STUSEQ#
Instructor aggregate EDCNTR, DATE, CRSCODE, INSTRS

24 Application Programming

The asterisks in the previous figure identify the key data elements. For the Class
aggregate, it takes multiple data elements to identify the course, so you need
multiple data elements to make up the key. The data elements that comprise the
Class aggregate are:

* Controlling key element, STUSEQ#
* STUNAME

« CUST

+ LOCTN

* STATUS

» ABSENCE

* GRADE

The data elements that comprise the Instructor aggregate are:
* Key element, INSTRS

The Course aggregate and the Instructor aggregate inherit the following keys from
the root segment, Course aggregate:

* EDCNTR
* DATE
* CRSCODE

After you have shifted repeating data elements, make sure that each element is in
the same group as its controlling key. INSTRS is separated from the group of data
elements describing a student because the information about instructors is
unrelated to the information about the students. The student sequence number
does not control who the instructor is.

In the example shown in the previous figure, the Student aggregate and Instructor
aggregate are both dependents of the Course aggregate. A dependent aggregate's
key includes the concatenated keys of all the aggregates above the dependent
aggregate. This is because a dependent's controlling key does not mean anything if
you do not know the keys of the higher aggregates. For example, if you knew that
a student's sequence number was 4, you would be able to find out all the
information about the student associated with that number. This number would be
meaningless, however, if it were not associated with a particular course. But,
because the key for the Student aggregate is made up of Ed Center, date, and
course code, you can deduce which class the student is in.

Step 2. isolating duplicate aggregate values

Look at multiple occurrences of the aggregate—in this case, the values you might
have for two classes. The following table shows multiple occurrences (2) of the
same data elements. As you look at this table, check for duplicate values.
Remember that both occurrences describe one course.

Table 14. Multiple occurrences of class aggregate

Data element list Occurrence 1 Occurrence 2
EDCNTR CHICAGO NEW YORK
DATE(START) 1/14/96 3/10/96
CRSNAME TRANS THEORY TRANS THEORY
CRSCODE 41837 41837

Chapter 2. Designing an application: Data and local views 25

Table 14. Multiple occurrences of class aggregate (continued)

Data element list Occurrence 1 Occurrence 2
LENGTH 10 DAYS 10 DAYS
INSTRS multiple multiple
STUSEQ# multiple multiple
STUNAME multiple multiple
CUST multiple multiple
LOCTN multiple multiple
STATUS multiple multiple
ABSENCE multiple multiple
GRADE multiple multiple

The data elements defined as multiple are the data elements that repeat. The
values in these elements are not the same. The aggregate is always unique for a
particular class.

In this step, compare the two occurrences and shift the fields with duplicate values
(TRANS THEORY and so on) to a higher level. If you need to, choose a controlling
key for aggregates that do not yet have keys.

In the previous table, CRSNAME, CRSCODE, and LENGTH are the fields that
have duplicate values. Much of this process is intuitive. Student status and grade,
although they can have duplicate values, should not be separated because they are
not meaningful values by themselves. These values would not be used to identify a
particular student. This becomes clear when you remember to keep data elements
with their controlling keys. When you separate duplicate values, you have the
structure shown in the following figure.

26 Application Programming

Course aggregate

*CRSCODE
CRSNAME
LENGTH
iCIass aggregate

*EDCNTR

*DATE
Student Instructor
aggregate aggregate
STUNAME
CUST
LOCTN
ABSENCE
GRADE
STATUS

Figure 6. Current roster after step 2

Step 3. grouping data elements with their controlling keys

This step is often a check on the first two steps. (Sometimes the first two steps
have already done what this step instructs you to do.)

At this stage, make sure that each data element is in the group that contains its
controlling key. The data element should depend on the full key. If the data
element depends only on part of the key, separate the data element along with the
partial (controlling) key on which it depends.

In this example, CUST and LOCTN do not depend on the STUSEQ#. They are
related to the student, but they do not depend on the student. They identify the
company and company address of the student.

CUST and LOCTN are not dependent on the course, the Ed Center, or the date,
either. They are separate from all of these things. Because a student is only
associated with one CUST and LOCTN, but a CUST and LOCTN can have many
students attending classes, the CUST and LOCTN aggregate should be above the
student aggregate.

The following figure shows these aggregates and keys indicated with leading
asterisks (*) and shows what the structure looks like when you separate CUST and
LOCTN.

Chapter 2. Designing an application: Data and local views 27

Course aggregate

*CRSCODE
CRSNAME
LENGTH
Customer/Location
aggregate l Class aggregate
*CUST *EDCNTR
*LOCTN *DATE
Student Instructor
aggregate aggregate
STUNAME
STATUS
ABSENCE
GRADE

Figure 7. Current roster after step 3

The keys for the data aggregates are shown in the following table.

Table 15. Data aggregates and keys for current roster after step 3

Data aggregate Keys

Course aggregate CRSCODE

Class aggregate CRSCODE, EDCNTR, DATE

Customer aggregate CUST, LOCTN

Student aggregate (when viewed from the customer aggregate in

“Current roster after step 3”instead of from the
course aggregate, in “Current roster after step 2”)
CUST, LOCTN, STUSEQ, CRSCODE, EDCNTR,
DATE

Instructor aggregate CRSCODE, EDCNTR, DATE, INSTRS

Deciding on the arrangement of the customer and location information is part of
designing a database. Data structuring should separate any inconsistent data
elements from the rest of the data elements.

Determining mappings

When you have arranged the data aggregates into a conceptual data structure, you
can examine the relationships between the data aggregates. A mapping between
two data aggregates is the quantitative relationship between the two.

The reason you record mappings is that they reflect relationships between
segments in the data structure that you have developed. If you store this

information in an IMS database, the DBA can construct a database hierarchy that

28 Application Programming

satisfies all the local views, based on the mappings. In determining mappings, it is
easier to refer to the data aggregates by their keys, rather than by their collected
data elements.

The two possible relationships between any two data aggregates are:

One-to-many

For each segment A, one or more occurrences of segment B exist. For example,
each class maps to one or more students.

Mapping notation shows this in the following way:

Class «— > Student

Many-to-many

Segment B has many A segments associated with it and segment A has many B
segments associated with it. In a hierarchic data structure, a parent can have one
or more children, but each child can be associated with only one parent. The
many-to-many association does not fit into a hierarchy, because in a
many-to-many association each child can be associated with more than one
parent.

Related Reading: For more information about analyzing data requirements, see
IMS Version 14 Database Administration.

Many-to-many relationships occur between segments in two business processes.
A many-to-many relationship indicates a conflict in the way that two business
processes need to process those data aggregates. If you use the IMS full-function
database, you can solve this kind of processing conflict by using secondary
indexing or logical relationships.

The mappings for the current roster are:

Course «— > Class

For each course, there might be several classes scheduled, but a class is
associated with only one course.

Class «— > Student

A class has many students enrolled in it, but a student might be in only one
class offering of this course.

Class «—» Instructor

A class might have more than one instructor, but an instructor only teaches one
class at a time.

Customer/location «—— > Student

A customer might have several students attending a particular class, but each
student is only associated with one customer and location.

Related concepts:

[“Understanding how data structure conflicts are resolved” on page 81|

Local view examples

The following examples show how to design local views including the schedule of
courses, the instructor skills report, and the instructor schedules.

Each example shows the following parts of designing a local view:

1.

Gather the data. For each example, the data elements are listed and two
occurrences of the data aggregate are shown. Two occurrences are shown
because you need to look at both occurrences when you look for repeating
fields and duplicate values.

Chapter 2. Designing an application: Data and local views 29

2. Analyze the data relationships. First, group the data elements into a conceptual
data structure using these three steps:

a. Separate repeating data elements in a single occurrence of the data
aggregate by shifting them to a lower level. Keep data elements with their
keys.

b. Separate duplicating values in two occurrences of the data aggregate by
shifting those data elements to a higher level. Again, keep data elements
with their keys.

c. Group data elements with their keys. Make sure that all the data elements
within one aggregate have the same key. Separate any that do not.

3. Determine the mappings between the data aggregates in the data structure you
have developed.

Example 1: schedule of courses
Headquarters keeps a schedule of all the courses given each quarter and

distributes it monthly. Headquarters wants the schedule to be sorted by course
code and printed in the format shown in the following figure.

(COURSE SCHEDULE R
COURSE: ~ TRANSISTOR THEORY COURSE CODE: 418737
LENGTH: 10 DAYS PRICE: $280
DATE LOCATION
APRIL 14 BOSTON
APIRL 21 CHICAGO
NOVEMBER 18 LOS ANGELES
. /

Figure 8. Schedule of courses

1. Gather the data. The following table lists the data elements and two
occurrences of the data aggregate.

Table 16. Course schedule data elements

Data elements Occurrence 1 Occurrence 2
CRSNAME TRANS THEORY MICRO PROG
CRSCODE 41837 41840
LENGTH 10 DAYS 5 DAYS
PRICE $280 $150

DATE multiple multiple
EDCNTR multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual
data structure.

a. Separate repeating data elements in one occurrence of the data aggregate by
shifting them to a lower level, as shown in the following table

30 Application Programming

Course aggregate

“CRSCODE
CRSNAME
LENGTH
PRICE

l Class aggregate

*EDCNTR
*DATE

Figure 9. Course schedule after step 1

b. Next, separate duplicate values in two occurrences of the data aggregate by
shifting the data elements to a higher level.

This data aggregate does not contain duplicate values.
c. Group data elements with their controlling keys.

Data elements are grouped with their keys in the present structure. No
changes are necessary for this step.

The keys for the data aggregates are shown in the following table.

Table 17. Data aggregates and keys for course schedule after step 1

Data aggregate Keys
Course aggregate CRSCODE
Class aggregate CRSCODE, EDCNTR, DATE

3. When you have developed a conceptual data structure, determine the
mappings for the data aggregates.

The mapping for this local view is: Course «——— > Class
Example 2: instructor skills report

Each Ed Center needs to print a report showing the courses that its instructors are
qualified to teach. The report format is shown in the following figure.

Chapter 2. Designing an application: Data and local views 31

INSTRUCTOR SKILLS REPORT
INSTRUCTOR COURSE CODE COURSE NAME
BENSON, R. J. 41837 TRANS THEORY
MORRIS, S. R. 41837 TRANS THEORY
41850 CIRCUIT DESIGN
41852 LOGIC THEORY
REYNOLDS, P. W. 41840 MICRO PROG
41850 CIRCUIT DESIGN
- /

Figure 10. Instructor skills report

1. Gather the data. The following table lists the data elements and two
occurrences of the data aggregate.

Table 18. Instructor skills data elements

Data elements Occurrence 1 Occurrence 2
INSTR REYNOLDS, PW. MORRIS, S. R.
CRSCODE multiple multiple
CRSNAME multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual
data structure.

a. Separate repeating data elements in one occurrence of the data aggregate by
shifting to a higher level as shown in the following figure.

Instructor aggregate

*INSTR

l Course aggregate

*CRSCODE
CRSNAME

Figure 11. Instructor skills after step 1

b. Separate any duplicate values in the two occurrences of the data aggregate.
No duplicate values exist in this data aggregate.
c. Group data elements with their keys.

All data elements are grouped with their keys in the current data structure.
There are no changes to this data structure.

3. Determine the mappings for the data aggregates.
The mapping for this local view is: Instructor «———» Course

32 Application Programming

Example 3: instructor schedules

Headquarters wants to produce a report showing the schedules for all the
instructors. The following figure shows the report format.

é INSTRUCTOR SCHEDULES h
INSTRUCTOR COURSE CODE ED CENTER DATE
BENSON, R. J. TRANS THEORY 41837 CHICAGO 1/14/96
MORRIS, S. R. TRANS THEORY 41837 NEW YORK 3/10/96
LOGIC THEORY 41852 BOSTON 3/27/96
CIRCUIT DES 41840 CHICAGO 4/21/96
REYNOLDS, B. H. MICRO PROG 41850 NEW YORK 2/25/96
S CIRCUIT DES 41850 LOS ANGELES 3/10.96 D,

Figure 12. Instructor schedules

1. Gather the data. The following table lists the data elements and two
occurrences of the data aggregate.

Table 19. Instructor schedules data elements

Data elements Occurrence 1 Occurrence 2
INSTR BENSON, R. J. MORRIS, S. R.
CRSNAME multiple multiple
CRSCODE multiple multiple
EDCNTR multiple multiple
DATE(START) multiple multiple

2. Analyze the data relationships. First, group the data elements into a conceptual
data structure.

a. Separate repeating data elements in one occurrence of the data aggregate by
shifting data elements to a lower level as shown in the following figure.

Instructor aggregate
*INSTR
iCourse aggregate

CRSNAME
*CRSCODE
*EDCNTR
*DATE

Figure 13. Instructor schedules step 1

b. Separate duplicate values in two occurrences of the data aggregate by
shifting data elements to a higher level as shown in the following figure.

In this example, CRSNAME and CRSCODE can be duplicated for one
instructor or for many instructors, for example, 41837 for Benson and 41850
for Morris and Reynolds.

Chapter 2. Designing an application: Data and local views 33

Instructor aggregate

“INSTR

l Course aggregate

*CRSCODE
CRSNAME

l Class aggregate

*EDCNTR
*DATE

Figure 14. Instructor schedules step 2

c. Group data elements with their keys.

All data elements are grouped with their controlling keys in the current
data structure. No changes to the current data structure are required.

3. Determine the mappings for the data aggregates.

The mappings for this local view are: Instructor «————» Course Course
<«— > (lass

An analysis of data requirements is necessary to combine the requirements of
the three examples presented in this section and to design a hierarchic structure
for the database based on these requirements.

Related Reading: For more information on analyzing data requirements, see
IMS Version 14 Database Administration.

34 Application Programming

Chapter 3. Analyzing IMS application processing requirements

Use the following information to plan for writing application programs for IMS
environments.

Defining IMS application requirements

One of the steps of application design is to decide how the business processes, or
tasks, that the end user wants performed can be best grouped into a set of
programs that efficiently performs the required processing.

To analyze processing requirements, consider:
* When the task must be performed

— Will the task be scheduled unpredictably (for example, on terminal demand)
or periodically (for example, weekly)?

* How the program that performs the task is executed

— Will the program be executed online, where response time is crucial, or by
batch job submission, where a slower response time is acceptable?

* The consistency of the processing components

— Does the action the program is to perform involve more than one type of
program logic? For example, does it involve mostly retrievals and only one or
two updates? If so, you should consider separating the updates into a
separate program.

— Does this action involve several large groups of data? If it does, it might be
more efficient to separate the programs by the data they access.

* Any special requirements about the data or processing

Security
Should access to the program be restricted?

Recovery
Are there special recovery considerations in the program's processing?

Availability
Does your application require high data availability?

Integrity
Do other departments use the same data?

Answers to questions like these can help you decide on the number of application
programs that the processing will require, and on the types of programs that
perform the processing most efficiently. Although rules dealing with how many
programs can most efficiently do the required processing do not exist, here are
some suggestions:

* As you look at each programming task, examine the data and processing that
each task involves. If a task requires different types of processing and has
different time limitations (for example, daily as opposed to different times
throughout the month), that task might be more efficiently performed by several
programs.

* As you define each program, it is a good idea for maintenance and recovery
reasons to keep it as simple as possible. The simpler a program is—the less it
does—the easier it is to maintain, and to restart after a program or system

© Copyright IBM Corp. 1974, 2015 35

failure. The same is true with data availability—the less data that is accessed, the
more likely the data is to be available. The more limited the access requested,
the more likely the data is to be available.

Similarly, if the data that the application requires is physically in one place, it
might be more efficient to have one program do more of the processing than
usual. These are considerations that depend upon the processing and the data of
each application.

¢ Documenting each of the user tasks is helpful during the design process, and in
the future when others will work with your application. Be sure you are aware
of standards in this area. The kind of information that is typically kept is when
the action is to be executed, a functional description, and requirements for
maintenance, security, and recovery.

For example, for the current roster process described previously, you might
record the information shown in the following form. How frequently the
program is run is determined by the number of classes (20) needed by the
Education Center each week.

Documenting user task descriptions: current roster example
USER TASK DESCRIPTION

NAME: Current Roster
ENVIRONMENT: Batch FREQUENCY: 20 per week

INVOKING EVENT OR DOCUMENT: Time period (one week)

REQUIRED RESPONSE TIME: 24 hours

FUNCTION DESCRIPTION: Print weekly, a current student roster, in student
number sequence for each class offered at the Education Center.

MAINTENANCE:Included in Education DB maintenance.

SECURITY: None.

RECOVERY:After a failure, the ability to start printing a particular
class roster starting from a particular sequential student number.

Accessing databases with your IMS application program

When designing your program, consider the type of database it must access. The
type of database depends on the operating environment.

The program types you can run and the different types of databases you can access

in a DB batch, TM batch, DB/DC, DBCTL, or DCCTL environment are shown in
the following table.

36 Application Programming

Table 20. Program and database options in IMS environments

Environment

Type of program you

can run

Type of database that can be accessed

DB/DC

BMP

DB2® for z/OS
DEDB and MSDB
Full function
z/OS files

IFP

DB2 for z/0S
DEDB

Full function

JBP

DB2 for z/0S
DEDB

Full function

JMP

DB2 for z/OS
DEDB

Full function

MPP

DB2 for z/0S
DEDB and MSDB

Full function

DB Batch

DB Batch

DB2 for z/OS
Full function
GSAM

z/OS files

DBCTL

BMP (Batch-oriented)

DB2 for z/0OS
DEDB

Full function
GSAM

z/OS files

JBP

DB2 for z/0S
DEDB

Full function

DCCTL

BMP

DB2 for z/0S
GSAM
z/OS files

IFP

DB2 for z/OS

JMP

DB2 for z/OS

MPP

DB2 for z/OS

TM Batch

TM Batch

DB2 for z/OS
GSAM
z/0S files

The types of databases that can be accessed are:

¢ IMS Databases

Chapter 3. Analyzing IMS application processing requirements

37

There are two types of IMS databases: full-function and Fast Path.
— Full-function databases

Full-function databases are hierarchic databases that are accessed through
Data Language I (DL/I) call interface and can be processed by these types of
application programs: IFP, JMP, JBP, MPP, BMP, and DB batch. DL/I calls
make it possible for IMS application programs to retrieve, replace, delete, and
add segments to full-function databases.

JMP and JBP applications use JDBC to access full-function databases in

addition to DL/IL.

If you use data sharing, online programs and batch programs can access the

same full-function database concurrently.

Full-function database types include: HDAM, HIDAM, HSAM, HISAM,

PHDAM, PHIDAM, SHSAM, and SHISAM.

— Fast Path databases

Fast Path databases are of two types: MSDBs and DEDBs.

- Main storage databases (MSDBs) are root-segment-only databases that
reside in virtual storage during execution.

- Data entry databases (DEDBs) are hierarchic databases that provide a high
level of availability for, and efficient access to, large volumes of detailed
data.

MPP, BMP, and IFP programs can access Fast Path databases. In the DBCTL
environment, BMP programs can access DEDBs but not MSDBs.]MP and JBP
programs can access DEDBs but not MSDBs.

 DB2 for z/OS databases

DB2 for z/OS databases are relational databases that can be processed by IMS
batch, BMP, IFP, JBP, JMP, and MPP programs. An IMS application program
might access only DL/I databases, both DL/I and DB2 for z/OS databases, or
only DB2 for z/OS databases. Relational databases are represented to application
programs and users as tables, and are processed using a relational data language
called Structured Query Language (SQL).

Note: JMP and JBP programs cannot access DB2 for z/OS databases.
Related Reading: For information on processing DB2 for z/OS databases, see
DB2 for z/OS Application Programming and SQL Guide.

z/OS Files

BMPs (in DB/DC, DBCTL, and DCCTL environments) are the only type of
online application program that can access z/OS files for their input or output.
Batch programs can also access z/OS files.

GSAM Databases (Generalized Sequential Access Method)

Generalized Sequential Access Method (GSAM) is an access method that makes

it possible for BMPs and batch programs to access a sequential z/OS data set as
a simple database. A GSAM database can be accessed by z/OS or by IMS.

Accessing data: the types of programs you can write for your IMS

application

You must decide what type of program to use: batch programs, message
processing programs (MPPs), IMS Fast Path (IFP) applications, batch message
processing (BMP) applications, Java Message Processing (JMP) applications, or Java
Batch Processing (JBP) applications. The types of programs you can use depend on
whether you are running in the batch, DB/DC, or DBCTL environment.

38 Application Programming

DB batch processing

These topics describe DB batch processing and can help you decide if this batch
program is appropriate for your application.

Data that a DB batch program can access

A DB batch program can access full-function databases, DB2 for z/OS databases,
GSAM databases, and z/OS files. A DB batch program cannot access DEDBs or
MSDBs.

Using DB batch processing

Batch programs are typically longer-running programs than online programs. You
use a batch program when you have a large number of database updates to do or
a report to print. Because a batch program runs by itself—it does not compete with
any other programs for resources like databases—it can run independently of the
control region. If you use data sharing, DB batch programs and online programs
can access full-function databases concurrently. Batch programs:

* Typically produce a large amount of output, such as reports.

* Are not executed by another program or user. They are usually scheduled at
specific time intervals (for example, weekly) and are started with JCL.

* Produce output that is not needed right away. The turnaround time for batch
output is not crucial, as it usually is for online programs.

Recovering a DB batch program
Include checkpoints in your batch program to restart it in case of failure.
Issuing checkpoints

Issue checkpoints in a batch program to commit database changes and provide
places from which to restart your program. Issuing checkpoints in a batch program
is important, because commit points do not occur automatically, as they do in
MPPs, transaction-oriented BMPs, and IFPs.

Issuing checkpoints is particularly important in a batch program that participates
in data sharing with your online system. Checkpoints free up resources for use by
online programs. You should initially include checkpoints in all batch programs
that you write. Even though the checkpoint support might not be needed then, it is
easier to incorporate checkpoints initially than to try to fit them in later. And it is
possible that you might want to convert your batch program to a BMP or
participate in data sharing.

To issue checkpoints (or other system service calls), you must specify an I/O PCB
for your program. To obtain an I/O PCB, use the compatibility option by
specifying CMPAT=YES in the PSBGEN statement in your program's PSB.

Recommendation: For PSBs used by DB batch programs, always specify
CMPAT=YES.

Backing out database changes
The type of storage medium for the system log determines what happens when a

DB batch program terminates abnormally. You can specify that the system log be
stored on either DASD (direct access storage device) or tape.

Chapter 3. Analyzing IMS application processing requirements 39

System log on DASD

If the system log is stored on DASD, using the BKO execution parameter you can
specify that IMS is to dynamically back out the changes that the program has
made to the database since its last commit point.

Related Reading: For information on using the BKO execution parameter, see IMS
Version 14 System Definition.

Dynamically backing out database changes has the following advantages:

* Data accessed by the program that failed is available to other programs
immediately. If batch backout is used, other programs cannot access the data
until the IMS Batch Backout utility has been run to back out the database
changes.

* If data sharing is being used and two programs are deadlocked, one of the
programs can continue processing. Otherwise, if batch backout is used, both
programs fail.

IMS performs dynamic backout for a batch program when an IMS-detected failure
occurs, for example, when a deadlock is detected. Logging to DASD makes it
possible for batch programs to issue the SETS, ROLB, and ROLS system service calls.
These calls cause IMS to dynamically back out changes that the program has made.

Related Reading: For information on the SETS, ROLB, and ROLS calls, see the
information about recovering databases and maintaining database integrity in IMS
Version 14 Database Administration.

System log on tape

If a batch application program terminates abnormally and the batch system log is
stored on tape, you must use the IMS Batch Backout utility to back out the
program's changes to the database.

Related concepts:

[“When to use checkpoint calls” on page 50|

TM batch processing
A TM batch program acts like a DB batch program with the following differences.

¢ It cannot access full-function databases, but it can access DB2 for z/OS
databases, GSAM databases, and z/OS files.

* To issue checkpoints for recovery, you need not specify CMPAT=YES in your
program's PSB. (The CMPAT parameter is ignored in TM batch.) The I/O PCB is
always the first PCB in the list.

* You cannot dynamically back out a database because IMS does not own the
databases.

The IEFRDER log DD statement is required in order to enable log synchronization
with other external subsystems, such as DB2 for z/OS.

Processing messages: Message Processing Programs

A Message Processing Program (MPP) is an online program that can access
full-function databases, DEDBs, MSDBs, and DB2 for z/OS databases. Unlike
BMPs and batch programs, MPPs cannot access GSAM databases. MPPs can only
run in DB/DC and DCCTL environments.

40 Application Programming

Using an MPP

The primary purpose of an MPP is to process requests from users at terminals and
from other application programs. Ideally, MPPs are very small, and the processing
they perform is tailored to respond to requests quickly. They process messages as
their input, and send messages as responses.

Message
Data that is transmitted between any two terminals, application programs,
or IMS systems. Each message has one or more segments.

MPPs are executed through transaction codes. When you define an MPP, you
associate it with one or more transaction codes. Each transaction code represents a
transaction the MPP is to process. To process a transaction, a user at a terminal
enters a code for that transaction. IMS then schedules the MPP associated with that
code, and the MPP processes the transaction. The MPP might need to access the
database to do this. Generally, an MPP goes through these five steps to process a
transaction:

1. Retrieve a message from IMS.

2. Process the message and access the database as necessary.

3. Respond to the message.
4. Repeat the process until no messages are forthcoming.
5. Terminate.

When an MPP is defined, a system administrator makes decisions about the
program's scheduling and processing. For each MPP, a system administrator
specifies:

* The transaction's priority

* The number of messages for a particular transaction code that the MPP can
process in a single scheduling

* The amount of time (in seconds) in which the MPP is allowed to process a single
transaction

Defining priorities and processing limits gives system administration some control
over load balancing and processing.

Although the primary purpose of an MPP is to process and reply to messages
quickly, it is flexible in how it processes a transaction and where it can send output
messages. For example, an MPP can send output messages to other terminals and
application programs.

Related concepts:

[Chapter 5, “Gathering requirements for database options,” on page 73|

Processing messages: IMS Fast Path Programs

An IMS Fast Path Program (IFP) is similar to an MPP: Its main purpose is to
quickly process and reply to messages from terminals. Like an MPP, an IFP can
access full-function databases, DEDBs, MSDBs, and DB2 for z/OS databases. IFPs
can only be run in DB/DC and DCCTL environments.

Using an IFP

You should use an IFP if you need quick processing and can accept the
characteristics and constraints associated with IFPs.

Chapter 3. Analyzing IMS application processing requirements 41

The main differences between IFPs and MPPs are as follows:

* Messages processed by IFPs must consist of only one segment. Messages that are
processed by MPPs can consist of several segments.

* IFPs bypass IMS queuing, allowing for more efficient processing. Transactions
that are processed by Fast Path's EMH (expedited message handler) are on a
first-in, first-out basis.

IFPs also have the following characteristics:

* They run in transaction response mode. This means that they must respond to
the terminal that sent the message before the terminal can enter any more
requests.

* They process only wait-for-input transactions. When you define a program as
processing wait-for-input transactions, the program remains in virtual storage,
even when no additional messages are available for it to process.

Restrictions:

* An IMS program cannot send messages to an IFP transaction unless it is in
another IMS system that is connected using Intersystem Communication (ISC).

* MPPs cannot pass conversations to an IFP transaction.
Recovering an IFP

IFPs must be defined as single mode. This means that a commit point occurs each
time the program retrieves a message. Because of this, you do not need to issue
checkpoint calls.

Batch message processing: BMPs

BMPs are application programs that can perform batch-type processing online and
access the IMS message queues for their input and output. Because of this and
because of the data available to them, BMPs are the most flexible of the IMS
application programs. The two types of BMPs are: batch-oriented and
transaction-oriented.

Batch processing online: batch-oriented BMPs

A batch-oriented BMP performs batch-type processing in any online environment.
When run in the DB/DC or DCCTL environment, a batch-oriented BMP can send
its output to the IMS message queue to be processed later by another application
program. Unlike a transaction-oriented BMP, a batch-oriented BMP cannot access
the IMS message queue for input.

Data a batch-oriented BMP can access

In the DBCTL environment, a batch-oriented BMP can access full-function
databases, DB2 for z/OS databases, DEDBs, z/OS files, and GSAM databases. In
the DB/DC environment, a batch-oriented BMP can access all of these types of
databases, as well as Fast Path MSDBs. In the DCCTL environment, this program
can access DB2 for z/OS databases, z/OS files, and GSAM databases.

Using a batch-oriented BMP

A batch-oriented BMP can be simply a batch program that runs online. (Online
requests are processed by the IMS DB/DC, DBCTL, or DCCTL system rather than
by a batch system.) You can even run the same program as a BMP or as a batch

program.

42 Application Programming

Recommendation: If the program performs a large number of database updates
without issuing checkpoints, consider running it as a batch program so that it does
not degrade the performance of the online system.

To use batch-oriented BMPs most efficiently, avoid a large amount of batch-type
processing online. If you have a BMP that performs time-consuming processing
such as report writing and database scanning, schedule it during non-peak hours
of processing. This will prevent it from degrading the response time of MPPs.

Because BMPs can degrade response times, your response time requirements
should be the main consideration in deciding the extent to which you will use
batch message processing. Therefore, use BMPs accordingly.

Recovering a batch-oriented BMP

Issuing checkpoint calls is an important part of batch-oriented BMP processing,
because commit points do not occur automatically, as they do in MPPs,
transaction-oriented BMPs, and IFPs. Unlike most batch programs, a BMP shares
resources with MPPs. In addition to committing database changes and providing
places from which to restart (as for a batch program), checkpoints release resources
that are locked for the program.

If a batch-oriented BMP fails, IMS and DB2 for z/OS back out the database
updates the program has made since the last commit point. You then restart the
program with JCL. If the BMP processes z/OS files, you must provide your own
method of taking checkpoints and restarting.

Converting a batch program to a batch-oriented BMP

If you have IMS TM or are running in the DBCTL environment, you can convert a
batch program to a batch-oriented BMP.

* If you have IMS TM, you might want to convert your programs for these
reasons:

— BMPs can send output to the message queues.
— BMPs can access DEDBs and MSDBs.

— BMPs simplify program recovery because logging goes to a single system log.
If you use DASD for the system log in batch, you can specify that you want
dynamic backout for the program. In that case, batch recovery is similar to
BMP recovery, except, of course, with batch you need to manage multiple
logs.

— Restart can be done automatically from the last checkpoint without changing
the JCL.

* If you are using DBCTL, you might want to convert your programs for these
reasons:

— BMPs can access DEDBs.

— BMPs simplify program recovery because logging goes to a single system log.
If you use DASD for the system log in batch, you can specify that you want
dynamic backout for the program. In that case, batch recovery is similar to
BMP recovery, except, of course, with batch you need to manage multiple
logs.

* If you are running sysplex data sharing and you either have IMS TM or are
using DBCTL, you might want to convert your program. This is because using
batch-oriented BMPs helps you stay within the sysplex data-sharing limit of 32
connections for each OSAM or VSAM structure.

Chapter 3. Analyzing IMS application processing requirements 43

If you use data sharing, you can run batch programs concurrently with online
programs. If you do not use data sharing, converting a batch program to a BMP
makes it possible to run the program with BMPs and other online programs.

Also, if you plan to run your batch programs offline, converting them to BMPs
enables you to run them with the online system, instead of waiting until the
online system is not running. Running a batch program as a BMP can also keep
the data more current.

* If you have IMS TM or are using DBCTL, you can have a program that runs as
either a batch program or a BMP.

Recommendation: Code your checkpoints in a way that makes them easy to
modify. Converting a batch program to a BMP or converting a batch program to
use data sharing requires more frequent checkpoints. Also, if a program fails
while running in a batch region, you must restart it in a batch region. If a
program fails in a BMP region, you must restart it in a BMP region.

The requirements for converting a batch program to a BMP are:

* The program must have an I/O PCB. You can obtain an I/O PCB in batch by
specifying the compatibility (CMPAT) option in the program specification block
(PSB) for the program.

Related Reading: For more information on the CMPAT option in the PSB, see
IMS Version 14 System Utilities.

* BMPs must issue checkpoint calls more frequently than batch programs.

Related concepts:

[“When to use checkpoint calls” on page 50|

Batch message processing: transaction-oriented BMPs
Transaction-oriented BMPs can access z/OS files, GSAM databases, DB2 for z/OS
databases, full-function databases, DEDBs, and MSDBs.

Data a transaction-oriented BMP can access

Unlike a batch-oriented BMP, a transaction-oriented BMP can access the IMS
message queue for input and output, and it can only run in the DB/DC and
DCCTL environments.

Using a transaction-oriented BMP

Unlike MPPs, transaction-oriented BMPs are not scheduled by IMS. You schedule
them as needed and start them with JCL. For example, an MPP, as it processes
each message, might send an output message giving details of the transaction to
the message queue. A transaction-oriented BMP could then access the message
queue to produce a daily activity report.

Typically, you use a transaction-oriented BMP to simulate direct update online:
Instead of updating the database while processing its transactions, an MPP sends
its updates to the message queue. A transaction-oriented BMP then performs the
updates for the MPP. You can run the BMP as needed, depending on the number
of updates. This improves response time for the MPP, and it keeps the data
current. This can be more efficient than having the MPP process its transactions if
the response time of the MPP is very important. One disadvantage in doing this,
however, is that it splits the transaction into two parts which is not necessary.

44 Application Programming

If you have a BMP perform an update for an MPP, design the BMP so that, if the
BMP terminates abnormally, you can reenter the last message as input for the BMP
when you restart it. For example, suppose an MPP gathers database updates for
three BMPs to process, and one of the BMPs terminates abnormally. You would
need to reenter the message that the terminating BMP was processing to one of the
other BMPs for reprocessing.

BMPs can process transactions defined as wait-for-input (WFI). This means that
IMS allows the BMP to remain in virtual storage after it has processed the
available input messages. IMS returns a QC status code, indicating that the
program should terminate when one of the following occurs:

* The program reaches its time limit.
* The master terminal operator enters a command to stop processing.
* IMS is terminated with a checkpoint shutdown.

You specify WFI for a transaction on the WFI parameter of the TRANSACT macro
during IMS system definition.

A batch message processing region (BMP) scheduled against WFI transactions
returns a QC status code (no more messages) only for the following commands:
/PSTOP REGION, /DBD, /DBR, or /STA.

Like MPPs, BMPs can send output messages to several destinations, including
other application programs.

Recovering a transaction-oriented BMP

Like MPPs, with transaction-oriented BMPs, you can choose where commit points
occur in the program. You can specify that a transaction-oriented BMP be single or
multiple mode, just as you can with an MPP. If the BMP is single mode, issuing
checkpoint calls is not as critical as in a multiple mode BMP. In a single mode
BMP, a commit point occurs each time the program retrieves a message.

Related concepts:

[“Identifying output message destinations” on page 106|

[“When to use checkpoint calls” on page 50|

Java message processing: JMPs

A JMP application program is similar to an MPP application program, except that
JMP applications must be written in Java or object-oriented COBOL. Like an MPP
application, a JMP application is started when there is a message in the message
queue for the JMP application and IMS schedules the message for processing.

JMP applications can access IMS data or DB2 for z/OS data using JDBC. JMP
applications run in JMP regions which have JVMs (Java Virtual Machines).

Related concepts:

[“Overview of the IMS Java dependent regions” on page 717|

Java batch processing: JBPs

A JBP application program is similar to a non-message-driven BMP application
program, except that JBP applications must be written in Java, object-oriented
COBOL, or object-oriented PL/I.

Chapter 3. Analyzing IMS application processing requirements 45

JBP applications can access IMS data or DB2 for z/OS data using JDBC. JBP
applications run in JBP regions which have JVMs.

Related concepts:

[“Overview of the IMS Java dependent regions” on page 717|

IMS programming integrity and recovery considerations

IMS provides support for protecting data integrity for application programs.

How IMS protects data integrity: commit points

When an online program accesses the database, it is not necessarily the only
program doing so. IMS and DB2 for z/OS make it possible for more than one
application program to access the data concurrently without endangering the
integrity of the data.

To access data concurrently while protecting data integrity, IMS and DB2 for z/OS
prevent other application programs from accessing segments that your program
deletes, replaces, or inserts, until your program reaches a commit point. A commit
point is the place in the program's processing at which it completes a unit of work.
When a unit of work is completed, IMS and DB2 for z/OS commit the changes
that your program made to the database. Those changes are now permanent and
the changed data is now available to other application programs.

What happens at a commit point

When an application program finishes processing one distinct unit of work, IMS
and DB2 for z/OS consider that processing to be valid, even if the program later
encounters problems. For example, an application program that is retrieving,
processing, and responding to a message from a terminal constitutes a unit of work.
If the program encounters problems while processing the next input message, the
processing it has done on the first input message is not affected. These input
messages are separate pieces of processing.

A commit point indicates to IMS that a program has finished a unit of work, and
that the processing it has done is accurate. At that time:

* IMS releases segments it has locked for the program since the last commit point.
Those segments are then available to other application programs.

* IMS and DB2 for z/OS make the program's changes to the database permanent.

* The current position in all databases except GSAM is reset to the start of the
database.

If the program terminates abnormally before reaching the commit point:

* IMS and DB2 for z/OS back out all of the changes the program has made to the
database since the last commit point. (This does not apply to batch programs
that write their log to tape.)

* IMS discards any output messages that the program has produced since the last
commit point.

Until the program reaches a commit point, IMS holds the program's output
messages so that, if the program terminates abnormally, users at terminals and
other application programs do not receive inaccurate information from the
abnormally terminating application program.

If the program is processing an input message and terminates abnormally, the
input message is not discarded if both of the following conditions exist:

46 Application Programming

1. You are not using the Non-Discardable Messages (NDM) exit routine.

2. IMS terminates the program with one of the following abend codes: U0777,
U2478, U2479, U3303. The input message is saved and processed later.

Exception: The input message is discarded if it is not terminated by one of
the abend codes previously referenced. When the program is restarted, IMS
gives the program the next message.

If the program is processing an input message when it terminates abnormally,
and you use the NDM exit routine, the input message might be discarded from
the system regardless of the abend. Whether the input message is discarded
from the system depends on how you have written the NDM exit routine.

Related Reading: For more information about the NDM exit routine, see IMS
Version 14 Exit Routines.

* IMS notifies the MTO that the program terminated abnormally.

* IMS and DB2 for z/OS release any locks that the program has held on data it
has updated since the last commit point. This makes the data available to other
application programs and users.

Where commit points occur

A commit point can occur in a program for any of the following reasons:

* The program terminates normally. Except for a program that accesses Fast Path
resources, normal program termination is always a commit point. A program
that accesses Fast Path resources must reach a commit point before terminating.

* The program issues a checkpoint call. Checkpoint calls are a program's means of
explicitly indicating to IMS that it has reached a commit point in its processing.

* If a program processes messages as its input, a commit point might occur when
the program retrieves a new message. IMS considers this commit point the start
of a new unit of work in the program. Retrieving a new message is not always a
commit point. This depends on whether the program has been defined as single
mode or multiple mode.

— If you specify single mode, a commit point occurs each time the program
issues a call to retrieve a new message. Specifying single mode can simplify
recovery, because you can restart the program from the most recent call for a
new message if the program terminates abnormally. When IMS restarts the
program, the program begins by processing the next message.

— If you specify multiple mode, a commit point occurs when the program issues
a checkpoint call or when it terminates normally. At those times, IMS sends
the program's output messages to their destinations. Because multiple-mode
programs contain fewer commit points than do single mode programs,
multiple mode programs might offer slightly better performance than
single-mode programs. When a multiple mode program terminates
abnormally, IMS can only restart it from a checkpoint. Instead of reprocessing
only the most recent message, a program might have several messages to
reprocess, depending on when the program issued the last checkpoint call.

The following table lists the modes in which the programs can run. Because
processing mode is not applicable to batch programs and batch-oriented BMPs,
they are not listed in the table. The program type is listed, and the table indicates
which mode is supported.

Chapter 3. Analyzing IMS application processing requirements 47

Table 21. Processing modes

Multiple mode

Program type Single mode only only Either mode
MPP X

IFP X

Transaction-oriented BMP X

You specify single or multiple mode on the MODE parameter of the TRANSACT
macro.

Related Reading: For information on the TRANSACT macro, see IMS Version 14
System Definition.

See the following figure for an illustration of the difference between single-mode
and multiple-mode programs. A single-mode program gets and processes
messages, sends output, looks for more messages, and terminates if there are no
more. A multiple-mode program gets and processes messages, sends output, but
has a checkpoint before looking for more messages and terminating. For a
single-mode program, the commit points are when the message is obtained and the
program terminates. For multiple-mode, the commit point is at the checkpoint and
when the program terminates.

Single-mode program Multiple-mode program
Get a message Get a message
Process message Process message
Send output message Send output message

Commlt
More messe:ges’?/ points Checkpoint
Terminate More messages?
Terminate

Figure 15. Single mode and multiple mode

DB2 for z/OS does some processing with multiple- and single-mode programs that
IMS does not. When a multiple-mode program issues a call to retrieve a new
message, DB2 for z/OS performs an authorization check. If the authorization check
is successful, DB2 for z/OS closes any SQL cursors that are open. This affects the
design of your program.

The DB2 for z/OS SQL COMMIT statement causes DB2 for z/OS to make permanent
changes to the database. However, this statement is valid only in TSO application
programs. If an IMS application program issues this statement, it receives a
negative SQL return code.

48 Application Programming

Planning for program recovery: checkpoint and restart

Recovery in an IMS application program that accesses DB2 for z/OS data is
handled by both IMS and DB2 for z/OS. IMS coordinates the process, and DB2 for
z/0OS handles recovery of DB2 for z/OS data.

Related concepts:

[“Introducing checkpoint calls”|

[“When to use checkpoint calls” on page 50|

[“Specifying checkpoint frequency” on page 52|

Introducing checkpoint calls

Checkpoint calls indicate to IMS that the program has reached a commit point.
They also establish places in the program from which the program can be
restarted. IMS has symbolic checkpoint calls and basic checkpoint calls.

A program might issue only one type of checkpoint call.
* MPPs and IFPs must use basic checkpoint calls.

* BMP, JMP, and batch programs can use either symbolic checkpoint calls or basic
checkpoint calls.

Programs that issue symbolic checkpoint calls can specify as many as seven data
areas in the program to be checkpointed. When IMS restarts the program, the
Restart call restores these areas to the condition they were in when the program
issued the symbolic checkpoint call. Because symbolic checkpoint calls do not
support z/OS files, if your program accesses z/OS files, you must supply your
own method of establishing checkpoints.

You can use symbolic checkpoint for either Normal Start or Extended Restart
(XRST).

For example, typical calls for a Normal start would be as follows:
* XRST (I/O area is blank)

* CHKP (I/O area has checkpoint ID)

* Database Calls (including checkpoints)

* CHKRP (final checkpoint)

For example, typical calls for an Extended Restart (XRST) would be as follows:
* XRST (I/0O area has checkpoint ID)

* CHKP (I/O area has new checkpoint ID)

* Database Calls (including checkpoints)

* CHKP (final checkpoint)

The restart call, which you must use with symbolic checkpoint calls, provides a
way of restarting a program after an abnormal termination. It restores the
program's data areas to the way they were when the program issued the symbolic
checkpoint call. It also restarts the program from the last checkpoint the program
established before terminating abnormally.

All programs can use basic checkpoint calls. Because you cannot use the restart call
with the basic checkpoint call, you must provide program restart. Basic checkpoint
calls do not support either z/OS or GSAM files. IMS programs cannot use z/0OS
checkpoint and restart. If you access z/OS files, you must supply your own
method of establishing checkpoints and restarting.

Chapter 3. Analyzing IMS application processing requirements 49

In addition to the actions that occur at a commit point, issuing a checkpoint call
causes IMS to:

* Inform DB2 for z/OS that the changes your program has made to the database
can be made permanent. DB2 for z/OS makes the changes to DB2 for z/OS data
permanent, and IMS makes the changes to IMS data permanent.

* Write a log record containing the checkpoint identification given in the call to
the system log, but only if the PSB contains a DB PCB. You can print checkpoint
log records by using the IMS File Select and Formatting Print program
(DFSERA10). With this utility, you can select and print log records based on
their type, the data they contain, or their sequential positions in the data set.
Checkpoint records are X'18' log records.

Related Reading: For more information about the DFSERA10 program, see IMS
Version 14 System Utilities.

* Send a message containing the checkpoint identification that was given in the
call to the system console operator and to the IMS master terminal operator.

* Return the next input message to the program's I/O area, if the program
processes input messages. In MPPs and transaction-oriented BMPs, a checkpoint
call acts like a call for a new message.

Restriction: Do not specify CHKPT=EOV on any DD statement in order to take an
IMS checkpoint because of unpredictable results.

Related concepts:

[“Planning for program recovery: checkpoint and restart” on page 49|

When to use checkpoint calls
Issuing Checkpoint calls is most important in programs that do not have built-in
commit points.

The decision about whether your program should issue checkpoints, and if so, how
often, depends on your program. Generally, these programs should issue
checkpoint calls:

* Multiple-mode programs

» Batch-oriented BMPs (which can issue either SYNC or CHKP calls)
* Most batch programs

* Programs that run in a data sharing environment

* JMP applications

You do not need to issue checkpoint calls in:
* Single-mode BMP or MPP programs
* Database load programs

* Programs that access the database in read-only mode, as defined with the
PROCOPT=GO option (during a PSBGEN), and are short enough to restart from
the beginning

* Programs that have exclusive use of the database

Checkpoints in MPPs and transaction-oriented BMPs
The mode type of the program is specified on the MODE keyword of the

TRANSACT macro during IMS system generation. The modes are single and
multiple.

* In single-mode programs

50 Application Programming

In single mode programs (MODE=SNGL was specified on the TRANSACT
macro during IMS system definition), a Get Unique to the message queue causes
an implicit commit to be performed.

* In multiple-mode programs

In multiple-mode BMPs and MPPs, the only commit points are those that result
from the checkpoint calls that the program issues and from normal program
termination. If the program terminates abnormally and it has not issued
checkpoint calls, IMS backs out the program's database updates and cancels the
messages it created since the beginning of the program. If the program has
issued checkpoint calls, IMS backs out the program's changes and cancels the
output messages it has created since the most recent checkpoint.

Consider the following when issuing checkpoint calls in multiple-mode
programs:

— How long it would take to back out and recover that unit of processing. The
program should issue checkpoints frequently enough to make the program
easy to back out and recover.

— How you want the output messages grouped. checkpoint calls establish how
a multiple-mode program's output messages are grouped. Programs should
issue checkpoint calls frequently enough to avoid building up too many
output messages.

Depending on the database organization, issuing a checkpoint call might reset
your position in the database.

Related Reading: For more information about losing your position when a
checkpoint is issued, see IMS Version 14 Database Administration.

Checkpoints in batch-oriented BMPs

Issuing checkpoint calls in a batch-oriented BMP is important for several reasons:

* In addition to committing changes to the database and establishing places from
which the program can be restarted, checkpoint calls release resources that IMS
has locked for the program.

* A batch-oriented BMP that uses DEDBs or MSDBs might terminate with abend
U1008 if a SYNC or CHKP call is not issued before the application program
terminates.

* If a batch-oriented BMP does not issue checkpoints frequently enough, it can be
abnormally terminated, or it can cause another application program to be
abnormally terminated by IMS for any of these reasons:

— If a BMP retrieves and updates many database records between checkpoint
calls, it can tie up large portions of the databases and cause long waits for
other programs needing those segments.

Exception: For a BMP with a processing option of GO or exclusive, IMS does
not lock segments for programs. Issuing checkpoint calls releases the
segments that the BMP has locked and makes them available to other
programs.

— The space needed to maintain lock information about the segments that the
program has read and updated exceeds what has been defined for the IMS
system. If a BMP locks too many segments, the amount of storage needed for
the locked segments can exceed the amount of available storage. If this
happens, IMS terminates the program abnormally. You must increase the
program's checkpoint frequency before rerunning the program. The available
storage is specified during IMS system definition.

Chapter 3. Analyzing IMS application processing requirements 51

Related Reading: For more information on specifying storage, see IMS Version
14 System Definition.

You can limit the number of locks for the BMP by using the LOCKMAX=n
parameter on the PSBGEN statement. For example, a specification of
LOCKMAX=5 means the application cannot obtain more than 5000 locks at
any time. The value of n must be between 0 and 255. When a maximum lock
limit does not exist, 0 is the default. If the BMP tries to acquire more than the
specified number of locks, IMS terminates the application with abend U3301.

Related Reading: For more information about this abend, see IMS Version 14
Messages and Codes, Volume 3: IMS Abend Codes.

Checkpoints in batch programs

Batch programs that update databases should issue checkpoint calls. The main
consideration in deciding how often to take checkpoints in a batch program is the
time required to back out and reprocess the program after a failure. A general
recommendation is to issue one checkpoint call every 10 or 15 minutes.

If you might need to back out the entire batch program, the program should issue
the checkpoint call at the beginning of the program. IMS backs out the program to
the checkpoint you specify, or to the most recent checkpoint, if you do not specify
a checkpoint. If the database is updated after the beginning of the program and
before the first checkpoint, IMS is not able to back out these database updates.

For a batch program to issue checkpoint calls, it must specify the compatibility
option in its PSB (CMPAT=YES). This generates an I/O PCB for the program,
which IMS uses as an I/O PCB in the checkpoint call.

Another important reason for issuing checkpoint calls in batch programs is that,
although they may currently run in an IMS batch region, they might later need to
access online databases. This would require converting them to BMPs. Issuing
checkpoint calls in a BMP is important for reasons other than recovery—for
example, to release database resources for other programs. So, you should initially
include checkpoints in all batch programs that you write. Although the checkpoint
support might not be needed then, it is easier to incorporate checkpoint calls
initially than to try to fit them in later.

To free database resources for other programs, batch programs that run in a
data-sharing environment should issue checkpoint calls more frequently than those
that do not run in a data-sharing environment.

Related concepts:

[“DB batch processing” on page 39|

[“Batch processing online: batch-oriented BMPs” on page 42|

[“Batch message processing: transaction-oriented BMPs” on page 44|

[“Planning for program recovery: checkpoint and restart” on page 49|

Specifying checkpoint frequency
You should specify checkpoint frequency in your program so that you can easily
modify it when the frequency needs to be adjusted.

You can do this by:

» Using a counter in your program to keep track of elapsed time, and issuing a
checkpoint call after a certain time interval.

52 Application Programming

* Using a counter to keep track of the number of root segments your program
accesses, and issuing a checkpoint call after a certain number of root segments.

+ Using a counter to keep track of the number of updates your program performs,
and issuing a checkpoint call after a certain number of updates.

Related concepts:

[“Planning for program recovery: checkpoint and restart” on page 49|

Data availability considerations

The following information describes the conditions that could cause data to
become unavailable in a full-function database and the program calls that allow
your program to manage data under these conditions.

Dealing with unavailable data

The conditions that make the database unavailable for both read and update are:
* The /LOCK command for a database was issued.

* The /STOP command for a database was issued.

* The /DBRECOVERY command was issued.

* Authorization for a database failed.

The conditions that make the database available only for read and not for update
are:

e The /DBDUMP command has been issued.
* Database ACCESS value is RD (read).

In addition to unavailability of an entire database, other situations involving
unavailability of a limited amount of data can also inhibit program access. One
such example would be a failure situation involving data sharing. The active IMS
system knows which locks were held by a sharing IMS system at the time the
sharing IMS system failed. Although the active IMS system continues to use the
database, it must reject access to the data which the failed IMS system locked upon
failure. This situation occurs for both full-function and DEDB databases.

The two situations where the program might encounter unavailable data are:

* The program makes a call requiring access to a database that was unavailable at
the time the program was scheduled.

* The database was available when the program was scheduled, but limited
amounts of data are unavailable. The current call has attempted to access the
unavailable data.

Regardless of the condition causing the data to be unavailable, the program has
two possible approaches when dealing with unavailable data. The program can be
insensitive or sensitive to data unavailability.

* When the program is insensitive, IMS takes appropriate action when the
program attempts to access unavailable data.

* When the program is sensitive, IMS informs the program that the data it is
attempting to access is not available.

If the program is insensitive to data unavailability, and attempts to access
unavailable data, IMS aborts the program (3303 pseudo-abend), and backs out any
updates the program has made. The input message that the program was
processing is suspended, and the program is scheduled to process the input

Chapter 3. Analyzing IMS application processing requirements 53

message when the data becomes available. However, if the database is unavailable
because dynamic allocation failed, a call results in an Al (unable to open) status
code.

If the program is sensitive to data unavailability and attempts to access unavailable
data, IMS returns a status code indicating that it could not process the call. The
program then takes the appropriate action. A facility exists for the program to
initiate the same action that IMS would have taken if the program had been
insensitive to unavailable data.

IMS does not schedule batch programs if the data that the program can access is
unavailable. If the batch program is using block-level data sharing, it might
encounter unavailable data if the sharing system fails and the batch system
attempts to access data that was updated but not committed by the failed system.

The following conditions alone do not cause a batch program to fail during
initialization:

* A PCB refers to a HALDB.

* The use of DBRC is suppressed.

However, without DBRC, a database call using a PCB for a HALDB is not allowed.
If the program is sensitive to unavailable data, such a call results in the status code
BA; otherwise, such a call results in message DFS33031, followed by ABENDU3303.

Scheduling and accessing unavailable databases

By using the INIT, INQY, SETS, SETU, and ROLS calls, the program can manage a data
environment where the program is scheduled with unavailable databases.

The INIT call informs IMS that the program is sensitive to unavailable data and
can accept the status codes that are issued when the program attempts to access
such data. The INIT call can also be used to determine the data availability for
each PCB.

The INQY call is operable in both batch and online IMS environments. IMS
application programs can use the INQY call to request information regarding output
destination, session status, the current execution environment, the availability of
databases, and the PCB address based on the PCBNAME. The INQY call is only
supported by way of the AIB interface (AIBTDLI or CEETDLI using the AIB rather
than the PCB address).

The SETS, SETU, and ROLS calls enable the application to define multiple points at
which to preserve the state of full-function (except HSAM) databases and message
activity. The application can then return to these points at a later time. By issuing a
SETS or SETU call before initiating a set of DL/I calls to perform a function, the
program can later issue the ROLS call if it cannot complete a function due to data
unavailability.

The ROLS call allows the program to roll back its IMS full-function database activity
to the state that it was in prior to a SETS or SETU call being issued. If the PSB
contains an MSDB or a DEDB, the SETS and ROLS (with token) calls are invalid. Use
the SETU call instead of the SETS call if the PSB contains a DEDB, MSDB, or GSAM
PCB.

54 Application Programming

The ROLS call can also be used to undo all update activity (database and messages)
since the last commit point and to place the current input message on the suspend
queue for later processing. This action is initiated by issuing the ROLS call without
a token or I/0O area.

Restriction: With DB2 for z/OS, you cannot use ROLS (with a token) or SETS.
Related information:

[# [3303 (Messages and Codes)|

Use of STAE or ESTAE and SPIE in IMS programs

IMS uses STAE or ESTAE routines in the control region, the dependent (MPP, IFP,
BMP) regions, and the batch regions. In the control region, STAE or ESTAE
routines ensure that database logging and various resource cleanup functions are
complete.

In the dependent region, STAE or ESTAE routines are used to notify the control
region of any abnormal termination of the application program or the dependent
region itself. If the control region is not notified of the dependent region
termination, resources are not properly released and normal checkpoint shutdown
might be prevented.

In the batch region, STAE or ESTAE routines ensure that database logging and
various resource cleanup functions are complete. If the batch region is not notified
of the application program termination, resources might not be properly released.

Two important aspects of the STAE or ESTAE facility are that:

* IMS relies on its STAE or ESTAE facility to ensure database integrity and
resource control.

* The STAE or ESTAE facility is also available to the application program.

Because of these two factors, be sure you clearly understand the relationship
between the program and the STAE or ESTAE facility.

Generally, do not use the STAE or ESTAE facility in your application program.
However, if you believe that the STAE or ESTAE facility is required, you must
observe the following basic rules:

* When the environment supports STAE or ESTAE processing, the application
program STAE or ESTAE routines always get control before the IMS STAE or
ESTAE routines. Therefore, you must ensure that the IMS STAE or ESTAE exit
routines receive control by observing the following procedures in your
application program:

— Establish the STAE or ESTAE routine only once and always before the first
DL/I call.

— When using the STAE or ESTAE facility, the application program should not
alter the IMS abend code.

— Do not use the RETRY option when exiting from the STAE or ESTAE routine.
Instead, return a CONTINUE-WITH-TERMINATION indicator at the end of
the STAE or ESTAE processing. If your application program specifies the
RETRY option, be aware that IMS STAE or ESTAE exit routines will not get
control to perform cleanup. Therefore, system and database integrity might be
compromised.

* The application program STAE or ESTAE exit routine must not issue DL/I calls

(DB or TM) because the original abend might have been caused by a problem

Chapter 3. Analyzing IMS application processing requirements 55

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/msgs/3303.htm#imsabend3303

between the application and IMS. A problem between the application and IMS
could result in recursive entry to STAE or ESTAE with potential loss of database
integrity, or in problems taking a checkpoint. This also could result in a hang
condition or an ABENDU0069 during termination.

Related concepts:

[“What to do when your IMS program terminates abnormally” on page 165|

Dynamic allocation for IMS databases

Use the dynamic allocation function to specify the JCL information for IMS
databases in a library instead of in the JCL of each batch or online job.

If you use dynamic allocation, do not include JCL DD statements for any database
data sets that have been defined for dynamic allocation. Check with the DBA or
comparable specialist to determine which databases have been defined for dynamic
allocation.

Related Reading: For additional information on the definitions for dynamic
allocation, see the description of the DFSMDA macro in IMS Version 14 System
Definition.

56 Application Programming

Chapter 4. Analyzing CICS application processing
requirements

IMS supports application programs running in a CICS environment

Defining CICS application requirements

One of the steps of application design is to decide how the business processes, or
tasks can be best grouped into a set of programs that will efficiently perform the
required processing.

Some of the considerations in analyzing processing requirements are:
* When the task must be performed

— Will it be scheduled unpredictably (for example on terminal demand) or
periodically (for example, weekly)?

* How the program that performs the task is executed

— Will it be executed online, where response time is more important, or by
batch job submission, where a slower response time is acceptable?

* The consistency of the processing components

— Does this action the program is to perform involve more than one type of
program logic? For example, does it involve mostly retrievals, and only one
or two updates? If so, you should consider separating the updates into a
separate program.

— Does this action involve several large groups of data? If it does, it might be
more efficient to separate the programs by the data they access.

* Any special requirements about the data or processing

Security
Should access to the program be restricted?

Recovery
Are there special recovery considerations in the program's processing?

Integrity
Do other departments use the same data?

Answers to questions like these can help you decide on the number of application
programs that the processing will require, and on the types of programs that
perform the processing most efficiently. Although rules dealing with how many
programs can most efficiently do the required processing do not exist, here are
some suggestions:

* As you look at each programming task, examine the data and processing that
each task involves. If a task requires different types of processing and has
different time limitations (for example, weekly as opposed to monthly), that task
may be more efficiently performed by several programs.

* As you define each program, it is a good idea for maintenance and recovery
reasons to keep programs as simple as possible. The simpler a program is—the
less it does—the easier it is to maintain, and to restart after a program or system
failure. The same is true with data availability—the less data that is accessed, the
more likely the data is to be available; the more limited the data accessed, the
more likely the data is to be available.

© Copyright IBM Corp. 1974, 2015 57

Similarly, if the data that the application requires is physically in one place, it
might be more efficient to have one program do more of the processing than
usual. These are considerations that depend on the processing and the data of
each application.

* Documenting each of the user tasks is helpful during the design process, and in
the future when others will work with your application. Be sure you are aware
of the standards in this area. The kind of information that is typically kept is
when the task is to be executed, a functional description, and requirements for
maintenance, security, and recovery.

For example, for the Current Roster process described previously, you might
record the information shown in the following form. How frequently the
program is run is determined by the number of classes (20) for which the Ed
Center will print current rosters each week.

Example: Current roster task description
USER TASK DESCRIPTION

NAME: Current Roster
ENVIRONMENT: Batch FREQUENCY: 20 per week

INVOKING EVENT OR DOCUMENT: Time period (one week)

REQUIRED RESPONSE TIME: 24 hours

FUNCTION DESCRIPTION: Print weekly, a current student roster, in student
number sequence for each class offered at the Education Center.

MAINTENANCE: Included in Education DB maintenance.

SECURITY: None.

RECOVERY: After a failure, the ability to start printing a particular
class roster starting from a particular sequential student number.

Accessing databases with your CICS application program

When designing your program, consider the type of data it must access. The type
of data depends on the operating environment.

The data from IMS and DB2 for z/OS databases, and z/OS files, that is available
to CICS online and IMS batch programs is shown in the following table.

Table 22. The data that your CICS program can access

DB2 for z/OS

Type of program IMS databases databases z/OS files
CICS online Yes' Yes® Yes®

DB batch Yes Yes® Yes
Notes:

1. Except for Generalized Sequential Access Method (GSAM) databases. GSAM enables
batch programs to access a sequential z/OS data set as a simple database.

2. IMS does not participate in the call process.

3. Access through CICS file control or transient data services.

Also, consider the type of database your program must access. As shown in the
following table, the type of program you can write and database that can be
accessed depends on the operating environment.

58 Application Programming

Table 23. Program and database options in the CICS environments

Type of program

Environment' you can write Type of database that can be accessed

DB batch DB batch DB2 for z/0S?

DL/I Full-function
GSAM
z/OS files

DBCTL BMP DB2 for z/0S

DEDBs
Full-function
GSAM

z/OS files

CICS online DB2 for z/0S?
DEDBs
Full-function

z/0S files (access through CICS file
control or transient data services)

Notes:

1.

A CICS environment, or CICS remote DL/I environment also exists and is also referred
to as function shipping. In this environment, a CICS system supports applications that
issue DL/I calls but the CICS system does not service the requests itself. The CICS
environment “function ships” the DL/I calls to another CICS system that is using
DBCTL. For more information on remote DL/I, see CICS Transaction Server for z/OS IMS
Database Control Guide.

IMS does not participate in the call process.

The types of databases that can be accessed are:

Full-Function Databases

Full-function databases are hierarchic databases that are accessed through Data
Language I (DL/I). DL/I calls enable application programs to retrieve, replace,
delete, and add segments to full-function databases. CICS online and BMP
programs can access the same database concurrently (if participating in IMS data
sharing); an IMS batch program must have exclusive access to the database (if
not participating in IMS data sharing).

All types of programs (batch, BMPs, and online) can access full-function
databases.

Fast Path DEDBs

Data entry databases (DEDBs) are hierarchic databases for, and efficient access
to, large volumes of detailed data. In the DBCTL environment, CICS online and
BMP programs can access DEDBs.

DB2 for z/OS Databases

DB2 for z/OS databases are relational databases. Relational databases are
represented to application programs and users as tables and are processed using
a relational data language called Structured Query Language (SQL). DB2 for
z/0S databases can be processed by CICS online transactions, and by IMS batch
and BMP programs.

Related Reading: For information on processing DB2 for z/OS databases, see
DB?2 for z/OS Application Programming and SQL Guide.

GSAM Databases

Chapter 4. Analyzing CICS application processing requirements 59

Generalized Sequential Access Method (GSAM) is an access method that enables
BMPs and batch programs to access a “flat” sequential z/OS data set as a simple
database. A GSAM database can be accessed by z/OS or CICS.

* z/OS Files
CICS online and IMS batch programs can access z/OS files for their input,
processing, or output. Batch programs can access z/OS files directly; online
programs must access them through CICS file control or transient data services.

Related concepts:

[“Using data sharing for your CICS program” on page 61|

Writing a CICS program to access IMS databases

The types of programs you can use depend on whether you are running in the
DBCTL environment. Within the different environments, the type of program you
write depends on the processing your application requires. Each type of program
answers different application requirements.

Related concepts:

[Chapter 38, “IMS solutions for Java development overview,” on page 603|

Writing a CICS online program

Use the following information to decide if an online program is appropriate for
your application.

Data that a CICS online program can access

CICS online programs run in the DBCTL environment and can access IMS
full-function databases, Fast Path DEDBs, DB2 for z/OS databases, and z/OS files.

Online programs that access IMS databases are executed in the same way as other
CICS programs.

Using a CICS online program

An online program runs under the control of CICS, and it accesses resources
concurrently with other online programs. Some of the application requirements
online programs can answer are:

* Information in the database must be available to many users.

* Program needs to communicate with terminals and other programs.
* Programs must be available to users at remote terminals.

* Response time is important.

The structure of an online program, and the way it receives status information,
depend on whether it is a call- or command-level program. However, both
command- and call-level online programs:

* Schedule a PSB (for CICS online programs). A PSB is automatically scheduled
for batch or BMP programs.

* Issue either commands or calls to access the database. Online programs cannot
mix commands and calls in one logical unit of work (LUW).

* Optionally, terminate a PSB for CICS online programs.

60 Application Programming

* Issue an EXEC CICS RETURN statement when they have finished their processing.
This statement returns control to the linking program. When the highest-level
program issues the RETURN statement, CICS regains control and terminates the
PSB if it has not yet been terminated.

Because an online application program can be used concurrently by several tasks,
it must be quasi-reentrant.

An online program in the DBCTL environment can use many IMS system service
requests.

DL/I database or system service requests must refer to one of the program
communication blocks (PCBs) from the list of PCBs passed to your program by
IMS. The PCB that must be used for making system service requests is called the
I/0 PCB. When present, it is the first PCB in the list of PCBs.

For an online program in the DBCTL environment, the I/O PCB is optional. To use
the I/O PCB, you must indicate this in the application program when it schedules
the PSB.

Before you run your program, the program specification blocks (PSBs) and
database descriptions (DBDs) the program uses must be converted to internal
control block format using the IMS ACBGEN utility. PSBs specify the
characteristics of an application program. DBDs specify the physical and logical
characteristics of IMS databases.

Related Reading: For more information on performing an ACBGEN and a
PSBGEN, see IMS Version 14 System Ultilities.

Because an online program shares a database with other online programs, it may
affect the performance of your online system.

Related concepts:

[“Maximizing the performance of your CICS system” on page 63|

[“Distributed and local connectivity with the IMS Universal drivers” on page 612

Using data sharing for your CICS program

If you use data sharing, your programs can participate in IMS data sharing. Under
data sharing, CICS online and BMP programs can access the same DL/I database
concurrently.

Batch programs in a data-sharing environment can access databases used by other
batch programs, and by CICS and IMS online programs. With data sharing, you
can share data directly and your program's requests need not go through a mirror
transaction.

Related Reading: For more information on sharing a database with an IMS system,
see IMS Version 14 System Administration.

Related concepts:

[“Accessing databases with your CICS application program” on page 58|

Chapter 4. Analyzing CICS application processing requirements 61

Scheduling and terminating a PSB (CICS online programs only)

Before your online program issues any DL/I calls, it must indicate to IMS its intent
to use a particular PSB by issuing either a PCB call or a SCHD command. In addition
to indicating which PSB your program will use, the PCB call obtains the address of
the PCBs in the PSB. When you no longer need a PSB, you can terminate it using
the TERM request.

In a CICS online program, you use a PCB call or SCHD command (for
command-level programs) to obtain the PSB for your program. Because CICS
releases the PSB your program uses when the transaction ends, your program need
not explicitly terminate the PSB. Only use a terminate request if you want to:

e Use a different PSB

* Commit all the database updates and establish a logical unit of work for backing
out updates

* Free IMS resources for use by other CICS tasks

A terminate request causes a CICS sync point, and a CICS sync point terminates

the PSB. For more information about CICS recovery concepts, see the appropriate
CICS publication.

Do not use terminate requests for other reasons because:

* A terminate request forces a CICS sync point. This sync point releases all
recoverable resources and IMS database resources that were enqueued for this
task.

If the program continues to update other CICS resources after the terminate
request and then terminates abnormally, only those resources that were updated
after the terminate request are backed out. Any IMS changes made by the
program are not backed out.

* IMS lock management detects deadlocks that occur if two transactions are
waiting for segments held by the other.

When a deadlock is detected, one transaction is abnormally terminated.
Database changes are backed out to the last TERM request. If a TERM request or
CICS sync point was issued prior to the deadlock, CICS does not restart the
transaction.

Related Reading: For a complete description of transaction restart
considerations, see CICS Transaction Server for z/OS Recovery and Restart Guide.

* Issuing a terminate request causes additional logging.

* If the terminal output requests are issued after a terminate request and the
transaction fails at this point, the terminal operator does not receive the
message.

The terminal operator may assume that the entire transaction failed, and reenter
the input, thus repeating the updates that were made before the terminate
request. These updates were not backed out.

Linking and passing control to other programs (CICS online programs
only)

Use CICS to link your program to other programs without losing access to the
facilities acquired in the linking program.

For example:

62 Application Programming

* You could schedule a PSB and then link to another program using a LINK
command. On return from that program, the PSB is still scheduled.

* Similarly, you could pass control to another program using the XCTL command,
and the PSB remains scheduled until that program issues an EXEC CICS
RETURN statement. However, when you pass control to another program using
XCTL, the working storage of the program passing control is lost. If you want to
retain the working storage for use by the program being linked to, you must
pass the information in the COMMAREA.

Recommendation: To simplify your work, instead of linking to another program,
you can issue all DL/I requests from one program module. This helps to keep the
programming simple and easy to maintain.

Terminating a PSB or issuing a sync point affects the linking program. For
example, a terminate request or sync point that is issued in the program that was
linked causes the release of CICS resources enqueued in the linking program.

How CICS distributed transactions access IMS

CICS can divide a single, logical unit of work into separate CICS transactions and
coordinate the sync point globally. If such CICS transactions access DBCTL, locking
and buffer management issues might occur.

To IMS, the transactions are separate units of work, on different DBCTL threads,
and they do not share locks or buffers. For example, if a global transaction runs,
obtains a database lock, and reaches the commit point, CICS does not process the
synchronization point until the other transactions in the CICS unit of recovery
(UOR) are ready to commit. If a second transaction in the same CICS UOR
requests the same lock as that held by the first transaction, the second transaction
is held in a lock wait state. The first transaction cannot complete the sync point
and release the lock until the second transaction also reaches the commit point, but
this cannot happen because the second transaction is in a lock wait state. You must
ensure that this type of collision does not occur with CICS distributed transactions
that access IMS.

Maximizing the performance of your CICS system

When you write programs that share data with other programs (for example, a
program that will participate in IMS data sharing or a BMP), be aware of how
your program affects the performance of the online system.

A BMP program, in particular, can affect the performance of the CICS online
transactions. This is because BMP programs usually make a larger number of
database updates than CICS online transactions, and a BMP program is more likely
to hold segments that CICS online programs need. Limit the number of segments
held by a BMP program, so CICS online programs need not wait to acquire them.

One way to limit the number of segments held by a BMP or batch program that
participates in IMS data sharing is to issue checkpoint requests in your program to
commit database changes and release segments held by the program. When
deciding how often to issue checkpoint requests, you can use one or more of the
following techniques:

* Divide the program into small logical units of work, and issue a checkpoint call
at the end of each unit.

Chapter 4. Analyzing CICS application processing requirements 63

* Issue a checkpoint call after a certain number of DL/I requests have been issued,
or after a certain number of transactions are processed.

In CICS online programs, release segments for use by other transactions to
maximize the performance of your online system. (Ordinarily, database changes are
committed and segments are released only when control is returned to CICS.) To
more quickly free resources for use by other transactions, you can issue a TERM
request to terminate the PSB. However, less processing overhead generally occurs
if the PSB is terminated when control is returned to CICS.

Related concepts:

[“Writing a CICS online program” on page 60|

[“Taking checkpoints in batch and BMP programs” on page 65|

Programming integrity and database recovery considerations for your
CICS program

IMS provides support for protecting data integrity for CICS online programs

How IMS protects data integrity for CICS online programs
IMS can protect the data integrity for CICS online programs.

IMS protects the integrity of the database for programs that share data by:

* Preventing other application programs with update capability from accessing
any segments in the database record your program is processing, until your
program finishes with that record and moves to a new database record in the
same database.

* Preventing other application programs from accessing segments that your
program deletes, replaces, or inserts, until your program reaches a sync point.
When your program reaches a sync point, the changes your program has made
to the database become permanent, and the changed data becomes available to
other application programs.

Exception: If PROCOPT=GO has been defined during PSBGEN for your
program, your program can access segments that have been updated but not
committed by another program.

* Backing out database updates made by an application program that terminates
abnormally.

You may also want to protect the data your program accesses by retaining
segments for the sole use of your program until your program reaches a sync
point—even if you do not update the segments. (Ordinarily, if you do not update
the segments, IMS releases them when your program moves to a new database
record.) You can use the Q command code to reserve segments for the exclusive
use of your program. You should use this option only when necessary because it
makes data unavailable to other programs and can have an impact on
performance.

Recovering databases accessed by batch and BMP programs

You can plan for recovering databases accessed by batch or BMP programs.

CICS recovers databases accessed by CICS online programs in the same way it
handles other recoverable CICS resources. For example, if an IMS transaction
terminates abnormally, CICS and IMS back out all database updates to the last
sync point.

64 Application Programming

For batch or BMP programs, do the following;:

* Take checkpoints in your program to commit database changes and provide
places from which your program can be restarted.

* Provide the code for or issue a request to restart your program.

You may also want to back out the database changes that have been made by a
batch program that has not yet committed these changes.

To perform these tasks, you use system service calls, described in more detail in
the appropriate application programming information for your environment.

Requesting an 1/0 PCB in batch programs

For your program to successfully issue any system service request, an 1/O PCB
must have been previously requested.

Related concepts:

“Developing JBP applications with the IMS Java dependent region resource|
adapter” on page 728|

Taking checkpoints in batch and BMP programs
You can take checkpoints in batch and BMP programs. Checkpoints are important
for recovery and for integrity.

Taking checkpoints in batch and BMP programs is important for two reasons:

* Recovery: Checkpoints establish places in your program from which your
program could be restarted, in the event of a program or system failure. If your
program abnormally terminates after issuing a checkpoint request, database
changes will be backed out to the point at which the checkpoint request was
issued.

* Integrity: Checkpoints also commit the changes that your program has made to
the database.

In addition to providing places from which to restart your program and
committing database changes, issuing checkpoint calls in a BMP program or in a
program participating in IMS data sharing releases database segments for use by
other programs.

When a batch or BMP program issues a checkpoint request, IMS writes a record
containing a checkpoint ID to the IMS system log.

When your application program reaches a point during its execution where you
want to make sure that all changes made to that point have been physically
entered in the database, issue a checkpoint request. If some condition causes your
program to fail before its execution is complete, the database must be restored to
its original state. The changes made to the database must be backed out so that the
database is not left in a partially updated condition for access by other application
programs.

If your program runs a long time, you can reduce the number of changes that
must be backed out by taking checkpoints in your program. Then, if your program
terminates abnormally, only the database updates that occurred after the
checkpoint must be backed out. You can also restart the program from the point at
which you issued the checkpoint request, instead of having to restart it from the
beginning.

Chapter 4. Analyzing CICS application processing requirements 65

Issuing a checkpoint call cancels your position in the database.

Issue a checkpoint call just before issuing a Get Unique call, which reestablishes
your position in the database record after the checkpoint is taken.

Types of checkpoints

The two types of checkpoint calls are basic and symbolic. Both types commit your
program's changes to the database and establish places from which your program
can be restarted:

Batch and BMP programs can issue basic checkpoint calls using the CHKP call.
When you use basic checkpoint calls, you must provide the code for restarting the
program after an abnormal termination.

Batch and BMP programs can also issue symbolic checkpoint calls. You can issue a
symbolic checkpoint call by using the CHKP call. Like the basic checkpoint call, the
symbolic checkpoint call commits changes to the database and establishes places
from which the program can be restarted. In addition, the symbolic checkpoint call:

* Works with the Extended Restart call to simplify program restart and recovery.

* Lets you specify as many as seven data areas in the program to be checkpointed.
When you restart the program, the restart call restores these areas to the way
they were when the program terminated abnormally.

Specifying a checkpoint ID

Each checkpoint call your program issues must have an identification, or ID.
Checkpoint IDs must be 8 bytes in length and contain printable EBCDIC
characters.

When you want to restart your program, you can supply the ID of the checkpoint
from which you want the program to be started. This ID is important because
when your program is restarted, IMS searches for checkpoint information with an
ID matching the one you have supplied. The first matching ID that IMS finds
becomes the restart point for your program. This means that checkpoint IDs must
be unique both within each application program and among application programs.
If checkpoint IDs are not unique, you cannot be sure that IMS will restart your
program from the checkpoint you specified.

One way to make sure that checkpoint IDs are unique within and among programs
is to construct IDs in the following order:

* Three bytes of information that uniquely identifies your program.

* Five bytes of information that serves as the ID within the program, for example,
a value that is increased by 1 for each checkpoint command or call, or a portion
of the system time obtained at program start by issuing the TIME macro.

Specifying checkpoint frequency

To determine the frequency of checkpoint requests, you must consider the type of
program and its performance characteristics.

In batch programs

When deciding how often to issue checkpoint requests in a batch program, you
should consider the time required to back out and reprocess the program after a

66 Application Programming

failure. For example, if you anticipate that the processing your program performs
will take a long time to back out, you should establish checkpoints more
frequently.

If you might back out of the entire program, issue the checkpoint request at the
very beginning of the program. IMS backs out the database updates to the
checkpoint you specify. If the database is updated after the beginning of the
program and before the first checkpoint, IMS is not able to back out these database
updates.

In a data-sharing environment, also consider the impact of sharing resources with
other programs on your online system. You should issue checkpoint calls more
frequently in a batch program that shares data with online programs, to minimize
resource contention.

It is a good idea to design all batch programs with checkpoint and restart in mind.
Although the checkpoint support may not be needed initially, it is easier to
incorporate checkpoint calls initially than to try to fit them in later. If the
checkpoint calls are incorporated, it is easier to convert batch programs to BMP
programs or to batch programs that use data sharing.

In BMP programs

When deciding how often to issue checkpoint requests in a BMP program, consider
the performance of your CICS online system. Because these programs share
resources with CICS online transactions, issue checkpoint requests to release
segments so CICS online programs need not wait to acquire them.

Printing checkpoint log records

You can print checkpoint log records by using the IMS File Select and Formatting
Print Program (DFSERA10). With this utility, you can select and print log records
based on their type, the data they contain, or their sequential positions in the data
set. Checkpoint records are type 18 log records. IMS Version 14 System Ultilities
describes this program.

Related concepts:

[“Maximizing the performance of your CICS system” on page 63|

Backing out database changes

If your program terminates abnormally, the database must be restored to its
previous state and uncommitted changes must be backed out. Changes made by a
BMP or CICS online program are automatically backed out. Database changes
made by a batch program might or might not be backed out, depending on
whether your system log is on DASD.

For a batch program

What happens when a batch program terminates abnormally and how you recover
the database depend on the storage medium for the system log. You can specify
that the system log is to be stored on either DASD or on tape.

* When the system log is on DASD

You can specify that IMS is to dynamically back out the changes that a batch
program has made to the database since its last commit point by coding BKO=Y

Chapter 4. Analyzing CICS application processing requirements 67

in the JCL. IMS performs dynamic backout for a batch program when an
IMS-detected failure occurs, such as when a deadlock is detected (for batch
programs that share data).

DASD logging also makes it possible for batch programs to issue the rollback

(ROLB) system service request, in addition to ROLL. The ROLB request causes IMS

to dynamically back out the changes the program has made to the database

since its last commit point, and then to return control to the application

program.

Dynamically backing out database changes has the following advantages:

— Data accessed by the program that failed is immediately available to other
programs. Otherwise, if batch backout is not used, data is not available to

other programs until the IMS Batch Backout utility has been run to back out
the database changes.

— If two programs are deadlocked, one of the programs can continue
processing. Otherwise, if batch backout is not used, both programs will fail.
(This applies only to batch programs that share data.)

Instead of using dynamic backout, you can run the IMS Batch Backout utility to
back out changes.

* When the system log is on tape

If a batch application program terminates abnormally and the system log is
stored on tape, you must use the IMS Batch Backout utility to back out the
program's changes to the database.

Related Reading: For more information, see IMS Version 14 Database Utilities.

For BMP programs

If your program terminates abnormally, the changes the program has made since
the last commit point are backed out. If a system failure occurs, or if the CICS
control region or DBCTL terminates abnormally, DBCTL emergency restart backs
out all changes made by the program since the last commit point. You need not
use the IMS Batch Backout utility because DBCTL backs out the changes. If you
need to back out all changes, you can use the ROLL system service call to
dynamically back out database changes.

Restarting your program

If you issue symbolic checkpoint calls (for batch and BMP programs), you can use
the Extended Restart system service request (XRST) to restart your program after an
abnormal termination.

The XRST call restores the program's data areas to the way they were when the
program terminated abnormally, and it restarts the program from the last
checkpoint request the program issued before terminating abnormally.

If you use basic checkpoint calls (for batch and BMP programs), you must provide
the necessary code to restart the program from the latest checkpoint in the event
that it terminates abnormally.

One way to restart the program from the latest checkpoint is to store repositioning
data in an HDAM database. Your program writes a database record containing
repositioning information to the HDAM database. It updates this record at
intervals. When the program terminates, the database record is deleted. At the
completion of the XRST call, the I/O area always contains a checkpoint ID used by
the restart. Normally, XRST will return the 8-byte symbolic checkpoint ID, followed

68 Application Programming

by 4 blanks. If the 8-byte ID consists of all blanks, then XRST will return the 14-byte
time-stamp ID. Also, check the status code in the PCB. The only successful status
code for an XRST call is a row of blanks.

Related concepts:

“Developing JBP applications with the IMS Java dependent region resource|
adapter” on page 728

Data availability considerations for your CICS program

The data that a program needs to access may sometimes be unavailable. Use the
following functions when data is not available.

Unavailability of a database

The conditions that make an entire database unavailable for both read and update
are the following.

¢ A STOP command has been issued for the database.
» A DBRECOVERY (DBR) command has been issued for the database.
¢ DBRC authorization for the database has failed.

The conditions that make a database available for read but not for update are:
* A DBDUMP command has been issued for the database.

* The database access value is RD (read).

In a data-sharing environment, the command or error that created any of these
conditions may have originated on the other system which is sharing data.

Whether a program is scheduled or whether an executing program can schedule a
PSB when the database is unavailable depends on the type of program and the
environment:

* A batch program

IMS does not schedule a batch program when one of the databases that the
program can access is not available.

In a non-data sharing environment, DBRC authorization for a database may fail
because the database is currently authorized to a DB/DC environment. In a
data-sharing environment, a CICS or a DBCTL master terminal global command
to recover a database or to dump a database may make the database unavailable
to a batch program.

The following conditions alone do not cause a batch program to fail during
initialization:

— A PCB refers to a HALDB.

— The use of DBRC is suppressed.

However, without DBRC, a database call using a PCB for a HALDB is not
allowed. If the program is sensitive to unavailable data, such a call results in the

status code BA; otherwise, such a call results in message DFS3303I, followed by
ABENDU3303.

* An online or BMP program in the DBCTL environment.

When a program executing in this environment attempts to schedule with a PSB
containing one or more full-function databases that are unavailable, the
scheduling is allowed. If the program does not attempt to access the unavailable

Chapter 4. Analyzing CICS application processing requirements 69

database, it can function normally. If it does attempt to access the database, the
result is the same as when the database is available but some of the data in it is
not available.

Unavailability of some data in a database

In addition to the situation where the entire database is unavailable, there are other
situations where a limited amount of data is unavailable. One example is a failure
situation involving data sharing where the IMS system knows which locks were
held by a sharing IMS at the time the sharing IMS system failed. This IMS system
continues to use the database but rejects access to the data that the failed IMS
system held locked at the time of failure.

A batch program, an online program, or a BMP program can be operating in the
DBCTL environment. If so, the online or BMP programs may have been scheduled
when an entire database was not available. The following options apply to these
programs when they attempt to access data and either the entire database is
unavailable or only some of the data in the database is unavailable.

Programs executing in these environments have an option of being sensitive or
insensitive to data unavailability.

* When the program is insensitive to data unavailability and attempts to access
unavailable data, the program fails with a 3303 abend. For online programs, this
is a pseudo-abend. For batch programs, it is a real abend. However, if the
database is unavailable because dynamic allocation failed, a call results in an Al
(unable to open) status code.

* When the program is sensitive to data unavailability and attempts to access
unavailable data, IMS returns a status code indicating that it could not process
the request. The program can then take the appropriate action. A facility exists
for the program to then initiate the same action that IMS would have taken if
the program had been insensitive to unavailable data.

The program issues the INIT call or ACCEPT STATUS GROUP A command to inform
IMS that it is sensitive to unavailable data and can accept the status codes issued
when the program attempts to access such data. The INIT request can also be used
to determine data availability for each PCB in the PSB.

The SETS or SETU and ROLS functions

The SETS or SETU and ROLS requests allow an application to define multiple points
at which to preserve the state of full-function databases.

The application can then return to these points at a later time. By issuing a SETS or
SETU request before initiating a set of DL/I requests to perform a function, the
program can later issue the ROLS request if it cannot complete the function due
possibly to data unavailability.

ROLS allows the program to roll back its IMS activity to the state prior to the SETS
or SETU call.

Restriction: SETS or SETU and ROLS only roll back the IMS updates. They do not
roll back the updates made using CICS file control or transient data.

Additionally, you can use the ROLS call or command to undo all database update
activity since the last checkpoint.

70 Application Programming

Use of STAE or ESTAE and SPIE in IMS batch programs

IMS uses STAE or ESTAE routines in the IMS batch regions to ensure that database
logging and various resource cleanup functions are completed.

Two important aspects of the STAE or ESTAE facility are that:

* IMS relies on its STAE or ESTAE facility to ensure database integrity and
resource control.

* The STAE or ESTAE facility is also available to the application program.

Because of these two factors, be sure you clearly understand the relationship
between the program and the STAE or ESTAE facility.

Generally, do not use the STAE or ESTAE facility in your batch application
program. However, if you believe that the STAE or ESTAE facility is required, you
must observe the following basic rules:

* When the environment supports STAE or ESTAE processing, the application
program STAE or ESTAE routines always get control before the IMS STAE or
ESTAE routines. Therefore, you must ensure that the IMS STAE or ESTAE exit
routines receive control by observing the following procedures in your
application program:

— Establish the STAE or ESTAE routine only once and always before the first
DL/I call.

— When using the STAE or ESTAE facility, the application program must not
alter the IMS abend code.

— Do not use the RETRY option when exiting from the STAE or ESTAE routine.
Instead, return a CONTINUE-WITH-TERMINATION indicator at the end of
the STAE or ESTAE processing. If your application program does specify the
RETRY option, be aware that IMS STAE or ESTAE exit routines will not get
control to perform cleanup. Therefore, system and database integrity may be
compromised.

* The application program STAE/ESTAE exit routine must not issue DL/I calls
because the original abend may have been caused by a problem between the
application and IMS. This would result in recursive entry to STAE/ESTAE with
potential loss of database integrity or in problems taking a checkpoint.

Dynamic allocation for IMS databases

Use the dynamic allocation function to specify the JCL information for IMS
databases in a library instead of in the JCL of each batch job or in the JCL for
DBCTL.

If you use dynamic allocation, do not include JCL DD statements for any database
data sets that have been defined for dynamic allocation. Check with the database
administrator (DBA) or comparable specialist at to determine which databases
have been defined for dynamic allocation.

Related Reading: For more information on the definitions for dynamic allocation,
see the DFSMDA macro in IMS Version 14 System Definition.

Chapter 4. Analyzing CICS application processing requirements 71

72 Application Programming

Chapter 5. Gathering requirements for database options

After designing hierarchies for the databases that your application will access, the
DBA evaluates database options in terms of which options will best meet
application requirements. Whether these options are used depends on the collected
requirements of the applications. To design an efficient database, the DBA needs
information about the individual applications.

Related concepts:

[‘Processing messages: Message Processing Programs” on page 40|

Analyzing data access

The DBA chooses a type of database, based on how the majority of programs that
use the database will access the data.

IMS databases are categorized according to the access method used. The following
is a list of the types of databases that can be defined:

HDAM (Hierarchical Direct Access Method)

PHDAM (Partitioned Hierarchical Direct Access Method)

HIDAM (Hierarchical Indexed Direct Access Method)

PHIDAM (Partitioned Hierarchical Indexed Direct Access Method)
MSDB (Main Storage Database)

DEDB (Data Entry Database)

HSAM (Hierarchical Sequential Access Method)

HISAM (Hierarchical Indexed Sequential Access Method)

GSAM (Generalized Sequential Access Method)

SHSAM (Simple Hierarchical Sequential Access Method)

SHISAM (Simple Hierarchical Indexed Sequential Access Method)

Important: PHDAM and PHIDAM are the partitioned versions of the HDAM and
HIDAM database types, respectively. The corresponding descriptions of the HDAM
and HIDAM database types therefore apply to PHDAM and PHIDAM.

Some of the information that you can gather to help the DBA with this decision
answers questions like the following:

* To access a database record, a program must first access the root of the record.
How will each program access root segments?

Directly
Sequentially
Both

* The segments within the database record are the dependents of the root
segment. How will each program access the segments within each database
record?

Directly
Sequentially
Both

© Copyright IBM Corp. 1974, 2015 73

It is important to note the distinction between accessing a database record and
accessing segments within the record. A program could access database records
sequentially, but after the program is within a record, the program might access
the segments directly. These are different, and can influence the choice of access
method.

* To what extent will the program update the database?
By adding new database records?
By adding new segments to existing database records?

By deleting segments or database records?

Again, note the difference between updating a database record and updating a
segment within the database record.

Direct access

The advantage of direct access processing is that you can get good results for both
direct and sequential processing. Direct access means that by using a randomizing
routine or an index, IMS can find any database record that you want, regardless of
the sequence of database records in the database.

IMS full function has four direct access methods.

* HDAM and PHDAM process data directly by using a randomizing routine to
store and locate root segments.

* HIDAM and PHIDAM use an index to help them provide direct processing of
root segments.

The direct access methods use pointers to maintain the hierarchic relationships
between segments of a database record. By following pointers, IMS can access a
path of segments without passing through all the segments in the preceding paths.

Some of the requirements that direct access satisfies are:
* Fast direct processing of roots using an index or a randomizing routine

* Sequential processing of database records with HIDAM and PHIDAM using the
index

* Fast access to a path of segments using pointers

In addition, when you delete data from a direct-access database, the new space is
available almost immediately. This gives you efficient space utilization; therefore,
reorganization of the database is often unnecessary. Direct access methods
internally maintain their own pointers and addresses.

A disadvantage of direct access is that you have a larger IMS overhead because of
the pointers. But if direct access fulfills your data access requirements, it is more
efficient than using a sequential access method.

Primarily direct processing: HDAM

HDAM is efficient for a database that is usually accessed directly but sometimes
sequentially. HDAM uses a randomizing routine to locate its root segments and
then chains dependent segments together according to the pointer options chosen.
The z/0OS access methods that HDAM can use are Virtual Storage Access Method
(VSAM) and Overflow Storage Access Method (OSAM).

74 Application Programming

Important: PHDAM is the partitioned version of the HDAM database type. The
corresponding descriptions of the HDAM database type therefore apply to
PHDAM.

The requirements that HDAM satisfies are:

* Direct access of roots by root keys because HDAM uses a randomizing routine
to locate root segments

* Direct access of paths of dependents

* Adding new database records and new segments because the new data goes into
the nearest available space

* Deleting database records and segments because the space created by a deletion
can be used by any new segment

HDAM characteristics

An HDAM database:

* Can store root segments anywhere. Root segments do not need to be in sequence
because the randomizing routine locates them.

* Uses a randomizing routine to locate the relative block number and root anchor
point (RAP) within the block that points to the root segment.

* Accesses the RAPs from which the roots are chained in physical sequence. Then
the root segments that are chained from the root anchors are returned. Therefore,
sequential retrieval of root segments from HDAM is not based on the results of
the randomizing routine and is not in key sequence unless the randomizing
routine put them into key sequence.

* May not give the desired result for some calls unless the randomizing module
causes the physical sequence of root segments to be in the key sequence. For
example, a GU call for a root segment that is qualified as less than or equal to a
root key value would scan in physical sequence for the first RAP of the first
block. This may result in a not-found condition, even though segments meeting
the qualification do exist.

For dependent segments, an HDAM database:
* Can store them anywhere
* Chains all segments of one database record together with pointers

An Overview of how HDAM works
This topic contains Diagnosis, Modification, and Tuning information.

When a database record is stored in an HDAM database, HDAM keeps one or
more RAPs at the beginning of each physical block. The RAP points to a root
segment. HDAM also keeps a pointer at the beginning of each physical block that
points to any free space in the block. When you insert a segment, HDAM uses this
pointer to locate free space in the physical block. To locate a root segment in an
HDAM database, you give HDAM the root key. The randomizing routine gives it
the relative physical block number and the RAP that points to the root segment.
The specified RAP number gives HDAM the location of the root within a physical
block.

Although HDAM can place roots and dependents anywhere in the database, it is
better to choose HDAM options that keep roots and dependents close together.

Chapter 5. Gathering requirements for database options 75

HDAM performance depends largely on the randomizing routine you use.
Performance can be very good, but it also depends on other factors such as:

* The block size you use
* The number of RAPs per block

* The pattern for chaining together different segments. You can chain segments of
a database record in two ways:

— In hierarchic sequence, starting with the root

— In parent-to-dependent sequence, with parents having pointers to each of
their paths of dependents

To use HDAM for sequential access of database records by root key, you need to
use a secondary index or a randomizing routine that stores roots in physical key
sequence.

Direct and sequential processing: HIDAM
HIDAM is the access method that is most efficient for an approximately equal
amount of direct and sequential processing.

Important: PHIDAM is the partitioned version of the HIDAM database type. The
corresponding descriptions of the HIDAM database type therefore apply to
PHIDAM.

The z/0OS access methods it can use are VSAM and OSAM. The specific
requirements that HIDAM satisfies are:

* Direct and sequential access of records by their root keys
* Direct access of paths of dependents

* Adding new database records and new segments because the new data goes into
the nearest available space

* Deleting database records and segments because the space created by a deletion
can be used by any new segment

HIDAM can satisfy most processing requirements that involve an even mixture of
direct and sequential processing. However, HIDAM is not very efficient with
sequential access of dependents.

HIDAM characteristics

For root segments, a HIDAM database:
* Initially loads them in key sequence
* Can store new root segments wherever space is available

* Uses an index to locate a root that you request and identify by supplying the
root's key value

For dependent segments, a HIDAM database:
* Can store segments anywhere, preferably fairly close together
* Chains all segments of a database record together with pointers

An overview of how HIDAM works

This topic contains Diagnosis, Modification, and Tuning information.

76 Application Programming

HIDAM uses two databases. The primary database holds the data. An index
database contains entries for all of the root segments in order by their key fields.
For each key entry, the index database contains the address of that root segment in
the primary database.

When you access a root, you supply the key to the root. HIDAM looks up the key
in the index to find the address of the root and then goes to the primary database
to find the root.

HIDAM chains dependent segments together so that when you access a dependent
segment, HIDAM uses the pointer in one segment to locate the next segment in the
hierarchy.

When you process database records directly, HIDAM locates the root through the
index and then locates the segments from the root. HIDAM locates dependents
through pointers.

If you plan to process database records sequentially, you can specify special
pointers in the DBD for the database so that IMS does not need to go to the index
to locate the next root segment. These pointers chain the roots together. If you do
not chain roots together, HIDAM always goes to the index to locate a root
segment. When you process database records sequentially, HIDAM accesses roots
in key sequence in the index. This only applies to sequential processing; if you
want to access a root segment directly, HIDAM uses the index, and not pointers in
other root segments, to find the root segment you have requested.

Main storage database: MSDB
Use MSDBs to store the most frequently-accessed data. MSDBs are suitable for
applications such as general ledger applications in the banking industry.

Recommendation: Use DEDBs instead of MSDBs when you develop new Fast
Path databases. Terminal-related MSDBs and non-terminal-related MSDBs with
terminal-related keys are no longer supported. Although non-terminal-related
MSDBs with non-terminal-related-keys are still supported, you should consider
converting any existing MSDBs to DEDBs. You can use the MSDB-to-DEDB
Conversion utility.

MSDB characteristics

MSDBs reside in virtual storage, enabling application programs to avoid the I/O
activity that is required to access them. The two kinds of MSDBs are
terminal-related and non-terminal-related.

In a terminal-related MSDB, each segment is owned by one terminal, and each
terminal owns only one segment. One use for this type of MSDB is an application
in which each segment contains data associated with a logical terminal. In this type
of application, the program can read the data (perhaps for reporting purposes), but
cannot update it. A non-terminal-related MSDB stores data that is needed by many
users during the same time period. It can be updated and read from all terminals
(for example, a real time inventory control application, where reduction of
inventory can be noted from many cash registers).

An overview of how MSDBs work

This topic contains Diagnosis, Modification, and Tuning information.

Chapter 5. Gathering requirements for database options 77

MSDB segments are stored as root segments only. Only one type of pointer, the
forward chain pointer, is used. This pointer connects the segment records in the
database.

Data entry database: DEDB

DEDBs are designed to provide access to and efficient storage for large volumes of
data. The primary requirement a DEDB satisfies is a high level of data availability.

DEDB characteristics

DEDBs are hierarchic databases that can have as many as 15 hierarchic levels, and
as many as 127 segment types. They can contain both direct and sequential
dependent segments. Because the sequential dependent segments are stored in
chronological order as they are committed to the database, they are useful in
journaling applications.

DEDBs support a subset of functions and options that are available for a HIDAM
or HDAM database. For example, a DEDB does not support logically related
segments or access with primary indexes. Access with secondary indexes is
supported.

An overview of how DEDBs work
This topic contains Diagnosis, Modification, and Tuning information.

A DEDB can be partitioned into multiple areas, with each area containing a
different collection of database records. The data in a DEDB area is stored in a
VSAM data set. Root segments are stored in the root-addressable part of an area,
with direct dependents stored close to the roots for fast access. Direct dependents
that cannot be stored close to their roots are stored in the independent overflow
portion of the area. Sequential dependents are stored in the sequential dependent
portion at the end of the area so that they can be quickly inserted. Each area data
set can have up to seven copies, making the data easily available to application
programs.

Sequential access

When you use a sequential access method, the segments in the database are stored
in hierarchic sequence, one after another, with no pointers.

IMS full-function has two sequential access methods. Like the direct access
methods, one has an index and the other does not:

* HSAM only processes root segments and dependent segments sequentially.

* HISAM processes data sequentially but has an index so that you can access
records directly. HISAM is primarily for sequentially processing dependents, and
directly processing database records.

Some of the general requirements that sequential access satisfies are:
* Fast sequential processing
* Direct processing of database records with HISAM

* Small IMS overhead on storage because sequential access methods relate
segments by adjacency rather than with pointers

The three disadvantages of using sequential access methods are:

78 Application Programming

* Sequential access methods give slower access to the right-most segments in the
hierarchy, because HSAM and HISAM must read through all other segments to
get to them.

* HISAM requires frequent reorganization to reclaim space from deleted segments
and to keep the logical records of a database record physically adjoined.

* You cannot update HSAM databases. You must create a new database to change
any of the data.

Sequential processing only: HSAM
HSAM is a hierarchic access method that can handle only sequential processing.

You can retrieve data from HSAM databases, but you cannot update any of the
data. The z/OS access methods that HSAM can use are QSAM and BSAM.

HSAM is ideal for the following situations:
* You are using the database to collect (but not update) data or statistics.

* You only plan to process the data sequentially.
HSAM characteristics

HSAM stores database records in the sequence in which you submit them. You can
only process records and dependent segments sequentially, which means the order
in which you have loaded them. HSAM stores dependent segments in hierarchic
sequence.

An overview of how HSAM works
This topic contains Diagnosis, Modification, and Tuning information.

HSAM databases are very simple databases. The data is stored in hierarchic
sequence, one segment after the other, and no pointers or indexes are used.

Primarily sequential processing: HISAM

HISAM is an access method that stores segments in hierarchic sequence with an
index to locate root segments. It also has an overflow data set. Store segments in a
logical record until you reach the end of the logical record. When you run out of
space on the logical record, but you still have more segments belonging to the

database record, you store the remaining segments in an overflow data set. The
access methods that HISAM can use are VSAM and OSAM.

HISAM is well-suited for:

* Direct access of record by root keys

* Sequential access of records

* Sequential access of dependent segments

The situations in which your processing has some of these characteristics but
where HISAM is not necessarily a good choice, occur when:

* You must access dependents directly.
* You have a high number of inserts and deletes.

* Many of the database records exceed average size and must use the overflow
data set. The segments that overflow into the overflow data set require
additional I/0.

Chapter 5. Gathering requirements for database options 79

HISAM characteristics

For database records, HISAM databases:
* Store records in key sequence
* Can locate a particular record with a key value by using the index

For dependent segments, HISAM databases:

* Start each HISAM database record in a new logical record in the primary data
set

* Store the remaining segments in one or more logical records in the overflow
data set if the database record does not fit in the primary data set

An overview of how HISAM works
This topic contains Diagnosis, Modification, and Tuning information.

HISAM does not immediately reuse space. When you insert a new segment,
HISAM databases shift data to make room for the new segment, and this leaves
unused space after deletions. HISAM space is reclaimed when you reorganize a
HISAM database.

Accessing z/OS files through IMS: GSAM

GSAM enables IMS batch application programs and BMPs to access a sequential
z/0S data set as a simple database. The z/OS access methods that GSAM can use
are BSAM and VSAM. A GSAM database is a z/OS data set record that is defined
as a database record. The record is handled as one unit; it contains no segments or
fields and the structure is not hierarchic. GSAM databases can be accessed by
z/0S, IMS, and CICS.

In a CICS environment, an application program can access a GSAM database from
either a Call DL/I (or EXEC DLI) batch or batch-oriented BMP program. A CICS
application cannot, however, use EXEC DLI to process GSAM databases; it must
use IMS calls.

You commonly use GSAM to send input to and receive output from batch-oriented
BMPs or batch programs. To process a GSAM database, an application program
issues calls similar to the ones it issues to process a full-function database. The
program can read data sequentially from a GSAM database, and it can send output
to a GSAM database.

GSAM is a sequential access method. You can only add records to an output
database sequentially.

Accessing IMS data through z/0S: SHSAM and SHISAM

Two database access methods give you simple hierarchic databases that z/OS can
use as data sets, SHSAM and SHISAM.

These access methods can be particularly helpful when you are converting data
from z/OS files to an IMS database. SHISAM is indexed and SHSAM is not.

When you use these access methods, you define an entire database record as one
segment. The segment does not contain any IMS control information or pointers;
the data format is the same as it is in z/OS data sets. The z/OS access methods
that SHSAM can use are BSAM and QSAM. SHISAM uses VSAM.

80 Application Programming

SHSAM and SHISAM databases can be accessed by z/OS access methods without
IMS, which is useful during transitions.

Understanding how data structure conflicts are resolved

The order in which application programs need to process fields and segments
within hierarchies is frequently not the same for each application. When the DBA
finds a conflict in the way that two or more programs need to access the data,
three options are available to solve these problems. Each of the following options
solves a different kind of conflict.

* When an application program does not need access to all the fields in a segment,
or if the program needs to access them in a different order, the DBA can use
field level sensitivity for that program. Field-level sensitivity makes it possible for
an application program to access only a subset of the fields that a segment
contains, or for an application program to process a segment's fields in an order
that is different from their order in the segment.

* When an application program needs to access a particular segment by a field
other than the segment's key field, the DBA can use a secondary index for that
database.

* When the application program needs to relate segments from different
hierarchies, the DBA can use logical relationships. Using logical relationships
can give the application program a logical hierarchy that includes segments from
several hierarchies.

Related concepts:

[‘Determining mappings” on page 28|

Using different fields: field-level sensitivity

Field-level sensitivity applies the same kind of security for fields within a segment
that segment sensitivity does for segments within a hierarchy: An application
program can access only those fields within a segment, and those segments within
a hierarchy to which it is sensitive.

Field-level sensitivity also makes it possible for an application program to use a
subset of the fields that make up a segment, or to use all the fields in the segment
but in a different order. If a segment contains fields that the application program
does not need to process, using field-level sensitivity enables the program not to
process them.

Example of field-level sensitivity

Suppose that a segment containing data about an employee contains the fields
shown in the following table. These fields are:

* Employee number: EMPNO
* Employee name: EMPNAME
* Birthdate: BIRTHDAY
 Salary: SALARY

* Address: ADDRESS

Table 24. Physical employee segment
EMPNO EMPNAME BIRTHDAY SALARY ADDRESS

Chapter 5. Gathering requirements for database options 81

A program that printed mailing labels for employees' checks each week would not
need all the data in the segment. If the DBA decided to use field-level sensitivity
for that application, the program would receive only the fields it needed in its I/O
area. The I/O area would contain the EMPNAME and ADDRESS fields. The
following table shows what the program's I/O area would contain.

Table 25. Employee segment with field-level sensitivity
EMPNAME | ADDRESS

Field-level sensitivity makes it possible for a program to receive a subset of the
fields that make up a segment, the same fields but in a different order, or both.

Another situation in which field-level sensitivity is very useful is when new uses
of the database involve adding new fields of data to an existing segment. In this
situation, you want to avoid re-coding programs that use the current segment. By
using field-level sensitivity, the old programs can see only the fields that were in
the original segment. The new program can see both the old and the new fields.

Specifying field-level sensitivity

You specify field-level sensitivity in the PSB for the application program by using a
sensitive field (SENFLD) statement for each field to which you want the
application program to be sensitive.

Related reference:

[#* [SENFLD statement (System Utilities)|

Resolving processing conflicts in a hierarchy: secondary
indexing
Sometimes a database hierarchy does not meet all the processing requirements of
the application programs that will process it.

Secondary indexing can be used to solve two kinds of processing conflicts:

* When an application program needs to retrieve a segment in a sequence other
than the one that has been defined by the segment's key field

* When an application program needs to retrieve a segment based on a condition
that is found in a dependent of that segment

To understand these conflicts and how secondary indexing can resolve them,

consider the examples of two application programs that process the patient

hierarchy, shown in the following figure. Three segment types in this hierarchy are:

* PATIENT contains three fields: the patient's identification number, name, and
address. The patient number field is the key field.

* ILLNESS contains two fields: the date of the illness and the name of the illness.
The date of the illness is the key field.

* TREATMNT contains four fields: the date the medication was given; the name of
the medication; the quantity of the medication that was given; and the name of

the doctor who prescribed the medication. The date that the medication was
given is the key field.

82 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_psbgensenfldstmt.htm#ims_psbgensenfldstmt

PATIENT

ILLNESS

TREATMNT

Figure 16. Patient hierarchy

Retrieving segments based on a different key

When an application program retrieves a segment from the database, the program
identifies the segment by the segment's key field. But sometimes an application
program needs to retrieve a segment in a sequence other than the one that has
been defined by the segment's key field. Secondary indexing makes this possible.

Note: A new database type, the Partitioned Secondary Index (PSINDEX), is
supported by the High Availability Large Database (HALDB). PSINDEX is the
partitioned version of the secondary index database type. The corresponding
descriptions of the secondary index database type therefore apply to PSINDEX.

For example, suppose you have an online application program that processes
requests about whether an individual has ever been to the clinic. If you are not
sure whether the person has ever been to the clinic, you will not be able to supply
the identification number for the person. But the key field of the PATIENT segment
is the patient's identification number.

Segment occurrences of a segment type (for example, the segments for each of the
patients) are stored in a database in order of their keys (in this case, by their
patient identification numbers). If you issue a request for a PATIENT segment and
identify the segment you want by the patient's name instead of the patient's
identification number, IMS must search through all of the PATIENT segments to
find the PATIENT segment you have requested. IMS does not know where a
particular PATIENT segment is just by having the patient's name.

To make it possible for this application program to retrieve PATIENT segments in
the sequence of patients' names (rather than in the sequence of patients'
identification numbers), you can index the PATIENT segment on the patient name
field and store the index entries in a separate database. The separate database is
called a secondary index database.

Then, if you indicate to IMS that it is to process the PATIENT segments in the
patient hierarchy in the sequence of the index entries in the secondary index

Chapter 5. Gathering requirements for database options 83

database, IMS can locate a PATIENT segment if you supply the patient’s name.
IMS goes directly to the secondary index and locates the PATIENT index entry
with the name you have supplied; the PATIENT index entries are in alphabetical
order of the patient names. The index entry is a pointer to the PATIENT segment
in the patient hierarchy. IMS can determine whether a PATIENT segment for the
name you have supplied exists, and then it can return the segment to the
application program if the segment exists. If the requested segment does not exist,
IMS indicates this to the application program by returning a not-found status code.

Related reading: For more information on HALDB, see IMS Version 14 Database
Administration.

Three terms involved in secondary indexing are:

Pointer segment
The index entry in the secondary index database that IMS uses to find the
segment you have requested. In the previous example, the pointer segment
is the index entry in the secondary index database that points to the
PATIENT segment in the patient hierarchy.

Source segment
The segment that contains the field that you are indexing. In the previous
example, the source segment is the PATIENT segment in the patient
hierarchy, because you are indexing on the name field in the PATIENT
segment.

Target segment
The segment in the database that you are processing to which the
secondary index points; it is the segment that you want to retrieve.

In the previous example, the target segment and the source segment are the same
segment—the PATIENT segment in the patient hierarchy. When the source segment
and the target segment are different segments, secondary indexing solves the
processing conflict.

The PATIENT segment that IMS returns to the application program's I/O area
looks the same as it would if secondary indexing had not been used.

The key feedback area is different. When IMS retrieves a segment without using a
secondary index, IMS places the concatenated key of the retrieved segment in the
key feedback area. The concatenated key contains all the keys of the segment's
parents, in order of their positions in the hierarchy. The key of the root segment is
first, followed by the key of the segment on the second level in the hierarchy, then
the third, and so on—with the key of the retrieved segment last.

But when you retrieve a segment from an indexed database, the contents of the
key feedback area after the request are a little different. Instead of placing the key
of the root segment in the left-most bytes of the key feedback area, DL/I places the
key of the pointer segment there. Note that the term “key of the pointer segment,”
as used here, refers to the key as perceived by the application program—that is,
the key does not include subsequence fields.

For example, suppose index segment A shown in the following figure is indexed

on a field in segment C. Segment A is the target segment, and segment C is the
source segment.

84 Application Programming

A +— Target segment

C <+—— Source segment

Figure 17. Indexing a root segment

When you use the secondary index to retrieve one of the segments in this
hierarchy, the key feedback area contains one of the following:

* If you retrieve segment A, the key feedback area contains the key of the pointer
segment from the secondary index.

* If you retrieve segment B, the key feedback area contains the key of the pointer
segment, concatenated with the key of segment B.

* If you retrieve segment C, the key of the pointer segment, the key of segment B,
and the key of segment C are concatenated in the key feedback area.

Although this example creates a secondary index for the root segment, you can
index dependent segments as well. If you do this, you create an inverted structure:
the segment you index becomes the root segment, and its parent becomes a
dependent.

For example, suppose you index segment B on a field in segment C. In this case,
segment B is the target segment, and segment C is the source field. The following

figure shows the physical database structure and the structure that is created by
the secondary index.

A B

B <«—— Target segment

C <«— Source segment A C

Figure 18. Indexing a dependent segment

When you retrieve the segments in the secondary index data structure on the right,
IMS returns the following to the key feedback area:

Chapter 5. Gathering requirements for database options 85

* If you retrieve segment B, the key feedback area contains the key of the pointer
segment in the secondary index database.

* If you retrieve segment A, the key feedback area contains the key of the pointer
segment, concatenated with the key of segment A.

* If you retrieve segment C, the key feedback area contains the key of the pointer
segment, concatenated with the key of segment C.

Retrieving segments based on the qualification of a dependent
segment

Sometimes an application program needs to retrieve a segment, but only if one of
the dependents of the segment meet certain qualifications.

For example, suppose that the medical clinic wants to print a monthly report of the
patients who have visited the clinic during that month. If the application program
that processes this request does not use a secondary index, the program has to
retrieve each PATIENT segment, and then retrieve the ILLNESS segment for each
PATIENT segment. The program tests the date in the ILLNESS segment to
determine whether the patient has visited the clinic during the current month, and
prints the patient's name if the answer is yes. The program continues retrieving
PATIENT segments and ILLNESS segments until it has retrieved all the PATIENT
segments.

But with a secondary index, you can make the processing of the program simpler.
To do this, you index the PATIENT segment on the date field in the ILLNESS
segment. When you define the PATIENT segment in the DBD, you give IMS the
name of the field on which you are indexing the PATIENT segment, and the name
of the segment that contains the index field. The application program can then
request a PATIENT segment and qualify the request with the date in the ILLNESS
segment. The PATIENT segment that is returned to the application program looks
just as it would if you were not using a secondary index.

In this example, the PATIENT segment is the target segment; it is the segment that
you want to retrieve. The ILLNESS segment is the source segment; it contains the
information that you want to use to qualify your request for PATIENT segments.
The index segment in the secondary database is the pointer segment. It points to
the PATIENT segments.

Creating a new hierarchy: logical relationships

When an application program needs to associate segments from different
hierarchies, logical relationships can make that possible.

Logical relationships can solve the following conflicts:

* When two application programs need to process the same segment, but they
need to access the segment through different hierarchies

* When a segment's parent in one application program's hierarchy acts as that
segment's child in another application program

Accessing a segment through different paths
Sometimes an application program needs to process the data in a different order
than the way it is arranged in the hierarchy.

For example, an application program that processes data in a purchasing database
also requires access to a segment in a patient database:

86 Application Programming

* Program A processes information in the patient database about the patients at a
medical clinic: the patients' illnesses and their treatments.

* Program B is an inventory program that processes information in the purchasing
database about the medications that the clinic uses: the item, the vendor,
information about each shipment, and information about when and under what
circumstances each medication is given.

The following figure shows the hierarchies that Program A and Program B require
for their processing. Their processing requirements conflict: they both need to have
access to the information that is contained in the TREATMNT segment in the
patient database. This information is:

* The date that a particular medication was given

* The name of the medication

* The quantity of the medication given

* The doctor that prescribed the medication

To Program B this is not information about a patient's treatment; it is information
about the disbursement of a medication. To the purchasing database, this is the
disbursement segment (DISBURSE).

The following figure shows the hierarchies for Program A and Program B. Program
A needs the PATIENT segment, the ILLNESS segment, and the TREATMNT
segment. Program B needs the ITEM segment, the VENDOR segment, the
SHIPMENT segment, and the DISBURSE segment. The TREATMNT segment and
the DISBURSE segment contain the same information.

Chapter 5. Gathering requirements for database options 87

Program A Program B
PATIENT ITEM
\
ILLNESS VENDOR
\
TREATMNT SHIPMENT
DISBURSE

Figure 19. Patient and inventory hierarchies

Instead of storing this information in both hierarchies, you can use a logical
relationship. A logical relationship solves the problem by storing a pointer from
where the segment is needed in one hierarchy to where the segment exists in the
other hierarchy. In this case, you can have a pointer in the DISBURSE segment to
the TREATMNT segment in the medical database. When IMS receives a request for
information in a DISBURSE segment in the purchasing database, IMS goes to the
TREATMNT segment in the medical database that is pointed to by the DISBURSE
segment. The following figure shows the physical hierarchy that Program A would
process and the logical hierarchy that Program B would process. DISBURSE is a
pointer segment to the TREATMNT segment in Program A's hierarchy.

88 Application Programming

Program A Program B

PATIENT ITEM
ILLNESS VENDOR
TREATMNT SHIPMENT
DISBURSE

Figure 20. Logical relationships example

To define a logical relationship between segments in different hierarchies, you use
a logical DBD. A logical DBD defines a hierarchy that does not exist in storage, but
can be processed as though it does. Program B would use the logical structure
shown in the previous figure as though it were a physical structure.

Inverting a parent-child relationship

Another type of conflict that logical relationships can resolve occurs when a

segment's parent in one application program acts as that segment's child in another

application program.

* The inventory program, Program B, needs to process information about
medications using the medication as the root segment.

* A purchasing application program, Program C, processes information about
which vendors have sold which medications. Program C needs to process this
information using the vendor as the root segment.

The following figure shows the hierarchies for each of these application programs.

Chapter 5. Gathering requirements for database options 89

Program B Program C

supplies database purchasing database
ITEM VENDOR
VENDOR ITEM

Figure 21. Supplies and purchasing hierarchies

Logical relationships can solve this problem by using pointers. Using pointers in
this example would mean that the ITEM segment in the purchasing database
would contain a pointer to the actual data stored in the ITEM segment in the
supplies database. The VENDOR segment, however, would actually be stored in
the purchasing database. The VENDOR segment in the supplies database would
point to the VENDOR segment that is stored in the purchasing database.

The following figure shows the hierarchies of these two programs.

Program B Program C
supplies database purchasing database
ITEM VENDOR

VENDOR ITEM

Figure 22. Program B and program C hierarchies

If you did not use logical relationships in this situation, you would:

* Keep the same data in both paths, which means that you would be keeping
redundant data.

* Have the same disadvantages as separate files of data:

— You would need to update multiple segments each time one piece of data
changed.

— You would need more storage.

90 Application Programming

Providing data security

You can control the security of data accessed by your IMS application programs
through data sensitivity and processing options.

Data sensitivity
Controls what data a particular program can access.

Processing options
Controls how a particular program can process data that it can access.

Providing data availability

Specifying segment sensitivity and processing options also affects data availability.
You should set the specifications so that the PCBs request the fewest SENSEGS and
limit the possible processing options. With data availability, a program can
continue to access and update segments in the database successfully, even though
some parts of the database are unavailable.

The SENSEG statement defines a segment type in the database to which the
application program is sensitive. A separate SENSEG statement must exist for each
segment type. The segments can physically exist in one database or they can be
derived from several physical databases. If an application program is sensitive to a
segment that is below the root segment, it must also be sensitive to all segments in
the path from the root segment to the sensitive segment.

Related Reading: For more information on using field-level sensitivity for data
security and using the SENSEG statement to limit the scope of the PCBs, see IMS
Version 14 Database Administration.

Related concepts:

[“An overview of application design” on page 15|

Keeping a program from accessing the data: data sensitivity
An IMS program can only access data to which it is sensitive.

You can control the data to which your program is sensitive on three levels:

* Segment sensitivity can prevent an application program from accessing all the
segments in a particular hierarchy. Segment sensitivity tells IMS which segments
in a hierarchy the program is allowed to access.

* Field-level sensitivity can keep a program from accessing all the fields that
make up a particular segment. Field-level sensitivity tells IMS which fields
within a particular segment a program is allowed to access.

* Key sensitivity means that the program can access segments below a particular
segment, but it cannot access the particular segment. IMS returns only the key of
this type of segment to the program.

You define each of these levels of sensitivity in the PSB for the application
program. Key sensitivity is defined in the processing option for the segment.
Processing options indicate to IMS exactly what a particular program may or may
not do to the data. You specify a processing option for each hierarchy that the
application program processes; you do this in the DB PCB that represents each
hierarchy. You can specify one processing option for all the segments in the
hierarchy, or you can specify different processing options for different segments
within the hierarchy.

Chapter 5. Gathering requirements for database options 91

Segment sensitivity and field-level sensitivity are defined using special statements
in the PSB.

Segment sensitivity

You define what segments an application program is sensitive to in the DB PCB for
the hierarchy that contains those segments.

For example, suppose that the patient hierarchy shown in the following figures.
The patient hierarchy is like a subset of the medical database.

PATIENT

ILLNESS BILLING HOUSHOLD

TREATMNT PAYMENT

Figure 23. Medical database hierarchy

PATIENT is the root segment and the parent of the three segments below it:
ILLNESS, BILLING, and HOUSHOLD. Below ILLNESS is TREATMNT. Below
BILLING is PAYMENT.

To make it possible for an application program to view only the segments
PATIENT, ILLNESS, and TREATMNT from the medical database, you specify in
the DB PCB that the hierarchy you are defining has these three segment types, and
that they are from the medical database. You define the database hierarchy in the
DBD; you define the application program's view of the database hierarchy in the
DB PCB.

Field-level sensitivity

In addition to providing data independence for an application program, field-level
sensitivity can also act as a security mechanism for the data that the program uses.

If a program needs to access some of the fields in a segment, but one or two of the
fields that the program does not need to access are confidential, you can use
field-level sensitivity. If you define that segment for the application program as
containing only the fields that are not confidential, you prevent the program from
accessing the confidential fields. Field-level sensitivity acts as a mask for the fields
to which you want to restrict access.

Key sensitivity

To access a segment, an application program must be sensitive to all segments at a
higher level in the segment's path. In other words, in the following figure, a
program must be sensitive to segment B in order to access segment C.

For example, suppose that an application program needs segment C to do its

processing. But if segment B contains confidential information (such as an
employee's salary), the program is not able to access that segment. Using key

92 Application Programming

sensitivity lets you withhold segment B from the application program while giving
the program access to the dependents of segment B.

When a sensitive segment statement has a processing option of K specified for it,
the program cannot access that segment, but the program can pass beyond that
segment to access the segment's dependents. When the program does access the
segment's dependents, IMS does not return that segment; IMS returns only the
segment's key with the keys of the other segments that are accessed.

Figure 24. Sample hierarchy for key sensitivity example

Preventing a program from updating data: processing options

During PCB generation, you can use five options of the PROCOPT parameter (in
the DATABASE macro) to indicate to IMS whether your program can read
segments in the hierarchy, or whether it can also update segments.

From most restrictive to least restrictive, these options are:

G Your program can read segments.

R Your program can read and replace segments.

I Your program can insert segments.

D Your program can read and delete segments.

A Your program can perform all the processing options. It is equivalent to

specifying G, R, I, and D.

Related Reading: For a thorough description of the processing options see, IMS
Version 14 System Utilities.

Processing options provide data security because they limit what a program can do
to the hierarchy or to a particular segment. Specifying only the processing options
the program requires ensures that the program cannot update any data it is not
supposed to. For example, if a program does not need to delete segments from a
database, the D option need not be specified.

Chapter 5. Gathering requirements for database options 93

When an application program retrieves a segment and has any of the
just-described processing options, IMS locks the database record for that
application. If PROCOPT=G is specified, other programs with the option can
concurrently access the database record. If an update processing option (R, I, D, or
A) is specified, no other program can concurrently access the same database
record. If no updates are performed, the lock is released when the application
moves to another database record or, in the case of HDAM, to another anchor
point.

The following locking protocol allows IMS to make this determination. If the root
segment is updated, the root lock is held at update level until commit. If a
dependent segment is updated, it is locked at update level. When exiting the
database record, the root segment is demoted to read level. When a program enters
the database record and obtains the lock at either read or update level, the lock
manager provides feedback indicating whether or not another program has the
lock at read level. This determines if dependent segments will be locked when they
are accessed. For HISAM, the primary logical record is treated as the root, and the
overflow logical records are treated as dependent segments.

When using block-level or database-level data sharing for online and batch
programs, you can use additional processing options.

Related Reading:

* For a special case involving HISAM delete byte with parameter ERASE=YES see,
IMS Version 14 Database Administration.

* For more information on database and block-level data sharing, see IMS Version
14 System Administration.

E option

With the E option, your program has exclusive access to the hierarchy or to the
segment you use it with. The E option is used in conjunction with the options G, I,
D, R, and A. While the E program is running, other programs cannot access that
data, but may be able to access segments that are not in the E program's PCB. No
dynamic enqueue by program isolation is done, but dynamic logging of database
updates will be done.

GO option

When your program retrieves a segment with the GO option, IMS does not lock
the segment. While the read without integrity program reads the segment, it
remains available to other programs. This is because your program can only read
the data (termed read-only); it is not allowed to update the database. No dynamic
enqueue is done by program isolation for calls against this database. Serialization
between the program with PROCOPT=GO and any other update program does not
occur; updates to the same data occur simultaneously.

If a segment has been deleted and another segment of the same type has been
inserted in the same location, the segment data and all subsequent data that is
returned to the application may be from a different database record.

A read-without-integrity program can also retrieve a segment even if another
program is updating the segment. This means that the program need not wait for
segments that other programs are accessing. If a read-without-integrity program
reads data that is being updated by another program, and that program terminates

94 Application Programming

abnormally before reaching the next commit point, the updated segments might
contain invalid pointers. If an invalid pointer is detected, the read-without-integrity
program terminates abnormally, unless the N or T options were specified with GO.
Pointers are updated during insert, delete and backout functions.

N option

When you use the N option with GO to access a full-function database or a DEDB,
and the segment you are retrieving contains an invalid pointer, IMS returns a GG
status code to your program. Your program can then terminate processing,
continue processing by reading a different segment, or access the data using a
different path. The N option must be specified as PROCOPT=GON, GON, or
GONP.

T option

When you use the T option with GO and the segment you are retrieving contains
an invalid pointer, the response from an application program depends on whether
the program is accessing a full-function or Fast Path database.

For calls to full-function databases, the T option causes DL/I to automatically retry
the operation. You can retrieve the updated segment, but only if the updating
program has reached a commit point or has had its updates backed out since you
last tried to retrieve the segment. If the retry fails, a GG status code is returned to
your program.

For calls to Fast Path DEDBs, option T does not cause DL/I to retry the operation.
A GG status code is returned. The T option must be specified as PROCOPT=GOT,
GOT, or GOTP.

GOx and data integrity

For a very small set of applications and data, PROCOPT=GOx offers some
performance and parallelism benefits. However, it does not offer application data
integrity. For example, using PROCOPT=GOT in an online environment on a
full-function database can cause performance degradation. The T option forces a
re-read from DASD, negating the advantage of very large buffer pools and VSAM
hiperspace for all currently running applications and shared data. For more
information on the GOx processing option for DEDBs, see IMS Version 14 System
Utilities.

Related concepts:

[‘Read without integrity”|

Read without integrity

Database-level sharing of IMS databases provides for sharing of databases between
a single update-capable batch or online IMS system and any number of other IMS
systems that are reading data that are without integrity.

A GE status code might be returned to a program using PROCOPT=GOx for a
segment that exists in a HIDAM database during control interval (CI) splits.

In IMS, programs that use database-level sharing include PROCOPT=GOx in their

DBPCBs for that data. For batch jobs, the DBPCB PROCOPTs establish the batch
job's access level for the database. That is, a batch job uses the highest declared

Chapter 5. Gathering requirements for database options 95

intent for a database as the access level for DBRC database authorization. In an
online IMS environment, database ACCESS is specified on the DATABASE macro
during IMS system definition, and it can be changed using the /START DB
ACCESS=R0 command. Online IMS systems schedule programs with data availability
determined by the PROCOPTs within those program PSBs being scheduled. That
data availability is therefore limited by the online system's database access.

The PROCOPT=GON and GOT options provide certain limited PCB status code
retry for some recognizable pointer errors, within the data that is being read
without integrity. In some cases, dependent segment updates, occurring
asynchronously to the read-without-integrity IMS instance, do not interfere with
the program that is reading that data without integrity. However, update activity to
an average database does not always allow a read-without-integrity IMS system to
recognize a data problem.

What read without integrity means

Each IMS batch or online instance has OSAM and VSAM buffer pools defined for
it. Without locking to serialize concurrent updates that are occurring in another
IMS instance, a read without integrity from a database data set fetches a copy of a
block or CI into the buffer pool in storage. Blocks or Cls in the buffer pool can
remain there a long time. Subsequent read without integrity of other blocks or CIs
can then fetch more recent data. Data hierarchies and other data relationships
between these different blocks or Cls can be inconsistent.

For example, consider an index database (VSAM KSDS), which has an index
component and a data component. The index component contains only hierarchic
control information, relating to the data component CI where a given keyed record
is located. Think of this as the way that the index component CI maintains the
high key in each data component CI. Inserting a keyed record into a KSDS data
component CI that is already full causes a CI split. That is, some portion of the
records in the existing CI are moved to a new CI, and the index component is
adjusted to point to the new CL

For example, suppose the index CI shows the high key in the first data CI as
KEY100, and a split occurs. The split moves keys KEY051 through KEY100 to a
new CI; the index CI now shows the high key in the first data CI as KEY050, and
another entry shows the high key in the new CI as KEY100.

A program that is reading is without integrity, which already read the “old” index
component CI into its buffer pool (high key KEY100), does not point to the newly
created data CI and does not attempt to access it. More specifically, keyed records
that exist in a KSDS at the time a read-without-integrity program starts might
never be seen. In this example, KEY051 through KEY100 are no longer in the first
data CI even though the “0ld” copy of the index CI in the buffer pool still
indicates that any existing keys up to KEY100 are in the first data CL

Hypothetical cases also exist where the deletion of a dependent segment and the
insertion of that same segment type under a different root, placed in the same
physical location as the deleted segment, can cause simple Get Next processing to
give the appearance of only one root in the database. For example, accessing the
segments under the first root in the database down to a level-06 segment (which
had been deleted from the first root and is now logically under the last root)
would then reflect data from the other root. The next and subsequent Get Next
calls retrieve segments from the other root.

96 Application Programming

Read-only (PROCOPT=GO) processing does not provide data integrity.
Data set extensions

IMS instances with database-level sharing can open a database for read without
integrity.

After the database is opened, another program that is updating that database can
make changes to the data. These changes might result in logical and physical
extensions to the database data set. Because the read-without-integrity program is
not aware of these extensions, problems with the RBA (beyond end-of-data) can
occur.

Related concepts:

[“Preventing a program from updating data: processing options” on page 93|

Chapter 5. Gathering requirements for database options 97

98 Application Programming

Chapter 6. Gathering requirements for message processing
options

One of the tasks of application design is providing information about your
application's requirements to the people in charge of designing and administering
your IMS system.

Restriction: This information applies to DB/DC and DCCTL environments only.

Related concepts:

[“Programming with the IMS Java dependent region resource adapter” on page 718|

Identifying online security requirements

Security in an online system means protecting the data from unauthorized use
through terminals. It also means preventing unauthorized use of both the IMS
system and the application programs that access the database. For example, you do
not want a program that processes paychecks to be available to everyone who can
access the system.

The security mechanisms that IMS provides are signon, terminal, and password
security.

Related reading: For an explanation of how to establish these types of security, see
IMS Version 14 System Administration.

Limiting access to specific individuals: signon security

Signon security is available through Resource Access Control Facility (RACF®) or a
user-written security exit routine. With signon security, individuals who want to
use IMS must be defined to RACF or its equivalent before they are allowed access.

When a person signs on to IMS, RACF or security exits verify that the person is
authorized to use IMS before access to IMS-controlled resources is allowed. This
signon security is provided by the /SIGN ON command. You can also limit the
transaction codes and commands that individuals are allowed to enter. You do this
by associating an individual's user identification (USERID) with the transaction
codes and commands.

LU 6.2 transactions contain the USERID.

Related reading: For more information on security, see IMS Version 14
Communications and Connections.

Limiting access for specific terminals: terminal security
Use terminal security to limit the entry of a transaction code to a particular
terminal or group of terminals in the system. How you do this depends on how

many programs you want to protect.

To protect a particular program, you can either authorize a transaction code to be
entered from a list of logical terminals, or you can associate each logical terminal

© Copyright IBM Corp. 1974, 2015 99

with a list of the transaction codes that a user can enter from that logical terminal.
For example, you could protect the paycheck application program by defining the
transaction code associated with it as valid only when entered from the terminals
in the payroll department. If you wanted to restrict access to this application even
more, you could associate the paycheck transaction code with only one logical
terminal. To enter that transaction code, a user needs to be at a physical terminal
that is associated with that logical terminal.

Restriction: If you are using the shared-queues option, static control blocks
representing the resources needed for the security check need to be available in the
IMS system where the security check is being made. Otherwise, the security check
is bypassed.

Related reading: For more information on shared queues, see IMS Version 14
System Administration.

Limiting access to the program: password security

Another way you can protect the application program is to require a password
when a person enters the transaction code that is associated with the application
program you want to protect. If you use only password security, the person
entering a particular transaction code must also enter the password of the
transaction before IMS processes the transaction.

If you use password security with terminal security, you can restrict access to the
program even more. In the paycheck example, using password security and
terminal security means that you can restrict unauthorized individuals within the
payroll department from executing the program.

Restriction: Password security for transactions is only supported if the
transactions that are needed for the security check are defined in the IMS system
where the security check is being made. Otherwise, the security check is bypassed.

Allowing access to security data: authorization security

RACF has a data set that you can use to store user-unique information. The AUTH
call gives application programs access to the RACF data set security data, and a
way to control access to application-defined resources. Thus, application programs
can obtain the security information about a particular user.

How IMS security relates to DB2 for z/OS security

An important part of DB2 for z/OS security is the authorization ID. The
authorization ID that IMS uses for a program or a user at a terminal depends on
the kind of security that is used and the kind of program that is running.

For MPPs, IFPs, and transaction-oriented BMPs, the authorization ID depends on
the type of IMS security:

* If signon is required, IMS passes the USERID and group name that are
signed-on to DB2 for z/OS.

* If signon is not required, DB2 for z/OS uses the name of the originating logical
terminal as the authorization ID.

For batch-oriented BMPs, the authorization ID is dependent on the value specified
for the BMPUSID= keyword in the DFSDCxxx PROCLIB member:

100 Application Programming

+ If BMPUSID=USERID is specified, the value from the USER= keyword on the
JOB statement is used.

 If USER= is not specified on the JOB statement, the program's PSB name is used.

 If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at all, the
program's PSB name is used.

Supplying security information

When you evaluate your application in terms of its security requirements, you
need to look at each program individually. When you have done this, you can
supply the following information to your security personnel.

* For programs that require signon security:

— List the individuals who should be able to access IMS.
* For programs that require terminal security:

— List the transaction codes that must be secured.

— List the terminals that should be allowed to enter each of these transaction
codes. If the terminals you are listing are already installed and being used,
identify the terminals by their logical terminal names. If not, identify them by
the department that will use them (for example, the accounting department).

* For programs that require password security:
— List the transaction codes that require passwords.
* For commands that require security:
— List the commands that require signon or password security.

Related concepts:

[“An overview of application design” on page 15|

Analyzing screen and message formats

When an application program communicates with a terminal, an editing procedure
translates messages from the way they are entered at the terminal to the way the
program expects to receive and process them.

The decisions about how IMS will edit your program's messages are based on how
your data should be presented to the person at the terminal and to the application
program. You need to describe how you want data from the program to appear on
the terminal screen, and how you want data from the terminal to appear in the
application program's I/O area. (The I/O area contains the segments being
processed by the application program.)

To supply information that will be helpful in these decisions, you should be
familiar with how IMS edits messages. IMS has two editing procedures:

* Message Format Service (MFS) uses control blocks that define what a message
should look like to the person at the terminal and to the application program.

* Basic edit is available to all IMS application programs. Basic edit removes
control characters from input messages and inserts the control characters you
specify in output messages to the terminal.

Related reading: For information on defining IMS editing procedures and on other
design considerations for IMS networks, see IMS Version 14 Communications and
Connections.

Chapter 6. Gathering requirements for message processing options 101

An overview of MFS

MFS uses four kinds of control blocks to format messages between an application
program and a terminal. The information you gather about how you want the data
formatted when it is passed between the application program and the terminal is
contained in these control blocks.

The two control blocks that describe input messages to IMS are:

* The device input format (DIF) describes to IMS what the input message is to
look like when it is entered at the terminal.

* The message input descriptor (MID) tells IMS how the application program
expects to receive the input message in its I/O area.

By using the DIF and the MID, IMS can translate the input message from the way
that it is entered at the terminal to the way it should appear in the program's I/O
area.

The two control blocks that describe output messages to IMS are:

* The message output descriptor (MOD) tells IMS what the output message is to
look like in the program's I/O area.

* The device output format (DOF) tells IMS how the message should appear on
the terminal.

To define the MFS control blocks for an application program, you need to know
how you want the data to appear at the terminal and in the application program's
I/0O area for both input and output.

An overview of basic edit

Basic edit removes the control characters from an input message before the
application program receives it, and inserts the control characters you specify
when the application program sends a message back to the terminal.

To format output messages at a terminal using basic edit, you need to supply the
necessary control characters for the terminal you are using.

If your application will use basic edit, you should describe how you want the data
to be presented at the terminal, and what it is to look like in the program's I/O
area.

Editing considerations in your application

Before you describe the editing requirements of your application, be sure that you
are aware of your standards concerning screen design. Make sure that the
requirements that you describe comply with those standards.

Provide the following information about your program's editing requirements:

* How you want the screen to be presented to the person at the terminal for the
person to enter the input data. For example, if an airline agent wants to reserve
seats on a particular flight, the screen that asks for this information might look
like this:

FLIGHT#:

NAME:
NO. IN PARTY:

102 Application Programming

* What the data should look like when the person at the terminal enters the input
message.

* What the input message should look like in the program's I/O area.

* What the data should look like when the program builds the output message in
its I/O area.

* How the output message should be formatted at the terminal.

* The length and type of data that your program and the terminal will be
exchanging.

The type of data you are processing is only one consideration when you analyze
how you want the data presented at the terminal. In addition, you should weigh
the needs of the person at the terminal (the human factors aspects in your
application) against the effect of the screen design on the efficiency of the
application program (the performance factors in the application program).
Unfortunately, sometimes a trade-off between human factors and performance
factors exists. A screen design that is easily understood and used by the person at
the terminal may not be the design that gives the application program its best
performance. Your first concern should be that you are following whatever are
your established screen standards.

A terminal screen that has been designed with human factors in mind is one that
puts the person at the terminal first; it is one that makes it as easy as possible for
that person to interact with IMS. Some of the things you can do to make it easy for
the person at the terminal to understand and respond to your application program
are:

* Display a small amount of data at one time.

* Use a format that is clear and uncluttered.

* Provide clear and simple instructions.

* Display one idea at a time.

* Require short responses from the person at the terminal.

* Provide some means for help and ease of correction for the person at the
terminal.

At the same time, you do not want the way in which a screen is designed to have
a negative effect on the application program's response time, or on the system's
performance. When you design a screen with performance first in mind, you want
to reduce the processing that IMS must do with each message. To do this, the
person at the terminal should be able to send a lot of data to the application
program in one screen so that IMS does not have to process additional messages.
And the program should not require two screens to give the person at the terminal
information that it could give on one screen.

When describing how the program should receive the data from the terminal, you
need to consider the program logic and the type of data you are working with.

Gathering requirements for conversational processing

When you use conversational processing, the person at the terminal enters some
information, and an application program processes the information and responds
to the terminal. The person at the terminal then enters more information for an
application program to process. Each of these interactions between the person at

Chapter 6. Gathering requirements for message processing options 103

the terminal and the program is called a step in the conversation. Only MPPs can
be conversational programs; Fast Path programs and BMPs cannot be
conversational.

Definition: Conversational processing means that the person at the terminal can
communicate with the application program.

What happens in a conversation

A conversation is defined as a dialog between a user at a terminal and IMS through
a scratchpad area (SPA) and one or more application programs.

During a conversation, the user at the terminal enters a request, receives the
information from IMS, and enters another request. Although it is not apparent to
the user, a conversation can be processed by several application programs or by
one application program.

To continue a conversation, the program must have the necessary information to
continue processing. IMS stores data from one step of the conversation to the next
in a SPA. When the same program or a different program continues the
conversation, IMS gives the program the SPA for the conversation associated with
that terminal.

In the preceding airline example, the first program might save the flight number
and the names of the people traveling, and then pass control to another application
program to reserve seats for those people on that flight. The first program saves
this information in the SPA. If the second application program did not have the
flight number and names of the people traveling, it would not be able to do its
processing.

Designing a conversation

The first part of designing a conversation is to design the flow of the conversation.
If the requests from the person at the terminal are to be processed by only one
application program, you need only to design that program. If the conversation
should be processed by several application programs, you need to decide which
steps of the conversation each program is to process, and what each program is to
do when it has finished processing its step of the conversation.

When a person at a terminal enters a transaction code that has been defined as
conversational, IMS schedules the conversational program (for example, Program
A) associated with that transaction code. When Program A issues its first call to the
message queue, IMS returns the SPA that is defined for that transaction code to
Program A's I/O area. The person at the terminal must enter the transaction code
(and password, if one exists) only on the first input screen; the transaction code
need not be entered during each step of the conversation. IMS treats data in
subsequent screens as a continuation of the conversation started on the first screen.

After the program has retrieved the SPA, Program A can retrieve the input
message from the terminal. After it has processed the message, Program A can
either continue the conversation, or end it.

To continue the conversation, Program A can do any of the following:
* Reply to the terminal that sent the message.

* Reply to the terminal and pass the conversation to another conversational
program, for example Program B. This is called a deferred program switch.

104 Application Programming

Definition: A deferred program switch means that Program A responds to the
terminal and then passes control to another conversational program, Program B.
After passing control to Program B, Program A is no longer part of the
conversation. The next input message that the person at the terminal enters goes
to Program B, although the person at the terminal is unaware that this message
is being sent to a second program.

Restriction: A deferred program switch is disallowed if the application is
involved in an inbound protected conversation. The application will receive an
X6 status code if it attempts to perform a deferred program switch in this
environment.

* Pass control of the conversation to another conversational program without first
responding to the originating terminal. This is called an immediate program switch.

Definition: An immediate program switch lets you pass control directly to
another conversational program without having to respond to the originating
terminal. When you do this, the program that you pass the conversation to must
respond to the person at the terminal. To continue the conversation, Program B
then has the same choices as Program A did: It can respond to the originating
terminal and keep control, or it can pass control in a deferred or immediate
program switch.

Restriction: An immediate program switch is disallowed if the application is
involved in an inbound protected conversation. The application will be abended
with a U711 if it attempts to perform an immediate program switch in this
environment.

To end the conversation, Program A can do either of the following:

* Move a blank to the first byte of the transaction code area of the SPA and then
return the SPA to IMS.

* Respond to the terminal and pass control to a nonconversational program. This
is also called a deferred program switch, but Program A ends the conversation
before passing control to another application program. The second application
program can be an MPP or a transaction-oriented BMP that processes
transactions from the conversational program.

Important points about the scratchpad area (SPA)

When program A passes control of a conversation to program B, program B needs
to have the data that program A saved in the SPA in order to continue the
conversation. IMS gives the SPA for the transaction to program B when program B
issues its first message call.

The SPA is kept with the message. When the truncated data option is on, the size
of the retained SPA is the largest SPA of any transaction in the conversation.

For example, if the conversation starts with TRANA (SPA=100), and the program
switches to a TRANB (SPA=50), the input message for TRANB will contain a SPA
segment of 100 bytes. IMS adjusts the size of the SPA so that TRANB receives only
the first 50 bytes.

Recovery considerations in conversations

Because a conversation involves several steps and can involve several application
programs, consider the following items.

* One way you can make recovery easier is to design the conversation so that all
the database updates are done in the last step of the conversation. This way, if

Chapter 6. Gathering requirements for message processing options 105

the conversation terminates abnormally, IMS can back out all the updates
because they were all made during the same step of the conversation. Updating
the database during the last step of the conversation is also a good idea, because
the input from each step of the conversation is available.

* Although a conversation can terminate abnormally during any step of the
conversation, IMS backs out only the database updates and output messages
resulting during the last step of the conversation. IMS does not back out
database updates or cancel output messages for previous steps, even though
some of that processing might be inaccurate as a result of the abnormal
termination.

* Certain IMS system service calls can be helpful if the program determines that
some of its processing was invalid. These calls include ROLB, SETS, SETU, and
ROLS. The Roll Back call (ROLB) backs out all of the changes that the program has
made to the database. ROLB also cancels the output messages that the program
has created (except those sent with an express PCB) since the program's last
commit point.

The SETS, or SETU, and ROLS (with a tokern) calls work together to allow the
application program to set intermediate backout points within the call
processing of the program. The application program can set up to nine
intermediate backout points. Your program needs to use the SETS or SETU call to
specify a token for each point. A subsequent ROLS call, using the same token, can
back out all database changes and discard all nonexpress messages processed
since that SETS or SETU call.

Definition: A token is a 4-byte identifier.

* The program can use an express PCB to send a message to the person at the
terminal and to the master terminal operator. When the application program
inserts messages using an express PCB, IMS waits until it has the complete
message, rather than for the occurrence of a commit point, to transmit the
message to its destination. (In this context, “insert” refers to a situation in which
the application program sends the message and it is received by IMS; “transmit”
refers to a situation in which IMS begins sending the message to its destination.)
Therefore, when IMS has the complete message, it will be transmitted even if the
program abnormally terminates. Messages sent with an express PCB are sent to
their final destinations even if the program terminates abnormally or issues a
ROLB call.

* To verify the accuracy of the previous processing, and to correct the processing
that is determined to be inaccurate, you can use the Conversational Abnormal
termination routine, DFSCONEQO.

Related reading: For more information on DFSCONEDQO, see IMS Version 14 Exit
Routines.

* You can write an MPP to examine the SPA, send a message notifying the person
at the terminal of the abnormal termination, make any necessary database calls,
and use a user-written or system-provided exit routine to schedule it.

Related concepts:

[“To other programs and terminals” on page 107

Identifying output message destinations

An application program can send messages to another application program or to
IMS terminals. To send output messages, the program issues a call and references
the I/O PCB or an alternate PCB. The I/O PCB and alternate PCBs represent
logical terminals and other application programs with which the application
program communicates.

106 Application Programming

Definition: An alternate PCB is a data communication program communication
block (DCPCB) that you define to describe output message destinations other than
the terminal that originated the input message.

Related concepts:

[“Batch message processing: transaction-oriented BMPs” on page 44|

The originating terminal

To send a message to the logical terminal that sent the input message, the program
uses an I/O PCB. IMS puts the name of the logical terminal that sent the message
in the I/O PCB when the program receives the message.

As a result, the program need not do anything to the I/O PCB before sending the
message. If a program receives a message from a batch-oriented BMP or CPI
Communications driven program, no logical terminal name is available to put into
the I/O PCB. In these cases, the logical terminal name field contains blanks.

Related concepts:

[“Identifying output message destinations” on page 106|

To other programs and terminals

When you want to send an output message to a terminal other than, or in addition
to, the terminal that sent the input message, you use an alternate PCB. You can set
the alternate PCB for a specific logical terminal when the program's PSB is
generated, or you can define the alternate PCB as being modifiable. A program can
change the destination of a modifiable alternate PCB while the program is running,
so you can send output messages to several alternate destinations.

The application program might need to respond to the originating terminal before
the person at the originating terminal can send any more messages. This might
occur when a terminal is in response mode or in conversational mode:

* Response mode can apply to a communication line, a terminal, or a transaction.
When response mode is in effect, IMS does not accept any input from the
communication line or terminal until the program has sent a response to the
previous input message. The originating terminal is unusable (for example, the
keyboard locks) until the program has processed the transaction and sent the
reply back to the terminal.

If a response-mode transaction is processed, including Fast Path transactions,
and the application does not insert a response back to the terminal through
either the I/O PCB or alternate I/O PCB, but inserts a message to an alternate
PCB (program-to-program switch), the second or subsequent application
program must respond to the originating terminal and satisfy the response. IMS
will not take the terminal out of response mode.

If an application program terminates normally and does not issue an ISRT call to
the I/O PCB, alternate I/O PCB, or alternate PCB, IMS sends system message
DFS2082I to the originating terminal to satisfy the response for all
response-mode transactions, including Fast Path transactions.

You can define communication lines and terminals as operating in response
mode, not operating in response mode, or operating in response mode only if
processing a transaction that is been defined as response mode. You specify
response mode for communication lines and terminals on the TYPE and
TERMINAL macros, respectively, at IMS system definition. You can define any
transaction as a response-mode transaction; you do this on the TRANSACT
macro at IMS system definition. Response mode is in effect if:

— The communication line has been defined as being in response mode.

Chapter 6. Gathering requirements for message processing options 107

— The terminal has been defined as being in response mode.
— The transaction code has been defined as response mode.

* Conversational mode applies to a transaction. When a program is processing a
conversational transaction, the program must respond to the originating terminal
after each input message it receives from the terminal.

In these processing modes, the program must respond to the originating terminal.
But sometimes the originating terminal is a physical terminal that is made up of
two components—for example, a printer and a display. If the physical terminal is
made up of two components, each component has a different logical terminal
name. To send an output message to the printer part of the terminal, the program
must use a different logical terminal name than the one associated with the input
message; it must send the output message to an alternate destination. A special
kind of alternate PCB is available to programs in these situations; it is called an
alternate response PCB.

Definition: An alternate response PCB lets you send messages when exclusive,
response, or conversational mode is in effect. See the next section for more
information.

Alternate response PCB

The destination of an alternate response PCB must be a logical terminal—you
cannot use an alternate response PCB to represent another application program.
When you use an alternate response PCB during response mode or conversational
mode, the logical terminal represented by the alternate response PCB must
represent the same physical terminal as the originating logical terminal.

In these processing modes, after receiving the message, the application program
must respond by issuing an ISRT call to one of the following:

* The I/O PCB.

* An alternate response PCB.

* An alternate PCB whose destination is another application program, that is, a
program-to-program switch.

* An alternate PCB whose destination is an ISC link. This is allowed only for
front-end switch messages.

Related reading: For more information on front-end switch messages, see IMS
Version 14 Exit Routines.

If one of these criteria is not met, message DFS2082I is sent to the terminal.

@press PCB

Consider specifying an alternate PCB as an express PCB. The express designation
relates to whether a message that the application program inserted is actually
transmitted to the destination if the program abnormally terminates or issues a
ROLL, ROLB, or ROLS call. For all PCBs, when a program abnormally terminates or
issues a ROLL, ROLB, or ROLS call, messages that were inserted but not made
available for transmission are cancelled while messages that were made available
for transmission are never cancelled.

Definition: An express PCB is an alternate response PCB that allows your program

to transmit the message to the destination terminal earlier than when you use a
nonexpress PCB.

108 Application Programming

Henry
Notiz
Express PCB

For a nonexpress PCB, the message is not made available for transmission to its
destination until the program reaches a commit point. The commit point occurs
when the program terminates, issues a CHKP call, or requests the next input
message and when the transaction has been defined with MODE=SNGL.

For an express PCB, when IMS has the complete message, it makes the message
available for transmission to the destination. In addition to occurring at a commit
point, it also occurs when the application program issues a PURG call using that
PCB or when it requests the next input message.

You should provide the answers to the following questions to the data
communications administrator to help in meeting your application's message
processing requirements:

* Will the program be required to respond to the terminal before the terminal can
enter another message?

* Will the program be responding only to the terminal that sends input messages?

* If the program needs to send messages to other terminals or programs as well, is
there only one alternate destination?

* What are the other terminals to which the program must send output messages?

* Should the program be able to send an output message before it terminates
abnormally?

Related concepts:

[“Recovery considerations in conversations” on page 105|

[‘Identifying output message destinations” on page 106|

Chapter 6. Gathering requirements for message processing options 109

110 Application Programming

Chapter 7. Designing an application for APPC

Advanced Program-to-Program Communication (APPC) is IBM's preferred protocol
for program-to-program communication. Application programs can be distributed
throughout the network and communicate with each other in many hardware
architectures and software environments.

Related Reading: For more information on APPC, see:

e IMS Version 14 Communications and Connections, which includes an overview of
APPC for LU 6.2 devices and CPI Communications concepts.

Overview of APPC and LU 6.2

APPC allows application programs using APPC protocols to enter IMS transactions
from LU 6.2 devices. The LU 6.2 application program runs on an LU 6.2 device
supporting APPC.

APPC creates an environment that allows:
* Remote LU 6.2 devices to enter IMS local and remote transactions

 IMS application programs to insert transaction output to LU 6.2 devices with no
coding changes to existing application programs

* New application programs to make full use of LU 6.2 device facilities

* Data integrity provided by IMS and in LU 6.2 environments that do not have a
distributed sync-point function

Application program types

APPC/IMS is part of IMS TM that uses the CPI communications interface to
communicate with application programs.

APPC/IMS supports the following types of application programs for LU 6.2
processing;:

 Standard DL/I

* Modified standard DL/I

* CPI Communications driven
Standard DL/I application program

A standard DL/I application program does not issue any CPI Communications
calls or establish any CPI-C conversations. This application program can
communicate with LU 6.2 products that replace other LU-type terminals using the
IMS API. A standard DL/I application program does not need to be modified,
recompiled, or bound, and it executes as it currently does.

Modified standard DL/l application program
A modified standard DL/I application program is a standard DL/I online IMS TM
application program that uses both DL/I calls and CPI Communications calls. It

can be an MPP, BMP, or IFP that can access full-function databases, DEDBs,
MSDBs, and DB2 for z/OS databases.

© Copyright IBM Corp. 1974, 2015 111

A modified standard DL/I application program uses CPI Communications (CPI-C)
calls to provide support for an LU 6.2 and non-LU 6.2 mixed network. The same
application program can be a standard DL/I on one execution, when the CPI
Communications ALLOCATE verb is not issued, and a modified standard DL/I on a
different execution when the CPI Communications ALLOCATE verb is issued.

A modified standard DL/I application program receives its messages using DL/I
GU calls to the I/O PCB and issues output responses using DL/I ISRT calls. CPI
Communications calls can also be used to allocate new conversations and to send
and receive data for them.

Related Reading: For a list of the CPI Communications calls, see CPI
Communications Reference.

Use a modified standard DL/I application program when you want to use an
existing standard DL/I application program to establish a conversation with
another LU 6.2 device or the same network destination. The standard DL/I
application program is optionally modified and uses new functions, new
application and transaction definitions, and modified DL/I calls to initiate LU 6.2
application programs. Program calls and parameters are available to use the
IMS-provided implicit API and the CPI Communications explicit APL

CPI Communications driven program

A CPI Communications driven application program uses Commit and Backout calls,
and CPI Communications interface calls or LU 6.2 verbs for input and output
message processing. This application program uses the CPI Communications
explicit API, and can access full-function databases, DEDBs, MSDBs, and DB2 for
z/0S databases. An LU 6.2 device can activate a CPI Communications driven
application program only by allocating a conversation.

Unlike a standard DL/I or modified standard DL/I application program, input
and output message processing for a CPI Communications driven program uses

™

APPC/MVS " buffers and bypasses IMS message queueing. Because these
application programs do not use the IMS message queue, they can control their
own execution with the partner LU 6.2 system. An IMS APSB call enables you to
allocate a PSB for accessing IMS databases and alternate PCBs.

The application program uses the Common Programming Interface Resource
Recovery (CPI-RR) SRRCMIT verb to initiate an IMS sync point and the CPI-RR
SRRBACK verb for backout. CPI Communications driven application programs use
the CPI-RR calls to initiate IMS sync point processing prior to program
termination.

A CPI Communications driven application program is able to:
* Access any type of database

* Receive and send large messages like the standard DL/I and modified standard
DL/I application programs

* Control the flow of input and output with CPI Communications calls
* Allocate multiple conversations with partner LU 6.2 devices

* Cause synchronization with conversation partners

* Use the IMS implicit API (for example, IMS queue services)

* Use IMS services (for example, sync point at program termination) regardless of
the API that is used

112 Application Programming

Application objectives

Each application type has a different purpose, and its ease-of-use varies depending
on whether the program is a standard DL/I, modified standard DL/I, or a CPI
Communications driven application program.

The following table lists the purpose and ease-of-use for each application type
(standard DL/I, modified standard DL/I, and PI-C driven). This information must
be balanced with IMS resource use.

Table 26. Using application programs in APPC.

Ease of use
Purpose of Standard DL/I Modified standard
application program program DL/I program PI-C driven program
Inquiry Easy Neutral Very Difficult
Data Entry Easy Easy Difficult
Bulk Transfer Easy Easy Neutral
Cooperative Difficult Difficult Desirable
Distributed Difficult Neutral Desirable
High Integrity Neutral Neutral Desirable
Client Server Easy Neutral Very Difficult

Choosing conversation attributes

The LU 6.2 transaction program indicates how the transaction is to be processed by
IMS. Two processing modes are available: synchronous and asynchronous.

Synchronous conversation

A conversation is synchronous if the partner waits for the response on the same
conversation used to send the input data.

Synchronous processing is requested by issuing the RECEIVE_AND_WAIT verb after
the SEND_DATA verb. Use this mode for IMS response-mode transactions and IMS
conversational-mode transactions.

Example:

MC_ALLOCATE TPN(MYTXN)

MC_SEND_DATA 'THIS CAN BE A RESPONSE MODE'
MC_SEND_DATA 'OR CONVERSATIONAL MODE'
MC_SEND_DATA 'IMS TRANSACTION'
MC_RECEIVE_AND_WAIT

Asynchronous conversation

A conversation is asynchronous if the partner program normally deallocates a
conversation after sending the input data. Output is sent to the TP name of
DFSASYNC.

Asynchronous processing is requested by issuing the DEALLOCATE verb after the

SEND_DATA verb. Use asynchronous processing for IMS commands, message
switches, and non-response, non-conversational transactions.

Chapter 7. Designing an application for APPC 113

Example:

MC_ALLOCATE TPN(OTHERTXN)

MC_SEND_DATA 'THIS MUST BE A MESSAGE SWITCH, IMS COMMAND'
MC_SEND_DATA 'OR A NON-RESP NON-CONV TRANSACTION'
MC_DEALLOCATE

Asynchronous output delivery

Asynchronous output is held on the IMS message queue for delivery. When the
output is enqueued, IMS attempts to allocate a conversation to send this output. If
this fails, IMS holds the output for later delivery. This delivery can be initiated by
an operator command (/ALLOC), or by the enqueue of a new message for this LU
6.2 destination.

MSC synchronous and asynchronous conversation

MSC remote application messages from both synchronous and asynchronous APPC
conversations can be queued on the multiple systems coupling (MSC) link. These
messages can then be sent across the MSC link to a remote IMS for processing.

Related concepts:

['LU 6.2 flow diagrams” on page 122

Conversation type

The APPC conversation type defines how data is passed on and retrieved from
APPC verbs.

It is similar in concept to file blocking and affects both ends of the conversation.

APPC supports two types of conversations:

Basic conversation
This low-conversation allows programs to exchange data in a standardized
format. This format is a stream of data containing 2-byte length fields
(referred to as LLs) that specify the amount of data to follow before the
next length field. The typical data pattern is:

LL, data, LL, data

Each grouping of LL, data is referred to as a logical record. A basic
conversation is used to send multiple segments with one verb and to
receive maximum data with one verb.

Mapped conversation
This high-conversation allows programs to exchange arbitrary data records
in data formats approved by application programmers. One send verb
results in one receive verb, and z/OS and VTAM® handle the buffering.

Related Reading: For more information on basic and mapped conversations, see

» Systems Network Architecture: LU 6.2 Reference: Peer Protocols and

* Systems Network Architecture: Transaction Programmer’s Reference Manual for LU
Type 6.2

114 Application Programming

Conversation state

CPI Communications uses conversation state to determine what the next set of
actions will be.

Examples of conversation states are:

RESET
The initial state before communications begin.

SEND The program can send or optionally receive.

RECEIVE
The program must receive or abort.

CONFIRM
The program must respond to a partner.

The basic rules for APPC verbs are:

* The program that initiates the conversation speaks first.
* Only one APPC verb can be outstanding at time.

* Programs take turns sending and receiving.

* The state of the conversation determines the verbs a program can issue.

Synchronization level

The APPC synchronization level defines the protocol that is used when changing
conversation states.

APPC and IMS support the following synchronization level values:

SYNCLVL=NONE
Specifies that the programs do not issue calls or recognize returned
parameters relating to synchronization.

SYNCLVL=CONFIRM
Specifies that the programs can perform confirmation processing on the
conversation.

SYNCLVL=SYNCPT
Specifies that the programs participate in coordinated commit processing
on resources that are updated during the conversation under the z/OS
Resource Recovery Services (RRS) recovery platform. A conversation with
this level is also called a protected conversation.

Additionally, either IMS or RRS can be specified as the synchronization point
manager.
RRS=Y
If AOS=B, AOS=S, or AOS=X, transactions with SYNCLVL=NONE or
CONFIRM are processed with IMS as the synchronization point manager.

If AOS=B or AOS=Y, transactions with SYNCLVL=SYNCPT are processed
with RRS as the synchronization point manager.

In a shared message queue environment where the front-end IMS system is
also the back-end IMS system, transactions with SYNCLVL=SYNCPT are
processed with RRS as the synchronization point manager.

Chapter 7. Designing an application for APPC 115

In a non-shared message queue environment, transactions with
SYNCLVL=SYNCPT are processed with RRS as the synchronization point
manager.

Restriction: The AOS= setting is applicable to shared message queue
environment only.

RRS=N
If AOS=B, AOS=S, or AOS=X, transactions with SYNCLVL=NONE or
CONFIRM are processed with IMS as the synchronization point manager.

If the back-end IMS system has RRS=N specified, transactions with
SYNCLVL=SYNCPT are processed only at the front-end IMS system.
However, if the front-end IMS system also has RRS=N specified,
transactions with SYNCLVL=SYNCPT are not processed at all.

Allocating a conversation with SYNCLVL=SYNCPT requires the RRS as the
synchronization point manager. RRS controls the commitment of protected
resources by coordinating the commit or backout request with the participating
owners of the updated resources, the resource managers. IMS is the resource
manager for DL/I, Fast Path data, and the IMS message queues. The application
program decides whether the data is to be committed or aborted and
communicates this decision to the synchronization point manager. The
synchronization point manager then coordinates the actions in support of this
decision among the resource managers.

Related concepts:

[# [Activating protected conversations (Communications and Connections)

Introduction to resource recovery

Most customers maintain computer resources that are essential to the survival of
their businesses. When these resources are updated in a controlled and
synchronized manner, they are said to be protected resources or recoverable
resources. These resources can all reside locally (on the same system) or be
distributed (across nodes in the network). The protocols and mechanisms for
regulating the updating of multiple protected resources in a consistent manner is
provided in z/OS with z/OS Resource Recovery Services (RRS).

Participants in resource recovery

As shown in the following figure, the Resource Recovery environment is composed
of three participants:

* Sync-point manager

* Resource managers

* Application program

RRS is the sync-point manager, also known as the coordinator. The sync-point
manager controls the commitment of protected resources by coordinating the
commit request (or backout request) with the resource managers, the participating
owners of the updated resources. These resource managers are known as
participants in the sync-point process. IMS participates as a resource manager for
DL/I, Fast Path, and DB2 for z/OS data if this data has been updated in such an
environment.

116 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_cpic_dsp_pcv_activatepcv.htm#ims_cpic_dsp_pcv_activatepcv

The final participant in this resource recovery protocol is the application program,
the program accessing and updating protected resources. The application program
decides whether the data is to be committed or aborted and relates this decision to
the sync-point manager. The sync-point manager then coordinates the actions in
support of this decision among the resource managers.

[J
RRS A
g sync point M)
manager
A
Resource Resource
manager manager
v
(]
Application <
program

Figure 25. Participants in resource recovery

Two-phase commit protocol

As shown in the following figure, the two-phase commit protocol is a process
involving the sync-point manager and the resource manager participants to ensure
that of the updates made to a set of resources by a third participant, the
application program, either all updates occur or none. In simple terms, the
application program decides to commit its changes to some resources; this commit
is made to the sync-point manager that then polls all of the resource managers as
to the feasibility of the commit call. This is the prepare phase, often called phase
one. Each resource manager votes yes or no to the commit.

After the sync-point manager has gathered all the votes, phase two begins. If all
votes are to commit the changes, then the phase two action is commit. Otherwise,
phase two becomes a backout. System failures, communication failures, resource
manager failures, or application failures are not barriers to the completion of the
two-phase commit process.

The work done by various resource managers is called a unit of recovery (UOR) and
spans the time from one consistent point of the work to another consistent point,
usually from one commit point to another. It is the unit of recovery that is the
object of the two-phase commit process.

Chapter 7. Designing an application for APPC 117

UOR IMS

state RRS/MVS IMS Application

<+ Connect
IN_RESET Express protected <—»
interest Be
—» Return
IN_FLIGHT | Update
—> Return 6]
SRRCMIT <
IN_PREPARE Prepare —> a

IN_DOUBT .
Vote commit <+— a
Commit —p

IN_COMMIT

Commit complete 4¢—
IN_RESET > Return

Figure 26. Two-phase commit process with one resource manager

Notes:
1. The application and IMS make a connection.
2. IMS expresses protected interest in the work started by the application. This
tells RRS that IMS will participate in the 2-phase commit process.
3. The application makes a read request to an IMS resource.
4. Control is returned to the application following its read request.
5. The application updates a protected resource.
6. Control is returned to the application following its update request.
7. The application requests that the update be made permanent by way of the
SRRCMIT call.
8. RRS calls IMS to do the prepare (phase 1) process.
9. IMS returns to RRS with its vote to commit.
10. RRS calls IMS to do the commit (phase 2) process.
11. IMS informs RRS that it has completed phase 2.
12. Control is returned to the application following its commit request.

Local versus distributed

The residence of the participants involved in the recovery process determines
whether that recovery is considered local or distributed. In a local recovery
scenario, all the participants reside on the same single system. In a distributed
recovery scenario, the participants are scattered over multiple systems. The
following figure shows the communication between Resource Manager participants

118 Application Programming

in a distributed resource recovery. There is no conceptual difference between a
local and distributed recovery in the functions provided by RRS. However, to
distribute the original sync-point manager's function to involve remote sync-point
managers, a special resource manager is required. The APPC communications
resource manager provides this support in the distributed environment.

[J
RRS/MVS J
i sync-point)
manager
A
v v
o | Y I
Resource Communications
manager 1 resource
manager
A A A
y
° °
- Application A RRS/M\(S)
v program ' v sync-point R
manager
7Y
vV Vv v
(o) °

Communications
resource
manager

Resource
manager 2

A A}

> Application
program

A

Figure 27. Distributed resource recovery

Summary of z/0S Resource Recovery Services support

z/0S Resource Recovery Services (RRS) provides a system resource recovery
platform so that applications running on z/OS can access local and distributed
resources and have system coordinated recovery management of these resources.

The support includes:
* A synchronization point manager to coordinate the two-phase commit process

* Implementation of the SAA Commit and Backout callable services for use by
application programs

Chapter 7. Designing an application for APPC 119

* A mechanism to associate resources with an application instance

* Services for resource manager registration and participation in the two-phase
commit process with RRS

* Services to allow resource managers to express interest in an application instance
and be informed of commit and backout requests

* Services to enable resource managers to obtain system data to restore their
resources to consistent state

* A communications resource manager (called APPC/PC for APPC/Protected
Conversations) so that distributed applications can coordinate their recovery
with participating local resource managers

Restrictions:
* Extended Recovery Facility (XRF)

Running protected conversations in an IMS-XRF environment does not
guarantee that the alternate system can resume and resolve any unfinished work
started by the active system. This process is not guaranteed because a failed
resource manager must re-register with its original RRS system if the RRS is still
available when the resource manager restarts. Only if the RRS on the active
system is not available can an XRF alternate can register with another RRS in the
sysplex and obtain the incomplete unit of recovery data of the failing active.

Recommendation: Because IMS retains indoubt units-of-recovery indefinitely
until they are resolved, switch back to the original active system as soon as
possible to pick up unit-of -recovery information to resolve and complete all the
work of the resource managers involved. If this is not possible, the indoubt
units-of-recovery can be resolved using commands.

* Remote Site Recovery (RSR)

Active systems tracked by a remote system in an RSR environment can
participate in protected conversations, although it will be necessary to resolve
indoubt units-of-recovery using commands if they exist after a takeover to a
remote site has been done. This is because the remote site is probably not part of
the active sysplex and the new IMS cannot acquire unfinished unit-of-recovery
information from RRS. IMS provides commands to interrogate protected
conversation work and to resolve the unfinished unit-of-recovery, if necessary.

* Batch and non-message-driven BMPs in a DBCTL Environment

Distributed Sync Point does not support the IMS batch environment. In a
DBCTL environment, inbound protected conversations are not possible.
However, a BMP in a DBCTL environment can allocate an outbound protected
conversation, which will be supported by Distributed Sync Point and RRS.

Distributed sync point

The Distributed Sync Point support enables IMS and remote application programs
(APPC or OTMA) to participate in protected conversations with coordinated
resource updates and recoveries. Before this support, IMS acted as the sync-point
manager. In this new scenario, z/OS manages the sync-point process on behalf of
the conversation participants: the application program and IMS (now acting as a
resource manager).

z/0S implements a system resource recovery platform, the z/OS Resource
Recovery Services (RRS). RRS supports the Common Programming Interface -
Resource Recovery (CPI-RR), an element of the SAA Common Programming
Interface that defines resource recovery and provides for the coordinated

120 Application Programming

management of resource recovery for both local and distributed resources. In
addition to RRS, a communications resource manager (called APPC/PC for
APPC/Protected Conversations) provides distribution of the recovery.

In the APPC environment, a protected conversation is initiated when the
application program allocates an APPC conversation with SYNC_LEVEL=SYNCPT. Both
IMS and APPC are resource managers in this scenario. In the OTMA environment,
some additional code is required because OTMA is not a resource manager. The
additional code needed is an OTMA adapter, IBM supplied or equivalent. This
adapter indicates to IMS (in the OTMA message prefix) that this message is part of
a protected conversation, and thus IMS and the adapter are participants in the
coordinated commit process as managed by RRS.

Application programmers can now develop APPC application programs (local and
remote) and remote OTMA application programs that use RRS as the sync-point
manager, rather than IMS. This enhancement enables resources across multiple
platforms to be updated and recovered in a coordinated manner.

Distributed sync point concepts

The Distributed Sync Point support entails:
* Changes in IMS that allow it to function as a resource manager under RRS

* Changes to the application program environment that support using applications
in protected conversations

* Changes to some commands that aid the user
Impact on the network

Network traffic will increase as a result of the conversation participants and the
sync-point manager communicating with each other.

Application programming interface for LU type 6.2

IMS application programs can use the IMS implicit LU 6.2 API to access LU 6.2
devices. This API provides compatibility with non-LU 6.2 device types so that the
same application program can be used from both LU 6.2 and non-LU 6.2 devices.

The API adds to the APPC interface by supplying IMS-provided processing for the
application program. You can use the explicit CPI Communications interface for
APPC functions and facilities for new or rewritten IMS application programs.

Implicit API

The implicit API accesses an APPC conversation indirectly. This API uses the
standard DL/I calls (GU, ISRT, PURG) to send and receive data. It allows application
programs that are not specific to LU 6.2 protocols to use LU 6.2 devices.

The API uses new and changed DL/I calls (CHNG, INQY, SETO) to utilize LU 6.2.
Using the existing IMS application programming base, you can write specific
applications for LU 6.2 using this API and not using the CPI Communications
calls. Although the implicit API uses only some of the LU 6.2 capabilities, it can be
a useful simplification for many applications. The implicit API also provides
function outside of LU 6.2, like message queueing and automatic asynchronous
message delivery.

Chapter 7. Designing an application for APPC 121

IMS generates all CPI Communications calls under the implicit API. The
application interaction is strictly with the IMS message queue.

The remote LU 6.2 system must be able to handle the LU 6.2 flows. APPC/MVS
generates these flows from the CPI Communications calls issued by the IMS
application program using the implicit API. An IMS application program can use
the explicit API to issue the CPI Communications directly. This is useful with
remote LU 6.2 systems that have incomplete LU 6.2 implementations, or that are
incompatible with the IMS implicit API support.

The existing API is extended so that:

* Asynchronous LU 6.2 output is created by using alternate PCBs that reference
LU 6.2 destinations. The DL/I CHNG call can supply parameters to specify an LU
6.2 destination. Default values are used for omitted parameters.

* An application program can retrieve the current conversation attributes such as
the conversation type (basic or mapped), the sync_level (NONE, CONFIRM, or
SYNCPT), and asynchronous or synchronous conversation.

* A terminal message switch can be used to and from LU 6.2 devices.
Explicit API

The explicit API (the CPI Communications API) can be used by any IMS
application program to access an APPC conversation directly.

IMS resources are available to the CPI Communications driven application
program only if the application issues the APSB (Allocate PSB) call. The CPI
Communications driven application program must use the CPI-RR SRRCMIT and
SRRBACK verbs to initiate an IMS sync point or backout, or if SYNCLVL=SYNCPT is
specified, to communicate the sync point decision to the z/OS Resource Recovery
Services sync point manager.

Related Reading: For a description of the SRRCMIT and SRRBACK verbs, see SAA CPI
Resource Recovery Reference.

LU 6.2 partner program design

The flow of a transaction that is sent from an LU 6.2 device differs, depending on
the conversation attributes and synchronization levels. Different results occur, and
the partner system takes actions accordingly.

LU 6.2 flow diagrams

The following diagrams show the flows for transactions that are sent from an LU
6.2 device.

The following figures show:

* The flow between a synchronous or asynchronous LU 6.2 application program
and an IMS application program in a single (local) IMS system

* The flow between a synchronous or asynchronous LU 6.2 application program in
a single (local) IMS system and an IMS application program in a remote IMS
system across a multiple systems coupling (MSC) link

¢ A backout scenario with SYNC_LEVEL=SYNCPT

Differences in buffering and encapsulation of control data with user data may
cause variations in the flows. The control data are the 3 returned fields from the

122 Application Programming

Receive APPC verb: Status_received, Data_received, and Request_to_send_received.
Any variations based on these differences will not affect the function or use of the
flows.

Remote LU 6.2

IMS Application Local IMS System APPC VTAM Application
4_
Allocate
PR Sync = None
TPN=A
Send_Data
Sched Exit < Receive and Wait

Receive <«
OK,Data

Receive ——
OK,Send

Sched Transaction

GU IOPCB -
GN |IOPCB —>

'‘QD' STATUS «—

GU IOPCB I Send Data

Flush > OK,Data
Sync point Receive

R Deallocate_
Deallocate > Normal

Figure 28. Flow of a local IMS synchronous transaction when Sync_level=None

[Figure 29 on page 124| shows the flow of a local synchronous transaction when
Sync_level is Confirm.

Chapter 7. Designing an application for APPC 123

Remote LU 6.2
IMS Application Local IMS System APPC VTAM Application

<+«— Allocate
Sync = Confirm
TPN=B

Send_Data

Receive and Wait

4_

Sched Exit <

Receive <«
OK,Data
Receive «—

OK Confirm_,Send
Confirmed —>

Sched Transaction
GUIOPCB «—

GNIOPCB —
'‘QD' STATUS «—

ISRT IOPCB —»

Send Data

_’ -
=l Confirm > OK,Data
> Receive
Confirm
OK < Confirmed

Sync point Receive

Deallocate - Deallocate_

Sync=None Normal

Figure 29. Flow of a local IMS synchronous transaction when Sync_level=Confirm

[Figure 30 on page 125shows the flow of a local asynchronous transaction when
Sync_level is None.

124 Application Programming

Remote LU 6.2

IMS Application Local IMS System APPC VTAM Application
| r Allocate
| Sync = None
i TPN=C
< Send_Data
Sched Exit < Deallocate
Receive > OK
OK,Data 4—
Receive
Deallocate <«
Normal
Sched Transaction

GU IOPCB «—
ISRT IOPCB —

EXIT —» Sync point

Allocate
Sync=Confirm

TPN=DFSASYNC

Send_Data
Deallocate

SyncLevel

OK

e

.
DFSASYNC

Accept

v

Receive

v

OK,Data
Receive
Confirm_
Deallocate
— Confirmed

v

~-l
1
1
1
1
1
1
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
!
>

]
i
]
]
i
T
]
i
]
]
i
]
]
i
]
T
i
]
]
i
]
]
]
]
i
]
]
i
< !
I~]
1 ~
] e
-

Figure 30. Flow of a local IMS asynchronous transaction when Sync_level=None

[Figure 31 on page 126 shows the flow of a local asynchronous transaction when

Sync_level is Confirm.

Chapter 7. Designing an application for APPC 125

IMS Application

e

Local IMS System APPC VTAM

+—

+—

Sched Exit <

Receive
OK,Data «
Receive
Confirm_ a

Deallocate

Make Recoverable

Confirmed

Sched Transaction
GU IOPCB «—

ISRT IOPCB >
EXIT —» Sync point
Allocate

Sync=Confirm —
TPN=DFSASYNC

Send_Data —>

N
»

Deallocate

SyncLevel

v

v

v

OK <

Remote LU 6.2

Application

Allocate
Sync = Confirm
TPN=D

Send_Data

Deallocate
SynclLevel

OK

DFSASYNC
Accept

Receive

OK,Data
Receive
Confirm_
Deallocate
Confirmed

Figure 31. Flow of a local IMS asynchronous transaction when Sync_level=Confirm

The following figure shows the flow of a local conversational transaction When

Sync_level is None.

126 Application Programming

Remote LU 6.2

IMS Application Local IMS System APPC VTAM Application
“/ Allocate
— Sync = None
TPN=E
<« Send_Data

Sched Exit <
Receive
OK,Data «—
Receive |
OK, Send 4—

Receive_and_Wait

Sched Transaction
GU IOPCB +—

ISRT IOPCB —

GUIOPCB — Send_Data »> OK, Data
Sync point —> OK, Send
<+ Send_Data
OK,Data < Receive_and_Wait
Receive

OK, Send +—
'‘bb' Status «—

ISRT IOPCB —

3 Receive

Blank SPA
Exit —— Send_Data 3 > OK, Data
Flush Receive
Sync Point }
Deallocate > Deallocate_
Normal

Figure 32. Flow of a local IMS conversational transaction when Sync_level=None

The following figure shows the flow of a local IMS command when Sync_level is
None.

Chapter 7. Designing an application for APPC 127

Remote LU 6.2

IMS Application Local IMS System APPC VTAM Application
Allocate
— Sync = None
TPN=E

<+ Send_Data

Sched Exit

A

Receive_and_Wait
Receive <+
OK,Data

Receive «—

OK, Send

Process IMS
Command

Send_Data —>

v

Deallocate OK, Data

Receive

—> Deallocate_

Normal

Figure 33. Flow of a local IMS command when Sync_level=None

The following figure shows the flow of a local asynchronous command when
Sync_level is Confirm.

128 Application Programming

IMS Application

Remote LU 6.2

Local IMS System APPC VTAM Application
e Allocate
« Sync = None
TPN=/DIS

<« Send_Data

Sched Exit ’ Deallocate
Receive }
OK,Data <« }
Receive
Confirm «— i
Deallocate
Confirmed > OK
Process IMS
Command ! |
Allocate
Sync = Confirm —» 3
TPN=DFSCMD 3 3
Send_Data —>
Deallocate — Accept
SyncLevel } }
i i Receive
ﬁ OK, Data
i i Receive
| _> Confirm_
3 ! Deallocate
OK i } Confirmed

Figure 34. Flow of a local IMS asynchronous command when Sync_level=Confirm

The following figure shows the flow of a message switch When Sync_level is

None.

Chapter 7. Designing an application for APPC 129

Remote LU 6.2
IMS Application Local IMS System APPC VTAM Application

Allocate
+— Sync=None
TPN=DFSAPPC
«— Send_Data

Sched Exit

A

Receive_and
_Wait

Receive <+
OK,Data
Receive <«

OK, Send

Process
Message
Switch

v

Deallocate Deallocate

Normal

Figure 35. Flow of a message switch when Sync_level=None

Synchronous is used to verify that no error has occurred while processing
DFSAPPC. If an error occurred, the error message returns before DEALLOCATE.

The following figure shows the flow of a CPI-C driven program when Sync_level
is None.

130 Application Programming

Remote LU 6.2

IMS Application Local IMS System APPC VTAM Application
Allocate

<+— Sync = None
TPN=F

< Send_Data

Sched Exit ~ <«— § Receive_and
1 } _Wait
Schedule ! |
Transaction i |
Accept <
SRRCMIT —> Sync Point | |
Deallocate > Deallocate
Normal
Exit | |

Figure 36. Flow of a local CPl communications driven program when Sync_level=None

The following figure shows the flow of a remote synchronous transaction when
Sync_level is None.

Chapter 7. Designing an application for APPC 131

Remote IMS Remote LU 6.2
System Local IMS System Application

Allocate LU=
IMS LU Name
Sync = None
TPN=TRANYX, ...

«—— Send_Data

Incoming FMH5 <+<— Receive_and_Wait

with TPN=TRANX

Call Input Message
Routing exit routine
DFSNPRTO

Locate the application
program name that
will execute in
the remote IMS

Enqueue the message
to its associated

remote application
program queue

Call Link Receive Routing Send rﬁessage
exit routine DFSCMLRO across MSC link

Locate the application
program of TRANX

Schedule TRANX

TRANX runs and inserts
output to IOPCB

Send output across >
Msg link Receive output from
remote IMS program

Relay output to the
LU 6.2 program

Send output to the >
LU 6.2 program

Deallocate —>
Figure 37. Flow of a remote IMS synchronous transaction when Sync_level=None

The following figure shows the flow of a remote asynchronous transaction when
Sync_level is None.

132 Application Programming

Remote IMS Remote LU 6.2
System Local IMS System Application

Allocate LU=

IMS LU Name
Sync = None
TPN=TRANX, ...

- Send_Data

| o T Deallocate Type=
ncomin
with TPNSTRANX Sync_Level

Call Input Message
Routing exit routine
DFSNPRTO

Locate the application
program name that
will execute in
the remote IMS

Enqueue the message
to its associated
remote application
program queue

Send message
D across MSC I?nk

Call Link Receive Routing
exit routine DFSCMLRO

Locate the application
program of TRANX

Schedule TRANX

TRANX runs and inserts
output to IOPCB

Send output across — »

link Receive output from

remote IMS program

Relay output to the
LU 6.2 program

TPN=DFSASYNC,
Sync=Confirm

—>

Send output to the >
LU 6.2 program

) —>

Confirm
Confirmed

4_
Deallocate Type=)
Sync_Level

Figure 38. Flow of a remote IMS asynchronous transaction when Sync_level=None

The following figure shows the flow of a remote asynchronous transaction when
Sync_level is Confirm.

Chapter 7. Designing an application for APPC 133

Remote IMS Remote LU 6.2
System Local IMS System Application

Allocate LU=
< IMS LU Name

Sync = Confirm

TPN=TRANYX, ...

<« Send_Data

Deallocate Type=

Incoming FMH5 Sync_Level
with TPN=TRANX

Call Input Message
Routing exit routine
DFSNPRTO

Locate the application
program name that
will execute in
the remote IMS

Enqueue the message
to its associated
remote application
program queue

Send message
“— across MSC I?nk

Call Link Receive Routing
exit routine DFSCMLRO

Locate the application
program of TRANX

Schedule TRANX

TRANX runs and inserts
output to IOPCB

Send output across — >
MSC link

Receive output from

remote IMS program

AIIocra11'(er,'1 a EleJV\é c:2onversation

with the .2 program

with TPN=DFSASYNC, ’
Sync=Confirm

Send output to the >
LU 6.2 program

Confirm —»
<4+—— Confirmed

Deallocate Type= >
Sync_Level

Figure 39. Flow of a remote IMS asynchronous transaction when Sync_level=Confirm

The following figure shows the flow of a remote synchronous transaction when
Sync_level is Confirm.

134 Application Programming

Remote IMS Remote LU 6.2
System Local IMS System Application

Allocate LU=
+«— IMS LU Name

Sync = Confirm

TPN=TRANX, ...

S Send_Data

<«— Deallocate Type=

Incoming FMH5 Sync_Level
with TPN=TRANX -

Call Input Message
Routing exit routine
DFSNPRTO

Locate the application
program name that
will execute in
the remote IMS

Enqueue the message
to its associated
remote application
program queue

Send message
across MSC link

Call Link Receive Routing
exit routine DFSCMLRO

Locate the application
program of TRANX

Schedule TRANX

TRANX runs and inserts
output to IOPCB

Send output across —»

Lk Receive output from

remote IMS program

Relay output to the
LU 6.2 program

Send output to the >
LU 6.2 program

Confirm —»

<4+—— Confirmed

Deallocate >

Figure 40. Flow of a remote IMS synchronous transaction when Sync_level=Confirm

The scenarios shown in the following figure provide examples of the two-phase
process for the supported application program types. The LU 6.2 verbs are used to
illustrate supported functions and interfaces between the components. Only
parameters pertinent to the examples are included. This does not imply that other
parameters are not supported.

The following figure shows a standard DL/I program commit scenario when
Sync_Level=Syncpt.

Chapter 7. Designing an application for APPC 135

Standard DL/I Remote LU 6.2
Program IMS LU APPC VTAM Application

<4—— Allocate
Sync Level =Syncpt

Sched Exit <+——>
. h Send
Receive
OK,Data <+
< Receive and Wait
Receive —>
OK,Send_Received <+—

GU IOPCB —» Sched Transaction
GN IOPCB —>
'QD' STATUS D B

ISRT IOPCB —>
GU IOPCB —> < Receive
Send Data —>
» OK,Data
Receive_and_Wait —p Deallocate
Type=Sync_Level
< a SRRCMIT
Status Received
=Take_Syncpt_ D —
Deallocate
ATRCMIT

Return_Code=OK —»

v

Deallocate Return_Code=0K

Figure 41. Standard DL/I program commit scenario when Sync_Level=Syncpt

Notes:
Sync_Level=Syncpt triggers a protected resource update.

H This application program inserts output for the remote application to the
IMS message queue.

The GU initiates the transfer of the output.
B The remote application sends a Confirmed after receiving data (output).
B 1IMS issues ATRCMIT (equivalent to SRRCMIT) to start the two-phase process.

The following figure shows a CPI-C driven commit scenario when
Sync_Level=Syncpt.

136 Application Programming

Remote LU 6.2

CPI-C Driven Program APPC VTAM Application
e | Allocate
‘_
! Sync Level =Syncpt
Sched Exit >
Schedule 3
CPI-C driven program !
Accept_Conversation : >
-« Send
Receive 3 >
OK, Data < ‘
:u— Prepare_to_Receive
Receive >

OK, Send_Received

A

I — Receive
Send Data i >
3—» OK, Data
Receive_and_Wait : >
i Deallocate
3 Type=Sync_Level
14— Commit
Status Received § | ’
=Take_Syncpt_Deallocate ™ ;
SRRCMIT
Return_Code=0K : > '

—> Return_Code=0K
Deallocate

Figure 42. CPI-C driven commit scenario when Sync_Level=Syncpt

Notes:
Sync_Level=Syncpt triggers a protected resource update.
H The programs send and receive data.
The remote application decides to commit the updates.
[The CPI-C program issues SRRCMIT to commit the changes.
B The commit return code is returned to the remote application.

The following figure shows a standard DL/I program backout scenario when
Sync_Level=Syncpt.

Chapter 7. Designing an application for APPC 137

Standard DL/I Remote LU 6.2
Program IMS LU APPC VTAM Application

« Allocate

Sync Level =Syncpt
Sched Exit «> v ynep
<« Send
Receive —>
OK,Data <«
<+ Receive
Receive —> ’
OK,Send <+«
Sched Transaction
GU IOPCB —>
GN IOPCB —
'QD' STATUS <+
ISRT IOPCB —>
GU IOPCB —>
Send Data —
» OK,Data
Receive_and_Wait —p
<+ Backout
Status Received ’
=Take_Backout
ATRBACK ’
- RC=Backed_ 6]
" Out > RC=Backed_Out
Deallocate

Figure 43. Standard DL/I program U119 backout scenario when Sync_Level=Syncpt

Notes:
Sync_Level=Syncpt triggers a protected-resource update.

H This application program inserts output for the remote application to the
IMS message queue.

The GU initiates the transfer of the output.

B The remote application decides to back out any updates.

B IMS abends the application with a U119 to back out the application.
[@ The backout return code is returned to the remote application.

The following figure shows a standard DL/I program backout scenario when
Sync_Level=Syncpt.

138 Application Programming

Standard DL/I Remote LU 6.2

Program IMS LU APPC VTAM Application
4 Allocate
Sched Exit — Sync Level =Syncpt
<+ Send
Receive —>
OK,Data <+
D Receive
Receive —> '
OK,Send <«
Sched Transaction
GU IOPCB —>
GN IOPCB —>
'QD' STATUS —
ISRT IOPCB —> :
GU IOPCB o :
: Send Data >
Receive_and_Wait —
: +—— Confirmed
Receive_and_Wait —p-
<+ SRRBack [6]
ABENDUO711 —» :
RC=Backed_Out
Deallocate B

Figure 44. Standard DL/I program U0711 backout scenario when Sync_Level=Syncpt

Notes:
Sync_Level=Syncpt triggers a protected-resource update.

H This application program inserts output for the remote application to the
IMS message queue.

The GU initiates the transfer of the output.
B The remote application sends a Confirmed after receiving data (output).

H IMS issues ATBRCVW on behalf of the DL/I application to wait for a
commit or backout.

@ The remote application decides to back out any updates.
IMS abends the application with U0711 to back out the application.
B The backout return code is returned to the remote application.

The following figure shows a standard DL/I program ROLB scenario when
Sync_Level=Syncpt.

Chapter 7. Designing an application for APPC 139

Standard DL/I Remote LU 6.2

Program IMS LU APPC VTAM Application
Allocate
Sched Exit <> A Sync Level =Syncpt
b Send
Receive —p
OK,Data <«
<+ Receive
Receive —p .
OK,Send <«
Sched Transaction
GU IOPCB —>
GN IOPCB —»
'QD' STATUS <«

ISRTIOPCB ~ —» :

ROLB

Figure 45. Standard DL/I program ROLB scenario when Sync_Level=Syncpt

Notes:
Sync_Level=Syncpt triggers a protected-resource update.

H This application program inserts output for the remote application to the
IMS message queue.

The following figure shows multiple transactions in the same commit when
Sync_Level=Syncpt.

140 Application Programming

Standard DL/I

Standard DL/I

Program Program

GU IOPCB >

GN IOPCB >

'‘QD' STATUS <

ISRT IOPCB >

GU IOPCB >
GUIOPCB —>»
GNIOPCB —>»
'‘QD' STATUS <+——
ISRT IOPCB —>»
GUIOPCB —»

Remote LU 6.2

IMS LU APPC VTAM Application
«— Allocate .
(Conversation 1)
i Sync Level =
Sched Exit <—» Syncpt
Receive —» Da— Send
OK,Data +——
Receive_and_
Receive —» Wait
OK,Send_. <+—
Received
+— Receive
Send Data —»
<4+— OK, Data
Rec_:eivefandf
Wait Allocate
4— (Conversation 2)
Sync Level =
Sched Exit <+—» Syncpt
<“—— Send o
Receive e
OK,Data <+ .
Receive_and_
. Wait
Receive —>
OK,Send_
Received
a
4— Receive
Send Data —»
Receive_and +— OK Data
2 _and_ |
Wait

Status Received
=Take_Syncpt_

ATRCMIT

Return_Code= ___.
OK

- >

<+— SRRCMIT

Return_Code=
OK

Figure 46. Multiple transactions in same commit when Sync_Level=Syncpt

Notes:

An allocate with Sync_Level=Syncpt triggers a protected resource update

with Conversation 1.

H The first transaction provides the output for Conversation 1.

An allocate with Sync_Level=Syncpt triggers a protected resource update

with Conversation 2.

I The second transaction provides the output for Conversation 2.

B The remote application issues SRRCMIT to commit both transactions.

Chapter 7. Designing an application for APPC 141

[@ IMS issues ATRCMIT to start the two-phase process on behalf of each DL/I
application.

Related concepts:

[“Application objectives” on page 113|

Integrity tables

The following tables show the message integrity of conversations, results of
processing when integrity is compromised, and how IMS recovers APPC messages.

The following table shows the results, from the viewpoint of the IMS partner
system, of normal conversation completion, abnormal conversation completion due
to a session failure, and abnormal conversation completion due to non-session
failures. These results apply to asynchronous and synchronous conversations and
both input and output. This table also shows the outcome of the message, and the
action that the partner system takes when it detects the failure. An example of an
action, under “LU 6.2 Session Failure,” is a programmable work station (PWS)
resend.

Table 27. Message integrity of conversations

Conversation attributes

Normal LU 6.2 session failure’ Other failure?

Synchronous Input: Reliable Input: PWS resend Input: Reliable
Sync_level=NONE Output: Reliable Output: PWS resend Output: Reliable
Synchronous Input: Reliable Input: PWS resend Input: Reliable
Sync_level=CONFIRM Output: Reliable Output: Reliable Output: Reliable
Synchronous Input: Reliable Input: PWS resend Input: Reliable

Sync_level=SYNCPT

Output: Reliable Output: Reliable Output: Reliable

Asynchronous
Sync_level=NONE

Input: Undetectable
Output: Reliable

Input: Ambiguous
Output: Reliable

Input: Undetectable
Output: Reliable

Asynchronous
Sync_level=CONFIRM

Input: Reliable
Output: Reliable

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Asynchronous
Sync_level=SYNCPT

Input: Reliable
Output: Reliable

Input: Reliable
Output: Reliable

Input: PWS resend
Output: Reliable

Notes:

1. A session failure is a network-connectivity breakage.

2. A non-session failure is any other kind of failure, such as invalid security authorization.

3.

IMS resends asynchronous output if CONFIRM is lost; therefore, the PWS must tolerate duplicate output.

The following table shows the specifics of the processing windows when integrity
is compromised (the message is either lost or its state is ambiguous). The table
indicates the relative probability of an occurrence of each window and whether
output is lost or duplicated.

A Sync_level value of NONE does not apply to asynchronous output, because IMS
always uses Sync_level=CONFIRM for such output.

Table 28. Results of processing when integrity is compromised

State of window,
before accepting

Probability of action

Probability of Possible action while while sending

Conversation attributes transaction window state sending response response
Synchronous ALLOCATE to Medium Can lose or send Medium
Sync_level=NONE PREPARE_TO_ duplicate output.

RECEIVE return

142 Application Programming

Table 28. Results of processing when integrity is compromised (continued)

State of window,
before accepting

Probability of

Possible action while

Probability of action
while sending

Conversation attributes transaction window state sending response response
Synchronous PREPARE_TO_ Small CONFIRM to IMS Small
Sync_level=CONFIRM RECEIVE to receipt. Can cause
PREPARE_TO_ duplicate output.
RECEIVE return
Synchronous PREPARE_TO_ Small CONFIRM to IMS Small
Sync_level=SYNCPT RECEIVE to receipt. Can cause
PREPARE_TO_ duplicate output.
RECEIVE return
Asynchronous Allocate to High CONFIRMED to IMS Small
Sync_level=NONE Deallocate receipt. Can cause
duplicate output.
Asynchronous PREPARE_TO_ Small? CONFIRMED to IMS Small
Sync_level=CONFIRM RECEIVE to receipt. Can cause
PREPARE_TO_ duplicate output.
RECEIVE return
Asynchronous PREPARE_TO_ Small? CONFIRMED to IMS
Sync_level=SYNCPT RECEIVE to receipt. Can cause
PREPARE_TO_ duplicate output.

RECEIVE return

Notes:

1. The term window refers to a period of time when certain events can occur, such as the consequences described in

this table.

2. Can be recoverable.

Table 29. Recovering APPC messages

The following table indicates how IMS recovers APPC transactions across IMS
warm starts, XRF takeovers, APPC session failures, and MSC link failures.

IMS warm start APPC (LU 6.2) MSC LINK
Message type (NRE or ERE) XRF takeover session fail failure
Local Recoverable Tran., Non
Resp., Non Conversation - APPC
Sync. Conv. Mode - APPC Async. Discarded (2) Discarded (4) Discarded (6) N/A (9)
Conv. Mode Recovered Recovered Recovered (1) N/A (9)
Local Recoverable Tran., Conv. or
Resp. mode - APPC Sync. Conv.
Mode - APPC Async. Conv. Discarded (2) Discarded (4) Discarded (6) N/A (9)
Mode N/A (8) N/A (8) N/A (8) N/A (8,9)
Local Non Recoverable Tran., -
APPC Sync. Conv. Mode - APPC Discarded (2) Discarded (6) N/A (9)
Async. Conv. Mode Discarded (2) Discarded (4) Recovered (1) N/A (9)

Remote Recoverable Tran., Non
Resp., Non Conv. - APPC Sync.

Conv. Mode - APPC Async.

Conv. Mode

Discarded (2,5)
Recovered

Discarded (3,5)
Recovered

Recovered (1)
Recovered (1)

Recovered (7)
Recovered (7)

Remote Recoverable Tran., Conv.
or Resp. mode - APPC Sync.

Conv. Mode - APPC Async.

Conv. Mode

Discarded (2,5)
N/A (8)

Discarded (3,5)
N/A (8)

Recovered (1)
N/A (8)

Recovered (7)
N/A (8)

Chapter 7. Designing an application for APPC 143

Table 29. Recovering APPC messages (continued)

IMS warm start APPC (LU 6.2) MSC LINK

Message type (NRE or ERE) XRF takeover session fail failure

Remote Non Recoverable Tran., -

APPC Sync. Conv. Mode - APPC Discarded (2,5) Discarded (3,5) Recovered (1) Recovered (7)

Async. Conv. Mode Discarded (2,5) Discarded (3,5) Recovered (1) Recovered (7)

Note:

1. This recovery scenario assumes the message was enqueued before failure; otherwise, the message is discarded.

2. The message is discarded during IMS warm-start processing.

3. The message is discarded when the MSC link is restarted and when the message is taken off the queue (for
sending across the link).

4. The message is discarded when the message region is started and when the message is taken off the queue (for
processing by the application program).

5. For all remote MSC APPC transactions, if the message has already been sent across the MSC link to the remote
system when the failure occurs in the local IMS, the message is processed. After the message is processed by the
remote application program and a response message is sent back to the local system, it is enqueued to the
DFSASYNC TP name of the LU 6.2 device or program that submitted the original transaction.

6. At sync point, the User Message Control Error exit routine (DFSCMUXO0) can prevent the transaction from being
aborted and the output message can be rerouted (recovered).

For more information about this exit routine, see IMS Version 14 Exit Routines.

7. The standard MSC Link recovery protocol recovers all messages that are queued or are in the process of being
sent across the MSC link when the link fails.

8. IMS conversational-mode and response-mode transactions cannot be submitted from APPC asynchronous
conversation sessions. APPC synchronous conversation-mode must be used.

9. MSC link failures do not affect local transactions.

DFSAPPC message switch
DFSAPPC is an LU 6.2 descriptor that provides an IMS system service.

It allows LU 6.2 application programs to send messages to the following;:
* Application programs (transactions)

* IMS-managed local or remote LTERMs (message switches)

* LU name and TP name

Messages sent with the LTERM= option are directed to IMS-managed local or
remote LTERMs. Messages sent without the LTERM= option are sent to the
appropriate LU 6.2 application or IMS application program.

Because the LTERM can be an LU 6.2 descriptor name, the message is sent to the
LU 6.2 application program as if an LU 6.2 device had been explicitly selected.

With DFSAPPC, message delivery is asynchronous. If a message is allocated and
the allocate fails, the message is held on the IMS message queue until it can be
successfully delivered.

Example: In the LU 6.2 conversation example, an IMS application issues a
DFSAPPC message switch to its partner with the LU name FRED and TPN name
REPORT. REPI is the user data.

DFSAPPC (TPN=REPORT LU=FRED) REP1

You can use a 17-byte network-qualified name in the LU= field.

144 Application Programming

Restriction: LU 6.2 architecture prohibits the use of the ALTRESP PCB on a CHNG
call in an LU 6.2 conversation. The LU 6.2 conversation can only be associated
with the IOPCB. The application sends a message on the existing LU 6.2
conversation (synchronous) or has IMS create a new conversation (asynchronous)
using the IOPCB. Since there is no LTERM associated with an LU 6.2 conversation,
only the IOPCB represents the original LU 6.2 conversation.

Related Reading: For more information about DFSAPPC, see IMS Version 14
Communications and Connections.

Chapter 7. Designing an application for APPC 145

146 Application Programming

Chapter 8. Testing an IMS application program

You should perform a program unit test on your IMS application program to
ensure that the program correctly handles its input data, processing, and output
data. The amount and type of testing you do depends on the individual program.

Recommendations for testing an IMS program

Before you start testing your program, be aware of your established test
procedures.

To start testing, you need the following three items:

» Test JCL.

* A test database. Never test a program using a production database because the
program, if faulty, might damage valid data.

 Test input data. The input data that you use need not be current, but it should
be valid. You cannot be sure that your output data is valid unless you use valid
input data.

The purpose of testing the program is to make sure that the program can correctly
handle all the situations that it might encounter. To thoroughly test the program,
try to test as many of the paths that the program can take as possible.

Recommendations:

* Test each path in the program by using input data that forces the program to
execute each of its branches.

* Be sure that your program tests its error routines. Again, use input data that will
force the program to test as many error conditions as possible.

* Test the editing routines your program uses. Give the program as many different
data combinations as possible to make sure it correctly edits its input data.

Testing DL/I call sequences (DFSDDLTO0) before testing your IMS
program

The DL/I test program, DFSDDLTO, is an IMS application program that executes
the DL/I calls you specify against any database.

Restriction: DFSDDLTO0 does not work if you are using a coordinator controller
(CCTL).

An advantage of using DFSDDLTO is that you can test the DL/I call sequence you
will use prior to coding your program. Testing the DL/I call sequence before you
test the program makes debugging easier, because by the time you test the
program, you know that the DL/I calls are correct. When you test the program,
and it does not execute correctly, you know that the DL/I calls are not part of the
problem if you have already tested them using DFSDDLTO.

For each DL/I call that you want to test, you give DFSDDLTO the call and any
SSAs that you are using with the call. DESDDLTO then executes and gives you the
results of the call. After each call, DFSDDLTO0 shows you the contents of the DB
PCB mask and the I/O area. This means that for each call, DFSDDLTO checks the

© Copyright IBM Corp. 1974, 2015 147

access path you have defined for the segment, and the effect of the call. DFSDDLTO0
is helpful in debugging because it can display IMS application control blocks.

To indicate to DFSDDLTO the call you want executed, you use four types of control
statements:

Status statements establish print options for DFSDDLT0's output and select the
DB PCB to use for the calls you specify.

Comment statements let you choose whether you want to supply comments.

Call statements indicate to DFSDDLTO the call you want to execute, any SSAs
you want used with the call, and how many times you want the call executed.

Compare statements tell DFSDDLTO0 that you want it to compare its results
after executing the call with the results you supply.

In addition to testing call sequences to see if they work, you can also use
DFSDDLTO to check the performance of call sequences.

Using BTS to test your IMS program

IMS Batch Terminal Simulator for z/OS (BTS) is a valuable tool for testing
programs because you can use it to test call sequences. The documentation that
BTS produces is helpful in debugging. You can also test online application
programs without actually running them online.

Restriction: BTS does not work if you are using a CCTL or running under DBCTL.

Related reading: For information about how to use BTS, see IMS Batch Terminal
Simulator for z/OS User’s Guide.

Tracing DL/I calls with image capture for your IMS program

The DL/I image capture program (DFSDLTRO) is a trace program that can trace
and record DL/I calls issued by all types of IMS application programs.

Restriction: The image capture program does not trace calls to Fast Path
databases.

You can run the image capture program in a DB/DC or a batch environment to:
* Test your program
If the image capture program detects an error in a call it traces, it reproduces as

much of the call as possible, although it cannot document where the error
occurred, and cannot always reproduce the full SSA.

* Produce input for DESDDLT0
You can use the output produced by the image capture program as input to
DFSDDLTO. The image capture program produces status statements, comment
statements, call statements, and compare statements for DFSDDLTO.

* Debug your program
When your program terminates abnormally, you can rerun the program using
the image capture program, which can then reproduce and document the
conditions that led to the program failure. You can use the information in the
report produced by the image capture program to find and fix the problem.

148 Application Programming

Using image capture with DFSDDLTO

The image capture program produces the following control statements that you can
use as input to DFSDDLTO.

* Status statements

When you invoke the image capture program, it produces the status statement.

The status statement it produces:

— Sets print options so that DFSDDLTO0 prints all call trace comments, all DL/I
calls, and the results of all comparisons.

— Determines the new relative PCB number each time a PCB change occurs
while the application program is executing.

* Comments statement

The image capture program also produces a comments statement when you
invoke it. The comments statements give:
— The time and date IMS started the trace
— The name of the PSB being traced
The image capture program also produces a comments statement preceding any
call in which IMS finds an error.

* Call statements
The image capture program produces a call statement for each DL/I call the
application program issues. It also generates a CHKP call when it starts the trace
and after each commit point or CHKP request.

* Compare statements
The image capture program produces data and PCB comparison statements if
you specify COMP on the TRACE command (if you run the image capture

program online), or on the DLITRACE control statement (if you run the image
capture program as a batch job).

Restrictions on using image capture output

The status statement of the image capture call is based on relative PCB position.

When the PCB parameter LIST=NO has been specified, the status statement may
need to be changed to select the PCB as follows:

* If all PCBs have the parameter LIST=YES, the status statement does not need to
be changed.

+ If all PCBs have the parameter LIST=NO, the status statement needs to be
changed from the relative PCB number to the correct PCB name.

* If some PCBs have the parameter LIST=YES and some have the parameter
LIST=NO, the status statement needs to be changed as follows:
— The PCB relative position is based on all PCBs as if LIST=YES.
— For PCBs that have a PCB name, the status statement can be changed to use

the PCB name based on a relative PCB number.

— For PCBs that have LIST=YES and no PCB name, change the relative PCB
number to refer to the relative PCB number in the user list by looking at the
PCB list using LIST=YES and LIST=NO.

Running image capture online

When you run the image capture program online, the trace output goes to the IMS
log data set. To run the image capture program online, you issue the IMS TRACE
command from the IMS master terminal.

Chapter 8. Testing an IMS application program 149

If you trace a BMP or an MPP and you want to use the trace results with
DFSDDLTO, the BMP or MPP must have exclusive write access to the databases it
processes. If the application program does not have exclusive access, the results of
DESDDLT0 may differ from the results of the application program. When you trace
a BMP that accesses GSAM databases, you must include an //IMSERR DD
statement to get a formatted dump of the GSAM control blocks.

The following diagram shows the TRACE command format:

ON
»»—/—TRACE—S ET—J:O FF_—l—PS B—psbname

L[NOCOMP
COMP

v
A

SET ON|OFF
Turns the trace on or off.

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than one
PSB at the same time by issuing a separate TRACE command for each PSB.

COMP|NOCOMP
Specifies whether you want the image capture program to produce data and
PCB compare statements to be used as input to DFSDDLTO.

Running image capture as a batch job

To run the image capture program as a batch job, you use the DLITRACE control
statement in the DFSVSAMP DD data set.

In the DLITRACE control statement, you specify:

* Whether you want to trace all of the DL/I calls the program issues or trace only
a certain group of calls.

* Whether you want the trace output to go to:
A sequential data set that you specify
The IMS log data set
Both sequential and IMS log data sets

If the program being traced issues CHKP and XRST calls, the checkpoint and restart
information may not be directly reproducible when you use the trace output with
DFSDDLTO.

When you run DESDDLTO in an IMS DL/I or DBB batch region with trace output,
the results are the same as the application program's results, but only if the
database has not been altered.

For information on the format of the DLITRACE control statement in the
DFSVSAMP DD data set, see the topic “Defining DL/I call image trace” in IMS
Version 14 System Definition.

Retrieving image capture data from the log data set

If the trace output is sent to the IMS log data set, you can retrieve it by using
utility DFSERA10 and a DL/I call trace exit routine, DFSERA50. DFSERAS50
deblocks, formats, and numbers the image capture program records that are to be
retrieved.

150 Application Programming

To use DFSERAS50, you must insert a DD statement defining a sequential output
data set in the DFSERA10 input stream. The default ddname for this DD statement
is TRCPUNCH. The statement must specify BLKSIZE=80.

For example, you can use the following examples of DFSERA10 input control
statements in the SYSIN data set to retrieve the image capture program data from
the log data set:

* Print all image capture program records:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X
* Print selected image capture program records by PSB name:
Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,

VALUE=pshname, COND=E

* Format image capture program records (in a format that can be used as input
to DFSDDLTO0):

CoTumn 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,0FFSET=25,FLDTYP=C

VALUE=psbname, FLDLEN=8,DDNAME=0UTDDN, COND=E

Remember: The DDNAME= parameter names the DD statement to be used by
DFSERAS0. The data set that is defined on the OUTDDN DD statement is used
instead of the default TRCPUNCH DD statement. For this example, the DD is:

//OUTDDN DD ...,DCB=(BLKSIZE=80),...

Requests for monitoring and debugging your IMS program

You can use the STAT and LOG requests to help you in debugging your program.
* The Statistics (STAT) call retrieves database statistics.

* The Log (LOG) call makes it possible for the application program to write a
record on the system log.

The enhanced OSAM and VSAM STAT calls provide additional information for
monitoring performance and fine tuning of the system for specific needs.

When the enhanced STAT call is issued, the following information is returned:
* OSAM statistics for each defined subpool

* VSAM statistics that also include hiperspace statistics

* OSAM and VSAM count fields that have been expanded to 10 digits

Retrieving database statistics: the STAT call

The STAT call is helpful in debugging a program because it retrieves IMS database
statistics. It is also helpful in monitoring and fine tuning for performance. The STAT
call retrieves OSAM database buffer pool statistics and VSAM database buffer
subpool statistics.

This topic contains Product-sensitive Programming Interface information.

When you issue the STAT call, you indicate:
¢ An I/O area into which the statistics are to be returned.

Chapter 8. Testing an IMS application program 151

* A statistics function, which is the name of a 9-byte area whose contents describe
the type and format of the statistics you want returned. The contents of the area
are defined as follows:

— The first 4 bytes define the type of statistics desired (OSAM or VSAM).

— The 5th byte defines the format to be returned (formatted, unformatted, or
summary).

— The remaining 4 bytes are defined as follows:
- The normal or enhanced STAT call contains 4 bytes of blanks.

- The extended STAT call contains the 4-byte parameter ' E1 ' (a 1-byte blank,
followed by a 2-byte character string, and then another 1-byte blank).

Related reference:

[# [STAT call (Application Programming APIs)|

Format of OSAM buffer pool statistics

For OSAM bulffer pool statistics, the values are possible for the stat-function
parameter and for the format of the data that is returned to the application
program. If no OSAM bulffer pool is present, a GE status code is returned to the
program.

DBASF

This function value provides the full OSAM database buffer pool statistics in a
formatted form. The application program I/0O area must be at least 360 bytes.
Three 120-byte records (formatted for printing) are provided as two heading lines
and one line of statistics. The following diagram shows the data format.

BLOCK FOUND READS BUFF 0SAM BLOCKS NEW CHAIN

REQ 1IN POOL ISSUED ALTS WRITES WRITTEN BLOCKS WRITES
nnnnnnn - nnnnnnn nnnnn - nnnnhnn nAnninne. nannhnne. Aannnn- nAnnn

WRITTEN LOGICAL PURGE RELEASE

AS NEW CYL REQ REQ ERRORS
FORMAT

nnnnnnn - AnnnAn Annnnan. annnnAn an/nn

BLOCK REQ

Number of block requests received.

FOUND IN POOL
Number of times the block requested was found in the buffer pool.

READS ISSUED
Number of OSAM reads issued.

BUFF ALTS
Number of buffers altered in the pool.

OSAM WRITES
Number of OSAM writes issued.

BLOCKS WRITTEN
Number of blocks written from the pool.

NEW BLOCKS
Number of new blocks created in the pool.

CHAIN WRITES
Number of chained OSAM writes issued.

152 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_statcall.htm#ims_statcall

WRITTEN AS NEW
Number of blocks created.

LOGICAL CYL FORMAT
Number of format logical cylinder requests issued.

PURGE REQ
Number of purge user requests.

RELEASE REQ
Number of release ownership requests.

ERRORS
Number of write error buffers currently in the pool or the largest number
of errors in the pool during this execution.

DBASU

This function value provides the full OSAM database buffer pool statistics in an
unformatted form. The application program I/O area must be at least 72 bytes.
Eighteen fullwords of binary data are provided:

Word Contents
1 A count of the number of words that follow.

2-18 The statistic values in the same sequence as presented by the DBASF
function value.

DBASS

This function value provides a summary of the OSAM database buffer pool
statistics in a formatted form. The application program 1/O area must be at least
180 bytes. Three 60-byte records (formatted for printing) are provided. The
following diagram shows the data format.

DATA BASE BUFFER POOL: SIZE nnnnnnn
REQL nnnnn REQ2 nnnnn READ nnnnn WRITES nnnnn LCYL nnnnn
PURG nnnnn OWNRR nnnnn ERRORS nn/nn

SIZE Buffer pool size.

REQ1 Number of block requests.

REQ2 Number of block requests satisfied in the pool plus new blocks created.
READ Number of read requests issued.

WRITES
Number of OSAM writes issued.

LCYL Number of format logical cylinder requests.
PURG Number of purge user requests.

OWNRR
Number of release ownership requests.

ERRORS
Number of permanent errors now in the pool or the largest number of
permanent errors during this execution.

Format of VSAM buffer subpool statistics
Because there might be several buffer subpools for VSAM databases, the STAT call
is iterative when requesting these statistics. If more than one VSAM local shared

Chapter 8. Testing an IMS application program 153

resource pool is defined, statistics are retrieved for all VSAM local shared resource
pools in the order in which they are defined. For each local shared resource pool,
statistics are retrieved for each subpool according to buffer size.

The first time the call is issued, the statistics for the subpool with the smallest
buffer size are provided. For each succeeding call (without intervening use of the
PCB), the statistics for the subpool with the next-larger buffer size are provided.

If index subpools exist within the local shared resource pool, the index subpool
statistics always follow statistics of the data subpools. Index subpool statistics are
also retrieved in ascending order based on the buffer size.

The final call for the series returns a GA status code in the PCB. The statistics
returned are totals for all subpools in all local shared resource pools. If no VSAM
buffer subpools are present, a GE status code is returned to the program.

VBASF

This function value provides the full VSAM database subpool statistics in a
formatted form. The application program I/O area must be at least 360 bytes.
Three 120-byte records (formatted for printing) are provided as two heading lines
and one line of statistics. Each successive call returns the statistics for the next data
subpool. If present, statistics for index subpools follow the statistics for data
subpools.

The following diagram shows the data format.

BUFFER HANDLER STATISTICS
BSIZ NBUF RET RBA RET KEY ISRT ES ISRT KS BFR ALT BGWRT SYN PTS
nnnK nnn nnnnnnn nnnnnnn nnAnnnn- nnnnnnn- NhnnnAn- nnnnnnn- Annnnnn

VSAM STATISTICS POOLID: xxxx
GETS SCHBFR ~ FOUND READS USR WTS NUR WTS ERRORS
nnnnnnn nnnnnnn nnnnnnn nnnnnnn- NnhNNhn- nnnnnnn-— nn/nn

POOLID
ID of the local shared resource pool.

BSIZ Size of the buffers in this VSAM subpool. In the final call, this field is set
to ALL.

NBUF Number of buffers in this subpool. In the final call, this is the number of
buffers in all subpools.

RET RBA
Number of retrieve-by-RBA calls received by the buffer handler.

RET KEY
Number of retrieve-by-key calls received by the buffer handler.

ISRT ES
Number of logical records inserted into ESDSs.

ISRT KS
Number of logical records inserted into KSDSs.

BFR ALT
Number of logical records altered in this subpool. Delete calls that result in
erasing records from a KSDS are not counted.

154 Application Programming

BGWRT
Number of times the background-write function was executed by the
buffer handler.

SYN PTS
Number of Synchronization calls received by the buffer handler.

GETS Number of VSAM GET calls issued by the buffer handler.

SCHBFR
Number of VSAM SCHBER calls issued by the buffer handler.

FOUND
Number of times VSAM found the control interval already in the subpool.

READS
Number of times VSAM read a control interval from external storage.

USR WTS
Number of VSAM writes initiated by IMS.

NUR WTS
Number of VSAM writes initiated to make space in the subpool.

ERRORS
Number of write error buffers currently in the subpool or the largest
number of write errors in the subpool during this execution.

VBASU

This function value provides the full VSAM database subpool statistics in a
unformatted form. The application program I/O area must be at least 72 bytes.
Eighteen fullwords of binary data are provided for each subpool:

Word Contents
1 A count of the number of words that follow.

2-18 The statistic values in the same sequence as presented by the VBASF
function value, except for POOLID, which is not included in this
unformatted form.

VBASS

This function value provides a summary of the VSAM database subpool statistics
in a formatted form. The application program I/O area must be at least 180 bytes.
Three 60-byte records (formatted for printing) are provided.

The following diagram shows the data format.

DATA BASE BUFFER POOL: BSIZE nnnnnnn POOLID xxxx Type x
RRBA nnnnn RKEY nnnnn BFALT nnnnn NREC nnnnn SYN PTS nnnnn
NMBUFS nnn VRDS nnnnn FOUND nnnnn VWTS nnnnn ERRORS nn/nn

BSIZE Size of the buffers in this VSAM subpool.

POOLID
ID of the local shared resource pool.

TYPE Indicates a data (D) subpool or an index (I) subpool.
RRBA Number of retrieve-by-RBA requests.
RKEY Number of retrieve-by-key requests.

Chapter 8. Testing an IMS application program 155

BFALT
Number of logical records altered.

NREC Number of new VSAM logical records created.

SYN PTS
Number of sync point requests.

NMBUFS
Number of buffers in this VSAM subpool.

VRDS Number of VSAM control interval reads.

FOUND
Number of times VSAM found the requested control interval already in the
subpool.

VWTS
Number of VSAM control interval writes.

ERRORS
Number of permanent write errors now in the subpool or the largest
number of errors in this execution.

Format of enhanced/extended OSAM buffer subpool statistics
The enhanced OSAM buffer pool statistics provide additional information
generated for each defined subpool. Because there might be several buffer subpools
for OSAM databases, the enhanced STAT call repeatedly requests these statistics.
The first time the call is issued, the statistics for the subpool with the smallest
buffer size is provided. For each succeeding call (without intervening use of the
PCB), the statistics for the subpool with the next-larger buffer size is provided.

The final call for the series returns a GA status code in the PCB. The statistics
returned are the totals for all subpools. If no OSAM buffer subpools are present, a
GE status code is returned.

Extended OSAM buffer pool statistics can be retrieved by including the 4-byte
parameter 'BE1b’ following the enhanced call function. The extended STAT call
returns all of the statistics returned with the enhanced call, plus the statistics on
the coupling facility buffer invalidates, OSAM caching, and sequential buffering
IMMED/SYNC read counts.

Restriction: The extended format parameter is supported by the DBESO, DBESU,
and DBESF functions only.

DBESF

This function value provides the full OSAM subpool statistics in a formatted form.
The application program 1/0O area must be at least 600 characters. For OSAM
subpools, five 120-byte records (formatted for printing) are provided. Three of the
records are heading lines and two of the records are lines of subpool statistics.

The following example shows the enhanced stat call format:

BUFFER HANDLER OSAM STATISTICS FIXOPT=X/X POOLID: xxxx
BSIZ NBUFS LOCATE-REQ NEW-BLOCKS ~ ALTER- REQ PURGE- REQ FND-IN-POOL BUFRS-SRCH READ- REQS ~ BUFSTL-WRT
PURGE-WRTS WT-BUSY-ID WT-BUSY-WR WT-BUSY-RD WT-RLSEOWN WT-NO-BFRS ERRORS
nnlK nnannnnn nnnnnnnnnn nnnNNNNNNN. - NNNNANANNN.— NNNNANNNAN. NNNANNNANN. - NAANNANNAN. ANNNANNANN.—_ NRANANNNN
nnnnnnnnnn nnNNNNNNAN. - NNNNNNNANN.— ANNNNNNANN. - NNNANANNRN. - NNAANNNNN nnnnnnn/nnnnnnn

The following example shows the extended stat call format:

156 Application Programming

BUFFER HANDLER OSAM STATISTICS STG CLS= FIXOPT=N/N POOLID:
BSIZ NBUFS LOCATE-REQ NEW-BLOCKS ~ ALTER- REQ PURGE- REQ FND-IN-POOL BUFRS-SRCH READ- REQS BUFSTL-WRT
PURGE-WRTS WT-BUSY-ID ~ WT-BUSY-WR WT-BUSY-RD WT-RLSEOWN WT-NO-BFRS ERRORS
nnlK nnnnnnn5 annnnnnnn@ nnnnnnnnn@ nnnnnnnnn@ — nnnAnnnnn®@ - nnnnnnnnn® nnnnnnnnn@ — nnnnnnnnn@ ~ nnnnnnnnn@
nnnnnnnnnn nnnnnnnnnn - nnnnnnnnnn. - nnnnnnnnnAn. - Annnnannnn; - nnnnnnnnnn nnnnnnn/nnnnnnn
CF-READS EXPCTD-NF CFWRT-PRI CFWRT-CHG STGCLS-FULL XI-CNT VECTR-XI SB-SEQRD ~ SB-ANTICIP
nnnnnnNnnNn NNNNNANANN. - NNNNANANNAN. NNNNANNRNN. hNRRRNANNR. - AhRRNANNNN nnnnnnnnnn- nnanAnnnnn. - nnnannnnnn

FIXOPT
Fixed options for this subpool. Y or N indicates whether the data buffer
prefix and data buffers are fixed.

POOLID
ID of the local shared resource pool.

BSIZ Size of the buffers in this subpool. Set to ALL for total line. For the
summary totals (BSIZ=ALL), the FIXOPT and POOLID fields are replaced
by an OSM= field. This field is the total size of the OSAM subpool.

NBUFS
Number of buffers in this subpool. This is the total number of buffers in
the pool for the ALL line.

LOCATE-REQ
Number of LOCATE-type calls.

NEW-BLOCKS
Number of requests to create new blocks.

ALTER-REQ
Number of buffer alter calls. This count includes NEW BLOCK and
BYTALT calls.

PURGE-REQ
Number of PURGE calls.

FND-IN-POOL
Number of LOCATE-type calls for this subpool where data is already in
the OSAM pool.

BUFRS-SRCH
Number of buffers searched by all LOCATE-type calls.

READ-REQS
Number of READ I/0 requests.

BUFSTL-WRT
Number of single block writes initiated by buffer steal routine.

PURGE-WRTS
Number of blocks for this subpool written by purge.

WT-BUSY-ID
Number of LOCATE calls that waited due to busy ID.

WT-BUSY-WR
Number of LOCATE calls that waited due to buffer busy writing.

WT-BUSY-RD
Number of LOCATE calls that waited due to buffer busy reading.

WT-RLSEOWN
Number of buffer steal or purge requests that waited for ownership to be
released.

WT-NO-BFRS
Number of buffer steal requests that waited because no buffers are
available to be stolen.

Chapter 8. Testing an IMS application program 157

ERRORS
Total number of I/0O errors for this subpool or the number of buffers
locked in pool due to write errors.

CF-READS
Number of blocks read from CF.

EXPCTD-NF
Number of blocks expected but not read.

CFWRT-PRI
Number of blocks written to CF (prime).

CFWRT-CHG
Number of blocks written to CF (changed).

STGGLS-FULL
Number of blocks not written (STG CLS full).

XI-CNTL
Number of XI buffer invalidate calls.

VECTR-XI
Number of buffers found invalidated by XI on VECTOR call.

SB-SEQRD
Number of immediate (SYNC) sequential reads (SB stat).

SB-ANTICIP
Number of anticipatory reads (SB stat).
DBESU

This function value provides full OSAM statistics in an unformatted form. The
application program I/O area must be at least 84 bytes. Twenty-one fullwords of
binary data are provided for each subpool:

Word Contents
1 A count of the number of words that follow.

2-19 The statistics provided in the same sequence as presented by the DBESF
function value.

20 The POOLID provided at subpool definition time.
21 The second byte contains the following fix options for this subpool:
* X'04' = DATA BUFFER PREFIX fixed

» X'02' = DATA BUFFERS fixed

The summary totals (word 2=ALL), for word 21, contain the total size of
the OSAM pool.

22-30 Extended stat data in same sequence as on DBESF call.
DBESS

This function value provides a summary of the OSAM database buffer pool
statistics in a formatted form. The application program I/O area must be at least
360 bytes. Six 60-byte records (formatted for printing) are provided. This STAT call
is a restructured DBASF STAT call that allows for 10-digit count fields. In addition,
the subpool header blocks give a total of the number of OSAM buffers in the pool.

The following shows the data format:

158 Application Programming

DATA BASE BUFFER POOL: NSUBPL nnnnnn NBUFS nnnnnnnn
BLKREQ nnnnnnnnnn INPOOL nnnnnnnnnn READS nnnnnnnnnn
BUFALT nnnnnnnnnn WRITES nnnnnnnnnn BLKWRT nnnnnnnnnn
NEWBLK nnnnnnnnnn CHNWRT nnnnnnnnnn WRTNEW nnnnnnnnnn
LCYLFM nnnnnnnnnn PURGRQ nnnnnnnnnn RLSERQ nnnnnnnnnn
FRCWRT nnnnnnnnnn ERRORS nnnnnnnn/nnnnnnnn

NSUBPL

Number of subpools defined for the OSAM buffer pool.
NBUFS

Total number of buffers defined in the OSAM bulffer pool.
BLKREQ

Number of block requests received.
INPOOL

Number of times the block requested is found in the buffer pool.
READS

Number of OSAM reads issued.
BUFALT

Number of buffers altered in the pool.
WRITES

Number of OSAM writes issued.
BLKWRT

Number of blocks written from the pool.
NEWBLK

Number of blocks created in the pool.
CHNWRT

Number of chained OSAM writes issued.
WRTNEW

Number of blocks created.
LCYLFM

Number of format logical cylinder requests issued.
PURGRQ

Number of purge user requests.
RLSERQ

Number of release ownership requests.
FRCWRT

Number of forced write calls.
ERRORS

Number of write error buffers currently in the pool or the largest number
of errors in the pool during this execution.

DBESO

This function value provides the full OSAM database subpool statistics in a
formatted form for online statistics that are returned as a result of a /DIS POOL
command. This call can also be a user-application STAT call. When issued as an
application DL /I STAT call, the program I/O area must be at least 360 bytes. Six
60-byte records (formatted for printing) are provided.

Example: The following shows the enhanced stat call format:

Chapter 8. Testing an IMS application program 159

O0SAM DB BUFFER POOL:ID xxxx BSIZE nnnnnK NBUFnnnnnnn FX=X/X
LCTREQ nnnnnnnnnn NEWBLK nnnnnnnnnn ALTREQ nnnnnnnnnn
PURGRQ nnnnnnnnnn FNDIPL nnnnnnnnnn BFSRCH nnnnnnnnnn
RDREQ nnnnnnnnnn BFSTLW nnnnnnnnnn PURGWR nnnnnnnnnn
WBSYID nnnnnnnnnn WBSYWR nnnnnnnnnn WBSYRD nnnnnnnnnn
WRLSEO nnnnnnnnnn WNOBFR nnnnnnnnnn ERRORS nnnnn/nnnnn

Example: The following shows the extended stat call format:

0SAM DB BUFFER POOL:ID xxxx BSIZE nnnnnK NBUFnnnnnnn FX=X/X
LCTREQ nnnnnnnnnn NEWBLK nnnnnnnnnn ALTREQ nnnnnnnnnn
PURGRQ nnnnnnnnnn FNDIPL nnnnnnnnnn BFSRCH nnnnnnnnnn
RDREQ nnnnnnnnnn BFSTLW nnnnnnnnnn PURGWR nnnnnnnnnn
WBSYID nnnnnnnnnn WBSYWR nnnnnnnnnn WBSYRD nnnnnnnnnn
WRLSEO nnnnnnnnnn WNOBFR nnnnnnnnnn ERRORS nnnnn/nnnnn
CFREAD nnnnnnnnnn CFEXPC nnnnnnnnnn CFWRPR nnnnn/nnnnn
CFWRCH nnnnnnnnnn STGCLF nnnnnnnnnn XIINV nnnnn/nnnnn
XICLCT nnnnnnnnnn SBSEQR nnnnnnnnnn SBANTR nnnnn/nnnnn

POOLID
ID of the local shared resource pool.

BSIZE Size of the buffers in this subpool. Set to ALL for summary total line. For
the summary totals (BSIZE=ALL), the FX= field is replaced by the OSAM=
field. This field is the total size of the OSAM bulffer pool. The POOLID is
not shown. For the summary totals (BSIZE=ALL), the FX= field is replaced
by the OSAM-= field. This field is the total size of the OSAM buffer pool.
The POOLID is not shown.

NBUF Number of buffers in this subpool. Total number of buffers in the pool for
the ALL line.

FX= Fixed options for this subpool. Y or N indicates whether the data buffer
prefix and data buffers are fixed.

LCTREQ
Number of LOCATE-type calls.

NEWBLK
Number of requests to create new blocks.

ALTREQ
Number of buffer alter calls. This count includes NEW BLOCK and
BYTALT calls.

PURGRQ
Number of PURGE calls.

FNDIPL
Number of LOCATE-type calls for this subpool where data is already in
the OSAM pool.

BFSRCH
Number of buffers searched by all LOCATE-type calls.

RDREQ
Number of READ 1/0 requests.

BFSTLW
Number of single-block writes initiated by buffer-steal routine.

PURGWR
Number of buffers written by purge.

WBSYID
Number of LOCATE calls that waited due to busy ID.

160 Application Programming

WBSYWR
Number of LOCATE calls that waited due to buffer busy writing.

WBSYRD
Number of LOCATE calls that waited due to buffer busy reading.

WRLSEO
Number of buffer steal or purge requests that waited for ownership to be
released.

WNOBRF
Number of buffer steal requests that waited because no buffers are
available to be stolen.

ERRORS
Total number of I/O errors for this subpool or the number of buffers
locked in pool due to write errors.

CFREAD
Number of blocks read from CF.

CFEXPC
Number of blocks expected but not read.

CFWRPR
Number of blocks written to CF (prime).

CFWRCH
Number of blocks written to CF (changed).

STGCLF
Number of blocks not written (STG CLS full).

XIINV
Number of XI buffer invalidate calls.

XICLCT
Number of buffers found invalidated by XI on VECTOR call.

SBSEQR
Number of immediate (SYNC) sequential reads (SB stat).

SBANTR
Number of anticipatory reads (SB stat).

Format of enhanced VSAM buffer subpool statistics

The enhanced VSAM buffer subpool statistics provide information on the total size
of VSAM subpools in virtual storage and in hiperspace. All count fields are 10
digits.

Because there might be several buffer subpools for VSAM databases, the enhanced
STAT call repeatedly requests these statistics. If more than one VSAM local shared
resource pool is defined, statistics are retrieved for all VSAM local shared resource
pools in the order in which they are defined. For each local shared resource pool,
statistics are retrieved for each subpool according to buffer size.

The first time the call is issued, the statistics for the subpool with the smallest
buffer size are provided. For each succeeding call (without intervening use of the
PCB), the statistics for the subpool with the next-larger buffer size are provided.

If index subpools exist within the local shared resource pool, the index subpool
statistics always follow the data subpools statistics. Index subpool statistics are also
retrieved in ascending order based on the buffer size.

Chapter 8. Testing an IMS application program 161

The final call for the series returns a GA status code in the PCB. The statistics
returned are totals for all subpools in all local shared resource pools. If no VSAM
buffer subpools are present, a GE status code is returned to the program.

VBESF

This function value provides the full VSAM database subpool statistics in a
formatted form. The application program I/O area must be at least 600 bytes. For
each shared resource pool ID, the first call returns five 120-byte records (formatted
for printing). Three of the records are heading lines and two of the records are
lines of subpool statistics.

The following shows the data format:

BUFFER HANDLER STATISTICS / VSAM STATISTICS FIXOPT=X/X/X POOLID: xxxx
BSIZ NBUFFRS HS-NBUF RETURN-RBA RETURN-KEY ESDS-INSRT KSDS-INSRT BUFFRS-ALT BKGRND-WRT SYNC-POINT ERRORS

VSAM-GETS ~ SCHED-BUFR VSAM-FOUND ~VSAM-READS USER-WRITS ~ VSAM-WRITS HSRDS-SUCC HSWRT-SUCC HSR/W-FAIL

nnlK nnnnnn nnnnnnn nnnnnnnnnn nnnnnnnnnne nNnnnnnnnn. NNNNNRNANN. ADNNNNNADN. - NNRNANANAR. NRRARRRNAN. nnnnnn/nnnnnn

nnnnnnnnNn. NNNNANNNAN. NNNNNNNNNAN. NNNNNNANNRN. NNNANANNRN. - ANANNNNNAR. NNNARNRNNAN. ARRANARNRN. NARAR/nnnnn

FIXOPT
Fixed options for this subpool. Y or N indicates whether the data buffer
prefix, the index buffers, and the data buffers are fixed.

POOLID
ID of the local shared resource pool.

BSIZ Size of the buffers in this subpool. Set to ALL for total line. For the
summary totals (BSIZ=ALL), the FIXOPT and POOLID fields are replaced
by a VS= field and a HS= field. The VS= field is the total size of the VSAM
subpool in virtual storage. The HS= field is the total size of the VSAM
subpool in hiperspace.

NBUFFRS
Number of buffers in this subpool. Total number of buffers in the VSAM
pool that appears in the ALL line.

HS-NBUF
Number of hiperspace buffers defined for this subpool.

RETURN-RBA
Number of retrieve-by-RBA calls received by the buffer handler.

RETURN-KEY
Number of retrieve-by-key calls received by the buffer handler.

ESDS-INSRT
Number of logical records inserted into ESDSs.

KSDS-INSRT
Number of logical records inserted into KSDSs.

BUFFRS-ALT
Number of logical records altered in this subpool. Delete calls that result in
erasing records from a KSDS are not counted.

BKGRND-WRT
Number of times the background write function was executed by the
buffer handler.

SYNC-POINT
Number of Synchronization calls received by the buffer handler.

162 Application Programming

ERRORS
Number of write error buffers currently in the subpool or the largest
number of write errors in the subpool during this execution.

VSAM-GETS
Number of VSAM Get calls issued by the buffer handler.

SCHED-BUFR
Number of VSAM Scheduled-Buffer calls issued by the buffer handler

VSAM-FOUND
Number of times VSAM found the control interval in the buffer pool.

VSAM-READS
Number of times VSAM read a control interval from external storage.

USER-WRITS
Number of VSAM writes initiated by IMS.

VSAM-WRITS
Number of VSAM writes initiated to make space in the subpool.

HSRDS-SUCC
Number of successful VSAM reads from hiperspace buffers.

HSWRT-SUCC
Number of successful VSAM writes from hiperspace buffers.

HSR/W-FAIL
Number of failed VSAM reads from hiperspace buffers/number of failed
VSAM writes to hiperspace buffers. This indicates the number of times a
VSAM READ/WRITE request from or to hiperspace resulted in DASD
I/0.

VBESU

This function value provides full VSAM statistics in an unformatted form. The
application program I/0O area must be at least 104 bytes. Twenty-five fullwords of
binary data are provided for each subpool.

Word Contents
1 A count of the number of words that follow.

2-23 The statistics provided in the same sequence as presented by the VBESF
function value.

24 The POOLID provided at the time the subpool is defined.
25 The first byte contains the subpool type, and the third byte contains the
following fixed options for this subpool:
+ X'08' = INDEX BUFFERS fixed
* X'04' = DATA BUFFER PREFIX fixed
+ X'02' = DATA BUFFERS fixed

The summary totals (word 2=ALL) for word 25 and word 26 contain the
virtual and hiperspace pool sizes.

Chapter 8. Testing an IMS application program 163

VBESS

This function value provides a summary of the VSAM database subpool statistics
in a formatted form. The application program I/O area must be at least 360 bytes.
For each shared resource pool ID, the first call provides six 60-byte records
(formatted for printing).

The following shows the data format:
VSAM DB BUFFER POOL:ID xxxx BSIZE nnnnnnK TYPE x FX=X/X/X

RRBA nnnnnnnnnn RKEY nnnnnnnnnn ~ BFALT nnnnnnnnnn
NREC nnnnnnnnnn SYNC PT nnnnnnnnnn ~ NBUFS nnnnnnnnnn
VRDS nnnnnnnnnn FOUND nnnnnnnnnn -~ VWTS ~ nnnnnnnnnn
HSR-S nnnnnnnnnn HSW-S nnnnnnnnnn ~ HS NBUFS nnnnnnnn
HS-R/W-FAIL nnnnn/nnnnn ERRORS nnnnnn/nnnnnn
POOLID

ID of the local shared resource pool.
BSIZE Size of the buffers in this VSAM subpool.
TYPE Indicates a data (D) subpool or an index (I) subpool.

FX Fixed options for this subpool. Y or N indicates whether the data buffer
prefix, the index buffers, and the data buffers are fixed.

RRBA
Number of retrieve-by-RBA calls received by the buffer handler.

RKEY Number of retrieve-by-key calls received by the buffer handler.

BFALT
Number of logical records altered.

NREC Number of new VSAM logical records created.

SYNC PT
Number of sync point requests.

NBUFS
Number of buffers in this VSAM subpool.

VRDS Number of VSAM control interval reads.

FOUND
Number of times VSAM found the requested control interval already in the
subpool.
VWTS
Number of VSAM control interval writes.
HSR-S
Number of successful VSAM reads from hiperspace buffers.
HSW-S
Number of successful VSAM writes to hiperspace buffers.
HS NBUFS
Number of VSAM hiperspace buffers defined for this subpool.
HS-R/W-FAIL

Number of failed VSAM reads from hiperspace buffers and number of
failed VSAM writes to hiperspace buffers. This indicates the number of
times a VSAM READ/WRITE request to or from hiperspace resulted in
DASD 1/0.

164 Application Programming

ERRORS
Number of permanent write errors now in the subpool or the largest
number of errors in this execution.

Writing Information to the system log: the LOG request

An application program can write a record to the system log by issuing the LOG
call.

When you issue the LOG request, you specify the I/O area that contains the record
you want written to the system log. You can write any information to the log that
you want, and you can use different log codes to distinguish between different
types of information.

Related Reading: For information about coding the LOG request, see the
appropriate application programming reference information.

What to do when your IMS program terminates abnormally

When your program terminates abnormally, you can take the following actions to
simplify the task of finding and fixing the problem.

* Record as much information as possible about the circumstances under which
the program terminated abnormally.

¢ Check for certain initialization and execution errors.

Recommended actions after an abnormal termination of an IMS
program

Many places have guidelines on what you should do if your program terminates
abnormally. The suggestions given here are common guidelines:

* Document the error situation to help in investigating and correcting it. The
following information can be helpful:

— The program's PSB name

— The transaction code that the program was processing (online programs only)
— The text of the input message being processed (online programs only)

— The call function

— The name of the originating logical terminal (online programs only)

— The contents of the PCB that was referenced in the call that was executing

— The contents of the I/O area when the problem occurred

— If a database call was executing, the SSAs, if any, that the call used

— The date and time of day

* When your program encounters an error, it can pass all the required error
information to a standard error routine. You should not use STAE or ESTAE
routines in your program; IMS uses STAE or ESTAE routines to notify the
control region of any abnormal termination of the application program. If you
call your own STAE or ESTAE routines, IMS may not get control if an abnormal
termination occurs.

* Online programs might want to send a message to the originating logical
terminal to inform the person at the terminal that an error has occurred. Unless
you are using a CCTL, your program can get the logical terminal name from the
I/0 PCB, place it in an express PCB, and issue one or more ISRT calls to send
the message.

Chapter 8. Testing an IMS application program 165

* An online program might also want to send a message to the master terminal
operator giving information about the program's termination. To do this, the
program places the logical terminal name of the master terminal in an express
PCB and issues one or more ISRT calls. (This is not applicable if you are using a
CCTL.)

* You might also want to send a message to a printer so that you will have a
hard-copy record of the error.

* You can send a message to the system log by issuing a LOG request.

* Some places run a BMP at the end of the day to list all the errors that have
occurred during the day. If your shop does this, you can send a message using
an express PCB that has its destination set for that BMP. (This is not applicable if
you are using a CCTL.)

Diagnosing an abnormal termination of an IMS program

If your program does not run correctly when you are testing it or when it is
executing, you need to isolate the problem. The problem might be anything from a
programming error (for example, an error in the way you coded one of your
requests) to a system problem. This section gives some guidelines about the steps
that you, as the application programmer, can take when your program fails to run,
terminates abnormally, or gives incorrect results.

IMS program initialization errors

Before your program receives control, IMS must have correctly loaded and
initialized the PSB and DBDs used by your application program. Often, when the
problem is in this area, you need a system programmer or DBA (or your
equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that
they generate.

IMS program execution errors

If you do not have any initialization errors, check:

1. The output from the compiler. Make sure that all error messages have been
resolved.

2. The output from the binder:
* Are all external references resolved?
* Have all necessary modules been included?
* Was the language interface module correctly included?
* Is the correct entry point specified?
3. Your JCL:

* Is the information that described the files that contain the databases correct?
If not, check with your DBA.

* Have you included the DL/I parameter statement in the correct format?

* Have you included the region size parameter in the EXEC statement? Does it
specify a region or partition large enough for the storage required for IMS
and your program?

* Have you declared the fields in the PCB masks correctly?

166 Application Programming

* If your program is an assembler language program, have you saved and
restored registers correctly? Did you save the list of PCB addresses at entry?
Does register 1 point to a parameter list of fullwords before issuing any DL/I
calls?

* For COBOL for z/OS and PL/I for MVS and VM, are the literals you are
using for arguments in DL/I calls producing the results you expect? For
example, in PL/I for MVS and VM, is the parameter count being generated
as a half-word instead of a fullword, and is the function code producing the
required 4-byte field?

* Use the PCB as much as possible to determine what in your program is
producing incorrect results.

Related concepts:

[“Use of STAE or ESTAE and SPIE in IMS programs” on page 55|

Chapter 8. Testing an IMS application program 167

168 Application Programming

Chapter 9. Testing a CICS application program

You should perform a program unit test on your CICS application program to
ensure that the program correctly handles its input data, processing, and output
data. The amount and type of testing you do depends on the individual program.

Recommendations for testing a CICS program

When you are ready to test your program, be aware of your established test
procedures before you start.

To start testing, you need the following three items:

» Test JCL.

* A test database. When you are testing a program, do not execute it against a
production database because the program, if faulty, might damage valid data.

 Test input data. The input data that you use need not be current, but it should
be valid data. You cannot be sure that your output data is valid unless you use
valid input data.

The purpose of testing the program is to make sure that the program can correctly
handle all the situations that it might encounter.

To thoroughly test the program, try to test as many of the paths that the program
can take as possible. For example:

* Test each path in the program by using input data that forces the program to
execute each of its branches.

* Be sure that your program tests its error routines. Again, use input data that will
force the program to test as many error conditions as possible.

* Test the editing routines your program uses. Give the program as many different
data combinations as possible to make sure it correctly edits its input data.

Testing your CICS program
You can use different tools to test a CICS program, depending on the type of
program.
The following table summarizes the tools that are available for online DBCTL,
batch, and BMP programs.

Table 30. Tools you can use for testing your program.

Online
Tool (DBCTL) Batch BMP
Execution Diagnostic Facility (EDF) Yes' No No
CICS dump control Yes No No
CICS trace control Yes Yes No
DFSDDLTO No Yes® Yes®
DL/I image capture program Yes Yes Yes

© Copyright IBM Corp. 1974, 2015 169

Table 30. Tools you can use for testing your program (continued).

Online
Tool (DBCTL) Batch BMP

Notes:

1. For online, command-level programs only.

2. For call-level programs only. (For a command-level batch program, you can use DL/I
image capture program first, to produce calls for DFESDDLTO.)

Using the Execution Diagnostic Facility (command-level only)

You can use the Execution Diagnostic Facility (EDF) to test command-level
programs online. EDF can display EXEC CICS and EXEC DLI commands in online
programs; it cannot intercept DL/I calls.

With EDF you can:

 Display and modify working storage; you can change values in the DIB.

* Display and modify a command before it is executed. You can modify the value
of any argument, and then execute the command.

* Modify the return codes after the execution of the command. After the command
has been executed, but before control is returned to the application program, the
command is intercepted to show the response and any argument values set by
CICS.

You can run EDF on the same terminal as the program you are testing.
Related Reading: For more information about using EDF, see “Execution

(Command-Level) Diagnostic Facility” in CICS Transaction Server for z/OS CICS
Application Programming Reference.

Using CICS dump control

You can use the CICS dump control facility to dump virtual storage areas, CICS
tables, and task-related storage areas. For more information about using the CICS
dump control facility, see the CICS application programming reference manual that
applies to your version of CICS.

Using CICS trace control

You can use the trace control facility to help debug and monitor your online
programs in the DBCTL environment. You can use trace control requests to record
entries in a trace table. The trace table can be located either in virtual storage or on
auxiliary storage. If it is in virtual storage, you can gain access to it by
investigating a dump; if it is on auxiliary storage, you can print the trace table. For
more information about the control statements you can use to produce trace
entries, see the information about trace control in the application programming
reference manual that applies to your version of CICS.

Tracing DL/I calls with image capture

DL/I image capture program (DFSDLTRO) is a trace program that can trace and
record DL/I calls issued by batch, BMP, and online (DBCTL environment)
programs. You can also use the image capture program with command-level
programs, and you can produce calls for use as input to DFSDDLTO.

170 Application Programming

You can use the image capture program to:

Test your program

If the image capture program detects an error in a call it traces, it reproduces as
much of the call as possible, although it cannot document where the error
occurred, and cannot always reproduce the full SSA.

Produce input for DFSDDLTO0 (DL/I test program)

You can use the output produced by the image capture program as input to
DFSDDLTO0. The image capture program produces status statements, comment
statements, call statements, and compare statements for DFSDDLTO. For
example, you can use the image capture program with a command-level
program, to produce calls for DFSDDLTO.

Debug your program

When your program terminates abnormally, you can rerun the program using
the image capture program. The image capture program can then reproduce and
document the conditions that led to the program failure. You can use the
information in the report produced by the image capture program to find and
fix the problem.

Using image capture with DFSDDLTO

The image capture program produces the following control statements that you can
use as input to DFSDDLTO:

Status statements

When you invoke the image capture program, it produces the status statement.
The status statement it produces:

— Sets print options so that DFSDDLTO0 prints all call trace comments, all DL/I
calls, and the results of all comparisons.

— Determines the new relative PCB number each time a PCB change occurs
while the application program is executing.

Comments statement

The image capture program also produces a comments statement when you
invoke it. The comments statements give:

— The time and date IMS started the trace
— The name of the PSB being traced

The image capture program also produces a comments statement preceding any
call in which IMS finds an error.

Call statements

The image capture program produces a call statement for each DL/I call or
EXEC DLI command the application program issues. It also generates a CHKP call
when it starts the trace and after each commit point or CHKP request.

Compare statements

If you specify COMP on the DLITRACE control statement, the image capture
program produces data and PCB comparison statements.

Running image capture online

When you run the image capture program online, the trace output goes to the IMS
log data set. To run the image capture program online, you issue the IMS TRACE
command from the z/OS console.

Chapter 9. Testing a CICS application program 171

If you trace a BMP and you want to use the trace results with DFSDDLTO, the
BMP must have exclusive write access to the databases it processes. If the
application program does not have exclusive access, the results of DFSDDLT0 may
differ from the results of the application program.

The following diagram shows TRACE command format:

ON
»»—/—TRACE—S ET—J:O FF_—l—PS B—psbname

L[NOCOMP
COmP

v
A

SET ON|OFF
Turns the trace on or off.

PSB psbname
Specifies the name of the PSB you want to trace. You can trace more than one
PSB at the same time, by issuing a separate TRACE command for each PSB.

COMP|NOCOMP
Specifies whether you want the image capture program to produce data and
PCB compare statements to be used with DFSDDLTO.

Running image capture as a batch job

To run the image capture program as a batch job, you use the DLITRACE control
statement in the DFSVSAMP DD data set.

In the DLITRACE control statement, you specify:
* Whether you want to trace all of the DL/I calls the program issues or trace only
a certain group of calls.
* Whether you want the trace output to go to:
A sequential data set that you specify
The IMS log data set
Both sequential and IMS log data sets

If the program being traced issues CHKP and XRST calls, the checkpoint and restart
information may not be directly reproducible when you use the trace output with
DFSDDLTO.

When you run DFSDDLTO in an IMS DL/I or DBB batch region with trace output,
the results are the same as the application program's results, but only if the
database has not been altered.

For information on the format of the DLITRACE control statement in the
DFSVSAMP DD data set, see the topic “Defining DL/I call image trace” in IMS
Version 14 System Definition.

Example of DLITRACE

This example shows a DLITRACE control statement that traces the first 14 DL/I
calls or commands that the program issues, sends the output to the IMS log data
set, and produces data and PCB comparison statements for DFSDDLTO.
//DFSVSAMP DD *

DLITRACE LOG=YES,STOP=14,COMP
/*

172 Application Programming

Special JCL requirements

The following are special JCL requirements:

//TEFRDER DD
If you want log data set output, this DD statement is required to define the
IMS log data set.

//DFSTROUT DD |anyname
If you want sequential data set output, this DD statement is required to define
that data set. If you want to specify an alternate DDNAME (anyname), it must
be specified using the DDNAME parameter on the DLITRACE control
statement.

The DCB parameters on the JCL statement are not required. The data set
characteristics are:

* RECFM=F
* LRECL=80

Notes on using image capture

* If the program being traced issues CHKP and XRST calls, the checkpoint and
restart information may not be directly reproducible when you use the trace
output with the DFSDDLTO.

* When you run DFSDDLTO0 in an IMS DL/I or DBB batch region with trace
output, the results are the same as the application program's results provided
the database has not been altered.

Retrieving image capture data from the log data set

If the trace output is sent to the IMS log data set, you can retrieve it by using
utility DFSERA10 and a DL/I call trace exit routine, DFSERA50. DFSERA50
deblocks, formats, and numbers the image capture program records to be retrieved.
To use DFSERA50, you must insert a DD statement defining a sequential output
data set in the DFSERA10 input stream. The default ddname for this DD statement
is TRCPUNCH. The card must specify BLKSIZE=80.

For example, you can use the following examples of DFSERA10 input control
statements in the SYSIN data set to retrieve the image capture program data from
the log data set:

 Print all image capture program records:

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X
* Print selected image capture program records by PSB name:
Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT OFFSET=25,VLDTYP=C,FLDLEN=8,

VALUE=psbname, COND=E

* Format image capture program records (in a format that can be used as input
to DFSDDLTO0):

Column 1 Column 10
OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,0FFSET=25,FLDTYP=C

VALUE=psbname, FLDLEN=8 ,DDNAME=0UTDDN, COND=E

Chapter 9. Testing a CICS application program 173

The DDNAME-= parameter is used to name the DD statement used by DFSERAS50.
The data set defined on the OUTDDN DD statement is used instead of the default
TRCPUNCH DD statement. For this example, the DD appears as:

//0OUTDDN DD ...,DCB=(BLKSIZE=80),...

Requests for monitoring and debugging your CICS program

You can use the STAT and LOG requests to help you in debugging your program.

The statistics (STAT) request retrieves database statistics. STAT can be issued from
both call- and command-level programs.

The log (LOG) request makes it possible for the application program to write a
record on the system log. You can issue LOG as a command or call in a batch
program; in this case, the record is written to the IMS log. You can issue LOG as a
call or command in an online program in the DBCTL environment; in this case,
the record is written to the DBCTL log.

What to do when your CICS program terminates abnormally

Whenever your program terminates abnormally, you can take some actions to
simplify the task of finding and fixing the problem.

First, you can record as much information as possible about the circumstances
under which the program terminated abnormally; and second, you can check for
certain initialization and execution errors.

Recommended actions after an abnormal termination of CICS

Many places have guidelines on what you should do if your program terminates
abnormally. The suggestions given here are some common guidelines:

Document the error situation to help in investigating and correcting it. Some of
the information that can be helpful is:

— The program's PSB name

— The transaction code that the program was processing (online programs only)
— The text of the input screen being processed (online programs only)

— The call function

— The terminal ID (online programs only)

— The contents of the PCB or the DIB

— The contents of the I/O area when the problem occurred

— If a database request was executing, the SSAs or SEGMENT and WHERE
options, if any, the request used

— The date and time of day

When your program encounters an error, it can pass all the required error
information to a standard error routine.

An online program might also want to send a message to the master terminal
destination (CSMT) and application terminal operator, giving information about
the program's termination.

You can send a message to the system log by issuing a LOG request.

Diagnosing an abnormal termination of CICS

If your program does not run correctly when you are testing it or when it is
executing, you need to isolate the problem. The problem might be anything from a

174 Application Programming

programming error (for example, an error in the way you coded one of your
requests) to a system problem. This section gives some guidelines about the steps
that you, as the application programmer, can take when your program fails to run,
terminates abnormally, or gives incorrect results.

CICS initialization errors

Before your program receives control, IMS must have correctly loaded and
initialized the PSB and DBDs used by your application program. Often, when the
problem is in this area, you need a system programmer or DBA (or your
equivalent specialist) to fix the problem. One thing you can do is to find out if
there have been any recent changes to the DBDs, PSB, and the control blocks that
they generate.

CICS execution errors

If you do not have any initialization errors, check the following in your program:

1. The output from the compiler. Make sure that all error messages have been
resolved.

2. The output from the binder:

* Are all external references resolved?

* Have all necessary modules been included?

* Was the language interface module correctly included?

* Is the correct entry point specified (for batch programs only)?
3. Your JCL:

* Is the information that described the files that contain the databases correct?
If not, check with your DBA.

* Have you included the DL/I parameter statement in the correct format (for
batch programs only)?

* Have you included the region size parameter in the EXEC statement? Does it
specify a region or partition large enough for the storage required for IMS
and your program (for batch programs only)?

4. Your call-level program:

* Have you declared the fields in the PCB masks correctly?

* If your program is an assembler language program, have you saved and
restored registers correctly? Did you save the list of PCB addresses at entry?
Does register 1 point to a parameter list of full words before issuing any
DL/I calls?

* For COBOL for z/OS and PL/I for MVS and VM, are the literals you are
using for arguments in DL/I calls producing the results you expect? For
example, in PL/I for MVS and VM, is the parameter count being generated
as a half word instead of a fullword, and is the function code producing the
required 4-byte field?

* Use the PCB as much as possible to determine what in your program is
producing incorrect results.

5. Your command-level program:

* Did you use the FROM option with your ISRT or REPL command? If not, data
will not be transferred to the database.

* Check translator messages for errors.

Chapter 9. Testing a CICS application program 175

176 Application Programming

Chapter 10. Documenting your application program

Many places establish standards for program documentation; make sure you are
aware of your established standards.

Documentation for other programmers

Documenting a program is not something you do at the end of the project; your
documentation will be much more complete, and more useful to others, if you
record information about the program as you structure and code it. Include any
information that might be useful to someone else who must work with your
program.

The reason you record this information is so that people who maintain your
program know why you chose certain commands, options, call structures, and
command codes. For example, if the DBA were considering reorganizing the
database in some way, information about why your program accesses the data the
way it does would be helpful.

Information you can include for other programmers includes:

* Flowcharts and pseudocode for the program

* Comments about the program from code inspections

* A written description of the program flow

* Information about why you chose the call sequence you did, such as:
- Did you test the call sequence using DFSDDLT0?

— In cases where more than one combination of calls would have had the same
results, why did you choose the sequence you did?

— What was the other sequence? Did you test it using DFSDDLT0?
* Any problems you encountered in structuring or coding the program
* Any problems you had when you tested the program
* Warnings about what should not be changed in the program

All this information relates to structuring and coding the program. In addition, you
should include the documentation for end users with the documentation for
programmers.

Ultimately, you must determine the level of detail necessary and the most suitable
form for documenting the program. These documentation guidelines are provided
as suggestions.

Documentation for end users

In addition to documenting the design of the application, you should record
information about how the program is used.

The amount of information that users need and how much of it you should supply
depends upon whom the users of the program are and what type of program it is.

At a minimum, include the following information for those who use your program:
* What one needs in order to use the program, for example:

© Copyright IBM Corp. 1974, 2015 177

— For online programs, is there a password?
— For batch programs, what is the required JCL?
¢ The input that one needs to supply to the program, for example:

— For an MPP, what is the MOD name that must be entered to initially format
the screen?

— For a CICS online program, what is the CICS transaction code that must be
entered? What terminal input is expected?

— For a batch program, is the input in the form of a tape, or a disk data set? Is
the input originally output from a previous job?

* The content and form of the program's output, for example:
- If it is a report, show the format or include a sample listing.
— For an online application program, show what the screen will look like.

* For online programs, if decisions must be made, explain what is involved in
each decision. Present the choices and the defaults.

If the people that will be using your program are unfamiliar with terminals, they
will need a user's guide also. This guide should give explicit instructions on how
to use the terminal and what a user can expect from the program. The guide
should contain discussions of what should be done if the task or program abends,
whether the program should be restarted, or if the database requires recovery.
Although you may not be responsible for providing this kind of information, you
should provide any information that is unique to your application to whomever is
responsible for this kind of information.

178 Application Programming

Part 2. Application programming for IMS DB

IMS provides support for writing application programs to access the IMS database.

© Copyright IBM Corp. 1974, 2015 179

180 Application Programming

Chapter 11. Writing your application programs for IMS DB

You can write application programs in High Level Assembler language, C
language, COBOL, Java, Pascal, and PL/I to access data in the IMS DB.

Related concepts:

[Chapter 38, “IMS solutions for Java development overview,” on page 603|

Programming guidelines

The number, type, and sequence of the IMS requests your program issues affects
the efficiency of your program. A program that is poorly designed can still run if it
is coded correctly. IMS will not find design errors for you. The suggestions that
follow will help you develop the most efficient design possible for your application
program.

When you have a general sequence of calls mapped out for your program, look
over the guidelines on sequence to see if you can improve it. An efficient sequence
of requests results in efficient internal IMS processing. As you write your program,
keep in mind the guidelines explained in this section. The following list offers
programming guidelines that will help you write efficient and error-free programs.

* Use the most simple call. Qualify your requests to narrow the search for IMS.

* Use the request or sequence of requests that will give IMS the shortest path to
the segment you want.

* Use as few requests as possible. Each DL/I call your program issues uses system
time and resources. You may be able to eliminate unnecessary calls by:

— Using path requests when you are replacing, retrieving, or inserting more
than one segment in the same path. If you are using more than one request to
do this, you are issuing unnecessary requests.

— Changing the sequence so that your program saves the segment in a separate
I/0O area, and then gets it from that I/O area the subsequent times it needs
the segment. If your program retrieves the same segment more than once
during program execution, you are issuing unnecessary requests.

— Anticipating and eliminating needless and nonproductive requests, such as
requests that result in GB, GE, and II status codes. For example, if you are
issuing GN calls for a particular segment type, and you know how many
occurrences of that segment type exist, do not issue the GN that results in a GE
status code. Keep track of the number of occurrences your program retrieves,
and then continue with other processing when you know you have retrieved
all the occurrences of that segment type.

— Issuing an insert request with a qualification for each parent, rather than
issuing Get requests for the parents to make sure that they exist. If IMS
returns a GE status code, at least one of the parents does not exist. When you
are inserting segments, you cannot insert dependent segments unless the
parent segments exist.

* Commit your updates regularly. IMS limits full-function databases so that only
300 databases at a time can have uncommitted updates. Logically related
databases, secondary indexes, and HALDB partitions are counted towards this
limit. The number of partitions in HALDB databases is the most common reason
for approaching the 300 database limit for uncommitted updates. If the
PROCOPT values allow a BMP application to insert, replace, or delete segments

© Copyright IBM Corp. 1974, 2015 181

in the databases, ensure that the BMP application does not update a combined
total of more than 300 databases and HALDB partitions without committing the
changes.

* Keep the main section of the program logic together. For example, branch to
conditional routines, such as error and print routines in other parts of the
program, instead of branching around them to continue normal processing.

* Use call sequences that make good use of the physical placement of the data.
Access segments in hierarchic sequence as often as possible, and avoid moving
backward in the hierarchy.

* Process database records in order of the key field of the root segments. (For
HDAM and PHDAM databases, this order depends on the randomizing routine
that is used. Check with your DBA for this information.)

* Avoid constructing the logic of the program and the structure of commands or
calls in a way that depends heavily on the database structure. Depending on the
current structure of the hierarchy reduces the program's flexibility.

* Minimize the number of segments your program locks. You may need to take
checkpoints to release the locks on updated segments and the lock on the
current database record for each PCB your program uses. Each PCB used by
your program has the current database record locked at share or update level. If
this lock is no longer required, issuing the GU call, qualified at the root level with
a greater-than operator for a key of X'FF' (high values), releases the current lock
without acquiring a new lock.

Do not use the minimization technique if you use a randomizer that puts high
values at the end of the database and you use secondary indexes. If there is
another root beyond the supposed high value key, IMS returns a GE to allow the
application to determine the next step. A secondary index might not work
because the hierarchical structure is inverted, and although the key is past the
last root in the index, it might not be past the last root in the database.

Using PCBs with a processing option of get (G) results in locks for the PCB at
share level. This allows other programs that use the get processing option to
concurrently access the same database record. Using a PCB with a processing
option that allows updates (I, R, or D) results in locks for the PCB at update
level. This does not allow any other program to concurrently access the same
database record.

Related concepts:

[‘Reserving segments for the exclusive use of your program” on page 295|

Segment search arguments (SSAs)

Segment search arguments (SSAs) specify information for IMS to use in processing
a DL/I call. Regardless of the datatype for the field specified in a SSA, the SSA
treats the field as a binary type and does a binary comparison.

A DL/I call with one or more SSAs is a qualified call, and a DL/I call without SSAs
is an ungqualified call.

Unqualified SSAs
Contains only a segment name.

Qualified SSAs
Includes one or more qualification statements that name a segment
occurrence. The C command and a segment occurrence's concatenated key
can be substituted for a qualification statement.

182 Application Programming

You can use SSA to select segments by name and to specify search criteria for
specific segments. Specific segments are described by adding qualification
statements to the DL/I call. You can further qualify your calls by using command
codes.

Unqualified SSAs

An unqualified SSA gives the name of the segment type that you want to access.
In an unqualified SSA, the segment name field is 8 bytes and must be followed by
a 1-byte blank. If the actual segment name is fewer than 8 bytes long, it must be
padded to the right with blanks. An example of an unqualified SSA follows:

PATIENTbb

Qualified SSAs

To qualify an SSA, you can use either a field or the sequence field of a virtual
child. A qualified SSA describes the segment occurrence that you want to access.
This description is called a qualification statement and has three parts. The
following table shows the structure of a qualified SSA.

Table 31. Qualified SSA structure

SSA Component Field Length
Segment name 8

(1

Field name 8
Relative operator 2

Field value Variable

) 1

Using a qualification statement enables you to give IMS information about the
particular segment occurrence that you are looking for. You do this by giving IMS
the name of a field within the segment and the value of the field you are looking
for. The field and the value are connected by a relational operator (R.0. in the
previous table) which tells IMS how you want the two compared. For example, to
access the PATIENT segment with the value 10460 in the PATNO field, you could
use this SSA:

PATIENTb (PATNObb=b10460)

Alternatively, if the DL/I call uses command code O, you can use a 4-byte starting
offset position and 4-byte data length instead of an 8-byte field name. The starting
offset is relative to the physical segment definition and starts with 1. The
maximum length that can be retrieved is the maximum segment size for the
database type, and the minimum length is 1. The two fields are specified in the
following format: 'oooollll"'. oooo is the offset position and /Il is the length of the
data that you want to retrieve. You can use this approach to search for and retrieve
data without a field definition.

The qualification statement is enclosed in parentheses. The first field contains the
name of the field (F1d Name in the previous table) that you want IMS to use in
searching for the segment. The second field contains a relational operator. The
relational operator can be any one of the following:

* Equal, represented as

Chapter 11. Writing your application programs for IMS DB 183

=b
b=
EQ
* Greater than, represented as
>b
b>
GT
* Less than, represented as
<b
b<
LT
* Greater than or equal to, represented as
>=
=>
GE
* Less than or equal to, represented as
<=
=<
LE

* Not equal to, represented as

==

NE

The third field (F1d Value in the previous table) contains the value that you want
IMS to use as the comparative value. The length of F1d Value must be the same
length as the field specified by F1d Name.

You can use more than one qualification statement in an SSA. Special cases exist,
such as in a virtual logical child segment when the sequence field consists of
multiple fields.

Sequence fields of a virtual logical child

As a general rule, a segment can have only one sequence field. However, in the
case of the virtual logical-child segment type, multiple FIELD statements can be
used to define a noncontiguous sequence field.

When specifying the sequence field for a virtual logical child segment, if the field
is not contiguous, the length of the field named in the SSA is the concatenated
length of the specified field plus all succeeding sequence fields. The following
figure shows a segment with a noncontiguous sequence field.

184 Application Programming

Sequence field Sequence field

A B
10 bytes 11 bytes
Segment
AB=21 bytes

Figure 47. Segment with a noncontiguous sequence field

If the first sequence field is not included in a “scattered” sequence field in an SSA,
IMS treats the argument as a data field specification, rather than as a sequence
field.

Related reading: For more information on the virtual logical child segment, refer
to IMS Version 14 Database Administration.

Related concepts:

[“Specifying segment search arguments using the SSAList interface” on page 694|

SSA guidelines

Using SSAs can simplify your programming, because the more information you
can give IMS to do the searching for you, the less program logic you need to
analyze and compare segments in your program.

Using SSAs does not necessarily reduce system overhead, such as internal logic
and I/Os, required to obtain a specific segment. To locate a particular segment
without using SSAs, you can issue DL/I calls and include program logic to
examine key fields until you find the segment you want. By using SSAs in your
DL/I calls, you can reduce the number of DL/I calls that are issued and the
program logic needed to examine key fields. When you use SSAs, IMS does this
work for you.

Recommendations:

* Use qualified calls with qualified SSAs whenever possible. SSAs act as filters,
returning only the segments your program requires. This reduces the number of
calls your program makes, which provides better performance. It also provides
better documentation of your program. Qualified SSAs are particularly useful
when adding segments with insert calls. They ensure that the segments are
inserted where you want them to go.

* For the root segment, specify the key field and an equal relational operator, if
possible. Using a key field with an equal-to, equal-to-or-greater-than, or
greater-than operator lets IMS go directly to the root segment.

* For dependent segments, it is desirable to use the key field in the SSA, although
it is not as important as at the root level. Using the key field and an equal-to
operator lets IMS stop the search at that level when a higher key value is
encountered. Otherwise IMS must search through all occurrences of the segment
type under its established parent in order to determine whether a particular
segment exists.

* If you often must search for a segment using a field other than the key field,
consider putting a secondary index on the field.

For example, suppose you want to find the record for a patient by the name of
“Ellen Carter”. As a reminder, the patient segment in the examples contains three

fields: the patient number, which is the key field; the patient name; and the patient

Chapter 11. Writing your application programs for IMS DB 185

address. The fact that patient number is the key field means that IMS stores the
patient segments in order of their patient numbers. The best way to get the record
for “Ellen Carter” is to supply her patient number in the SSA. If her number is
09000, your program uses this call and SSA:

GUbbbbbbPATIENTb (PATNObbb=b09000)

If your program supplies an invalid number, or if someone has deleted Ellen
Carter's record from the database, IMS does not need to search through all the
PATIENT occurrences to determine that the segment does not exist.

However, if your program does not have the number and must give the name
instead, IMS must search through all the patient segments and read each patient
name field until it finds “Ellen Carter” or until it reaches the end of the patient
segments.

Related concepts:

[Chapter 18, “Secondary indexing and logical relationships,” on page 297

Multiple qualification statements

When you use a qualification statement, you can do more than give IMS a field
value with which to compare the fields of segments in the database. You can give
several field values to establish limits for the fields you want IMS to compare.

You can use a maximum of 1024 qualification statements on a call.

Connect the qualification statements with one of the Boolean operators. You can
indicate to IMS that you are looking for a value that, for example, is greater than A
and less than B, or you can indicate that you are looking for a value that is equal
to A or greater than B. The Boolean operators are:

Logical AND
For a segment to satisfy this request, the segment must satisfy both
qualification statements that are connected with the logical AND (coded *
or &).

Logical OR
For a segment to satisfy this request, the segment can satisfy either of the
qualification statements that are connected with the logical OR (coded + or

.

One more Boolean operator exists and is called the independent AND. Use it only
with secondary indexes.

For a segment to satisfy multiple qualification statements, the segment must satisfy
a set of qualification statements. A set is a number of qualification statements that
are joined by an AND. To satisfy a set, a segment must satisfy each of the
qualification statements within that set. Each OR starts a new set of qualification
statements. When processing multiple qualification statements, IMS reads them left
to right and processes them in that order.

When you include multiple qualification statements for a root segment, the fields
you name in the qualification statements affect the range of roots that IMS
examines to satisfy the call. DL/I examines the qualification statements to
determine the minimum acceptable key value.

186 Application Programming

If one or more of the sets do not include at least one statement that is qualified on
the key field with an operator of equal-to, greater-than, or equal-to-or-greater-than,
IMS starts at the first root of the database and searches for a root that meets the
qualification.

If each set contains at least one statement that is qualified on the key field with an
equal-to, greater-than, or equal-to-or-greater-than operator, IMS uses the lowest of
these keys as the starting place for its search. After establishing the starting
position for the search, IMS processes the call by searching forward sequentially in
the database, similar to the way it processes GN calls. IMS examines each root it
encounters to determine whether the root satisfies a set of qualification statements.
IMS also examines the qualification statements to determine the maximum
acceptable key value.

If one or more of the sets do not include at least one statement that is qualified on
the key field with an operator of equal-to, less-than-or-equal-to, or less-than, IMS
determines that no maximum key value exists. If each set contains at least one
statement that is qualified on the key field with an equal-to, less-than, or
equal-to-or-less-than operator, IMS uses the maximum of these keys to determine
when the search stops.

IMS continues the search until it satisfies the call, encounters the end of the
database, or finds a key value that exceeds the maximum. If no maximum key
value is found, the search continues until IMS satisfies the call or encounters the
end of the database.

Examples: Shown below are cases of SSAs used at the root level:

ROOTKEYb
=b10&FIELDBb
b=XYZ+ROOTKEYb
=10&FIELDBb

b

=ABC

In this case, the minimum and maximum key is 10. This means that IMS starts
searching with key 10 and stops when it encounters the first key greater than 10.
To satisfy the SSA, the ROOTKEY field must be equal to 10, and FIELDB must be
equal to either ABC or XYZ.

ROOTKEYb

=>10&RO0TKEYb
<20

In this case, the minimum key is 10 and the maximum key is 20. Keys in the range
of 10 to 20 satisfy the SSA. IMS stops the search when it encounters the first key
greater than 20.

ROOTKEYb

10&RO0OTKEYb

=<20+RO0OTKEYb

=>110&RO0TKEYb

=<120

In this case, the minimum key is 10 and the maximum key is 120. Keys in the
range of 10 to 20 and 110 to 120 satisfy the call. IMS stops the search when it
encounters the first key greater than 120. IMS does not scan from 20 to 110 but
skips forward (using the index for HIDAM or PHIDAM) from 20 to 110. Because
of this, you can use ranges for more efficient program operation.

Chapter 11. Writing your application programs for IMS DB 187

When you use multiple qualification statement segments that are part of logical
relationships, additional considerations exist.

Related concepts:

[“Multiple qualification statements with secondary indexes” on page 298|

Example of how to use multiple qualification statements
The following example shows how you can use multiple qualification statements.

Given the sample Medical database, we want to answer the following question:
Did we see patient number 04120 during 1992?

To find the answer to this question, you need to give IMS more than the patient’s
name; you want IMS to search through the ILLNESS segments for that patient,
read each one, and return any that have a date in 1992. The call you would issue
to do this is:
GU PATIENTH
(PATNODbDD
£Q04120)
TLLNESSD
(ILLDATED
>=19920101&ILLDATED
<=19921231)

In other words, you want IMS to return any ILLNESS segment occurrences under
patient number 04120 that have a date on or after January 1, 1992, and on or before
December 31, 1992, joined with an AND connector. Suppose you wanted to answer
the following request:

Did we see Judy Jennison during January of 1992 or during July of 1992? Her
patient number is 05682.

You could issue a GU call with the following SSAs:

GU PATIENTD
PATNOD
EQ05682)
ILLNESSH

(ILLDATED
>=19920101&1LLDATED
<=19920131]|

ILLDATED
>=19920701&ILLDATED
<=19920731)

To satisfy this request, the value for ILLDATE must satisfy either of the two sets.
IMS returns any ILLNESS segment occurrences for the month of January 1992, or
for the month of July 1992.

Multiple qualification statements for HDAM, PHDAM, or DEDB

For HDAM (Hierarchical Direct Access Method), PHDAM (partitioned HDAM), or
data entry database (DEDB) organizations, a randomizing exit routine usually does
not store the root keys in ascending key sequence. For these organizations, IMS
determines the minimum and maximum key values. The minimum key value is
passed to the randomizing exit routine, which determines the starting anchor
point.

The first root off this anchor is the starting point for the search. When IMS
encounters a key that exceeds the maximum key value, IMS terminates the search

188 Application Programming

with a GE status code. If the randomizing routine randomized so that the keys are
stored in ascending key sequence, a call for a range of keys will return all of the
keys in the range. However, if the randomizing routine did not randomize into key
sequence, the call does not return all keys in the requested range. Therefore, use
calls for a range of key values only when the keys are in ascending sequence
(when the organization is HDAM, PHDAM, or DEDB).

Recommendations:

* When the organization is HDAM, PHDAM, or DEDB, use calls for a range of
key values only when the keys are in ascending sequence.

* When the organization is HDAM, PHDAM or DEDB, do not use calls that allow
a range of values at the root level.

While not recommended, a sequential search of the database can be accomplished
with the use of command codes A and G when making GN/GHN database calls.
Command code A will clear positioning and cause the call to start at the beginning
of the database. Command code G will prevent randomization and cause a
sequential search of the database when used with SSAs that specify a range of
values at the root level. The returned segments may not be in sequential order
depending on how they were randomized.

To search the database sequentially, you can use the use the following segment
search argument (SSA) together with SSAs that specify a range of values at the
root level.

key field > hex zeros & key field < all f's key

The returned segments may not be in sequential order depending on how they
were randomized.

For more details about HDAM or PHDAM databases, see IMS Version 14 Database
Administration.

SSAs and command codes

SSAs can also include one or more command codes, which can change and extend
the functions of DL/I calls.

For information on command codes, see the topic "General Command Codes for
DL/I Calls" in IMS Version 14 Application Programming APIs.

IMS always returns the lowest segment in the path to your I/O area. If your
program codes a D command code in an SSA, IMS also returns the segment
described by that SSA. A call that uses the D command code is called a path call.

For example, suppose your program codes a D command code on a GU call that

retrieves segment F and all segments in the path to F in the hierarchy shown in the
following figure.

Chapter 11. Writing your application programs for IMS DB 189

I

n

Figure 48. D command code example

The call function and the SSAs for the call look like this:
GU Abbbbbbb

*D

Cbbbbbbb

*D

Ebbbbbbb

Fbbbbbbb

A command code consists of one letter. Code the command codes in the SSA after
the segment name field. Separate the segment name field and the command code
with an asterisk, as shown in the following table.

Table 32. Unqualified SSA with command code

SSA Component Field Length
Seg Name 8

* 1

Cmd Code Variable

b 1

Your program can use command codes in both qualified and unqualified SSAs.
However, command codes cannot be used by MSDB calls. If the command codes
are not followed by qualification statements, they must each be followed by a
1-byte blank. If the command codes are followed by qualification statements, do
not use the blank. The left parenthesis of the qualification statement follows the
command code instead, as indicated in the following table.

Table 33. Qualified SSA with command code

SSA Component Field Length
Seg Name 8

(1

Field 8
Position

Relational Operator (R.O.) 2

Field Value Variable

190 Application Programming

Table 33. Qualified SSA with command code (continued)
SSA Component Field Length
) 1

By giving IMS the field position within the segment and the value of the field you
are looking for, the field position and the value are connected by a relational
operator which tells IMS how you want the two to be compared. The field position
can be either a searchable field name as defined in the DBD or a position and
length when using command code O.

Related concepts:

[“Processing Fast Path DEDBs with subset pointer command codes” on page 332|

Considerations for coding DL/l calls and data areas

If you have made all the design decisions about your program, coding the
program is a matter of implementing the decisions that you have made. In
addition to knowing the design and processing logic for your program, you need
to know about the data that your program is processing, the PCBs it references,
and the segment formats in the hierarchies your program processes.

You can use the following list as a checklist to make sure you are not missing any
information. If you are missing information about data, IMS options being used in
the application program, or segment layouts and the application program's data
structures, obtain this information from the DBA or the equivalent specialist at
your installation. Be aware of the programming standards and conventions that
have been established at your installation.

Program design considerations:
* The sequence of calls for your program.
* The format of each call:
— Does the call include any SSAs?
— If so, are they qualified or unqualified?
— Does the call contain any command codes?
* The processing logic for the program.
* The routine the program uses to check the status code after each call.

* The error routine the program uses.

Checkpoint considerations:
* The type of checkpoint call to use (basic or symbolic).

* The identification to assign to each checkpoint call, regardless of whether the
Checkpoint call is basic or symbolic.

* If you are going to use the symbolic checkpoint call, which areas of your
program to checkpoint.

Segment considerations:
* Whether the segment is fixed length or variable length.

* The length of the segment (the maximum length, if the segment is variable
length).
* The names of the fields that each segment contains.

Chapter 11. Writing your application programs for IMS DB 191

* Whether the segment has a key field. If it does, is the key field unique or
non-unique? If it does not, what sequencing rule has been defined for it? (A
segment's key field is defined in the SEQ keyword of the FIELD statement in the
DBD. The sequencing rule is defined in the RULES keyword of the SEGM
statement in the DBD.)

* The segment's field layouts:
— The byte location of each field.
— The length of each field.
— The format of each field.

Data structure considerations:

* Each data structure your program processes has been defined in a DB PCB. All
of the PCBs your program references are part of a PSB for your application
program. You need to know the order in which the PCBs are defined in the PSB.

* The layout of each of the data structures your program processes.

* Whether multiple or single positioning has been specified for each data

structure. This is specified in the POS keyword of the PCB statement during PSB
generation.

* Whether any data structures use multiple DB PCBs.

Preparing to run your CICS DL/l call program

You must perform several steps before you run your CICS DL/I call program.

Refer to the appropriate CICS reference information:

* For information on translating, compiling, and binding your CICS online
program, see the description of installing application programs in CICS
Transaction Server for z/OS CICS System Definition Guide.

* For information on which compiler options should be used for a CICS online
program, as well as for CICS considerations when converting a CICS online
COBOL program with DL/I calls to Enterprise COBOL, see CICS Transaction
Server for z/OS CICS Application Programming Guide.

Examples of how to code DL/I calls and data areas
You can code DL/I calls and data areas in assembler language, C, COBOL, Pascal,
Java, and PL/I

Coding a batch program in assembler language

The following code example shows how to write an IMS program to access the
IMS database in assembler language.

The numbers to the right of the program refer to the notes that follow the
program. This kind of program can run as a batch program or as a batch-oriented
BMP.

Sample assembler language program

PGMSTART CSECT NOTES
* EQUATE REGISTERS 1

* USEAGE OF REGISTERS

R1 EQU 1 ORIGINAL PCBLIST ADDRESS

R2 EQU 2 PCBLIST ADDRESS1

R5 EQU 5 PCB ADDRESSS

R12 EQU 12 BASE ADDRESS

192 Application Programming

R13
R14
R15

*

EQU
EQU
EQU

USING
SAVE

ST

LA
USING
USING
LR

LA
CALL

L
CALL

CALL

CALL

L

RETURN (14,12)

13 SAVE AREA ADDRESS
14

15

PGMSTART,R12 BASE REGISTER ESTABLISHED

(14,12) SAVE REGISTERS

12,15 LOAD REGISTERS

R13,SAVEAREA+4 SAVE AREA CHAINING

R13,SAVEAREA NEW SAVE AREA

PCBLIST,R2 MAP INPUT PARAMETER LIST

PCBNAME, R5 MAP DB PCB

R2,R1 SAVE INPUT PCB LIST IN REG 2
R5,PCBDETA LOAD DETAIL PCB ADDRESS

R5,0(R5) REMOVE HIGH ORDER END OF LIST FLAG

ASMTDLI, (GU, (R5) ,DETSEGIO, SSANAME) ,VL

R5,PCBMSTA LOAD MASTER PCB ADDRESS

ASMTDLI, (GHU, (R5) ,MSTSEGIO,SSAU),VL

ASMTDLI, (GHN, (R5) ,MSTSEGIO) , VL

ASMTDLI, (REPL, (R5) ,MSTSEGIO),VL

R13,4(R13)

* FUNCTION CODES USED

*

GU
GHU
GHN
REPL

*
*
*

SSANAME

NAME

*

SSAU
MSTSEGIO
DETSEGIO
SAVEAREA
*
PCBLIST
PCBIO
PCBMSTA
PCBDETA
*
PCBNAME
DBPCBDBD
DBPCBLEV
DBPCBSTC
DBPCBPRO
DBPCBRSV
DBPCBSFD

DC
DC
DC
DC

SSAS

DS

CL4'GU'
CL4'GHU'
CLA'GHN'
CL4'REPL'

oc
CL8'ROOTDET'
cLL' (!
CL8'KEYDET'
cLe' =
CLs' !

CI)I

CL9'ROOTMST ' *
CL100" '
CL100" '
18F'0!

CL8
CL2
CL2
CL4

CL8

RESTORE SAVE AREA

RETURN BACK

ADDRESS OF I/0 PCB
ADDRESS OF MASTER PCB
ADDRESS OF DETAIL PCB

DBD NAME

LEVEL FEEDBACK

STATUS CODES

PROC OPTIONS

RESERVED

SEGMENT NAME FEEDBACK

Chapter 11. Writing your application programs for IMS DB

10

11

193

DBPCBMKL DS F LENGTH OF KEY FEEDBACK
DBPCBNSS DS F NUMBER OF SENSITIVE SEGMENTS IN PCB
DBPCBKFD DS C KEY FEEDBACK AREA
END PGMSTART
Note:

1. The entry point to an assembler language program can have any name. Also,
you can substitute CBLTDLI for ASMTDLI in any of the calls.

2. When IMS passes control to the application program, register 1 contains the
address of a variable-length fullword parameter list. Each word in this list
contains the address of a PCB that the application program must save. The
high-order byte of the last word in the parameter list has the 0 bit set to a
value of 1 which indicates the end of the list. The application program
subsequently uses these addresses when it executes DL/I calls.

3. The program loads the address of the DETAIL DB PCB.

4. The program issues a GU call to the DETAIL database using a qualified SSA
(SSANAME).

5. The program loads the address of the HALDB master PCB.

6. The next three calls that the program issues are to the HALDB master. The
first is a GHU call that uses an unqualified SSA. The second is an unqualified
GHN call. The REPL call replaces the segment retrieved using the GHN call with
the segment in the MSTSEGIO area.

You can use the parmcount parameter in DL/I calls in assembler language
instead of the VL parameter, except for in the call to the sample status-code
error routine.

7. The RETURN statement loads IMS registers and returns control to IMS.

8. The call functions are defined as four-character constants.

9. The program defines each part of the SSA separately so that it can modify the
SSA's fields.

10. The program must define an I/O area that is large enough to contain the
largest segment it is to retrieve or insert (or the largest path of segments if the
program uses the D command code). This program's I/O areas are 100 bytes
each.

11. A fullword must be defined for each PCB. The assembler language program
can access status codes after a DL/I call by using the DB PCB base addresses.
This example assumes that an I/O PCB was passed to the application
program. If the program is a batch program, CMPAT=YES must be specified
on the PSBGEN statement of PSBGEN so that the I/O PCB is included.
Because the 1/O PCB is required for a batch program to make system service
calls, CMPAT=YES should always be specified.

Restriction: The IMS language interface module (DFSLIO00) must be bound to the
compiled assembler language program.

Coding a CICS online program in assembler language

The following code example in assembler language shows how you define and
establish addressability to the UIB.

The numbers to the right of the program refer to the notes that follow the
program. This program can run in a CICS environment using DBCTL.

194 Application Programming

Sample call-level assembler language program (CICS online)

PGMSTART
UIBPTR
I0AREA
AREA1
AREA2

PCBPTRS
*
PCBIPTR
PCB1

DBPC1DBD
DBPC1LEV
DBPC1STC
DBPC1PRO
DBPC1RSV
DBPC1SFD
DBPC1IMKL
DBPCINSS
DBPC1KFD
DBPC1INM
DBPCINMA
DBPC1NMP
ASMUIB

PSBNAME
PCBFUN
REPLFUN
TERMFUN
GHUFUN
SSA1
GOODRC
GOODSC
SKIP

*

ERROR1

*

ERROR2

*

DSECT NOTES
DS F

DS 0CL40
DS CL3

DS (CL37

DLIUIB

USING UIB,8 2|
DSECT

PSB ADDRESS LIST

DS F

DSECT

USING PCB1,6
DS CL8

DS CL2

DS CL2

DS CL4

DS F

DS CL8

DS F

DS F

DS OCL256

DS 0CLl12

DS ocLl4

DS CL17

CSECT

B SKIP

DC CL8'ASMPSB'

DC CL4'PCB'

DC CL4'REPL'

DC CL4'TERM'

DC CL4'GHU'

DC CL9'AAAA4444!

DC XL1'00'

Dc cL2'

DS OH A

SCHEDULE PSB AND OBTAIN PCB ADDRESSES
CALLDLI ASMTDLI, (PCBFUN,PSBNAME,UIBPTR)

L 8,UIBPTR 5|
CLC UIBFCTR,X'00'
BNE ERRORL

GET PSB ADDRESS LIST
L 4,UIBPCBAL
USING PCBPTRS,4
GET ADDRESS OF FIRST PCB IN LIST
L 6,PCBIPTR
ISSUE DL/I CALL: GET A UNIQUE SEGMENT

CALLDLI ASMTDLI, (GHUFUN,PCB1,I0AREA,SSA1) 6|

CLC UIBFCTR,GOODRC

BNE ERROR2

CLC DBPC1STC,GOODSC

BNE ERROR3
PERFORM SEGMENT UPDATE ACTIVITY

MVC AREAL,.......

MVC AREA2,.......

ISSUE DL/I CALL: REPLACE SEGMENT AT CURRENT POSITION
CALLDLI ASMTDLI, (REPLFUN,PCB1,I0AREA,SSA1)
CLC UIBFCTR,GOODRC

BNE ERROR4
CLC DBPC1STC,GOODSC
B TERM
DS OH
INSERT ERROR DIAGNOSTIC CODE
B TERM
DS OH
INSERT ERROR DIAGNOSTIC CODE
B TERM

Chapter 11. Writing your application programs for IMS DB

195

ERROR3 DS OH

* INSERT ERROR DIAGNOSTIC CODE
B TERM

ERROR4 DS OH

* INSERT ERROR DIAGNOSTIC CODE

ERRORS DS OH

* INSERT ERROR DIAGNOSTIC CODE
B TERM

TERM DS OH

* RELEASE THE PSB

CALLDLI ASMDLI, (TERMFUN)
EXEC CICS RETURN
END ASMUIB

Note:
1. The program must define an I/O area that is large enough to contain the
largest segment it is to retrieve or insert (or the largest path of segments if the
program uses the D command code).

2. The DLIUIB statement copies the UIB DSECT.
3. A fullword must be defined for each DB PCB. The assembler language

program can access status codes after a DL/I call by using the DB PCB base
addresses.

4. This is an unqualified SSA. For qualified SSA, define each part of the SSA
separately so that the program can modify the fields of the SSA.

5. This call schedules the PSB and obtains the PSB address.

6. This call retrieves a segment from the database.

CICS online assembler language programs use the CALLDLI macro, instead of
the call statement, to access DL /I databases. This macro is similar to the call
statement. It looks like this:

CALLDLI ASMTDLI, (function,PCB-name,ioarea, SSAl,...SSAn),VL

7. CICS online programs must check the return code in the UIB before checking
the status code in the DB PCB.

8. The REPL call replaces the data in the segment that was retrieved by the most
recent Get Hold call. The data is replaced by the contents of the I/O area
referenced in the call.

9. This call releases the PSB.

10. The RETURN statement loads IMS registers and returns control to IMS.

Related reading: For more information on installing CICS application programs,
see CICS Transaction Server for z/OS CICS Application Programming Reference.

Related reference:

[“Specifying the UIB (CICS online programs only)” on page 237

Coding a batch program in C language

The following code example shows how to write an IMS program to access the
IMS database in C language.

The numbers to the right of the program refer to the notes that follow the
program.

Sample C language program

#pragma runopts(env(IMS),plist(IMS)) NOTES
#include <ims.h>
#include <stdio.h>

196 Application Programming

main() { 2|
/* */
/* descriptive statements */
/* */
10_PCB_TYPE *I0_PCB = (I0_PCB_TYPE*)PCBLIST[0];
struct {PCB_STRUCT(10)} *mast PCB = _ pcblist[1];
struct {PCB_STRUCT(20)} =*detail_PCB = _ pcblist[2]; H
const static char func_GU[4] = "GU ";
const static char func_GN[4] = "GN ";
const static char func_GHU[4] = "GHU ";
const static char func_GHN[4] = "GHN ";
const static char func_GNP[4] = "GNP "; 4
const static char func_GHNP[4] = "GHNP";
const static char func_ISRT[4] = "ISRT";
const static char func_REPL[4] = "REPL";
const static char func DLET[4] = "DLET";
char qual_ssa[8+1+8+2+6+1+1]; /* initialized by sprintf B

/*below. See the =/
/*explanation for =/
/*sprintf in note 7 for the */
/*meanings of 8,1,8,2,6,1 —x*/
/*the final 1 is for the */
/*trailing '\0' of string */
static const char unqual_ssa[]= "NAME ")
/% 12345678_ */

struct {

} mast_seg_io_area;

struct {

} det_seg_io_area;

/* */
/* Initialize the qualifier */
/* */
sprintf(qual_ssa,
"8.85(8.8s6.6s)",
IIROOTII’ IIKEYII’ II:||, IIVVVVVII) ;
/* */
/* Main part of C batch program */
/* */
ctdli(func_GU, detail_PCB,
&det _seg io_area,qual_ssa); B
ctdli (func_GHU, mast_PCB,
&mast_seg_io_area,qual_ssa); 9]
ctdli (func_GHN, mast_PCB,
&mast_seg_io_area);
ctdli(func_REPL, mast_PCB,
8mast_seg io_area; %
}
Note:
1. The env(IMS) establishes the correct operating environment and the

plist(IMS) establishes the correct parameter list when invoked under IMS. The

ims.h header file contains declarations for PCB layouts, __pcblist, and the

Chapter 11. Writing your application programs for IMS DB

197

198 Application Programming

ctdli routine. The PCB layouts define masks for the PCBs that the program
uses as structures. These definitions make it possible for the program to check
fields in the PCBs.

The stdio.h header file contains declarations for sprintf (used to build up the
SSA).

After IMS has loaded the application program's PSB, IMS gives control to the
application program through this entry point.

The C run-time sets up the __pcblist values. The order in which you refer to
the PCBs must be the same order in which they have been defined in the PSB.
(Values other than “10” and “20” can be used, according to the actual key
lengths needed.) These declarations can be done using macros, such as:
#define I0_PCB (IO_PCB_TYPE *) (__pchlist[0])

#define mast PCB (__pchlist[1])

#define detail_PCB (__pchlist[2])

This example assumes that an I/O PCB was passed to the application
program. When the program is a batch program, CMPAT=YES must be
specified on the PSBGEN statement of PSBGEN so that the I/O PCB is
included. Because the I/O PCB is required for a batch program to make
system service calls, CMPAT=YES should always be specified for batch
programs.

Each of these areas defines one of the call functions used by the batch
program. Each character string is defined as four alphanumeric characters,
with a value assigned for each function. (If the [4]s had been left out, 5 bytes
would have been reserved for each constant.) You can define other constants
in the same way. Also, you can store standard definitions in a source library
and include them by using a #include directive.

Instead, you can define these by macros, although each string would have a
trailing null ("\0").

The SSA is put into a string (see note 7). You can define a structure, as in
COBOL, PL/], or Pascal, but using sprintf is more convenient. (Remember
that C strings have trailing nulls that cannot be passed to IMS.) Note that the
string is 1 byte longer than required by IMS to contain the trailing null, which
is ignored by IMS. Note also that the numbers in brackets assume that six
fields in the SSA are equal to these lengths.

The I/0 areas that will be used to pass segments to and from the database are
defined as structures.

The sprintf function is used to fill in the SSA. The “%-8.8s” format means “a
left-justified string of exactly eight positions”. The “%2.2s” format means “a
right-justified string of exactly two positions”.
Because the ROOT and KEY parts do not change, this can also be coded:
sprintf(qual_ssa,

"ROOT (KEY =%-6.6s)", "vvvvv");

/* 12345678 12345678 */

This call retrieves data from the database. It contains a qualified SSA. Before
you can issue a call that uses a qualified SSA, initialize the data field of the
SSA. Before you can issue a call that uses an unqualified SSA, initialize the
segment name field. Unlike the COBOL, PL/I, and Pascal interface routines,
ctdli also returns the status code as its result. (Blank is translated to 0.) So,
you can code:

switch (ctdli(....)) {
case 0: ... /* everything ok */

break;
case 'AB':

break;
case 'IX': ...

break;
default:
1

You can pass only the PCB pointer for DL/I calls in a C program.
9. This is another call with a qualified SSA.

10. This call is an unqualified call that retrieves data from the database. Because it
is a Get Hold call, it can be followed by REPL or DLET.

11. The REPL call replaces the data in the segment that was retrieved by the most
recent Get Hold call. The data is replaced by the contents of the I/O area that
is referenced in the call.

12. The end of the main routine (which can be done by a return statement or exit
call) returns control to IMS.

Restriction: IMS provides a language interface module (DFSLI000) that is an
interface between IMS and the C language. This module must be made available to
the application program at bind time.

Coding a batch program in COBOL

The following code example shows how to write an IMS program to access the
IMS database in COBOL.

The numbers to the right of the program refer to the notes that follow the
program. This kind of program can run as a batch program or as a batch-oriented
BMP.

Sample COBOL program

Identification Division.

Program-ID. BATCOBOL.

Environment Division.

Data Division.

Working-Storage Section.
01 Func-Codes.

05 Func-GU Picture XXXX Value 'GU '.
05 Func-GHU Picture XXXX Value 'GHU '.
05 Func-GN Picture XXXX Value 'GHN '
05 Func-GHN Picture XXXX Value 'GHN '.
05 Func-GNP Picture XXXX Value 'GNP '.
05 Func-GHNP Picture XXXX Value 'GHNP'.
05 Func-REPL Picture XXXX Value 'REPL'.
05 Func-ISRT Picture XXXX Value 'ISRT'.
05 Func-DLET Picture XXXX Value 'DLET'.
05 Parmcount Picture S9(5) Value +4 Comp-5.
01 Unqual-SSA.
05 Seg-Name Picture X(08) Value ' ',
05 Filler Picture X Value ' '.
01 Qual-SSA-Mast.
05 Seg-Name-M Picture X(08) Value 'ROOTMast'.
05 Begin-Paren-M Picture X Value '('.
05 Key-Name-M Picture X(08) Value 'KeyMast '.
05 Kel-Oper-M Picture X(05) Value ' ='.
05 Key-Value-M Picture X(06) Value 'VVVVVV'.
05 End-Paren-M Picture X Value ")"'.
01 Qual-SSA-Det.
05 Seg-Name-D Picture X(08) Value 'ROOTDET '.
05 Begin-Paren-D Picture X Value '('.
05 Key-Name-D Picture X(08) Value 'KEYDET '.

Chapter 11. Writing your application programs for IMS DB 199

05 Rel-Oper-D Picture X(05) Value ' ='.

05 Key-Value-D Picture X(06) Value 'VVVVVV'.
05 End-Paren-D Picture X Value ')'.
01 Det-Seg-In.
05 Datal Picture X.
05 Data2 Picture X.
01 Mast-Seg-In.
05 Datal Picture X.
05 Data2 Picture X.
linkage section.
01 I0-PCB.
05 Filler Picture X(10).
05 I0-Status-Code Picture XX.
05 Filler Picture X(20).

01 DB-PCB-Mast.
05 Mast-Dbd-Name Picture X(8).
05 Mast-Seg-Level Picture XX.
05 Mast-Status-Code Picture XX.
05 Mast-Proc-0pt Picture XXXX.
05 Filler Picture S9(5) Comp-5.
05 Mast-Seg-Name Picture X(8).
05 Mast-Len-KFB Picture S9(5) Comp-5.
05 Mast-Nu-Senseg Picture S9(5) Comp-5.
05 Mast-Key-FB Picture X(256).
01 DB-PCB-Detail.
05 Det-Dbd-Name Picture X(8).
05 Det-Seg-Level Picture XX.
05 Det-Status-Code Picture XX.
05 Det-Proc-0Opt Picture XXXX.

05 Filler Picture S9(5) Comp-5.
05 Det-Seg-Name Picture X(8).

05 Det-Len-KFB Picture S9(5) Comp-5.
05 Det-Nu-Senseg Picture S9(5) Comp-5.
05 Det-Key-FB Picture X(256).

Procedure Division using 10-PCB DB-PCB-Mast DB-PCB-Detail.
Call 'CBLTDLI' using Func-GU DB-PCB-Detail
Det-seg-in Qual-SSA-Det.

Call 'CBLTDLI' using Parmcount Func-ghu DB-PCB-Mast
Mast-seg-in Qual-SSA-Mast.

Call 'CBLTDLI' using Func-GHN DB-PCB-Mast
Mast-seg-in.

Call 'CBLTDLI' using Func-REPL DB-PCB-Mast
Mast-seg-in.

Goback.

Note:

1.

200 Application Programming

You define each of the DL/I call functions the program uses with a 77-level or
01-level working storage entry. Each picture clause is defined as four
alphanumeric characters and has a value assigned for each function. If you
want to include the optional parmcount field, you can initialize count values
for each type of call. You can also use a COBOL COPY statement to include
these standard descriptions in the program.

11.

A 9-byte area is set up for an unqualified SSA. Before the program issues a
call that requires an unqualified SSA, it moves the segment name to this area.
If a call requires two or more SSAs, you may need to define additional areas.

A 01-level working storage entry defines each qualified SSA that the
application program uses. Qualified SSAs must be defined separately, because
the values of the fields are different.

A 01-level working storage entry defines I/O areas that are used for passing
segments to and from the database. You can further define I/O areas with
sub-entries under the 01-level. You can use separate 1/O areas for each
segment type, or you can define one I/O area that you use for all segments.

A 01-level linkage section entry defines a mask for each of the PCBs that the
program requires. The DB PCBs represent both input and output databases.
After issuing each DL/I call, the program checks the status code through this
linkage. You define each field in the DB PCB so that you can reference it in
the program.

This is the standard procedure division statement of a batch program. After
IMS has loaded the PSB for the program, IMS passes control to the application
program. The PSB contains all the PCBs that are defined in the PSB. The
coding of USING on the procedure division statement references each of the
PCBs by the names that the program has used to define the PCB masks in the
linkage section. The PCBs must be listed in the order in which they are
defined in the PSB.

The previous code example assumes that an I/O PCB was passed to the
application program. When the program is a batch program, CMPAT=YES
must be specified on the PSBGEN statement of PSBGEN so that the I/O PCB
is included. Because the 1/O PCB is required for a batch program to make
system service calls, CMPAT=YES should always be specified for batch
programs.

The entry DLITCBL statement is only used in the main program. Do not use it
in called programs.

This call retrieves data from the database by using a qualified SSA. Before
issuing the call, the program must initialize the key or data value of the SSA
so that it specifies the particular segment to be retrieved. The program should
test the status code in the DB PCB that was referenced in the call immediately
after issuing the call. You can include the parmcount parameter in DL/I calls in
COBOL programs, except in the call to the sample status-code error routine. It
is never required in COBOL.

This is another retrieval call that contains a qualified SSA.
This is an unqualified retrieval call.

The REPL call replaces the segment that was retrieved in the most recent Get
Hold call. The segment is replaced with the contents of the I/O area that is
referenced in the call (MAST-SEG-IN).

The program issues the GOBACK statement when it has finished processing.

Related reading: For information on how to use these procedures, see IMS Version

14 System Definition.

Binding COBOL code to the IMS language interface module

IMS supplies a language interface module (DFSLI000). This module must be bound
to the batch program after the program has been compiled. It gives a common
interface to IMS.

Chapter 11. Writing your application programs for IMS DB 201

If you use the IMS-supplied procedures (IMSCOBOL or IMSCOBGO), IMS binds
the language interface with the application program. IMSCOBOL is a two-step
procedure that compiles and binds your program. IMSCOBGO is a three-step
procedure that compiles, binds, and executes your program in an IMS batch
region.

Coding a CICS online program in COBOL

The following code examples are skeleton online programs in Enterprise COBOL.
They show examples of how to define and set up addressability to the UIB.

The numbers to the right of the programs refer to the notes that follow them. This
kind of program can run in a CICS environment using DBCTL.

Sample COBOL program that can run in CICS

Identification Division.

Program-I1D. CBLUIB.

Environment Division.

Data Division.

Working-Storage Section.
01 Func-Codes.

05 Psb-Name Picture X(8) Value 'CBLPSB '.

05 Func-PCB Picture X(4) Value 'PCB '.

05 Func-TERM Picture X(4) Value 'TERM'. 1]
05 Func-GHU Picture X(4) Value 'GHU '.

05 Func-REPL Picture X(4) Value 'REPL'.

05 SSA1 Picture X(9) Value 'AAAA4444 ',

05 Success-Message Picture X(40).

05 Good-Status-Code Picture XX Value ' ‘. 2]

05 good-return-code Picture X Value Tow-Value.
01 MessageO.

05 Messagel Picture X(38).
05 Message? Picture XX.
01 D1i-I0-Area.
05 Areal Picture X(3).
05 Area?2 Picture X(37).

Procedure Division.
Schedule the psb and address the uib
Call 'CBLTD1i' using Func-PCB Psb-Name 4]
address of Dliuib.
If Uibfctr is not equal low-Values then
* Insert error diagnostic code
Exec CICS return end-exec
End-if.
Set address of pcb-addresses to pcbaddr.
Issue DL/I Call: get a unique segment
Set address of pcbl to pcb-address-Tist(1).
Call 'CBLTD1i' using Func-GHU Pcbl B
Dli-io-area ssal.
If uibfctr is not equal good-return-code then

*

*

* Insert error diagnostic code 6|
Exec CICS return end-Exec
End-if.

If pcbl-status-code is not equal good-status-code then
Insert error diagnostic code
Exec CICS return end-Exec
End-if.
* Perform segment update activity
Move 'aaa' to areal.
Move 'bbb' to area2.
* Issue DL/I Call: replace segment at current position
Call 'CBLTD1i' using Func-REPL Pchl
Dli-io-area ssal
If uibfctr is not equal good-return-code then

*

202 Application Programming

* Insert error diagnostic code
Exec CICS return end-Exec
End-if.
If pcbhl-status-code is not equal good-status-code then
* Insert error diagnostic code
Exec CICS return end-Exec
End-if.
Release the psb
Call 'CBLTD1i' using Func-TERM.

*

* Other application Function 8,9
Exec CICS return end-Exec.
Goback.
Note:
1. You define each of the DL/I call functions the program uses with a 77-level or

01-level working storage entry. Each picture clause is defined as four
alphanumeric characters and has a value assigned for each function. If you
want to include the optional parmcount field, initialize count values for each
type of call. You can also use the COBOL COPY statement to include these
standard descriptions in the program.

A 9-byte area is set up for an unqualified SSA. Before the program issues a call
that requires an unqualified SSA, it can either initialize this area with the
segment name or move the segment name to this area. If a call requires two or
more SSAs, you may need to define additional areas.

An 01-level working storage entry defines I/O areas that are used for passing
segments to and from the database. You can further define I/O areas with
sub-entries under the 01-level. You can use separate I/O areas for each segment
type, or you can define one I/O area that you use for all segments.

One PCB layout is defined in the linkage section. The PCB-ADDRESS-LIST
occurs n times, where n is greater than or equal to the number of PCBs in the
PSB.

The PCB call schedules a PSB for your program to use. The address of the
DLIUIB parameter returns the address of DLIUIB.

This unqualified GHU call retrieves a segment from the database and places it in
the I/O area that is referenced by the call. Before issuing the call, the program
must initialize the key or data value of the SSA so that it specifies the
particular segment to be retrieved.

CICS online programs should test the return code in the UIB before testing the
status code in the DB PCB.

The REPL call replaces the segment that was retrieved in the most recent Get
Hold call with the data that the program has placed in the I/O area.

The TERM call terminates the PSB the program scheduled earlier. This call is
optional and is only issued if a sync point is desired prior to continued
processing. The program issues the EXEC CICS RETURN statement when it has
finished its processing. If this is a RETURN from the highest-level CICS
program, a TERM call and sync point are internally generated by CICS.

Sample call-level OS/VS COBOL program for CICS online
(obsolete with Enterprise COBOL)

Identification Division. NOTES
Program-ID. CBLUIB.
Environment Division.
Data Division.
Working-Storage Section.
01 Func-Codes.
05 Psb-Name Picture X(8) Value 'CBLPSB '.
05 Func-PCB Picture X(4) Value 'PCB '.

Chapter 11. Writing your application programs for IMS DB 203

204 Application Programming

05 Func-TERM Picture X(4) Value 'TERM'.

05 Func-GHU Picture X(4) Value 'GHU '.
05 Func-REPL Picture X(4) Value 'REPL'.
05 SSAl Picture X(9) Value 'AAAA4444 ',

05 Success-Message Picture X(40).

05 Good-Status-Code Picture XX Value ' '.

05 Good-Return-Code Picture X Value low-Value.
01 Message0.

05 Messagel Picture X(38).
05 Message2 Picture XX.

01 Dli-I0-Area.
05 Areal Picture X(3).
05 Area2 Picture X(37).

Linkage Section.
01 Bl1Cells.

05 FIller Picture S9(8) Comp-5.
05 Uib-Ptr Picture S9(8) Comp-5.
05 B-Pcb-Ptrs Picture S9(8) Comp-5.
05 Pchl-Ptr Picture S9(8) Comp-5.

Copy DT1iUib.
01 Overlay-Dliuib Redefines Dliuib.
05 Pcbaddr usage is pointer.

05 Filler Picture XX.
01 Pcb-Ptrs.
05 B-Pcbl-Ptr Picture 9(8) Comp-5.
01 Pchl.
05 Pch1-Dbd-Name Picture X(8).
05 Pcbhl-Seg-Level Picture XX.
05 Pcbl-Status-Code Picture XX.
05 Pcb1-PROC-OPT Picture XXXX.
05 FIller Picture S9(5) Comp-5.
05 Pchl-Seg-Name Picture X(8).
05 Pcbl-Len-KFB Picture S9(5) Comp-5.
05 Pcb1-NU-ENSeg Picture S9(5) Comp-5.
05 Pcb1-KEY-FB Picture X(256).

Procedure Division.
Call 'CBLTDLI' using Func-PCB Psb-Name Uib-ptr.
If Uibfctr is not equal low-values then
Insert error diagnostic Code
Exec CICS Return end-Exec
End-if.
Move Uibpcbal to B-Pcb-Ptrs.
Move B-Pcbl-Ptr to Pcbl-Ptr.

Issue DL/I Call: get a unique segment

Call 'CBLTDLI' using Func-GHU Pcbl
Dli-io-area ssal.

Service reload Uib-ptr

If Uibfctr is not equal Good-Return-Code then
Insert error diagnostic Code
Exec CICS Return end-Exec

End-if.

If Pcbl-Status-Code is not equal Good-Status-Code then
Insert error diagnostic Code
Exec CICS Return end-Exec

End-if.

Perform segment update activity
Move 'aaa' to areal.
Move 'bbb' to area2.

Issue DL/I Call: replace segment at current position
Call 'CBLTDLI' using Func-REPL Pchl

Dli-io-area ssal.

If Uibfctr is not equal Good-Return-Code then

Insert error diagnostic Code

Exec CICS Return end-Exec
End-if.

If Pcbl-Status-Code is not equal Good-Status-Code then
* Insert error diagnostic Code
Exec CICS Return end-Exec
End-if.

* Release the PSB
Call 'CBLTDLI' using Func-TERM. 12,13
Exec CICS Return end-Exec.

Note:

1.

10.

11.

12.

13.

You define each of the DL/I call functions the program uses with a 77-level or
0Ol-level working storage entry. Each picture clause is defined as four
alphanumeric characters and has a value assigned for each function. If you
want to include the optional parmcount field, you can initialize count values
for each type of call. You can also use the COBOL COPY statement to include
these standard descriptions in the program.

A 9-byte area is set up for an unqualified SSA. Before the program issues a
call that requires an unqualified SSA, it can either initialize this area with the
segment name or move the segment name to this area. If a call requires two
or more SSAs, you may need to define additional areas.

An 01-level working storage entry defines I/O areas that are used for passing
segments to and from the database. You can further define I/O areas with
02-level entries. You can use separate I/O areas for each segment type, or you
can define one I/O area to use for all segments.

The linkage section must start with a definition of this type to provide
addressability to a parameter list that will contain the addresses of storage
that is outside the working storage of the application program. The first
02-level definition is used by CICS to provide addressability to the other fields
in the list. A one-to-one correspondence exists between the other 02-level
names and the 01-level data definitions in the linkage section.

The COPY DLIUIB statement will be expanded.
The UIB returns the address of an area that contains the PCB addresses. The

definition of PCB pointers is necessary to obtain the actual PCB addresses. Do
not alter the addresses in the area.

The PCBs are defined in the linkage section.

The PCB call schedules a PSB for your program to use.

This unqualified GHU call retrieves a segment from the database and places it
in the I/O area that is referenced by the call. Before issuing the call, the

program must initialize the key or data value of the SSA so that it specifies
the particular segment to be retrieved.

CICS online programs should test the return code in the UIB before testing the
status code in the DB PCB.

The REPL call replaces the segment that was retrieved in the most recent Get
Hold call with the data that the program has placed in the I/O area.

The TERM call terminates the PSB that the program scheduled earlier. This call
is optional and is only issued if a sync point is desired prior to continued
processing.

The program issues the EXEC CICS RETURN statement when it has finished
its processing. If this is a return from the highest-level CICS program, a TERM
call and sync point are internally generated by CICS.

Chapter 11. Writing your application programs for IMS DB 205

Related reading: For more information about installing application programs, see
CICS Transaction Server for z/OS CICS Application Programming Guide.

Related reference:

[“Specifying the UIB (CICS online programs only)” on page 237

Coding a program in Java

IMS provides support for developing applications using the Java programming
language.

You can write Java applications to access IMS databases and process IMS
transactions by using the drivers and resource adapters of the IMS solutions for
Java development.

Related concepts:

[Chapter 38, “IMS solutions for Java development overview,” on page 603|

Coding a batch program in Pascal

The following code sample is a skeleton batch program in Pascal. It shows you
how the parts of an IMS program that is written in Pascal fit together. The
numbers to the right of the program refer to the notes that follow the program.

Restriction: Pascal is not supported by CICS.

segment PASCIMS; NOTES
1
type 2
CHAR2 = packed array [1..2] of CHAR;
CHAR4 = packed array [1..4] of CHAR;
CHAR6 = packed array [1..6] of CHAR;
CHARn = packed array [1..n] of CHAR;
DB_PCB_TYPE = record 3
DB_NAME : ALFA;
DB_SEG_LEVEL : CHARZ;
DB_STAT CODE : CHARZ;
DB_PROC_OPT : CHAR4;
FILLER : INTEGER;
DB_SEG_NAME : ALFA;
DB_LEN_KFB . INTEGER;
DB_NO_SENSEG : INTEGER;
DB KEY FB : CHARn;
end;
procedure PASCIMS (var SAVE: INTEGER; 4
var DB_PCB_MAST: DB_PCB_TYPE;
var DB_PCB_DETAIL : DB_PCB_TYPE);
REENTRANT;
procedure PASCIMS;
type 5
QUAL_SSA_TYPE = record
SEG_NAME : ALFA;
SEQ_QUAL . CHAR;
SEG_KEY_NAME : ALFA;
SEG_OPR : CHARZ;

SEG_KEY_VALUE: CHAR6;

SEG_END CHAR : CHAR;

end;
MAST_SEG_IO_AREA_TYPE

record
(» Field declarations =*)
end;
DET_SEG_IO_AREA TYPE = record
(* Field declarations *)
end;
var 6

206 Application Programming

MAST SEG_IO_AREA : MAST SEG_IO AREA TYPE;
DET_SEG_IO_AREA : DET SEG_IO_ AREA TYPE;

const 7
GU ="'GU ';
GN = "'GN ';
GHU = 'GHU ';
GHN = 'GHN ';
GHNP = 'GHNP';
ISRT = '"ISRT';
REPL = 'REPL';
DLET = 'DLET';

QUAL_SSA = QUAL_SSA TYPE('ROOT','("','KEY'," ="',
"vvvwv', ') ')

UNQUAL_SSA = 'NAME '
procedure PASTDLI; GENERIC; 8
begin
PASTDLI (const GU, 9

var DB_PCB_DETAIL;
var DET_SEG_IO_AREA;
const QUAL_SSA);

PASTDLI (const GHU, 10
var DB_PCB_MAST,
var MAST_SEG_IO_AREA,
const QUAL_SSA);

PASTDLI (const GHN, 11
var DB_PCB_MAST,
var MAST_SEG_I0 AREA);

PASTDLI (const REPL, 12
var DB_PCB_MAST,
var MAST_SEG_IO_ AREA);

end;
13

Note:

N

10.
11.

12.

Define the name of the Pascal compile unit.
Define the data types that are needed for the PCBs used in your program.
Define the PCB data type that is used in your program.

Declare the procedure heading for the REENTRANT procedure that is called
by IMS. The first word in the parameter list should be an INTEGER, which is
reserved for VS Pascal's usage. The rest of the parameters are the addresses of
the PCBs that are received from IMS.

Define the data types that are needed for the SSAs and I/O areas.

Declare the variables used for the I/O areas.

Define the constants, such as function codes and SSAs that are used in the
PASTDLI DL/I calls.

Declare the IMS interface routine by using the GENERIC directive. GENERIC
identifies external routines that allow multiple parameter list formats. A
GENERIC routine's parameters are “declared” only when the routine is called.
This call retrieves data from the database. It contains a qualified SSA. Before
you can issue a call that uses a qualified SSA, you must initialize the data
field of the SSA. Before you can issue a call that uses an unqualified SSA, you
must initialize the segment name field.

This is another call that has a qualified SSA.

This call is an unqualified call that retrieves data from the database. Because it
is a Get Hold call, it can be followed by a REPL or DLET call.

The REPL call replaces the data in the segment that was retrieved by the most
recent Get Hold call; the data is replaced by the contents of the I/O area that
is referenced in the call.

Chapter 11. Writing your application programs for IMS DB 207

13. You return control to IMS by exiting from the PASCIMS procedure. You can
also code a RETURN statement to exit at another point.

Restriction: You must bind your program to the IMS language interface module
(DFSLI000) after compiling your program.

Coding a batch program in PL/I

The following code example is a skeleton batch program in PL/I. It shows you
how the parts of an IMS program that is written in PL/I fit together.

The numbers to the right of the program refer to the notes that follow. This kind of
program can run as a batch program or as a batch-oriented BMP.

Restriction: IMS application programs cannot use PL/I multitasking. This is
because all tasks operate as subtasks of a PL/I control task when you use

multitasking.

Sample PL/I program

/* */ NOTES
/% ENTRY POINT */

/* */

DLITPLI: PROCEDURE (IO _PTR _PCB,DB_PTR MAST,DB PTR DETAIL)

OPTIONS (MAIN);

/* */

/* DESCRIPTIVE STATEMENTS */

/* */

DCL I0_PTR PCB POINTER;
DCL DB_PTR_MAST POINTER;

DCL DB_PTR DETAIL POINTER;

DCL FUNC_GU CHAR(4) INIT('GU '); 2]
DCL FUNC_GN CHAR(4) INIT('GN ')

DCL FUNC_GHU CHAR(4) INIT('GHU ');

DCL FUNC_GHN CHAR(4) INIT('GHN ');

DCL FUNC_GNP CHAR(4) INIT('GNP ');

DCL FUNC_GHNP CHAR(4) INIT('GHNP');

DCL FUNC_ISRT CHAR(4) INIT('ISRT');

DCL FUNC_REPL CHAR(4) INIT('REPL");

DCL FUNC_DLET CHAR(4) INIT('DLET');

DCL 1 QUAL_SSA STATIC UNALIGNED,
2 SEG_NAME CHAR(8) INIT('ROOT '),
2 SEG_QUAL CHAR(1) INIT('('),
2 SEG_KEY_NAME CHAR(8) INIT('KEY '),
2 SEG_OPR CHAR(2) INIT(' ='),
2 SEG_KEY_VALUE CHAR(6) INIT('vvvvv'),
2 SEG_END_CHAR CHAR(1) INIT(')");
DCL 1 UNQUAL SSA STATIC UNALIGNED,
2 SEG_NAME_U CHAR(8) INIT('NAME '),
2 BLANK CHAR(L) INIT(' ');
DCL 1 MAST_SEG_IO AREA, 4]
2 —
2 —
2 —
DCL 1 DET_SEG_IO_AREA,
2 —
2 —
2 —
DCL 1 10_PCB BASED (10_PTR_PCB), a
2 FILLER CHAR(10),
2 STAT CHAR(2) ;
DCL 1 DB_PCB_MAST BASED (DB_PTR_MAST),

2 ~ MAST_DB_NAME CHAR(8),
2 MAST SEG_LEVEL CHAR(2),
2 MAST_STAT CODE CHAR(2),

208 Application Programming

2 MAST_PROC_OPT CHAR(4),

2 FILLER FIXED BINARY (31,0),

2 MAST SEG_NAME CHAR(8),

2 MAST_LEN_KFB FIXED BINARY (31,0),

2 MAST_NO_SENSEG FIXED BINARY (31,0),

2 MAST KEY FB CHAR(%);
DCL 1 DB_PCB_DETAIL BASE (DB_PTR_DETAIL),

2 ~ DET_DB_NAME CHAR(8),

2 DET_SEG_LEVEL CHAR(2),

2 DET_STAT CODE CHAR(2),

2 DET_PROC_OPT CHAR(4),

2 FILLER FIXED BINARY (31,0),

2 DET_SEG_NAME CHAR(8),

2 DET_LEN_KFB FIXED BINARY (31,0),

2 DET_NO_SENSEG FIXED BINARY (31,0),

2 DET_KEY_FB CHAR(%) 3
DCL THREE ~ FIXED BINARY (31,0) INITIAL(3); a
DCL FOUR FIXED BINARY (31,0) INITIAL(4);
DCL FIVE FIXED BINARY (31,0) INITIAL(5);
DCL SIX FIXED BINARY (31,0) INITIAL(6);
/* */
/% MAIN PART OF PL/I BATCH PROGRAM */
/* */
CALL PLITDLI (FOUR,FUNC_GU,DB_PCB DETAIL,DET SEG IO AREA, QUAL_SSA);

IF DET_STAT CODE = GOOD_STATUS_CODE THEN DO;

CALL PLITDLI (FOUR,FUNC_GHU,DB PCB MAST,MAST SEG_I0 AREA,QUAL SSA); B
IF MAST_STAT_CODE = GOOD_STATUS_CODE THEN DO;
CALL PLITDLI (THREE,FUNC_GHN,DB_PCB_MAST,MAST SEG_ IO AREA); H
IF MAST_STAT_CODE = GOOD_STATUS_CODE THEN DO;
CALL PLITDLI (THREE,FUNC_REPL,DB_PCB_MAST,MAST SEG_IO_ AREA);
IF MAST_STAT_CODE ~= GOOD_STATUS_CODE THEN DO;
/* INSERT REPLACE DIAGNOSTIC MESSAGE */
END;

END;

ELSE DO;
/* INSERT GHN DIAGNOSTIC MESSAGE =*/

END;

END;

END;

ELSE DO;
/* INSERT GHU DIAGNOSTIC MESSAGE =/
END;

ELSE DO;
/* INSERT GU DIAGNOSTIC MESSAGE */

END;

RETURN;
END DLITPLI;

Note:

1.

After IMS has loaded the PSB of the application program, IMS gives control to
the application program through this entry point. PL/I programs must pass
the pointers to the PCBs, not the names, in the entry statement. The entry
statement lists the PCBs that the program uses by the names that it has
assigned to the definitions for the PCB masks. The order in which you refer to
the PCBs in the entry statement must be the same order in which they have
been defined in the PSB.

The code example assumes that an I/O PCB was passed to the application
program. When the program is a batch program, CMPAT=YES must be
specified on the PSBGEN statement of PSBGEN so that the I/O PCB is
included. Because the I/O PCB is required for a batch program to make
system service calls, CMPAT=YES should always be specified for batch
programs.

Chapter 11. Writing your application programs for IMS DB 209

10.

11.

Each of these areas defines one of the call functions used by the batch
program. Each character string is defined as four alphanumeric characters,
with a value assigned for each function. You can define other constants in the
same way. Also, you can store standard definitions in a source library and
include them by using a %INCLUDE statement.

A structure definition defines each SSA the program uses. The unaligned
attribute is required for SSAs. The SSA character string must reside
contiguously in storage. You should define a separate structure for each
qualified SSA, because the value of the data field for each SSA is different.

The I/0 areas that are used to pass segments to and from the database are
defined as structures.

Level-01 declaratives define masks for the PCBs that the program uses as
structures. These definitions make it possible for the program to check fields
in the PCBs.

This statement defines the parmcount that is required in DL/I calls that are
issued from PL/I programs (except for the call to the sample status-code error
routine, where it is not allowed). The parmcount is the address of a 4-byte field
that contains the number of subsequent parameters in the call. The parmcount
is required only in PL/I programs. It is optional in the other languages. The
value in parmcount is binary. This example shows how you can code the
parmcount parameter when three parameters follow in the call:

DCL THREE FIXED BINARY (31,0) INITIAL(3);

This call retrieves data from the database. It contains a qualified SSA. Before
you can issue a call that uses a qualified SSA, initialize the data field of the
SSA. Before you can issue a call that uses an unqualified SSA, initialize the
segment name field. Check the status code after each DL/I call that you issue.
Although you must declare the PCB parameters that are listed in the entry
statement to a PL/I program as POINTER data types, you can pass either the
PCB name or the PCB pointer in DL/I calls in a PL/I program.

This is another call that has a qualified SSA.

This is an unqualified call that retrieves data from the database. Because it is a
Get Hold call, it can be followed by REPL or DLET.

The REPL call replaces the data in the segment that was retrieved by the most
recent Get Hold call; the data is replaced by the contents of the I/O area
referenced in the call.

The RETURN statement returns control to IMS.

Binding PL/I code to the IMS language interface module
IMS provides a language interface module (DFSLI000) which gives a common
interface to IMS. This module must be bound to the program.

If you use the IMS-supplied procedures (IMSPLI or IMSPLIGO), IMS binds the
language interface module to the application program. IMSPLI is a two-step
procedure that compiles and binds your program. IMSPLIGO is a three-step
procedure that compiles, binds, and executes your program in a DL/I batch region.
For information on how to use these procedures, see IMS Version 14 System
Definition.

Coding a CICS online program in PL/I

The following code example is a skeleton CICS online program in PL/L It shows
you how to define and establish addressability to the UIB.

210 Application Programming

The numbers to the right of the program refer to the notes that follow. This kind of

program can run in a CICS environment using DBCTL.

Sample call-level PL/I program (CICS online)

PLIUIB: PROC OPTIONS(MAIN);
DCL PSB_NAME CHAR(8) STATIC INIT('PLIPSB ');
DCL PCB_FUNCTION CHAR(4) STATIC INIT('PCB ');
DCL TERM_FUNCTION CHAR(4) STATIC INIT('TERM');
DCL GHU_FUNCTION CHAR(4) STATIC INIT('GHU ');
DCL REPL_FUNCTION CHAR(4) STATIC INIT('REPL');
DCL SSAL CHAR(9) STATIC INIT('AAAA4444 ');
DCL PARM CT_1 FIXED BIN(31) STATIC INIT(1);
DCL PARM_CT_3 FIXED BIN(31) STATIC INIT(3);
DCL PARM _CT_4 FIXED BIN(31) STATIC INIT(4);
DCL GOOD_RETURN_CODE BIT(8) STATIC INIT('0'B);
DCL GOOD_STATUS_CODE CHAR(2) STATIC INIT(' ');
%INCLUDE DLIUIB;
DCL 1 PCB_POINTERS BASED(UIBPCBAL),

2 PCB1_PTR POINTER;
DCL 1 DLI_IO_AREA,

2 AREAL CHAR(3),

2 AREA2 CHAR(37);
DCL 1 PCB1 BASED(PCB1_PTR),

2 PCB1_DBD_NAME CHAR(8),
PCB1_SEG_LEVEL CHAR(2),
PCB1_STATUS_CODE CHAR(2),
PCB1_PROC_OPTIONS CHAR(4),
PCB1_RESERVE_DLI FIXED BIN (31,0),
PCB1_SEGNAME_FB CHAR(8),
PCB1_LENGTH_FB_KEY FIXED BIN(31,0),
PCB1_NUMB_SENS_SEGS FIXED BIN(31,0),
PCB1_KEY FB_AREA CHAR(17);

/* SCHEDULE PSB AND OBTAIN PCB ADDRESSES */
CALL PLITDLI (PARM CT 3,PCB_FUNCTION,PSB_NAME,UIBPTR);
IF UIBFCTR = GOOD RETURN CODE THEN DO;

/* ISSUE DL/I CALL: GET A UNIQUE SEGMENT =/

RPN NN NRN

CALL PLITDLI (PARM_CT 4,GHU_FUNCTION,PCB1,DLI_I0_ AREA,SSA1);

NOTES

IF UIBFCTR = GOOD_RETURN_CODE& PCB1_STATUS CODE = GOOD_STATUS_CODE THEN DO; [El

/* PERFORM SEGMENT UPDATE ACTIVITY */
AREAL = H
AREAZ = H

/* ISSUE DL/I: REPLACE SEGMENT AT CURRENT POSITION */
PLITDLI (PARM_CT_3,REPL_FUNCTION,PCB1,DLI IO AREA);

IF UIBFCTR "= GOOD RETURN_CODE
| PCB1_STATUS | CODE "= GOOD STATUS_CODE THEN DO;
/* INSERT REPL ERROR DIAGNOSTIC CODE */
END;
END;
ELSE DO;
/* INSERT GHU ERROR DIAGNOSTIC CODE =/
END;
END;
ELSE DO;
/* ANALYZE UIB PROBLEM =*/
/* ISSUE UIB DIAGNOSTIC MESSAGE =/
END;
/* RELEASE THE PSB =*/
CALL PLITDLI(PARM_CT_1,TERM_FUNCTION);
EXEC CICS RETURN;
END PLIUIB;

Note:

1. Each of these areas defines the DL/I call functions the program uses. Each
character string is defined as four alphanumeric characters and has a value

12

Chapter 11. Writing your application programs for IMS DB

211

10.

11.
12.

assigned for each function. You can define other constants in the same way.
You can store standard definitions in a source library and include them by
using a %INCLUDE statement.

A structure definition defines each SSA the program uses. The unaligned
attribute is required for SSA. The SSA character string must reside
contiguously in storage. If a call requires two or more SSA, you may need to
define additional areas.

The %INCLUDE DLIUIB statement will be expanded.

The UIB returns the address of an area containing the PCB addresses. The
definition of PCB pointers is necessary to obtain the actual PCB addresses. Do
not alter the addresses in the area.

The I/0 areas that are used to pass segments to and from the database are
defined as structures.

The PCBs are defined based on the addresses that are passed in the UIB.
The PCB call schedules a PSB for your program to use.

This unqualified GHU call retrieves a segment from the database. The segment
is placed in the I/O area that is referenced in the call. Before issuing the call,

the program must initialize the key or data value of the SSA so that it
specifies the particular segment to be retrieved.

CICS online programs must test the return code in the UIB before testing the
status code in the DB PCB.

The REPL call replaces the segment that was retrieved in the most recent Get
Hold call. The I/O area that is referenced in the call contains the segment to
be replaced.

The TERM call terminates the PSB that the program scheduled earlier.

The program issues the EXEC CICS RETURN statement when it has finished
processing.

Related reading: For more information about installing application programs, see

CICS Transaction Server for z/OS CICS Application Programming Guide.

Related reference:

[“Specifying the UIB (CICS online programs only)” on page 237

[‘Coding a CICS online program in PL/1” on page 210|

212 Application Programming

Chapter 12. Defining application program elements for IMS DB

Use these specific parameters and formats for making DL/I calls through the
language interfaces for your applications program written in assembler language,
C language, COBOL, Pascal, and PL/L

Formatting DL/l calls for language interfaces

When you use DL/I calls in assembler language, C language, COBOL, Pascal, or
PL/I, you must call the DL/I language interface to initiate the functions specified
with the DL/I calls.

IMS offers several interfaces for DL/I calls:

* A language-independent interface for any programs that are Language
Environment® conforming (CEETDLI)

* Language-specific interfaces for all supported languages (xxxTDLI)
* A non-language-specific interface for all supported languages (AIBTDLI)

Java makes use of the all three DL/I language interfaces, but the usage is internal
and no calls are necessary to initiate the functions specified with the DL/I calls.

Related concepts:

[Chapter 38, “IMS solutions for Java development overview,” on page 603|

Assembler language application programming

Application programs in assembly language use the following format, parameters,
and DL/I calls to communicate with IMS databases.

In assembler language programs, all DL/I call parameters that are passed as
addresses can be passed in a register, which, if used, must be enclosed in

parentheses.
Format
»»—CALL ASMTDLI, (|_ _| -function >
parmcount , ,db pcb4| A |7
»tp pcb
A
B
C |—

AIBTDLI, (function,—atb
l—parmcount,—l i:l A l:‘
B

>—) >«

Ly

© Copyright IBM Corp. 1974, 2015 213

F—.i/o area |

’,,_
Y, ssa
—,token
—,stat function—
—,rsa

—,rootssa

|—,i/o area length,—i/o area {
\\' ,area Zength,area»\J

C:

f—.psb name,—uibptr |
I—,sysserve—l

Parameters

parmcount
Specifies the address of a 4-byte field in user-defined storage that contains the
number of parameters in the parameter list that follows parmcount. Assembler
language application programs must use either parmcount or VL.

function
Specifies the address of a 4-byte field in user-defined storage that contains the
call function. The call function must be left-justified and padded with blanks
(such as GUbb).

db pcb
Specifies the address of the database PCB to be used for the call. The PCB
address must be one of the PCB addresses passed on entry to the application
program in the PCB list.

tp pcb
Specifies the address of the I/O PCB or alternate PCB to be used for the call.
The PCB address must be one of the PCB addresses passed on entry to the
application program in the PCB list.

aib
Specifies the address of the application interface block (AIB) in user-defined
storage.

i/o area
Specifies the address of the I/O area in user-defined storage that is used for
the call. The I/O area must be large enough to contain the returned data.

i/o area length
Specifies the address of a 4-byte field in user-defined storage that contains the
I/0 area length (specified in binary).

area length
Specifies the address of a 4-byte field in user-defined storage that contains the

214 Application Programming

length (specified in binary) of the area immediately following it in the
parameter list. Up to seven area lengths or area pairs can be specified.

area
Specifies the address of the area in user-defined storage to be checkpointed. Up
to seven area lengths or area pairs can be specified.

token
Specifies the address of a 4-byte field in user-defined storage that contains a
user token.

stat function
Specifies the address of a 9-byte field in user-defined storage that contains the
stat function to be performed.

ssa
Specifies the address in user-defined storage that contains the SSAs to be used
for the call. Up to 15 SSAs can be specified, one of which is rootssa.

rootssa
Specifies the address of a root segment search argument in user-defined
storage.

rsa
Specifies the address of the area in user-defined storage that contains the
record search argument.

psb name
Specifies the address in user-defined storage of an 8-byte PSB name to be used
for the call.
uibptr
Specifies the address in user-defined storage of the user interface block (UIB).
sysserve

Specifies the address of an 8-byte field in user-defined storage to be used for
the call.

VL
Signifies the end of the parameter list. Assembler language programs must use
either parmcount or VL.

Example of a DL/I call format

Using the DL/I AIBTDLI interface:
CALL AIBTDLI, (function,aib,i/o area,ssal),VL

Using the DL/I language-specific interface:

CALL ASMTDLI, (function,db pcb,i/o area,ssal),VL
Related concepts:

[“AIBTDLI interface” on page 245|

Related reference:

[# [DL /1 calls for database management (Application Programming APIs)

[# [DL /1 calls for IMS DB system services (Application Programming APIs)

C language application programming

Application programs in C use the following format, parameters, and DL/I calls to
communicate with IMS databases.

Chapter 12. Defining application program elements for IMS DB 215

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

Format

(1)

»——rc=CTDLI(

_| -function) ;——>

,db pcbﬂ A |7

»tp pch

I—par‘mcount .

A

C |—
—rc=AIBTDLI (—parmcount ,—function,—aib |:l l:‘

L_CEETDLI(|_ _| function
parmcount , ,db pcb~| '7
,i/o pch
A
B
A:
f—.i/o area I
—Y—,ssa
—, token
—,stat function—
—,rsa
—,rootssa
B:
—.i/o area length,—i/o area I
L‘ ,area Zength,area—\J
C:

—.psb name,—uibptr |
I—,sysserve—|

Notes:
1 For AIBTDLI, parmcount is required for C applications.

Parameters

rc This parameter receives the DL/I status or return code. It is a two-character
field shifted into the 2 low-order bytes of an integer variable (int). If the status
code is two blanks, 0 is placed in the field. You can test the rc parameter with
an if statement. For example, if (rc == 'IX'). You can also use rc in a switch
statement. You can choose to ignore the value placed in rc and use the status
code returned in the PCB instead.

216 Application Programming

parmcount
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the number of parameters in the parameter list that follows
parmcount.

function
Specifies the name of a character (4) variable, left justified in user-defined
storage, that contains the call function to be used. The call function must be
left-justified and padded with blanks (such as GUbb)

db pcb
Specifies the name of a pointer variable that contains the address of the
database to be used for the call. The PCB address must be one of the PCB
addresses passed on entry to the application program in the PCB list.

tp pcb
Specifies the name of a pointer variable that contains the address of the I/O
PCB or alternate PCB to be used for the call. The PCB address must be one of
the PCB addressed passed on entry to the application program in the PCB list.
aib
Specifies the name of the pointer variable that contains the address of the
structure that defines the application interface block (AIB) in user-defined
storage.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character
string that defines the I/O area in user-defined storage used for the call. The
I/0O area must be large enough to contain all of the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the I/O area length.

area length
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the length of the area immediately following it in the parameter list.
Up to seven area lengths or area pairs can be specified.

area
Specifies the name of the pointer variable that contains the address of the
structure that defines the user-defined storage to be checkpointed. Up to seven
area lengths or area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that
contains a user token.

stat function
Specifies the name of a character (9) variable in user-defined storage that
contains the stat function to be performed.

ssa
Specifies the name of a character variable in user-defined storage that contains
the SSAs to be used for the call. Up to 15 SSAs can be specified, one of which
is rootssa.

rootssa
Specifies the name of a character variable that defines the root segment search
argument in user-defined storage.

Chapter 12. Defining application program elements for IMS DB 217

rsa
Specifies the name of a character variable that contains the record search
argument for a GU call or where IMS should return the rsa for an ISRT or GN
call.

psb name
Specifies the name of a character (8) variable containing the PSB name to be
used for the call.

uibptr
Specifies the name of a pointer variable that contains the address of the
structure that defines the user interface block (UIB) that is used in user-defined
storage.

sysserve
Specifies the name of a character (8) variable string in user-defined storage to
be used for the call.

I/O area

In C, the I/O area can be of any type, including structures or arrays. The ctdli
declarations in ims.h do not have any prototype information, so no type checking
of the parameters is done. The area may be auto, static, or allocated (with malloc
or calloc). You need to give special consideration to C-strings because DL/I does
not recognize the C convention of terminating strings with nulls ('\0') Instead of
the usual strcpy and strcmp functions, you may want to use memcpy and
mememp.

Example of a DL/I call format

Using the DL/I CEETDLI interface:
#include <leawi.h>

CEETDLI (function,db pch,i/o area,ssal);

Using the DL/I AIBTDLI interface:

int rc;

rc=AIBTDLI (parmcount,function,aib,i/o area,ssal);

Using the DL/I language-specific interface:
#include <ims.h>

1:nt rc;

r"c=CTDLI (function,db pcb,i/o area,ssal);
Related concepts:

[“AIBTDLI interface” on page 245|

Related reference:

[# [DL /I calls for database management (Application Programming APIs)|

[# [DL /I calls for IMS DB system services (Application Programming APIs)

COBOL application programming

Application programs in COBOL use the following format, parameters, and DL/I
calls to communicate with IMS databases.

218 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

Format

»»—CALL——"'CBLTDLI'—USING |_ _| function >
parmcount db pcb

tp pcb—m

—"AIBTDLI'—USING |_ J -function—aib
parmcount i:l A l:‘
B

—'CEETDLI'—USING function

l—pormcount—l db pcb A |7

H
“Hip

|—i/o area }

L

—token
—stat function—
—rsa
—rootssa
B:
—i/o area length—i/o area }
\\' area lengtharea]—|
C:

—psb name—uibptr }
I—s ysserve—l

Note: All apostrophes (') can be replaced by quotation marks (") and can be done
regardless of the APOST/QUOTE compiler (or CICS translator) option.

Parameters

parmcount
Specifies the identifier of a usage binary (4) byte data item in user-defined
storage that contains the number of parameters in the parameter list that
follows parmcount. If you define this field as COMP-5 rather than COMP,

Chapter 12. Defining application program elements for IMS DB 219

COMP-4, or BINARY, then it can contain the maximum possible values
regardless of the COBOL TRUNC compiler option setting.

function
Specifies the identifier of a usage display (4) byte data item, left justified in
user-defined storage that contains the call function to be used. The call
function must be left-justified and padded with blanks (such as GUbb).

db pcb
Specifies the identifier of the database PCB group item from the PCB list that is
passed to the application program on entry. This identifier will be used for the
call.

tp pcb
Specifies the identifier of the I/O PCB or alternate PCB group item from the
PCB list that is passed to the application program on entry. This identifier will
be used for the call.

aib
Specifies the identifier of the group item that defines the application interface
block (AIB) in user-defined storage.

i/o area
Specifies the identifier of a major group item, table, or usage display data item
that defines the I/0O area length in user-defined storage used for the call. The
I/0 area must be large enough to contain all of the returned data.

i/o area length
Specifies the identifier of a usage binary (4) byte data item in user-defined
storage that contains the I/O area length (specified in binary). If you define
this field as COMP-5 rather than COMP, COMP-4, or BINARY, then it can
contain the maximum possible values regardless of the COBOL TRUNC
compiler option setting.

area length
Specifies the identifier of a usage binary (4) byte data item in user-defined
storage that contains the length (specified in binary) of the area immediately
following it in the parameter list. Up to seven area lengths or area pairs can be
specified. If you define this field as COMP-5 rather than COMP, COMP-4, or
BINARY, then it can contain the maximum possible values regardless of the
COBOL TRUNC compiler option setting.

area
Specifies the identifier of the group item that defines the user-defined storage
to be checkpointed. Up to seven area lengths or area pairs can be specified.

token
Specifies the identifier of a usage display (4) byte data item in user-defined
storage that contains a user token.

stat function
Specifies the identifier of a usage display (9) byte data item in user-defined
storage that contains the stat function to be performed.

ssa
Specifies the identifier of a usage display data item in user-defined storage that
contains the SSAs to be used for the call. Up to 15 SSAs can be specified, one
of which is rootssa.

rootssa
Specifies the identifier of a usage display data item that defines the root
segment search argument in user-defined storage.

220 Application Programming

rsa
Specifies the identifier of a usage display data item that contains the record
search argument.

psb name
Specifies the identifier of a usage display (8) byte data item containing the PSB
name to be used for the call.

uibptr
Specifies the identifier of the group item that defines the user interface block
(UIB) that is used in user-defined storage.

sysserve
Specifies the identifier of a usage display (8) byte data item in user-defined
storage to be used for the call.

Example of a DL/I call format

Using the DL/I CEETDLI interface:
CALL '"CEETDLI' USING function,db pcb,i/o area,ssal.

Using the DL/I AIBTDLI interface:
CALL "AIBTDLI' USING function,aib,i/o area,ssal.

Using the DL/I language-specific interface:
CALL '"CBLTDLI' USING function,db pcb,i/o area,ssal.
Related reference:

O [DL/1 calls for database management (Application Programming APIs)|

O [DL/1 calls for IMS DB system services (Application Programming APIs)|

Java application programming for IMS

IMS provides support for developing applications using the Java programming
language.

You can write Java applications to access IMS databases and process IMS
transactions by using the drivers and resource adapters of the IMS solutions for
Java development.

Related concepts:

[Chapter 38, “IMS solutions for Java development overview,” on page 603|

Pascal application programming

Application programs in Pascal use the following format, parameters, and DL/I
calls to communicate with IMS databases.

Format

Chapter 12. Defining application program elements for IMS DB 221

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

v
A

PASTDLI—(—| A |)5

,VAR—db pcb—| B |—

,VAR—tp pcb
B
e

D L

AIBTDLI—(—I A |—,—VAR|—aib, i: : l:‘

A:

} B] CONST—function |
CONST—parmcount—,

—,VAR i/o area I

Y VAR ssa
—,CONST token

—,CONST stat function—
—,VAR rsa

—,VAR rootssa

C:

VAR i/o area length,—VAR i/o area |

Y _.VAR area length,VAR area

D:

f—,VAR psb name,—VAR uibptr |_ _| I
,VAR sysserve

Parameters

parmcount
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the number of parameters in the parameter list that follows
parmcount.

function
Specifies the name of a character (4) variable, left justified in user-defined

storage, that contains the call function to be used. The call function must be
left-justified and padded with blanks (such as GUbb).

db pcb
Specifies the name of a pointer variable that contains the address of the
database PCB defined in the call procedure statement.

222 Application Programming

tp pcb
Specifies the name of a pointer variable that contains the address of the I/O
PCB or alternate PCB defined in the call procedure statement.

aib
Specifies the name of the pointer variable that contains the address of the
structure that defines the application interface block (AIB) in user-defined
storage.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character
string that defines the I/O area in user-defined storage used for the call. The
I/0O area must be large enough to contain all of the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the I/O area length.

area length
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the length of the area immediately following it in the parameter list.
Up to seven area lengths or area pairs can be specified.

area
Specifies the name of the pointer variable that contains the address of the
structure that defines the user-defined storage to be checkpointed. Up to seven
area lengths or area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that
contains a user token.

stat function
Specifies the name of a character (9) variable in user-defined storage that
contains the stat function to be performed.

ssa
Specifies the name of a character variable in user-defined storage that contains
the SSAs to be used for the call. Up to 15 SSAs can be specified, one of which
is rootssa.

rootssa
Specifies the name of a character variable that defines the root segment search
argument in user-defined storage.

rsa
Specifies the name of a character variable that contains the record search
argument.

psb name
Specifies the name of a character (8) variable containing the PSB name to be
used for the call.

uibptr
Specifies the name of a pointer variable that contains the address of the
structure that defines the user interface block (UIB) that is used in user-defined
storage.

sysserve
Specifies the name of a character (8) variable string in user-defined storage to
be used for the call.

Chapter 12. Defining application program elements for IMS DB 223

Example of a DL/I call format

Using the

DL/I AIBTDLI interface:

AIBTDLI(CONST function,

VAR aib,

VAR i/o0 area,

VAR ssal)

Using the DL/I language-specific interface:

PASTDLI (CONST function,
VAR db pcb,
VAR i/o area,

VAR ssal)

Related reference:

[DL/I calls for database management (Application Programming APIs)|

[[DL/1 calls for IMS DB system services (Application Programming APIs)|

Application programming for PL/I

224

Application programs in PL/I use the following format, parameters, and DL/I
calls to communicate with IMS databases.

Restriction: For the PLITDLI interface, all parameters except parmcount are
indirect pointers; for the AIBTDLI interface, all parameters are direct pointers.

Format

»>—CALL—

—PLITDLI—(—parmcount ,—function

A:

f—.i/o area

Application Programming

L CEETDLI— (—parmcount ,—function

,db pcbﬂ A |7

stp pch
A
B

C |—
—AIBTDLI— (—parmcount ,—function,—atb
A
B

,db pcb— A ——

»tp pcb
A
B
,aib
A
B

’,’_
Y. ssa
—,token

—,stat function—
—,rsa

L, rootssa

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

—.i/o area length,—i/o area I
I

,area length,area

C:

f—.psb name,—uibptr I
I—,sysserve—|

Parameters

parmcount
Specifies the name of a fixed binary (31-bit) variable that contains the number
of arguments that follow parmcount.

function
Specifies the name of a fixed-character (4-byte) variable left-justified, blank
padded character string containing the call function to be used (such as GUbb).

db pcb
Specifies the structure associated with the database PCB to be used for the call.
This structure is based on a PCB address that must be one of the PCB
addresses passed on entry to the application program.

tp pch
Specifies the structure associated with the I/O PCB or alternate PCB to be used
for the call.

aib
Specifies the name of the structure that defines the AIB in your application
program.

i/o area
Specifies the name of the I/O area used for the call. The I/O area must be
large enough to contain all the returned data.

i/o area length
Specifies the name of a fixed binary (31) variable that contains the I/O area
length.

area length
Specifies the name of a fixed binary (31) variable that contains the length of the
area immediately following it in the parameter list. Up to seven area lengths or
area pairs can be specified.

area
Specifies the name of the area to be checkpointed. Up to seven area lengths or
area pairs can be specified.

token
Specifies the name of a character (4) variable that contains a user token.

stat function
Specifies the name of a character (9) variable string containing the stat function
to be performed.

Chapter 12. Defining application program elements for IMS DB 225

ssa
Specifies the name of a character variable that contains the SSAs to be used for
the call. Up to 15 SSAs can be specified, one of which is rootssa.

rootssa
Specifies the name of a character variable that contains a root segment search
argument.

rsa
Specifies the name of a character variable that contains the record search
argument.

psb name
Specifies the name of a character (8) containing the PSB name to be used for
the call.

uibptr
Specifies the name of the user interface block (UIB).

sysserve
Specifies the name of a character (8) variable character string to be used for the
call.

Example of a DL/l call format

Using the DL/I CEETDLI interface:
CALL CEETDLI (parmcount,function,db pcb,i/o area,ssal);

Using the DL/I AIBTDLI interface:
CALL AIBTDLI (parmcount,function,aib,i/o area,ssal);

Using the DL/I language-specific interface:

%INCLUDE CEEIBMAW;
CALL PLITDLI (parmcount,function,db pch,i/o area,ssal);

Related reference:

O [DL/1 calls for database management (Application Programming APIs)|

O [DL/1 calls for IMS DB system services (Application Programming APIs)|

Specifying the

/0 PCB mask

After your program issues a call with the I/O Program Communications Block
(I/O PCB), IMS returns information about the results of the call to the I/O PCB. To
determine the results of the call, your program must check the information that
IMS returns.

Issuing a system service call requires an I/O PCB. Because the 1/O PCB resides
outside your program, you must define a mask of the PCB in your program to
check the results of IMS calls. The mask must contain the same fields, in the same
order, as the I/O PCB. Your program can then refer to the fields in the PCB
through the PCB mask.

The following table shows the fields that the I/O PCB contains, their lengths, and
the applicable environment for each field.

226 Application Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbmngmt2.htm#ims_dlicallsfordbmngmt2
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_dlicallsfordbsysservices.htm#ims_dlicallsfordbsysservices

Table 34. I/O PCB mask

Descriptor Byte DB/DC DBCTL DCCTL DB ™
Length Batch Batch

Logical terminal name ' 8 X X
Reserved for IMS ? 2 X X
Status code * 2 X X X X X
4-Byte Local date and
time *

Date 4 X X

Time 4 X X
Input message sequence 4 X X
number °
Message output descriptor 8 X X
name °
Userid ’ 8 X X
Group name * 8 X X
12-Byte Time Stamp °

Date 4 X X

Time 6 X X

2 X X

UTC Offset
Userid Indicator™ 1 X X
Reserved for IMS? 3

Note:

1.

Logical Terminal Name

This field contains the name of the terminal that sent the message. When your
program retrieves an input message, IMS places the name of the logical
terminal that sent the message in this field. When you want to send a message
back to this terminal, you refer to the I/O PCB when you issue the ISRT call,
and IMS takes the name of the logical terminal from the I/O PCB as the
destination.

Reserved for IMS
These fields are reserved.
Status Code

IMS places the status code describing the result of the DL/I call in this field.
IMS updates the status code after each DL/I call that the program issues. Your
program should always test the status code after issuing a DL/I call.

The three status code categories are:

* Successful status codes or status codes with exceptional but valid
conditions. This category does not contain errors. If the call was completely
successful, this field contains blanks. Many of the codes in this category are
for information only. For example, a QC status code means that no more
messages exist in the message queue for the program. When your program
receives this status code, it should terminate.

Chapter 12. Defining application program elements for IMS DB 227

228 Application Programming

* Programming errors. The errors in this category are usually ones that you
can correct. For example, an AD status code indicates an invalid function
code.

* I/0O or system errors.

For the second and third categories, your program should have an error
routine that prints information about the last call that was issued before
program termination. Most installations have a standard error routine that all
application programs at the installation use.

Local Date and Time

The current local date and time are in the prefix of all input messages except
those originating from non-message-driven BMPs. The local date is a
packed-decimal, right-aligned date, in the format yyddd. The local time is a
packed-decimal time in the format hhmmsst. The current local date and time
indicate when IMS received the entire message and enqueued it as input for
the program, rather than the time that the application program received the
message. To obtain the application processing time, you must use the time
facility of the programming language you are using.

For a conversation, for an input message originating from a program, or for a
message received using Multiple System Coupling (MSC), the time and date
indicate when the original message was received from the terminal.

Input Message Sequence Number

The input message sequence number is in the prefix of all input messages
except those originating from non-message-driven BMPs. This field contains
the sequence number IMS assigned to the input message. The number is
binary. IMS assigns sequence numbers by physical terminal, which are
continuous since the time of the most recent IMS startup.

Message Output Descriptor Name

You only use this field when you use MFS. When you issue a GU call with a
message output descriptor (MOD), IMS places its name in this area. If your
program encounters an error, it can change the format of the screen and send
an error message to the terminal by using this field. To do this, the program
must change the MOD name by including the MOD name parameter on an
ISRT or PURG call.

Although MFS does not support APPC, LU 6.2 programs can use an interface
to emulate MFS. For example, the application program can use the MOD
name to communicate with IMS to specify how an error message is to be
formatted.

Related reading: For more information on the MOD name and the LTERM
interface, see IMS Version 14 Communications and Connections.

Userid

The use of this field is connected with RACF signon security. If signon is not
active in the system, this field contains blanks.

If signon is active in the system, the field contains one of the following:
* The user's identification from the source terminal.

* The LTERM name of the source terminal if signon is not active for that
terminal.
¢ The authorization ID. For batch-oriented BMPs, the authorization ID is
dependent on the value specified for the BMPUSID= keyword in the
DFSDCxxx PROCLIB member:
— If BMPUSID=USERID is specified, the value from the USER= keyword
on the JOB statement is used.

8.

10.

— If USER= is not specified on the JOB statement, the program's PSB name
is used.

- If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at
all, the program's PSB name is used.

Group Name

The group name, which is used by DB2 to provide security for SQL calls, is

created through IMS transactions.

Three instances that apply to the group name are:

* If you use RACF and SIGNON on your IMS system, the RACROUTE SAF
(extract) call returns an eight-character group name.

* If you use your own security package on your IMS system, the RACROUTE
SAF call returns any eight-character name from the package and treats it as
a group name. If the RACROUTE SAF call returns a return code of 4 or 8, a
group name was not returned, and IMS blanks out the group name field.

e If you use LU 6.2, the transaction header can contain a group name.

Related reading: For more information about LU 6.2, see IMS Version 14
Communications and Connections.

12-Byte Time Stamp

This field contains the current date and time fields, but in the IMS internal
packed-decimal format. The time stamp has the following parts:

Date yyyydddf

This packed-decimal date contains the year (yyyy), day of the year
(ddd), and a valid packed-decimal + sign such as (f).

Time hhmmssthmiju

This packed-decimal time consists of hours, minutes, and seconds
(hhmmss) and fractions of the second to the microsecond (thmiju). No
packed-decimal sign is affixed to this part of the time stamp.

UTC Offset
aqq$
The packed-decimal UTC offset is prefixed by 4 bits of attributes (a). If
the 4th bit of (a) is 0, the time stamp is UTC; otherwise, the time
stamp is local time. The control region parameter, TSR=(U/L), specified
in the DFSPBxxx PROCLIB member, controls the representation of the
time stamp with respect to local time versus UTC time.

The offset value (qq$) is the number of quarter hours of offset to be
added to UTC or local time to convert to local or UTC time
respectively.

The offset sign ($) follows the convention for a packed-decimal plus or
minus sign.
Field 4 always contains the local date and time.

Related reading: For a more detailed description of the internal
packed-decimal time-format, see IMS Version 14 Operations and Automation.

Userid Indicator

The Userid Indicator is provided in the I/O PCB and in the response to the
INQY call. The Userid Indicator contains one of the following:

* U - The user's identification from the source terminal during signon
* L - The LTERM name of the source terminal if signon is not active

Chapter 12. Defining application program elements for IMS DB 229

¢ P - The PSBNAME of the source BMP or transaction
¢ O - Other name

The value contained in the Userid Indicator field indicates the contents of the
userid field.

Specifying the DB PCB mask

IMS describes the results of the calls your program issues in the DB PCB that is
referenced in the call. To determine the success or failure of the DL/I call, the
application program includes a mask of the DB PCB and then references the fields
of the DB PCB through the mask.

A DB PCB mask must contain the fields shown in the following table. (Your
program can look at, but not change, the fields in the DB PCB.) The fields in your
DB PCB mask must be defined in the same order and with the same length as the
fields shown here. When you code the DB PCB mask, you also give it a name, but
the name is not part of the mask. You use the name (or the pointer, for PL/I) when
you reference each of the PCBs your program processes. A GSAM DB PCB mask is
slightly different from other DB PCB masks.

Of the nine fields, only five are important to you as you construct the program.
These are the fields that give information about the results of the call. They are the
segment level number, status code, segment name, length of the key feedback area,
and key feedback area. The status code is the field your program uses most often
to find out whether the call was successful. The key feedback area contains the
data from the segments you have specified; the level number and segment name
help you determine the segment type you retrieved after an unqualified GN or GNP
call, or they help you determine your position in the database after an error or
unsuccessful call.

Table 35. DB PCB mask

Descriptor Byte DB/DC DBCTL DCCTL DB ™
Length Batch Batch
Database name ' 8 X X X
Segment level number 2 2 X X X
Status code * 2 X X X
Processing options * 4 X X X
Reserved for IMS ° 4 X X X
Segment name ° 8 X X X
4 X X X
Length of key
feedback area ’
Number of sensitive 4 X X X
segments ®
Key feedback area ° var length X X X
Note:

1. This contains the name of the database. This field is 8 bytes long and contains
character data.

2. Segment Level Number

230 Application Programming

This field contains numeric character data. It is 2 bytes long and right-justified.
When IMS retrieves the segment you have requested, IMS places the level
number of that segment in this field. If you are retrieving several segments in a
hierarchic path with one call, IMS places the number of the lowest-level
segment retrieved. If IMS is unable to find the segment that you request, it
gives you the level number of the last segment it encounters that satisfied your
call.

Status Code
After each DL/I call, this field contains the two-character status code that
describes the results of the DL/I call. IMS updates this field after each call and

does not clear it between calls. The application program should test this field
after each call to find out whether the call was successful.

When the program is initially scheduled, this field contains a data-availability
status code, which indicates any possible access constraint based on segment
sensitivity and processing options.

Related Reading: For more information on these status codes, see the topic
"INIT Call" in IMS Version 14 Application Programming APIs.

During normal processing, four categories of status codes exist:

* Successful or exceptional but valid conditions. If the call was completely
successful, this field contains blanks. Many of the codes in this category are
for information only. For example, GB means that IMS has reached the end
of the database without satisfying the call. This situation is expected in
sequential processing and is not usually the result of an error.

* Errors in the program. For example, AK means that you have included an
invalid field name in a segment search argument (SSA). Your program
should have error routines available for these status codes. If IMS returns an
error status code to your program, your program should terminate. You can
then find the problem, correct it, and restart your program.

* 1/0 or system error. For example, an AO status code means that there has
been an I/O error concerning OSAM, BSAM, or VSAM. If your program
encounters a status code in this category, it should terminate immediately.
This type of error cannot normally be fixed without a system programmer,
database administrator, or system administrator.

* Data-availability status codes. These are returned only if your program has
issued the INIT call indicating that it is prepared to handle such status codes.
“Status Code Explanations” in IMS Version 14 Messages and Codes, Volume 4:
IMS Component Codes describes possible causes and corrections in more
detail.

. Processing Options

This is a 4-byte field containing a code that tells IMS what type of calls this
program can issue. It is a security mechanism in that it can prevent a particular
program from updating the database, even though the program can read the
database. This value is coded in the PROCOPT parameter of the PCB statement
when the PSB for the application program is generated. The value does not
change.

. Reserved for IMS

This 4-byte field is used by IMS for internal linkage. It is not used by the
application program.

Segment Name

After each successful call, IMS places in this field the name of the last segment
that satisfied the call. When a retrieval is successful, this field contains the
name of the retrieved segment. When a retrieval is unsuccessful, this field

Chapter 12. Defining application program elements for IMS DB 231

contains the last segment along the path to the requested segment that would
satisfy the call. The segment name field is 8 bytes long.

When a program is initially scheduled, the name of the database type is put in
the SEGNAME field. For example, the field contains DEDB when the database
type is DEDB; GSAM when the database type is GSAM; HDAM, or PHDAM
when the database type is HDAM or PHDAM.

7. Length of Key Feedback Area

This is a 4-byte binary field that gives the current length of the key feedback
area. Because the key feedback area is not usually cleared between calls, the
program needs to use this length to determine the length of the relevant
current concatenated key in the key feedback area.

8. Number of Sensitive Segments

This is a 4-byte binary field that contains the number of segment types in the
database to which the application program is sensitive.

9. Key Feedback Area

At the completion of a retrieval or ISRT call, IMS places the concatenated key of
the retrieved segment in this field. The length of the key for this request is
given in the 4-byte field. If IMS is unable to satisfy the call, the key feedback
area contains the key of the segment at the last level that was satisfied. A
segment's concatenated key is made up of the keys of each of its parents and
its own key. Keys are positioned left to right, starting with the key of the root
segment and following the hierarchic path. IMS does not normally clear the key
feedback area. IMS sets this length of the key feedback area to indicate the
portion of the area that is valid at the completion of each call. Your program
should not use the content of the key feedback area that is not included in the
key feedback area length.

Related concepts:
[‘Data areas in GSAM databases” on page 245|

Specifying the AIB mask

The application interface block (AIB) is used by your program to communicate
with IMS, when your application does not have a PCB address or the call function
does not use a PCB.

The application program can use the returned PCB address, when available, to
inspect the status code in the PCB and to obtain any other information needed by
the application program. The AIB mask enables your program to interpret the
control block defined. The AIB structure must be defined in working storage, on a
fullword boundary, and initialized according to the order and byte length of the
fields as shown in the following table. The table’s notes describe the contents of

each field.

Table 36. AIB fields

Descriptor Byte Length DB/DC DBCTL DCCTL DB ™
Batch Batch

AIB identifier 8 X X X X X

DFSAIB allocated length 4 X X X X X

Subfunction code 8 X X X X X

Resource name 8 X X X X X

Reserved 1 16

232 Application Programming

Table 36. AIB fields (continued)

Descriptor Byte Length DB/DC DBCTL DCCTL DB ™
Batch Batch

Maximum output area 4 X X X X X

length

Output area length used 4 X X X X X

Reserved 2 12

Return code 4 X X X X X

Reason code 4 X X X X X

Error code extension 4 X X

Resource address 4 X X X X X

AIB return token 8 X X X

Reserved 3 40

AIB Identifier (AIBID)

This 8-byte field contains the AIB identifier. You must initialize AIBID in
your application program to the value DFSAIB bb before you issue DL/I
calls. This field is required. When the call is completed, the information
returned in this field is unchanged.

DFSAIB Allocated Length (AIBLEN)

This field contains the actual 4-byte length of the AIB as defined by your
program. You must initialize AIBLEN in your application program before
you issue DL/I calls. The minimum length required is 128 bytes. When the
call is completed, the information returned in this field is unchanged. This
field is required.

Subfunction Code (AIBSFUNC)

This 8-byte field contains the subfunction code for those calls that use a
subfunction. You must initialize AIBSFUNC in your application program
before you issue DL/I calls. When the call is completed, the information
returned in this field is unchanged.

Resource Name (AIBRSNM1)

This 8-byte field contains the name of a resource. The resource varies
depending on the call. You must initialize AIBRSNM1 in your application
program before you issue DL/I calls. When the call is complete, the
information returned in this field is unchanged. This field is required.

For PCB related calls where the AIB is used to pass the PCB name instead
of passing the PCB address in the call list, this field contains the PCB
name. The PCB name for the I/O PCB is IOPCBbb The PCB name for other
types of PCBs is defined in the PCBNAME= parameter in PSBGEN.

Logical Terminal Override Name (AIBRSNM?2)

This 8-byte, alphanumeric, left-aligned field contains the logical terminal
name used to override the LTERM name in the I/O PCB of the IMS
application program for the target transaction of an ICAL call for
synchronous program switch. The name specified in the AIB is used
instead of any name specified in the OTMA destination descriptor.
However, if no name is specified in AIBRSNM2, the name from the OTMA
descriptor is used. If no name is found in the descriptor or in the AIB, the
IMS application terminal symbolic (PSTSYMBO) is used as the default
logical terminal name for the target transaction.

Chapter 12. Defining application program elements for IMS DB 233

Reserved 1
This 16-byte field is reserved.

Maximum Output Area Length (AIBOALEN)
This 4-byte field contains the length of the output area in bytes that was
specified in the call list. You must initialize AIBOALEN in your application
program for all calls that return data to the output area. When the call is
completed, the information returned in this area is unchanged.

Used Output Area Length (AIBOAUSE)
This 4-byte field contains the length of the data returned by IMS for all
calls that return data to the output area. When the call is completed this
field contains the length of the I/O area used for this call.

Reserved 2
This 12-byte field is reserved.

Return code (AIBRETRN)
When the call is completed, this 4-byte field contains the return code.

Reason Code (AIBREASN)
When the call is completed, this 4-byte field contains the reason code.

Error Code Extension (AIBERRXT)
This 4-byte field contains additional error information depending on the
return code in AIBRETRN and the reason code in AIBREASN.

Resource Address (AIBRSA1)
When the call is completed, this 4-byte field contains call-specific
information. For PCB related calls where the AIB is used to pass the PCB
name instead of passing the PCB address in the call list, this field returns
the PCB address.

AIB return token (AIBRTKN)
AIB return token. This 8-byte field contains a token returned by a DL/I
call. The usage is specific to the DL/I call for which the token was
returned.

Reserved 3

This 40-byte field is reserved.

Specifying the AIB mask for ODBA applications

The following table describes the fields for specifying the application interface
block (AIB) mask for ODBA applications.

The notes that follow describe the contents of each field.

Table 37. AIB fields for use of ODBA applications

AIB Fields Byte DB/DC IMS DB DCCTL DB ™
Length Batch Batch
AIB identifier 8 X X X X X
DFSAIB allocated length 4 X X X X X
Subfunction code 8 X X X X X
Resource name #1 8 X X X X X
Resource name #2 8
Reserved 1 8 X

234 Application Programming

Table 37. AlIB fields for use of ODBA applications (continued)

AIB Fields Byte DB/DC IMS DB DCCTL DB ™
Length Batch Batch

Maximum output area 4 X X X X X

length

Output area length used 4 X X X X X

Reserved 2 12

Return code 4 X X X X X

Reason code 4 X X X X X

Error code extension 4 X

Resource address #1 4 X X X X X

Resource address #2 4

Resource address #3 4

AIB return token 8 X X X

Reserved 3 32

Reserved for ODBA 136

AIB Identifier (AIBID)

This 8-byte field contains the AIB identifier. You must initialize AIBID in
your application program to the value DFSAIBbb before you issue DL/I
calls. This field is required. When the call is completed, the information

returned in this field is unchanged.

DFSAIB Allocated Length (AIBLEN)

This field contains the actual 4-byte length of the AIB as defined by your
program. You must initialize AIBLEN in your application program before
you issue DL/I calls. The minimum length required is 264 bytes for ODBA.
When the call is completed, the information returned in this field is

unchanged. This field is required.
Subfunction Code (AIBSFUNC)

This 8-byte field contains the subfunction code for those calls that use a
subfunction. You must initialize AIBSFUNC in your application program
before you issue DL/I calls. When the call is completed, the information

returned in this field is unchanged.

Resource Name (AIBRSNM1) #1

This 8-byte field contains the name of a resource. The resource varies
depending on the call. You must initialize AIBRSNM1 in your application
program before you issue DL/I calls. When the call is complete, the
information returned in this field is unchanged. This field is required.

For PCB related calls where the AIB is used to pass the PCB name instead
of passing the PCB address in the call list, this field contains the PCB
name. The PCB name for the I/O PCB is IOPCBbb. The PCB name for
other types of PCBs is defined in the PCBNAME= parameter in PSBGEN.

Resource Name (AIBRSNM?2) #2

Specify a 4-character ID of ODBA startup table DFSxxxx0, where xxxx is a

4-character ID.

Reserved 1
This 8-byte field is reserved.

Chapter 12. Defining application program elements for IMS DB 235

Maximum Output Area Length (AIBOALEN)
This 4-byte field contains the length of the output area in bytes that was
specified in the call list. You must initialize AIBOALEN in your application
program for all calls that return data to the output area. When the call is
completed, the information returned in this area is unchanged.

Used Output Area Length (AIBOAUSE)
This 4-byte field contains the length of the data returned by IMS for all
calls that return data to the output area. When the call is completed this
field contains the length of the I/O area used for this call.

Reserved 2
This 12-byte field is reserved.

Return code (AIBRETRN)
When the call is completed, this 4-byte field contains the return code.

Reason Code (AIBREASN)
When the call is completed, this 4-byte field contains the reason code.

Error Code Extension (AIBERRXT)
This 4-byte field contains additional error information depending on the
return code in AIBRETRN and the reason code in AIBREASN.

Resource Address (AIBRSA1) #1
When the call is completed, this 4-byte field contains call-specific
information. For PCB related calls where the AIB is used to pass the PCB
name instead of passing the PCB address in the call list, this field returns
the PCB address.

Resource Address (AIBRSA2) #2
This 4-byte field is reserved for ODBA.

Resource Address (AIBRSA3) #3
This 4-byte token, returned on the APSB call, is required for subsequent
DLI calls and the DPSB call related to this thread.

AIB return token (AIBRTKN)
AIB return token. This 8-byte field contains a token returned by a DL/I
call. The usage is specific to the DL/I call for which the token was
returned.

Reserved 3
This 32-byte field is reserved.
Reserved for ODBA
This 136-byte field is reserved for ODBA.

The application program can use the returned PCB address, when available, to
inspect the status code in the PCB and to obtain any other information needed by
the application program.

COBOL AIB Mask Example

01 AIB.
02 AIBRID PIC x(8).
02 AIBRLEN PIC 9(9) USAGE BINARY.
02 AIBRSFUNC PIC x(8).
02 AIBRSNM1 PIC x(8).
02 AIBRSNM2 PIC x(8).
02 AIBRESV1 PIC x(8).
02 AIBOALEN PIC 9(9) USAGE BINARY.
02 AIBOAUSE PIC 9(9) USAGE BINARY.

236 Application Programming

02 AIBRESVZ PIC x(12).

02 AIBRETRN PIC 9(9) USAGE BINARY.
02 AIBREASN PIC 9(9) USAGE BINARY.
02 AIBERRXT PIC 9(9) USAGE BINARY.
02 AIBRESA1 USAGE POINTER.

02 AIBRESA2 USAGE POINTER.

02 AIBRESA3 USAGE POINTER.

02 AIBRESV4 PIC x(40).

02 AIBRSAVE OCCURS 18 TIMES USAGE POINTER.

02 AIBRTOKN OCCURS 6 TIMES USAGE POINTER.

02 AIBRTOKC PIC x(16).

02 AIBRTOKV PIC x(16).

02 AIBRTOKA OCCURS 2 TIMES PIC 9(9) USAGE BINARY.

Assembler AIB Mask Example

DFSAIB DSECT
AIBID DS CL8'DFSAIB'
AIBLEN DS F
AIBSFUNC DS CL8
AIBRSNM1 DS CL8
AIBRSVM2 DS CL8

DS 2F
AIBOALEN DS
AIBOAUSE DS

-

AIBRETRN DS
AIBREASN DS
AIBRRXT DS
AIBRSA1 DS
AIBRSA2 DS
AIBRSA3 DS
DS 10F
AIBLL EQU =-DFSAIB
AIBSAVE DS 18F
AIBTOKN DS 6F
AIBTOKC DS CL16
AIBTOKV DS XL16
AIBTOKA DS 2F
AIBAERL EQU =-DFSAIB

S>> > T MM I TN T

Specifying the UIB (CICS online programs only)

The interface between your CICS online program and DL/I passes additional
information to your program in a user interface block (UIB). The UIB contains the
address of the PCB list and any return codes your program must examine before
checking the status code in the DB PCB.

When you issue the PCB call to obtain a PSB for your program, a UIB is created for
your program. As with any area outside your program, you must include a
definition of the UIB and establish addressability to it. CICS provides a definition
of the UIB for all programming languages:

* In COBOL programs, use the COPY DLIUIB statement.

* In PL/I programs, use a %INCLUDE DLIUIB statement.

* In assembler language programs, use the DLIUIB macro.

Three fields in the UIB are important to your program: UIBPCBAL, UIBFCTR, and
UIBDLTR. UIBPCBAL contains the address of the PCB address list. Through it you
can obtain the address of the PCB you want to use. Your program must check the
return code in UIBFCTR (and possibly UIBDLTR) before checking the status code

Chapter 12. Defining application program elements for IMS DB 237

in the DB PCB. If the contents of UIBFCTR and UIBDLIR are not null, the content
of the status code field in the DB PCB is not meaningful. The return codes are
described in the topic "CICS-DL/I user interface block return codes" in IMS Version
14 Messages and Codes, Volume 4: IMS Component Codes.

Immediately after the statement that defines the UIB in your program, you must
define the PCB address list and the PCB mask.

The following code example shows how to use the COPY DLIUIB statement in a
VS COBOL II program:

Defining the UIB, PCB address list, and the PCB mask for VS
coBoL 1l

LINKAGE SECTION.

COPY DLIUIB.

01 OVERLAY-DLIUIB REDEFINES DLIUIB.
02 PCBADDR USAGE IS POINTER.
02 FILLER PIC XX.

01 PCB-ADDRESSES.
02 PCB-ADDRESS-LIST
USAGE IS POINTER OCCURS 10 TIMES.
01 PCBI1.
02 PCB1-DBD-NAME PIC X(8).
02 PCB1-SEG-LEVEL PIC XX.

The COBOL COPY DLIUIB copybook

01 DLIUIB.

* Address of the PCB addr 1ist
02 UIBPCBAL PIC S9(8) COMP.

* DL/I return codes
02 UIBRCODE.

* Return codes

03 UIBFCTR PIC X.
88 FCNORESP VALUE ' '.
88 FCNOTOPEN VALUE ' '.
88 FCINVREQ VALUE ' '
88 FCINVPCB VALUE ' '.
* Additional information
03 UIBDLTR PIC X.
88 DLPSBNF VALUE ' '
88 DLTASKNA VALUE ' '
88 DLPSBSCH VALUE ' '
88 DLLANGCON VALUE ' '.
88 DLPSBFAIL VALUE ' '.

88 DLPSBNA VALUE
88 DLTERMNS VALUE
88 DLFUNCNS VALUE
88 DLINA VALUE

The values placed in level 88 entries are not printable. They are described in the
topic "CICS-DL/I User Interface Block Return Codes" in IMS Version 14 Messages
and Codes, Volume 4: IMS Component Codes. The meanings of the field names and
their hexadecimal values are shown below:

FCNORESP
Normal response Value X'00'

238 Application Programming

FCNOTOPEN
Not open Value X'0C'

FCINVREQ
Invalid request Value X'08'

FCINVPCB
Invalid PCB Value X'10'

DLPSBNF
PSB not found Value X'01'

DLTASKNA
Task not authorized Value X'02'

DLPSBSCH
PSB already scheduled Value X'03'

DLLANGCON
Language confli