IMS Locking
with Program Isolation or the IRLM

Rich Lewis
IMS Advanced Technical Support
IBM Americas

August 2009

: TECHMICAL SALES SUPPORT
AMERICAS

© IBM Copyright, 2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM

Version 8/4/2009

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM i

Contents

(@011 0| SRR i
N 0 1 o PSPPSR Vi
TrademarkS and SEIVICE MaIKSoouiiieiiee ettt enreenes Vi
[0 T0 1o @ V= V= Y OSSO 1
PUIPOSE OF LOCKING ...ttt ettt b 1
Why a Knowledge of LOCKING iSNEEAEA...........coeeiiiieceeeeeceee et 1
LOCK IMIANAETS. ...ttt sttt bbbttt e et et bt bt a e e b e e e b e b b eae e e s 1
LOCKING ENVIFONMIENES.......oiiiieiecie ettt et ae et et esneenesnaesreennenns 2
ONIINE SUDSYSIEIMS.......oeiiiieriesiesie ettt b e bbbttt e s e b nbe b e nbeeneeneeaeas 2

= fole Q=Y = R B =B 7 1 o PSS 2
Database Level Data SNaring.........coovveriririeieniese sttt sne e 2
RESOUICES LOCKEM ...ttt ettt bbb enes 3
FUll FUNCLION DAtAD@SES.......ccveeieeeieiecie ettt sttt sreenee e e 3

Fast Path DatalDases..........coeiiiiiiiiiiiieiee sttt sttt bbb 3
Lock Levelsand Lock COMPELiDHITYc.coeeeerieniiiininieeeeeeee s 3
PrVAIE ATIIIOULE. ... et enes 4
SYNC POINES.....ceeeieeieeee ettt bttt e bbb s bt e bt bt e st e e e e e e e b et e nreebenreeneeneens 5
Abendsand ROLL, ROLB, and ROLS CallS.......cccooiiiiiirinininieeeriesie et 5
91220 {00t 6
I W (o) 1 oo] o S 8
Database RECOI LOCKS.......oiueiiieiieeiesieeiiesie e e stee st e te st et eeesreesteeneesseesaeeneesseenaeenaesseenseenennnes 8
Database ReCOrd LOCK SUMMIAIYc.cciiiiieiieiicie e estesee st et see e sseenesree e eeesnnesneeneens 9
SEOMENE LOCKS. ...t bbbttt ettt st b b e se e e nes 10
SEgMENE LOCK SUMMIBIYccuieieiie ettt sttt st sreene e e sre e reenneens 11

2 o Tox g 0o < USRS 11
BIOCK LOCK SUMIMEIYecveiiieieeie ettt tee sttt te et s e te e saeesteeneesneensesnnesseessesnnesneennens 12
BUSY LOCKS......eeeitieiietee ettt bbbttt et sb e b e neene e 12
BUSY LOCK SUMMBIYeecieiieeiece sttt et e a et e sneesneenesnaesteeeesneenneenneas 13
EXEENG LOCKS ...ttt e s te e e e s e s seeneeeneesbeenteaneesneensenneenneas 13
EXtEND LOCK SUMIMAIYviiiiieiecie ettt ettt s sneete e e steennesneesneennesnnannean 13
Data Set REFErENCE LOCKS.iiiiiieieciesieee ettt teeeesneenneeneenneas 14
Data Set Reference LOCK SUMMIBIYcc.coiuiiieiicie ettt 14
(@00]101017=11 0 I 1o~ 14
Command LOCK SUMIMEIYccueiiiiieieeie sttt e et ene e n e e sneenns 14
(@107 g I 0! (] o TSSOSO 15
Locks for the Q Command Code and Get Hold CallS.........coecveeceeiiieccieceecee e 15
LOCK SUMMENY TADIE.......ceieii e e 15
Logical REIAIONSNIPS.......couiiiiiicie ettt et s sreenesneenneas 16
SECONUANY INUEXES ...ttt b ettt et b e e b nne e enes 18
FaSt Path LOCKING ..ottt sttt e s r e ne et e e ae e seeneesaeenseennesnnennenn 20
Fast Path LOCK MBNEGESciuiiuiiiiiiieieieiese ettt 20
DEDB LOCKINGveitieteeieitieite sttt sttt aeste et s ssa e tesseesse e seeaeesseenseensesseeseensesneensesnsensens 20

© IBM Copyright, 2009 Version 8/4/2009

http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM i

Gl L OCK S, et 20

HSSP N0 UOWVS......ouiiiiiciieieie ettt ettt sttt bt 21
FLD Call Locking fOr DEDBS........ccciiiiiiieeie et s 22

Q Command Code and DEQ Callcoueiuieiiiciee ettt ere e sree s 22
SegMENt LEVEl LOCKINGcccuiieiiieie ettt 23
Changing LOCK OWNEISNIPcoiuieieiiesieie ettt ne e seeeeeneenns 23
IMISDB LOCKINGeteeuteeueesteeieeeesteesiesieesseesiesseessesssesseesseessesseesseesesseesseasesseesbeesesnesssesnsessennsens 23
RLSE Call ...ttt bbb bbbttt et bbbt ne b e ne e 25

F N =72 oo USSR 25
ATEALOCK SUMMEIY ...euieieieiteeie e steeieseeseete e ste e tesseesseesesseessaensesseesseenseeseesaenssesnenssennsnns 25
MUItIPI@ AFEa SITUCIUIE LOCKcueieeeiieieeee ettt sttt nne s 26
Multiple Area Structure LOCK SUMMBIYccciieiieiiereerieeeeseesieseesseesseeaesseesseensssesssesnees 26
(@00]101017=11 0 I I o: PSR 26
Command LOCK SUMIMEIYccuviiiiieiieieseeie ettt e e te e sneeneeneasneenes 26
VUNLOAD LOCK....ttetteueeiesiesiesiestesieeseetestestessestessessesseeseessessessessessessessesssessessessessessessessensenneens 27
VUNLOAD LOCK SUMIMAIY ...c.veeiiiieeiieeieseesieesaesseesteeeesseessesseessaessessessseesssssesssessessssssesssnns 27
Buffer OVErflOW (OBA) LOCKc.coiiieiiiieiieeie ettt sttt 27
Buffer Overflow (OBA) LOCK SUMMEIYcccueiierieeieseesieeeeseesieeeesreesseeseesseessessessseensesses 27
SPECIAl LOCKING CBSESocueiiieiieie ettt sttt b et sae et et s neenbe et e eneenns 29
PROCOPTS 0f GO, GON aNd GOTooiiiiriirieniinienieieesie ettt sse e e s s eneas 29
PROGCOPT Of E...oveeiieieiesie sttt st sttt e e stestesbesseeseeseeseeneeneessessesbesseasesneenens 29
Without Block Level Data Sharing (BLDS)ccveoviieieeiecee et 29
With Block Level Data Sharing (BLDS)cc.coieeiiriiiierieesesee e 30
HALDB Onling REOIQaNIZALIONccueiuieieeiesieeieseesteesseseesseesesseesseessesseesseessessesssesssessesssens 30
Limiting the Number of Locks HeEld by @aProgram ... 31
Pl Limit on NUMDEr OF WAITEN'Socuiiiiiiiieeee e 32
0T T 0= 0TSRRI 33
IRLM TIMEOUT VAUEB.....cecuieieeee ettt sae e tesnestesseeneenaeaensanannnens 33
IMS LOCKTIME VAIUES......ocuiitiiiieiieieie ettt sttt sttt snenne e 33
DEAUIOCKS. ... ettt ettt e s s e e e se e sre e eeene e e Reeeeeneenreenneeneeaneenrenn 35
Example of Deadlock between Multiple Programs...........cccceeeeieeie e seese e 35
DeadlOCK DELECTION TIMING.......ccuiitiriirieiterieeeee ettt e bbb b saesse e e e e e e sresnenaeas 36

(@ T T0 1S T g o = IV AT o 1] o o S 36
INIT STATUS GROUPB Callocueeieiiieie ettt s eneens 37
Handling aDeadlOCK VICHMccueoiieee et 38
DeadlOCKS With CICS RESOUICESccueerieeieeiiestiesieeeesteesteeeessees e esesseesseeseeseesseensesnessseessesnes 40
DeadlOCKS With DB2 RESDUITES........civiiuirieeieeiieiesiesiestestessessessessesssessessessessessessessessssssessessessens 40
Retained LOCKS aNd LOCK REJECES.coeiieieieiesiesieeeseeee et 42
Database Level Data SNariNg.........ccoveieiieieeie s see st e s ste e sreesteeaesreesseeneesneenseeneesrens 43
Virtual SEOrage USE fOr LOCKScoviiiieriisierie ettt 44
Pl Lock Manager Virtual SEOTaQE.........eeiuieiueeieiieciieceesteesie sttt sreeae e sreete e sneenesneenneas 44
IRLIM ViIrtUBl SEOFAOE.......eeiteetiriieiieieeeee ettt n bt n e 44
1S o | AN 0 1V o= OSSR 45
Minimize PROCOPT VAIUES.......cc.ccoueriieieeiesienieseesteesteseeseesteeeesseesseessesseessesssessesssesnsessesssens 45
Frequent SYNC POINEScoii ettt et e e et e e naesreenreenneaneenneas 45
Communications Within @ SYNC INLEIVALcooeiiiiier s 46

© IBM Copyright, 2009 Version 8/4/2009

http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM iv

Frequently Updated RECOITS..........ooeiiiiiieiiesieeie ettt sttt s sae e a7

USINGthE RLSE Call....c.eeoieee ettt st et s e sreennenneennens 47
Using a"Get LOSt" TECNIQUE........ouiieeieeee e 438
Using PROCOPT=E to Avoid ChecKpOiNtiNg..........ccceruerieresieseesesieeseese e se e 48
DeallOCK DELECTION......ceeeeeeiecieeieeie ettt sb et e e e e neebeeneenneas 49
Locking Traces and REPOI PrOgramsS.........c.ccueieeieieereeieeseeseseeseessssseesseessessesssesssessesssesssesseens 50
LOCK RESOUICE NBIMIES ...ttt sttt s re et et e b e besntesreenteeneesneene s 50
IMS subsystem ID with IRLM 10Cal [OCKING.......cccuiirieeieiiesiere e 50

FUIT FUNCEION TOCKS ...ttt st nre s 50
Lock ReSOUIrCE NaME FOIMIELS........ccuoiiiirieiiesierieeie ettt bbb 51

FaSt Patl LOCKS......cvieie ettt sttt st sb et e b et e sneenne s 52
IMS MONITON TTBCEciuiiiiiteste sttt sttt bt bt e b et e bt beeae e e e e e e ens 54
Pl AN LOCK TTBEESeiiteeieeie ettt sttt sttt sttt sttt s e s beebesseesbeetesneesaeebesneenaeas 54
IMS MONItOr (DFSUTR20)cveiiiiiieieiesie sttt sttt st 55
Reporting of Waits for Space Management...........cooeeierineenenie e 56

Pl Trace (DFSPIRPO)coiiiiiiiiiisiesieeieee ettt sttt bbb 56
RMF 11 ILOCK (IRLM Long Lock Detection) REPOITcccoeeeeieerenierieriesie e 57
KBLA Deadlock Trace Record Analysis Report (DFSKTDLO)ccvvevveeereeieseeseeeeseeens 58
KBLA IRLM Lock Trace Analysis Utilities (DFSKLTX0).......cccouveererneneenenie e seesee e 58
File Select and Formatting Print Utility (DFSERALOD).......cccoveierieiecee e 61
Record Format and Print Module (DFSERA30)covuiiiiiiie e 61

PI Trace Record Format and Print Module (DFSERA4O)..........ccoveeieereeeceeceee e 62
IMS Trace Table Record Format and Print Module (DFSERAGBQ)cccoverineenieniinniene 65
Trace and REPOIM IMBLIIXcueeieeieeeeseesieseeseesiesee st eteseesreesaeeseesseesseeseesseenseeneesseensenneesneensens 65
IMS Performance Analyzer for Z/OS REPOIS.........cceeiirieiierieneesee e 66
DeallOCK SUMIMEIYcvieiecieeeie ettt st te e seeaeeneesreesesneeaneennnas 66
D720 | oo QI 1 OSSPSR 66

Fast Path DEDB Resource Contention SUMIMEYcoooererereeeeeereeseeseesse e siessesneeneas 68
L1015 YOS 69
T = P 74
© IBM Copyright, 2009 Version 8/4/2009

http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM \Y

Abstract

This White Paper is based on IMS Program | solation Locking, GG66-3193, which was published as a IBM
Technical Bulletin in December 1990. The document has been extensively revised to include block level data
sharing and changes in locking that have been made since 1990. The revisions include coverage of block level
data sharing, HALDB, Fast Path Segment Level Locking, the Q command code with DEDBSs, the RL SE call,
LOCKMAX, LOCKTIME, the Long Lock Report, the KBLA Lock Trace Report, and other changes
introduced since 1990.

Thiswhite paper isintended to give design advice in the area of locking for installations devel oping systems
that use IMS. The advice applies to both database design and application program design. Thisadviceis
given by first presenting an explanation of why and how IMS uses locking and then by explaining its
implications for designs. Information on monitoring locking activity is included.

The information in this white paper pertainsto IMS Versions 9, 10, and 11. Both IMSTM and DBCTL
environments are covered.

| thank Kevin Stewart, Frank Ricchio, Jeff Fontaine, Steve Nathan, and Dave Viguers of IMS Development
and Suzie Wendler and Kenny Blackman of Advanced Technical Support for their reviews of drafts of this
document and for their assistance with my understanding of IM S locking.

Trademarks and Service Marks

The following terms, used in this publication, are registered trademarks or service marks of the IBM
Corporation in the United States and other countries:

IBM

CICS

DB2
WebSphere
z/0S

The following terms, used in the publication, have been adopted by the IBM Corporation as trademarks or
service marks in the United States and other countries:

IMS

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM Vi

Locking Overview
Purpose of Locking

IMS uses locking for integrity reasons. Locking isolates database changes made by a program from other
concurrently executing programs.

Originally, IMS used the term Program Isolation (PI) to describe its locking capability. Pl prevents programs
from changing data that other programs are accessing and prevents programs from accessing data that other
programs have changed but not committed. When a program changes data the isolation occurs until the
changes are completed and committed. Theisolation typically lasts only for the time required to process one
online transaction or for a batch job to reach a checkpoint. The locking provided by Pl islimited to one IMS
online subsystem. Thisiseither an IMS TM with DB subsystem or aDBCTL subsystem.

Later, IMS added Block Level Data Sharing (BLDS). BLDS allows updates by programsin multiple IMS
online subsystems and by multiple IMS batch jobs. BLDS added the Internal Resource Lock Manager (IRLM)
toIMS. ThelRLM iscapable of handling locks from multiple IMS subsystems. It isrequired with BLDS
and optionally may be used without BLDS.

Why a Knowledge of Locking is Needed

Locking makes some parts of databases temporarily unavailable to other programs. Thiscan lead to
performance problems. Typically locking does not cause performance problems because locks are usually held
for avery short time and avery small percentage of resources are locked at any time. On the other hand, it
sometimes can have a noticeable effect on the performance of programs that concurrently use the same
databases. Database and application designers need to be aware of locking schemes so that they may design
these databases and programs to work efficiently. Problems caused by locking are sometimes addressed with
database design changes, sometimes with application program changes, sometimes with operational changes,
and sometimes with combinations of these.

Lock Managers

IMS has three lock managers: the Pl lock manager, the Internal Resource Lock Manager (IRLM), and the Fast
Path lock manager. A subsystem never uses both the Pl lock manager and the IRLM. One of thesetwo is
selected. If Fast Path databases are used, the Fast Path lock manager isalso used. A subsystemisan IMS
TM/DB system, an IMS DBCTL system, or an IM S batch job.

Pl Lock Manager The PI lock manager can manage only Pl locks. It cannot be used with
block level data sharing (BLDS). The PI lock manager runs as part of its
host subsystem and provides locking services only to the subsystem. Most
installations that do not use BLDS choose the Pl lock manger.

IRLM The IRLM can manage lock requests from multiple IMS subsystems or a
single subsystem. It also may manage DB2 locks. If BLDS s used, the
IRLM must be chosen. The IRLM runs as a separate subsystem in MVS.
One IRLM may provide locking servicesto one or multiple IM S subsystems
or one DB2 subsystem. It cannot provide locking services to both IMS and
DB2.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 1

Fast Path Lock Manager The Fast Path lock manager is used with Fast Path databases. Fast Path lock
requests are first processed by thislock manager. When alock request
conflicts with a previous lock request, the Fast Path lock manager aso
invokes the other lock manager in the subsystem so that deadlock detection
may be done.

Locking Environments

Locking isused in any environment where multiple application programs may access and update databases
concurrently while maintaining dataintegrity. Theseinclude IMS TM with DB subsystems and Database
Control (DBCTL) subsystems and IMS BLDS environments.

This document discusses locking for both non-BLDS and BL DS environments.

Online Subsystems

IMS online TM with DB subsystems and DBCTL subsystems require locking to provide integrity. Thisis
required since multiple programs may be updating a database at the same time. Either Pl or the IRLM may be
used.

Block Level Data Sharing

Block Level Data Sharing (BLDS) adds locks in addition to those for Pl. BLDS allows multiple subsystems to
share and update databases. BLDS locks are used to provide integrity in this more complex environment.
BLDS users must use the Internal Resource Lock Manager (IRLM) to manage IMSlocks. When BLDS is
used, it does not have to be used for al databases. Itisonly used for those databases registered to DBRC with
SHARELVL(2) or SHARELVL(3). SHARELVL(2) alows sharing by multiple IMS subsystems using the
same IRLM. SHARELVL(3) allows sharing by multiple IMS subsystems using multiple IRLMs. Databases
which are not registered or which are registered with SHAREL VL (1) or SHARELVL (0) do not use BLDS and
do not use the locks that are only used by BLDS. SHARELVL(0) does not alow the database to be shared by
multiple IMS subsystems. SHARELVL (1) allows restrictive sharing. If one IMS subsystem is allowed to
update, others can read but without integrity. If there are no updaters, multiple IMS subsystems may read with

integrity.

Database Level Data Sharing

Database Level Data Sharing allows databases to be shared between IM S subsystems, however, updates to a
database are allowed in only one subsystem. When updates to a database are allowed in a subsystem, other
subsystems may read the database but these reads are without integrity. 1f no subsystemis allowed to update a
database, all subsystems may read it with integrity. Database level data sharing isimplemented for a database
when it isregistered to DBRC with SHARELVL(2).

Database level data sharing may be implemented with either the IRLM or Pl asthe lock manager for online
systems. |f IRLM is used, both online subsystems and batch jobs may useit. This provides an advantage for
those subsystems which read a database without integrity. The read subsystems can receive notifications of

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 2

data set extensions by the updating subsystem. They also may use the Coupling Facility cache structuresto
receive buffer invalidations. When the IRLM is used with database level data sharing a small number of locks
are used in addition to those used with Pl locking; however, database level data sharing uses fewer locks than
those used with BLDS. The locking differences are explained below under "Database Level Data Sharing” on

page 43.

Resources Locked
Full Function Databases

The basic item that islocked for full function databases is a database record. Thisisaroot segment and all of
its dependents. When an application program is positioned in a database record it must hold the lock on the
database record.

BLDS adds locks for updated blocks. These are either VSAM Cls or OSAM blocks. The purpose of these
locks isto serialize updates in different IMS subsystems.

Other resources are also locked. They will be discussed later in this paper.

Fast Path Databases

The basic item that islocked for Fast Path DEDBsisaCl. When an application program is positioned in a
database record it must hold the lock on the CI containing the root. As other Clsfor the database record are
accessed, locks for them are also obtained.

Thereis an exception to the locking of Clsfor DEDBs. Thisis segment level locking. It will be discussed
under "Segment Level Locking" on page 23.

The basic item locked for the Fast Path MSDBs is a segment.

Other resources are also locked. They will be discussed later in this paper.

Lock Levels and Lock Compatibility

Locksfor IMS resources are obtained at alevel. Four levels are used with the PI lock manager. Five levels
are used with IRLM. If the resource represented by the lock is aready locked by another program, the new
lock request may or may not be granted. This depends on the level at which the lock is held and the level
requested. The following tables show the lock levels, their names, and the compatibility of locks with other
levels. You should be careful when using the lock names because they are sometimes misleading. In fact,
sometimes the same names are used for different levels. The first name listed on each row in the "Level
Names' column of the table is the one used in reports created by the Pl Trace Record Format and Print Module
(DFSERA40). Moreinformation on this moduleis given under “Locking Traces and Report Programs’ on

page 50.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 3

Table 1. Lock Levels
Level Number L evel Names
Pl IRLM
1 2 Read or Read Only

Not Used 3 Erase

2 4 Share or Read
3 6 Update, Single Update, or Hold
4 8 Exclusive or Update

A program may request alock that it already holds. Thiswill never cause a conflict. That is, arequest by a
user will never conflict with the same user. The compatibility matrix is for lock requests from different
programs. A yesin thetable indicates that the lock request will be granted. A noin the table indicates that the
lock request will not be granted immediately. The requestor will have to wait until the holder has released the
lock.

Table 2. Lock Compatibility Matrix Using Pl Level Numbers

Level Reguested
1 2 3 4
1 yes yes yes no
Level 2 yes yes no no
Held 3 yes no no no
4 no no no no

Table 3. Lock Compatibility Matrix for IRLM

Level Requested
2 3 4 6 8
2 yes | yes | yes yes no
Level 3 yes | yes | no no no
Held 4 yes | no | yes no no
6 yes | no no no no
8 no | no no no no

Private Attribute

The IRLM includes a capability for locks to be compatible within a subsystem but incompatible across
different subsystems. Thisis done by using the private attribute with alock. The private attribute is used only
with the IRLM and with a data sharing environment. If the private attribute isincluded in alock request, the
lock will not be granted if there is aholder of the lock in another IMS subsystem. The holder may be at any
lock level and the requestor may be at any level. This allows the lock manager to grant concurrent lock
requests within a subsystem while preventing concurrent holdersin different subsystems.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 4

Sync Points

The length of time that locks are held by a program affects the performance of other programs requesting the
locks. All locks held by a program are released when a synchronization point is reached. Synchronization
points are usually called “sync points’ and sometimes called “commit points’. Some locks are released at
other times, but frequent sync points are usually needed to provide good system performance. A sync point
occurs when an application program commits the work that it has done. Sync points are created by the
conditions shown in the following table.

Table 4. Sync Points

Program Type Sync Point Condition
GU to IOPCB with MODE=SNGL
IMSMPP CHKP cdl

Program termination

GU to IOPCB with MODE=SNGL
IMS Message-driven BMP CHKP cdl
Program termination

CHKP call
IMS Non-message-driven BMP | SYNC call
Program termination

GU to IOPCB with MODE=SNGL

IMS FP EMH (IFP) program CHKP call

IM STransaction.commit()
IMSIMP GU to IOPCB with MODE=SNGL
Program termination

IM STransaction.commit()
IMS JBP IM STransaction.checkpoint()
Program termination

Term command or call

CICStask CICS sync point
Transaction termination
ODBA thread RRS Commit (ATRCMIT or SRRCMIT)

A GU to the IOPCB with MODE=MULT does not create a sync point. Sync points are created for
MODE=MULT applications by program termination, CHKP calls, or Java IM STransaction commit().

Abends and ROLL, ROLB, and ROLS Calls

Locks are also released by application program abends and ROLL, ROLB, and ROLS calls.

In IMS online subsystems the abend of an application program results in IMS backing out its database updates
and releasing its locks.

Abends of batch (DLI or DBB) jobs which participate in block level data sharing may be dynamically backed
out. Thisonly occurs when the BKO=Y parameter is specified, aDASD log isused, and the abendisan IMS
pseudo abend. When dynamic backout isinvoked for abatch job all of itslocks are released. If dynamic
backout is not invoked, the locks are released by the Batch Backout (DFSBBOOQO) utility.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 5

The ROLL, ROLB, and ROLS calls may be used to either abend an application program or backout some or
al of itswork. The ROLL call creates a U0778 abend. The ROLB call backs out all database updates since
the last commit point and returns control to the application program. All locks are released by this processing.

The ROLS call may be used to back out to the last commit point or to an intermediate point which was set by a
SETSor SETU call. When the backout isto the last commit point, all locks are released. When the backout is
to an intermediate point, no locks are released. In this case, IMS does not have information about which locks
are no longer needed. Database record locks and block locks that were required for the backed out updates
might still be required since they may have been obtained for processing before the back out point.

Deadlocks

Occasionally, lock requestors become deadlocked. This happens when two requestors are waiting on each
other. The following example illustrates such a situation.

Program A Program B
1. Lock X level 3 *

2. Lock Y level 3

3. Reguest lock X level 3
WAIT

4. Requestlock Y level 3
WAIT
DEADLOCK

Figure 1. Deadlock example
1. Program A requests alock on resource X at level 3. Thelock is granted.
2. Program B requests alock on resource Y at level 3. Thelock is granted.

3. Program B requests alock on resource X at level 3. Thelock regquest can not be granted because program
A aready holdsthelock at level 3. Program B must wait.

4. Program A requests alock on Resource Y at level 3. Thelock request cannot be granted because program
B aready holdsthelock at level 3. Program A must wait.

Since both are waiting, neither will give up the locks they hold. Special action is required by the lock manager
to resolve this deadlock. The lock manager, either Pl or IRLM, will detect the existence of a deadlock. When
oneisfound, one of the participantsis selected to be the victim. Its updates are backed out and itslocks
released. Thisallows the other participant in the deadlock to continue. The backout and release of locksis
done by either abending the program or issuing an internal ROLB call. Some deadl ocks involve more than
two programs and, possibly, more than two resources. More information on deadlocks is available under
“Deadlocks’ on page 35.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 6

Deadlock resolution has an interesting implication about the acquisition of locks during backout. Backout
processing never requires new locks. If it did, a backout would be exposed to creating a deadlock. Thisis not
allowed since backouts are used to resolve deadlocks and a deadlock created during the resolution of another

deadlock would be very difficult to handle.

© IBM Copyright, 2009 Version 8/4/2009

http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM

7

Full Function Locking
This section documents the locks used with full function databases.

Database Record Locks

As mentioned in the Locking Overview section above, the basic item locked for full function databasesis a
database record. The database record isidentified in different ways for the different access methods. The
following table shows the resources that are locked.

Table 5. Full Function Database Record Locks
Access Method L ock Resource

HISAM Hashed key of root segment
HIDAM and RBA of root segment
PHIDAM Hashed key of root segment
;'EDAA':"M""”d RBA of RAP

Theresource that is locked is the value in this table plus an identification of the database and database data set.

For HISAM, IMS hashes the key of the root segment. This produces a resource name that islocked. There are
millions of possible values that the hashing algorithm produces. This tends to minimize the possibility of
different keys hashing to the same value and producing lock conflicts.

For HIDAM and PHIDAM, the RBA of theroot is always used to identify the database record. The root
segment resides in the prime HIDAM or PHIDAM database, not theindex. The RBA isfrom this prime
HIDAM or PHIDAM database. There are times when the hashed value of the key of the root segment is also
used. Thisisthekey intheindex. Locking of the hashed key occurs when IMSis either inserting a root
segment or erasing it. These are the only times that changes are made to the index. When arecord is being
inserted into or deleted from the index, IMS locks the hashed key to prevent two programs from adding or
deleting the same root segment concurrently.

IMS locks the RBA of the Root Anchor Point (RAP) from which the root is chained for HDAM and PHDAM
databases. Since multiple roots may be chained from the same RAP, thisisreally alock on one or more
database records. When oneroot islocked, all the roots on the RAP chain are locked.

The level for alock on a database record depends on the processing option (PROCOPT) of the PCB used for
the call that acquires the position in the record. If the PROCOPT allows updates, the lock is acquired at Pl
level 3or IRLM level 6. If the PROCOPT does not alow updates, the lock is acquired at Pl level 2 or IRLM
level 4. Since Pl level 3 (IRLM level 6) is not compatible with other Pl level 3 or 2 (IRLM level 6 or 4)
holders, updaters do not share a database record. Since Pl level 2 (IRLM level 4) is compatible with other PI
level 2 (IRLM level 4) holders, multiple non-updaters may share a database record.

A program may have update sensitivity to a database, but lock a database record at Pl level 2 (IRLM level 4).
This occurs when the PSB has multiple PCBs referencing the same database. The level of the lock request is
determined by the PROCOPT of the PCB used for the call.

Database record locks are released either when position is moved to another database record, when a sync
point is reached, or when a RLSE call isissued. The RLSE call isdiscussed below. If no updates are done

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 8

while the program is positioned in the database record, the lock is released when position for the PCB is
moved to another database record. There is one exception to thisrelease. InaBLDS environment with a
PROCOPT which includes E, the lock on the database record is not released until the application sync point is
reached. Moving position to another database record will not release the lock in this case.

In a Pl locking environment the database record lock may be demoted from level 3 to level 1 when an update
has been done and position is moved to another database record. This depends on the access method being
used and the segment which is updated. If HISAM is being used and there are no updates in the primary
logical record, that is, in the logical record holding the root, the lock is demoted to level 1. If there are any
updates in the primary logical record, the database record is retained at level 3. For other access methods if the
root is updated, the lock isretained at level 3, otherwiseit isdemoted to level 1. Database record locks held at
level 1 or 3 are kept until async point isreached. The use of thelevel 1 locks on database recordsis explained
below under the discussion of segment locks.

The RLSE call may be used to release locks not protecting updates. When the call isissued using afull
function PCB, only the locks for that PCB arereleased. Typically, thisisthe lock for the current database
position. If the PCB references alogical database or a secondary index, there may be multiple database record
locks for the current position. RLSE callsthat use a Fast Path PCB do not release any full function locks.

HALDB Online Reorganization always requests the database record lock at Pl level 3 or IRLM level 6. It
processes a partition sequentially and requests the locks on a set of database records at atime. Thisisaunit of
reorganization. It releases these locks at the end of each unit of reorganization.

Database record locks are also used for locking with the Q command code when the IRLM is the lock manager.
Thisis explained on page 15 under "L ocks for the Q Command Code and Get Hold Calls."

Database Record Lock Summary

Purpose: Controls access to database records. Database record locks prevent access to uncommitted updates
or to database records for which the Q command code is used.

L ocking environments: Online systemsand BLDS

Resour ce locked: Database record. For HISAM and secondary indexes thisis a hash value for the key. For
HIDAM and PHIDAM thisisthe location of the root segment. For HDAM and PHDAM this s the location of
the RAP from which the root segment is chained.

Level: Thelevel depends on the PROCOPT for the PCB used by the call. PROCOPTSs allowing updates use
Pl level 3or IRLM level 6. Pl locks at level 3 may be demoted to level 1 when position is moved to another
record. PROCOPT=G usesPlI level 2 or IRLM level 4.

Requested: When database record isfirst accessed.

Released: If the database record is not updated, the lock is released when position for the PCB is moved to
another database record. InaPl locking environment when the root segment (or the primary logical record for
HISAM) is not updated, the lock is released when position is moved to another record even when a dependent
segment in the database record is updated. Otherwise, the lock is released at application sync point.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 9

Segment Locks

The choice of lock managers, Pl or IRLM, affects locking for dependent segments. If the Pl lock manager is
used, individual segments are locked when they are updated. Other segments in the database record may be
accessed when the updating program moves its position to another database record. If the IRLM is used,
individual segments are not locked, instead, the lock on the database record is held until the updates are
committed. Thislocks the entire database record.

Therest of the discussion of the segment locks applies to installations using the Pl lock manager.

Locks for segment updates are always obtained at level 3. This prevents two programs from updating a
segment concurrently. The locking of root segments and dependent segments are handled differently. Roots
are locked with the database record lock. Thisworks well since there is a one-to-one relationship between
roots and database records. Dependent segments are locked by their RBA or relative record number (RRN).
Locks for segment updates are always held until a sync point is reached.

The following table shows the resources that are locked for segments.

Table 6. Full Function Segment Locks
Access M ethod L ocked Resource
Hashed key of root segment
HISAM RRN of overflow logical record
HIDAM and
PHIDAM RBA of segment
HDAM and RBA of RAP for roots
PHDAM RBA of segment for dependents

For HDAM, PHDAM, HIDAM, and PHIDAM, the RBA of the dependent segment is used to identify the
segment when the lock request is made.

HISAM database segments are not individually locked. Instead, IMS treats the primary logical record as aroot
segment and the overflow logical records as dependent segments. A change to any segment in the primary
logical record is protected by the lock of the database record. A change to any segment in an overflow logical
record causes the overflow logical record to be locked. Overflow logical records are identified by the database,
data set, and RRN in the data set.

PI level 1 locks for database records have a special use. They are used in conjunction with segment locking in
a Pl locking environment. When a segment is updated, its database record must be locked at level 3. When
position is moved to another database record, IM S sometimes demotes the lock on the database record to level
1. Thisisexplained abovein the discussion of database record locks. Thelevel 1 lock isused as an indicator
to other programs which may establish position in the database record. If the record islocked at level 1, it
indicates that thereis at least one segment in the record that has been updated. The second program must see if
a dependent segment is locked before it can accessit. If the database record is not locked, the second program
does not have to check for locks of any dependent segments before accessing them. When IMS asks for alock
on a database record, an indication of whether or not the database record islocked at level 1 isreturned as part
of thelock request. If itislocked at level 1, IMS must test to seeif each of its dependentsis locked before
accessing them. It does this with a special type of request which is sometimes called atest enqueue (TENQ).
If adependent islocked at level 3, the test enqueue causes the requestor to wait. If itisnot locked, the test
engueue does not cause await. In either case, this test enqueue request does not cause the segment to be
locked.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 10

Segment locks are also used for locking with the Q command code. Thisis explained on page 15 under
"Locks for the Q Command Code and Get Hold Calls."

Segment Lock Summary

Purpose: Prevents access to updated dependent segments. It isonly used in a Pl locking environment.
L ocking environments: Online systems using the Pl lock manager

Resour ce locked: Segment. For HDAM, PHDAM, HIDAM, and PHIDAM thisisthe location of the segment.
For HISAM thisisthe location of the logical record in which the segment resides.

Level: Thelevel isawaysPl level 3.
Reguested: When a dependent segment is updated in a Pl locking environment.

Released: At application sync point.

Block Locks

Blockslocks are used only with BLDS. They are used to serialize updates to the same physical block by
different subsystems. These are locks on VSAM Cls or OSAM blocks. These block locks are typically
requested at IRLM level 4. Since IRLM level 4 is compatible with other level 4 requests, the level does not
prevent concurrent holders of the lock. Instead, a different mechanismisused. Thisisthe private attribute.
Block locks are always requested with the private attribute. The private attribute applies to the IMS subsystem,
not to the individual requestor. Multiple transactions or programs running in the same IM S subsystem may
hold the block lock concurrently. Transactions or programs running in different IM S subsystems cannot hold
the block lock concurrently. Thereis agood reason for this handling of block locks. Updaters of ablock in
the same IM S subsystem will never attempt to update the same part of ablock. The database record lock
preventsthis. They will be updating different database records in the same block. Since al programs and
transactions in one IM S subsystem use the same buffer pools, these updates will be done to the same copy of
the block. Thereisno need to serialize these updates. On the other hand, updates made in different IMS
subsystems use different buffer pools and, therefore, different copies of the block or Cl. These must be
seridlized. If they were not, updates from one system would overwrite the updates for another when the buffer
was written to disk.

All updatesto OSAM and VSAM ESDS data sets use level 4 locks. Thereis specia handling of block locks
for KSDSs. Replaces and inserts of logical recordsin aKSDS request alevel 4 lock. Deletes of logical
recordsin aKSDSrequest alevel 3lock. Level 3 locks are compatible with other level 3 requests, but
incompatible with level 4. This allows multiple concurrent deletes of records in the same KSDS CI by
programs in the same IM S subsystem. It does not allow concurrent deletes with inserts or replaces. Thisis
done to ensure that a backout of adelete will have space available in the Cl for the reinsertion of the logical
record. If inserts were allowed before the delete was committed, the space might not be available. The second
case of specia handling for KSDSsis used with CI/CA splits. When a Cl or CA split occurs, the lock request
for the Cl isupgraded to level 6. Thisisincompatible with all other levels which are used. It prevents any
other program or transaction from updating the ClI while the split occurs.

HALDB Online Reorganization requests block locks when BLDS is used for the reorganized database.
Obviously, the output data sets are updated and there are block locks for these blocks or Cls. There are also

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 11

updates to the input data sets and block locks are requested for them. The cursor iswritten in the second block
or Cl of theinput data set. Thereisablock lock for thisblock or Cl for every unit of reorganization. When
twin backward (TB) pointers are used with PHIDAM, the twin chain between roots must be maintained across
the input and output data sets. When pointers are updated in the input data set, block locks are requested for
their Cls or blocks. Block locks for HALDB Online Reorganization are released at the end of the unit of
reorganization.

Block Lock Summary

Purpose: Serializes updatesto an OSAM block or VSAM CI from different IMS subsystems. It alsoisused to
prevent concurrent inserts and del etes to the same KSDS CI within an IM S subsystem and to prevent CI/CA
splits concurrent with other updates to the same Cl.

L ocking environments: BLDS
Resour ce L ocked: The location of the OSAM block or VSAM CI.

Level: IRLM level 4isawaysused for OSAM and VSAM ESDSs. IRLM level 4 isused for KSDS record
inserts and replaces. IRLM level 3isused for KSDS record deletes. IRLM level 6 isused for CI/CA splits.

Attribute: The private attribute is always used.
Requested: When an update occurs for aVSAM Cl or OSAM block in a database using BLDS.

Released: At application sync point.

Busy Locks

IMS uses busy locks to serialize some activities to database data sets. These are OPENs, CLOSESs, new block
creations, and updates to KSDSs. New block creation is either the use of anew block at the end of an HDAM,
PHDAM, HIDAM, or PHIDAM database data set or the addition of a new logical record to aHISAM data set.
Thereisabusy lock for each database data set. The seriadization for OPENs and CLOSEs is done to ensure
that two programs are not trying to open at the same time. OPENs and CLOSEs will not occur when other
programs are accessing the database data set. New block creations are different. They are likely to occur
while other programs are using the data set. Before anew block is created, IMS asks for the busy lock on the
data set. Thisdoes not prevent other use of the data set but it ensures that only one program will be creating
new blocks at the end of a data set at any time. Busy locks for OPEN, CLOSE, and new block processing are
always requested at Pl level 4 or IRLM level 8.

Busy locks for KSDS updates are used to protect against updates to a Cl while a CI/CA splitisoccurring in a
block level data sharing environment. Even though different programs might be updating different recordsin a
KSDSCI, thereisapotential problem. A CI split due to the insert of arecord could cause other recordsin the
Cl to be moved to another Cl. This problem is avoided by serializing all updatesto Clswhileaninsertis
being processed. When aninsert to aKSDSis done, abusy lock at IRLM level 8 for the data set is requested.
Other updates to KSDSs request the busy lock at IRLM level 2 for the data set.

Busy locks are only held while processing of the KSDS update, new block, OPEN, or CLOSE is being done.
They are requested and released as part of one DL/I call or one operation.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 12

Busy Lock Summary

Purpose: Serializes opens and closes of database data sets. Serializes the creation of new blocks in database
data sets. Prevents updatesto aKSDSin one IMS system while a CI/CA split is being processed in another
IMS system in aBLDS environment.

L ocking environments: Online systems and BLDS

Resour ce L ocked: Database data set which isidentified by its DMB number and data set number.

Level: Pl level 4 or IRLM level 8isused for open, close, and new block creation. IRLM level 8 isused for
KSDSinserts. IRLM level 2 isused for KSDS updates other than inserts.

Requested: When a database data set is opened or closed or when anew block is created. In ablock level data
sharing environment, the lock is requested when an update to a KSDSis done.

Released: At the end of the operation.

Extend Locks

Extend locks are used for extending database data sets. Thisis adding new allocations. Extend locks are used
only with the IRLM for databases registered to DBRC with aSHARELVL of 1, 2, or 3. Thelocks are used to
serialize these extensions between IMS systems. Since open and closes should not be done while an extension
isin process by another subsystem, the extend lock is also acquired when a data set is opened for update or
closed after an open for update. Extend locks are only used in ablock level data sharing environment. The
locks are requested at IRLM level 2 with the private attribute. The private attribute prevents requestors from
different IM S subsystems from holding the lock concurrently.

Extend Lock Summary

Purpose: Serializes extensions of database data sets across multiple IM S subsystems.

L ocking environments: BLDS and database level data sharing using IRLM

Resour ce L ocked: Database data set which isidentified by its DMB number and data set number.
Level: IRLM leve 2isaways used.

Attribute: The private attribute is aways used.

Requested: When a database data set is extended, opened, or closed.

Released: At the end of the extend operation.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 13

Data Set Reference Locks

Data set reference locks are used only with the IRLM for databases registered to DBRC with a SHARELVL of
1, 2, or 3. The data set reference lock for a database data set is held by all IMS subsystems which have adata
set open. These locks are not used to serialize access to anything. Instead, they are used in conjunction with
notifications. For example, when an IM S subsystem extends a data set, it sends a notification to other IMS
subsystems which have the data set open. It does this by sending the notification through the IRLM with a
reference to the data set reference lock. The IRLMs then send the notification to all holders of this data set
reference lock. Since the data set reference lock is held by all IMS subsystems which have the data set open,
all of these IMS subsystems receive the notification.

Data Set Reference Lock Summary

Purpose: Used for routing notifications to IM S subsystems which have a data set open

L ocking environments: BLDS and database level data sharing using IRLM

Resour ce L ocked: Database data set which isidentified by its DMB number and data set number.
Level: IRLM leve 2isaways used.

Requested: When a database data set is opened

Released: When a database data set is closed

Command Lock

The command lock is requested by each IMS subsystem using an IRLM. It isrequested when the IMS
subsystemis started. Thelock isrequested at asharelevel. Itisheld until the subsystem terminates. The lock
is not used to serialize access to anything. Instead, it is used in conjunction with notifications that are not
associated with adatabase. For example, type-1 commands with the GLOBAL parameter are sent between
IMS systems by using notifications to holders of this lock.

Command Lock Summary

Purpose: Used for routing notifications to IM S subsystems
L ocking environments: IMS subsystems using the IRLM
Resour ce Locked: A "dummy" resource

Level: IRLM leve 2isaways used.

Requested: When an IMS subsystem is started

Released: When an IMS subsystem is terminated.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 14

Other Locking

Locks for the Q Command Code and Get Hold Calls

The use of the Q command code causes additional locking. The Q command code may be specified when
accessing a segment. It ensures that the retrieved segment will not be updated by another program when
position is moved to another database record. The Q command does not prevent other application programs
from retrieving the segment. Locking for the Q command code differs between the Pl lock manager and the
IRLM. When the Pl lock manager is used and the Q command code is specified, IMS gets the lock for the
segment at level 2. For HDAM and PHDAM roots, thisisalock on the RAP. Of course, if the application
program also updates a dependent segment, the lock is promoted to level 3. The Q command code may be
released by aDEQ call. The DEQ call will cause IMS to release the level 2 lock on segment. If aDEQ call is
not used, the locks for the Q command code are released at sync point time. When the IRLM is used
individual segments are not locked. Instead, the Q command code causes the database record to be held at
IRLM level 4 until sync point time or aDEQ call isissued. If the application aso updates a segment in the
database record, the level 6 lock is held until sync point.

The use of the Q command code affects the processing of get hold cals. Since the Q command code is used to
prevent updates of segments, it must prevent get hold calls from retrieving them. With Pl the lock on the
segment is used for this. With the IRLM the lock on the database record is sufficient. If thereareno Q
command codes used, IM S does not need to make a lock reguest when retrieving a dependent segment unless
the database record is locked at level 1 and the Pl lock manager isused. If Q command codes are used with
the Pl lock manager, IMS must see if a segment is locked when processing aget hold call for it. The following
describes the processing with PI. When a Q command code is issued for a database, IM S turns on an indicator
associated with the database. When thisindicator is on any get hold call for the database will cause a special
lock request to beissued. Thislock request is similar to the one used for accessing dependent segmentsin
database records locked at level 1. It is sometimes called atest enqueue (TENQ). Thelock request for get
hold callstest to seeif the dependent segment islocked at Pl level 2. If itis, the get hold call waits. If it isnot
locked, the requestor does not have to wait. In either case, the get hold call does not cause the segment to be
locked. Only update calls and Q command code calls cause dependent segmentsto be locked. As mentioned
above, the indicator that Q command codes have been used is associated with a database. Each database has
oneindicator. Aslong astheindicator isturned on, al dependent segment get hold requests in a database
require the test for the level 2 lock. Theindicator isturned off only when there are no application programs
scheduled with intent against the database.

When EXEC DLI commands are used. Q command codes and get hold calls are not explicitly used. They are
implied by certain commands. The use of either the LOCKED or LOCKCLASS option with aget function in
an EXEC DLI command is equivaent to the use of aQ command code with acall. With EXEC DLI all get
processing implies get hold processing. That is, each EXEC DLI command which specifies afunction of GN,
GNP, or GU iseguivaent to aget hold call. If Q command codes or LOCKED or LOCKCLASS options are
used in the system, the locking for EXEC DLI gets calls will be affected as explained above for Q command
codes and get hold calls.

Lock Summary Table

The following table summarizes the locks used for full function databases, the levels at which they are held,
and the use of each level.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 15

Table 7. Full Function Locks Summary
Level .
Lock Type P IRLM M eaning
1 N/A Updated dependent segment in database record
Non-update program positioned in database record or
Database Record 2 4 Q command code held for root (Pl) or any segment in database
record (IRLM)
3 6 Update program positioned in database record or Updated root
segment
2 Q command code held for segment
Segment 3 N/A Updated segment
3 Delete of KSDS record
Block N/A 4 Update of OSAM block, update of ESDS Cl, or insert or
replace of KSDS record
6 CI/CA split for KSDS
5 1 2 KSDS non-insert operation
usy 4 8 OPEN, CLOSE, new block, or KSDS insert being processed
Extend N/A 2 Data set extension
Data Set Reference N/A 2 Data set open

Logical Relationships

The use of logical relationships affectslocking. IMS locks database records in physical databases, but logical
database records may be comprised of multiple physical database records from one or more physical databases.
When alogica database record is accessed, IM S locks the physical database records as it accessesthem. The
following is an example of thislocking.

Physical Databases Logical Databases
A “Cc|uLp A
Lc| B D B| C
Database X Database Y D
LC - Logica Child LP- Logical Parent Database Z

Figure 2. Logical Relationship Example 1

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 16

If aprogram using logical database Z gets segment A, it will get a database record lock for database X. If it
gets segment BC, it will get a database record lock for database Y.

The following figure illustrates a dightly more complicated case and the processing needed to lock the
database records.

Physical Databases Logical Database
E
E G
H F I
F lLc
I I
Database M » | | LP H J
J G
LC-Log. Child
LP-Log. Parent Database N Database P

Figure 3. Logical Relationship Example 2

If aprogram using logical database P gets segment E, it will get a database record lock for database M. If it
gets segment FI, it will get a database record lock for database N. This database record lock is associated with
root segment G.

IMS may need to access other segments in the database containing the destination parent (segment). This
may be required so that IMS may lock the database record. The processing depends on the type of pointers
that are used.

* If symbolic pointers are used for the logical relationship, the root is traversed to get the destination parent
segment and the data needed to lock the database record is found on the way to the destination parent.

* If direct pointers are used for the logical relationship, IMS may have to find the resource to lock after
reaching the destination parent segment.

- If HIDAM isused for database N, the root’s RBA must be determined. Thisisthevaluein
the physical parent pointer of the root’s child (segment H). Physical parent pointers are used to do this. In
our example the physical parent pointer in segment | would be used to reach segment H. Thevaluein the
physical parent pointer in segment H would be the RBA of segment G. This RBA is used to lock the
database record. PHIDAM simplifiesthis processing. The HALDB extended pointer set (EPS) in
segment F contains the RBA of segment G. Thisis used to lock the database record.

- For HDAM databases the RAP must be found. If the concatenated key of the destination
parent (segment 1) is stored in the logical child (segment F), the root (segment G) key isused asinput to

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 17

the randomizing routine. The routineis used to find the RBA of the RAP. If the concatenated key of the
destination parent is not stored in the logical child segment, physical parent pointers are used to access the
root. Theroot isthen used to find the RAP. PHDAM simplifiesthis. The HALDB extended pointer set
(EPS) in segment F contains the RBA of the RAP. Thisisused to lock the database record.

Asthe previous discussion illustrates, decisions to use symbolic keys or direct pointers and whether or not to
store the concatenated key in the logical child affect the processing that IMS must do to lock database records
for HDAM and HIDAM databases. These considerations do not apply to PHDAM and PHIDAM databases.

Secondary Indexes

Secondary indexes are specia databases used for alternative accessing of other databases. There are specia
locking considerations for these secondary indexes.

The following figure illustrates a database with a secondary index. Segment C is the source segment. That is,
the secondary index is based on datain segment C. Segment B is the target segment, that is, the secondary
index points to segment B.

S A
Secondary R
Index 1 B
C
Database

Figure 4. Secondary Index

When an entry is added or deleted in a secondary index, alevel 3 database record lock on the secondary index
isobtained. Thelocked resource isthe key of theindex entry and it is held until a sync point isreached. This
is the same way that HISAM databases are locked. If a source segment for a secondary index is replaced and
the source field is changed, two changes must be made to the secondary index. One secondary index record
must be deleted and another must be inserted. Locks on both of these secondary index database records must
be obtained.

Updates to secondary indexes are generally made due to changes in source segments of primary databases;
however, secondary indexes also may be processed as databases. When thisis done, locking for themisthe
same as for HISAM databases.

When a secondary index is used to access a database by an alternate processing sequence (PROCSEQ=is
specified on the PCB), the database records in the primary database are locked. The same locking that would
occur if the database records were accessed through the root of the primary database is done. The secondary
index may also be locked. This depends on the pointersin the secondary index and the primary database
organization. No lock on the secondary index is requested for some cases. Thisistrue for symbolic pointers
to HDAM, for direct pointersto HIDAM roots, and for all HALDB secondary indexes. For all other cases

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 18

(direct pointersto HDAM, direct pointers to HIDAM dependents, and symbolic pointers to HISAM and
HIDAM), the secondary index entry’ s database record lock is obtained.

A secondary index may aso be used to process qualificationsin a segment search argument (SSA). This may
be done when INDICES = is specified on the SENSEG statement in the PSB. Thereis no locking of the
secondary index entries when this use is made of theindex. Locking of the secondary index is not required
because the database record lock in the primary database is held. Since the secondary index can only be
modified by changing its source segment in the primary database, the lock on the primary database record is
sufficient.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 19

Fast Path Locking

Fast Path Lock Manager

IMS Fast Path databases have their own lock manager which is used in conjunction with either the Pl lock
manager or the IRLM. The Fast Path lock manager is used only for Data Entry Databases (DEDBS) and Main
Storage Databases (MSDBs). When alock for one of these databases is needed, a request is made to the Fast
Path lock manager. If thelock can be granted, no request is made to the Pl lock manager or the IRLM. This
tends to save instructions because the Fast Path Lock manager is specialized for locking Fast Path resources. If
the lock request must wait, the Fast Path lock manager must check to see if a deadlock situation exists. Sincea
deadlock could include a full function database resource, the other lock manager, either Pl or the IRLM, must
be consulted. The other lock manager does all of the deadlock detection processing. To do this processing, it
must be aware of all the waiters for locks and all the holders of locks on which other programs are waiting. To
give the other lock managers this information, the Fast Path lock manager must do more than just make the last
lock request. It must first request the lock for the current holder or holders of the lock. After these requests
are processed, the Fast Path Lock manager then requests the lock for the new requestor. This provides the
other lock manager with all of the lock information to do deadlock detection processing.

Thereis an exception to the use of the Fast Path lock manager. It isnot used for DEDBs with block level data
sharing. BLDS requires that the locks be managed across multiple IMS subsystems. BLDS requiresthe IRLM
to manage al locks. This means that when DEDBSs are registered with SHAREL VL (2) or SHARELVL(3) and
the IRLM is used, the Fast Path lock manager will not be used for locks on these databases.

DEDB Locking
Cl Locks

When Data Entry Databases (DEDBS) are used, locks are obtained on Clsin the DEDB Areadata sets. When
adatabase record is entered, the CI holding the RAP islocked. When the root and direct dependentsin the
database record are accessed, additional Cls may have to be processed and each of these Clsislocked. Cls
containing sequential dependent segments are not locked. For the Cls containing roots or direct dependent
segments, Pl level 1 (IRLM level 2) locks are used when the PROCOPT in the PCB does not alow updates. |f
updates are allowed, Pl level 4 (IRLM level 8) locks are used. These locks are not released when position is
moved to another database record. They are released or their level is modified at one of three other times.

1. If the Fast Path buffer stealing facility isinvoked it may release alock. The buffer stealing facility is
invoked when the program has used all of its normal buffers. The facility will keep a Cl locked at Pl level
4 (IRLM level 8) if any of the following conditions are met.
e TheCl has been modified
e Theroot of the current position isin the Cl and the processing intent (PROCOPT) allows updates.
o If deleteor insert of rootsis permitted and the root of the database record which precedes the current

position on the RAP chainisin the CI.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 20

The facility will keep aCl locked at Pl level 1 (IRLM level 2) if it contains the root of the current position
and the processing intent does not allow updates. The facility releases locks for all other Cls.

2 If the Cl is not updated, the lock on the Cl is released at sync point time.
3. If the Cl isupdated, itslock is released after it iswritten as part of output thread processing.

DEDB Cls are identified to the lock manager by their RBA, database number, and area number. Thereisaso
an indicator that signifiesthat thislock isa Cl lock.

HSSP and UOWs

When High Speed Sequential Processing (HSSP) is used, the locking for DEDBs s atered. HSSP requests do
not lock individual Cls except those in independent overflow (IOVF). Instead, they lock units of work
(UOWSs). This substantially reduces the number of lock requests. To provide integrity, other concurrently
running programs must also lock the UOWSs for the DEDB Area against which HSSP is being run. So when
HSSP is being used, HSSP requests lock UOWSs at level 4 but do not lock Clsin the root addressable part, and
other requests using the DEDB lock both Cls and UOWSs in the Area. These requests lock the UOWSs at Pl
level 1 (IRLM level 2). Pl level 1 (IRLM level 2) locks on UOWs are released when the holder has released
all of itslocks on Clsinthe UOW. HSSP' s Pl level 4 (IRLM level 8) UOW locks may be thought of as
substitutes for locks on Clsin the UOW. These UOW locks are released when HSSP would have released all
of itslocks on Clsin the UOW if it had obtained locks on Cls. If any Cls have been updated, the lock on the
UOW isreleased at sync point time.

UOW locking is aso used by the preload process for DEDB V SO areas when shared VSO is not used. During
the preload process, Cls are loaded into the address space by UOW and UOW locks are used for integrity.
With shared VSO, Cls are loaded into the Coupling Facility structure one Cl at atime and CI locking is used
for integrity.

DEDB UOWs are identified to the lock manager by their database number, area number, and RBA. Thereis
also an indicator that signifies that thisisa UOW lock.

The following table summarizes DEDB locks.

Table 8. DEDB Locks Summary

Level
Resource Pl | IRLM Released
without VSO 4 8 Output thread
Root of DDEP Cl Update I"ith vso 4 8 | Syncpt.
No with update PCB 4 8 Buffer steal or sync pt.
update with non-update PCB 1 2 Buffer steal or sync pt.
Seq. Dep. CI No locks
Sync pt. if no updates
HSSPrequest 4 8 I"Output thread if updates
uow , . When locks on Clsin UOW
Non-HSSP request with HSSP active 1 2 el
Non-HSSP request with HSSP not active No locks
© IBM Copyright, 2009 Version 8/4/2009

http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 21

FLD Call Locking for DEDBs

The locking of DEDBs for FLD calls sometimes depends on the VIEW= specification in the PSB.
Unfortunately, the IMS publications are incomplete in this area. They document VIEW=MSDB, but do not
document VIEW=MSDBL. VIEW=MSDBL indicates that alock should be requested during FLD call
processing. VIEW=MSDB indicates that alock should not be requested during FLD call processing. In either
case, alock isrequested during sync point processing.

When aFLD call with VERIFY is used for DEDBS, the ClI may be locked twice. First, if VIEW=MSDBL is
specified in the PCB, the Cl islocked at Pl level 1 (IRLM level 2) for the duration of the call. Thislock is
released as part of call processing. Second, the Cl islocked at Pl level 3 (IRLM level 6) and then released
during sync point processing. The lock during sync point processing does not depend on the VIEW=
specification.

When a FLD call with both VERIFY and CHANGE is used, the ClI may be locked twice. First, if
VIEW=MSDBL is specified in the PCB, the Cl islocked at Pl level 1 (IRLM level 2) for the duration of the
call. Thislock isreleased as part of the call processing. Second, the Cl islocked at Pl level 4 (IRLM level 8)
and then released during sync point processing. The lock during sync point processing does not depend on the
VIEW= specification.

When aFLD call with CHANGE but without a VERIFY specification is used, the Cl is not locked during call
processing but islocked at Pl level 4 (IRLM level 8) and then released during sync point processing

Table 9. FLD Call Locking for DEDBs Summary
Lock Level .
CALL VIEW PI IRLM Lock Duration
1 2 During call
FLD/VERIFY MSDBL 3 6 During sync point
MSDB or not specified 3 6 During sync point
1 2 During call
FLD/VERIFY/CHANGE MSDBL 4 8 During sync point
MSDB or not specified 4 8 During sync point
FLD/CHANGE MSDB, MSDBL, or not specified 4 8 During sync point

Fast Path converts some GU callsto FLD calls. This occurs when VIEW=MSDB or VIEW=MSDBL is
specified in the PCB and the database isroot only. If non-shared VSO is aso used, thereis no lock during the
call with VIEW=MSDB. Locking is only done during sync point processing. Without VSO, with shared VSO,
or when VIEW=MSDBL is specified, the lock is aso held during the call, but released at the end of the call.

In al casesthe lock is held during sync point processing.

Q Command Code and DEQ Call

The Q command code may be used with DEDBS. It causes alock on a Cl to be held until sync point or aDEQ
call releasesthelock. Thelevel of the lock depends on the PROCOPT of the PCB used for the call. That
means that the level of the lock for the Cl is the same as it would be without the Q command code. The
difference is that the lock will not be released by Fast Path's "buffer stealing” routine. Buffer stealing occurs
when the program runs out of buffers. IMS examines the Clsin the programs Fast Path buffers and "steals"
the buffers whose Cls are no longer required to be in the buffers. It also releases the locks on these Cls. The
Q command code keeps the buffer holding a Cl from being stolen and the lock on the CI from being rel eased.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 22

The Q command code istypically used to ensure that no change is made to a segment while atransaction is
running.

The DEQ call may beissued withaDEDB PCB. Thiswill cause IMS to release the program’'s DEDB locks
except those for atered Cls and for Cls protecting the current root position. It will release the locks which
were obtained with the Q command code unless they are altered or are protecting a current root position. Even
though the call isissued with a specific Fast Path PCB, locks acquired using other Fast Path PCBs may be
released.

Segment Level Locking

Fast Path DEDBs have an exception to their normal locking when several conditions are met. This exception
is called segment level locking. It isused only when the following conditions are met:
o DEDB isaroot-only database
Areauses VSO, but does not use shared VSO
Root is defined as fixed length
Segment edit/compression routine is not defined
PROCOPT=G or PROCOPT=GR is used

Segment level locking is designed to provide greater concurrency for accessesto these areas. It provides
concurrency that is similar to that for MSDBs. This facilitates the conversion of MSDBsto VSO DEDBs.

With segment level locking the Cl is still locked, but it islocked at Pl level 1 (IRLM level 2) even with
PROCOPT=GR. In addition to the CI lock, the individual segment islocked. For get hold (GHU and GHN)
calls, the segment lock is at Pl level 4 (IRLM level 8). For get calls without hold (GU and GN), the segment
lock isat Pl level 1 (IRLM level 2) with one exception. When PROCOPT=GR is used and VIEW=MSDB is
not specified, get calls without hold (GU and GN) lock the segment at Pl level 4 (IRLM level 8).

FLD calls get the segment lock at Pl level 4 (IRLM level 8) and release it as part of the call processing. This
lock isacquired and released again as part of sync point processing.

When multiple Cls are read to find the root which satisfies the call, each CI islocked. With segment level
locking the locks on Cls which do not contain the root satisfying the call are released at the end of the call.

Changing Lock Ownership

When updates to DEDBs are made by an application, the ownership of the DEDB locksis changed at the end
of sync point processing. The ownership is transferred from the application program (PST) to the output
threads which write the updates. The locks are released at the end of output thread processing. Thisis done
because the PST will request new locks which are associated with the next transaction that it processes. The
locks from the previous unit of work cannot be released before the updates are written by output thread
processing. This change of ownership will be seen in any lock traces which are done during this processing.

MSDB Locking

The locks on Main Storage Databases (MSDBs) are on the segments. Since there are no dependent segments
inan MSDB, thisis equivalent to locking a database record. The locking scheme for MSDBs is different from

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 23

that for full function or DEDB databases. Thereis generally less locking associated with calls against MSDBs
and much of the locking is postponed until sync point processing is done.

When a get hold call is used to access an MSDB, the segment islocked until sync point time. If the processing
intent (PROCOPT) includes delete or replace, a Pl level 3 (IRLM level 6) lock isrequested. If the processing
intent does not include delete or replace a Pl level 1 (IRLM level 2) lock isrequested.

When a get call without ahold is used to access an MSDB, the segment islocked at Pl level 1 (IRLM level 2)
during the call. Thelock isreleased as part of the call processing.

When aREPL or DLET call isused for an MSDB, a Pl level 4 (IRLM level 8) lock is requested during sync
point processing. The segment is already locked at Pl level 3 (IRLM level 6) due to the get hold call that
preceded the update. The Pl level 3 (IRLM level 6) lock ispromoted to a Pl level 4 (IRLM level 8) lock.

When an ISRT call isused for an MSDB, a Pl level 3 (IRLM level 6) lock isrequested. Thislock is promoted
to Pl level 4 (IRLM level 8) during sync point processing.

FLD calls may be used with MSDBs to verify the values of fieldsin a segment and to change them. A FLD
call may have any mixture of verify and change operations for multiple fields in one segment. In the following
discussion, FLD/VERIFY isused to indicate a FLD call with verify but no change operations. FLD/CHANGE
isused to indicate a FLD call with change but no verify operation. FLD/VERIFY + CHANGE is used to
indicate a FLD call with both verify and change operations.

When aFLD/VERIFY cal isused, the segment islocked twice. First, the segment islocked at Pl level 1
(IRLM level 2) for the duration of the call. Thislock is released as part of call processing. Second, the
segment islocked at Pl level 3 (IRLM level 6) during sync point processing.

When aFLD/VERIFY + CHANGE call isused, the segment islocked twice. First, the segment islocked at Pl
level 1 (IRLM level 2) for the duration of the call. Thislock isreleased as part of the call processing. Second,
the segment islocked at Pl level 4 (IRLM level 8) during sync point processing.

When a FLD/CHANGE call without a VERIFY specification is used, the segment is not locked during call
processing but islocked at Pl level 4 (IRLM level 8) during sync point processing

MSDB segments are identified to the lock manager by the address of a control block associated with the
segment and its MSDB serial number. The control block is either the segment prefix or the ECNT.
The following table summaries MSDB locks.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 24

Table 10. MSDB Locks Summary

Lock Level :
Call Type Pi IRLM Lock Duration
without PROCOPT =R or D 1 2

Get Hold From call through sync pt.

with PROCOPT =R or D 3 6

Get without Hold 1 2 During call
REPL 4 8 During sync pt.
DLET 4 8 During sync pt.

3 6 From call until sync pt.
ISRT - Ynep

4 8 During sync pt.

1 2 During call
FLD/VERIFY -

3 6 During sync pt.

1 2 During call
FLD/VERIFY + CHANGE :

4 8 During sync pt.
FLD/CHANGE 4 8 During sync pt.

RLSE Call

The RLSE call provides away to release locks without sync point processing or committing any updates.
When the RLSE call is used with a Fast Path PCB, all Fast Path locks which are not protecting updates are
released. These locks may be for multiple Fast Path databases. Full function locks are not released when a
Fast Path PCB is referenced.

Area Lock

The arealock is used to serialize severa activities for Fast Path DEDB areas. These include open, close,
sequential dependent (SDEP) inserts, SDEP utility processing, and many commands. The commands include
/START AREA, /START DB, /STOP AREA, /STOP DB, /STOP ADS, /DBR DB, /DBR AREA, and the
equivalent UPDATE commands.

Area Lock Summary

Purpose: Used to serialize certain activities against an area
L ocking environments: IMS subsystems with Fast Path
Resource Locked: An identification of the area

Level: Pl level 3or IRLM leve 6

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 25

Requested: When the operation begins

Released: When the operation ends

Multiple Area Structure Lock

The multiple area structure lock is used to serialize connect, disconnect, and deletion of structure entries for a
multiple area structure with shared VSO. Thelock is requested at the read level (ILRM level 2) when IMS
connects to or disconnects from a multiple area structure. Thelock is requested at the exclusive level (IRLM
level 8) when IMS deletes entries from a multiple area structure.

Multiple Area Structure Lock Summary

Purpose: Used to serialize connect, disconnect, and entry deletions for a multiple area structure
L ocking environments: IMS BLDS systems using multiple area structures

Resource Locked: An identification of the structure

Level: IRLM levels2 and 8

Requested: When the operation begins

Released: When the operation ends

Command Lock

The Fast Path command lock is similar to the full function command lock. It isrequested by each IMS
subsystem with Fast Path that isusing an IRLM. It is requested when the IMS subsystem is started. The lock
isrequested at asharelevel. It isheld until the subsystem terminates. The lock is not used to serialize access
to anything. Instead, it isused in conjunction with notifications that are not associated with a database. For
example, type-1 commands with the GLOBAL parameter for Fast Path resources are sent between IMS
systems by using notifications to holders of thislock.

Command Lock Summary

Purpose: Used for routing notifications to IM S subsystems

L ocking environments: IMS subsystems with Fast Path that use the IRLM
Resour ce Locked: A "dummy" resource

Level: IRLM level 2isaways used.

Requested: When an IMS subsystem is started

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 26

Released: When an IMS subsystem is terminated.

VUNLOAD Lock

The Fast Path VUNLOAD lock is used to serialize the /VUNIoad command across multiple IMS systemsin a
Parallel Sysplex using shared VSO. The seridization isfor al /VUNLOAD commands, even when they
specify different areas. Thelock isalso requested for the /START, /STOP, and /DBR commands for shared
VSO areas and for open processing for ashared VSO area. Thislocking also prevents deadlocks between lock
processing across the sysplex and latch processing within IM S subsystems.

VUNLOAD Lock Summary

Purpose: Used for serializing the /VUNLOAD command across multiple IMS subsystems in order to prevent
deadl ocks between command processing by different subsystems.

L ocking environments: IMS subsystems with Fast Path that use the IRLM
Resour ce Locked: A "dummy" resource associated with the /VUNLOAD command
Level: IRLM level 8isused for commands. IRLM level 2 isused for area open processing.

Requested: When an IMS subsystem processes a/VUNLOAD, /START, /STOP, or /DBR command for a
shared VSO area and when a shared VSO areais opened by an IMS subsystem.

Released: When the command or open process compl etes.

Buffer Overflow (OBA) Lock

The Fast Path buffer overflow (OBA) lock is used to serialize the use of OBA buffers by a dependent region or
thread. Only one region or thread may be using its overflow buffers at any time unless the 64-bit Fast Path
buffer manager isused. This buffer manager was introduced in IMS Version 11 and isoptional. When the 64-
bit Fast Path buffer manager is used, the OBA lock is not used. The OBA lock is requested when a dependent
region has used its normal buffer allocation (NBA) and requires more buffers. It isreleased when the
dependent region no longer needs the overflow buffers.

Buffer Overflow (OBA) Lock Summary

Purpose: Used for serializing the use of OBA buffers by a dependent region or thread. It isnot used with the
Fast Path 64-bit buffer manager. With the 64-bit buffer manager multiple regions and threads may be using
their overflow buffer alocation concurrently.

L ocking environments: IMS subsystems with Fast Path which are not using the 64-bit buffer manager.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 27

Resour ce Locked: A "dummy" resource associated with the buffer overflow.
Level: IRLM leve 8isaways used.
Requested: When a dependent region needs overflow buffers.

Released: When the dependent region or thread releases its overflow buffers.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 28

Special Locking Cases

There are some settings for PROCOPT parameters in PSBs which have special effects on locking. These are
PROCOPT values of GO, GON, GOT, and E.

PROCOPTs of GO, GON and GOT

IMS allows a user to specify a*“read without integrity” option for adatabase. Thisis done by specifying
PROCOPT=GO in the PSB. When this PROCOPT is used, no locking is done for the database. GO is not
valid for MSDBs. Itisvalid for full function databases and DEDBs. When PROCOPT=GO is used, other
programs in the subsystem may be updating the database. Since they may be inserting, deleting, or replacing
segments or their pointers, the lack of locking may cause dataintegrity problems. Thisiswhy PROCOPT=GO
is called “read without integrity.”

To limit, but not eliminate the integrity exposure, additional options are available with GO for full function
databases. These are GON and GOT. If GON isused and IMS recognizes a potential integrity exposure, such
asaninvaid pointer, it will returna‘GG'’ status code for the call instead of abending the application program.
If GOT isused an additional procedure is sometimes used. This additional procedure includes the use of locks.
Itisonly used for HDAM, PHDAM, HIDAM, and PHIDAM databases and is not used when a secondary
index is being used to provide an aternate processing sequence. It also is not used when alogical relationship
has been crossed so that the position is not in the same physical database with the root segment of the database
record. |F GOT isused and IMS recognizes an integrity exposure, the procedure checks to seeif thereisa
lock on the database record being processed. If thereisalock, it waits until the lock isreleased. When any
wait completes, IMS accesses the data again. This does not provide complete integrity, but somewhat
decreases the probability of an integrity problem. This testing for alock that is done with GOT is a special
type of lock request that is sometimes called atest enqueue (TENQ). It isthe sametype of lock request that is
used to test for locks on dependent segments when afull function database record islocked at Pl level 1. The
test enqueue waits for the lock to be released, but does not acquire the lock for the program using
PROCOPT=GOT.

PROCOPT of E

IMS allows users to specify that a program is to have exclusive use of a database or segment typesin the
database. Thisisdone by specifying an E in aPSB PROCOPT value. It isused in conjunction with other
options, such as, G or A. Eisonly valid for full function databases. Specifying PROCOPT=E on a PCB
statement establishes a default for SENGSEG statement PROCOPTs. PROCOPT of E has different
implications with and without BLDS.

Without Block Level Data Sharing (BLDS)

If BLDS s not used for a database and a PROCOPT of E is used for the root segment in a database, the
program will have exclusive use of the database. No other programs with sensitivity to the database will be
scheduled concurrently with this program. Since there can be no conflicting users, there is no locking for the
program’s use of the database.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 29

If E isnot used for the root segment, but used for dependents, the program will have exclusive use of the
specified dependents, but may share the root segments. That is, no other programs with sensitivity to the
specified dependent segment will be scheduled concurrently with this program. If the program has exclusive
use of a segment, no locking for the segment will be done, however, locks for database records, and other
segments will be requested.

With Block Level Data Sharing (BLDS)

If BLDS s used for a database, a PROCOPT of E does not provide exclusive scheduling of the database across
the data sharing IM S subsystems. It only provides for exclusive scheduling within an IMS subsystem. This
means that |ocking must always occur to provide integrity across the IMS subsystems. Database record locks
are always held until application sync point or an RLSE call. This meansthat a PROCOPT of EinaBLDS
environment does not provide exclusive use of the database or its segment types across the sysplex. Instead, it
provides exclusive access to database records from when they are accessed until sync point or an RLSE call.

HALDB Online Reorganization

HALDB Online Reorganization (OLR) uses the same locks that are used by application programs. These
include database record locks, block locks, and busy locks. OLR reorganizes a set of database records at a
time. Thisiscalled aunit of reorganization (UOR). The database recordsin a UOR are locked before any
copies of the segments are made to the output data sets. OLR never waits for a database record lock while
holding other locks after building the minimum UOR of asingle record. It does this by making conditional
lock requests. |If the lock request cannot be granted immediately, OLR regains control and lessens the number
of database recordsin the UOR. Only the database records whose locks have already been obtained remain in
the UOR. These database records are copied to the output data sets. At the end of the copiesfor aUOR, OLR
commits. Thisreleasesthe locks. OLR then moves to the next UOR.

The number of database recordsin a UOR is dynamically adjusted. OLR attempts to hold a minimal number of
locks at any time and to hold them for a short time. It may be observed that OLR rarely, if ever, holds more
than 1,000 locks and rarely, if ever, holds them for more than a second. This minimizes the locking impact on
concurrently running application programs.

When OLR isexecuted in a BLDS environment, block locks are requested for the blocks in the output data sets
into which segments are copied. Block locks are also requested for the input data set. The cursor iswrittenin
the second block or CI of the input data set. Thereisablock lock for this block or Cl for every unit of
reorganization. When twin backward (TB) pointers are used with PHIDAM, the twin chain between roots
must be maintained across the input and output data sets. When pointers are updated in the input data set,
block locks are requested for their Cls or blocks. Block locks are required since concurrently executing
application programs may be making inserts or updates of other segments in these blocks.

OLR may beinvolved in adeadlock. When it is, it isamost always chosen as the victim. As mentioned in
"Choosing a Victim" on page 36, OLR has avery low "worth" value. Only Fast Path (IFP) regions have a
lower value. Thisvalueisused in determining which of the participantsin a deadlock is chosen as the victim.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 30

Limiting the Number of Locks Held by a Program

The LOCKMAX specification may be used to limit the number of locks held by any program instance. If this
limit is exceeded, the program abends with U3301. LOCKMAX may be specified in two ways. First, it may
be specified on the PSBGEN statement during the PSBGEN process. Second, it may be specified as an
execution time parameter for IMS dependent regions (MPP, BMP, IMP, JBP, and IFP) and IMS batch (DLI
and DBB) regions. For IMS batch regions, it only applies when block level datasharing isused. If itis
specified for a dependent region or IM S batch region, this specification overrides any specification on the
PSBGEN statement. The only way that the PSBGEN vaueis used is when the LOCKMAX value for the
region is not specified.

Valid values for LOCKMAX are 0 through 255. A value of O indicates that there is no limit to the number of
locks that may be held. Other values are in units of 1000. For example, LOCKMAX=5 indicates that the limit
is 5000 locks.

Users may determine the maximum number of locks held by a program by examining log records. For each
application program sync point, IMS will write either ax'37', x'5937", or x'41' log record with the "high water
mark" lock count for the sync interval. The valuein the x'41"' log record is non-zero only for IMS batch jobs
using block level data sharing. The value in the x'37' or x'5937' should be used for all online regions.

The following table shows the macros which may be used to create DSECTs for these log records. The fields
containing the "high water mark” log counts are shown.

Table 11. Log records with lock held "high water marks'

L og Record Mapping macro Field

x'37' DFSXFER XFERLHLD

x'41' DFSLOG41 LOG41LKH

x'5937" DBFLGSYN SYNCLKS

© IBM Copyright, 2009 Version 8/4/2009

http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 31

Pl Limit on Number of Waiters

The PI lock manager limits the number of programs that may be waiting for alock at any time to 63. If there
are 63 waiters and another program makes a lock request that would wait, it is abended with U2478.
Obviously, this should rarely, if ever, occur. For a U2478 abend, the application program is backed out. If it
isan MPP or IMP transaction, it isrescheduled. Thisis similar to the action taken on a U0777 abend for
deadlocks.

For APPC CPIC driven application programs and modified standard application programs, the U2478 abend is
not issued. Instead, a U0124 abend isissued and the program is not reschedul ed.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 32

Lock Timeouts

PI does not have alock timeout facility. IMS lock requests never timeout when Pl is the lock manager.
The IRLM has alock request timeout facility. It iscontrolled by the TIMEOUT value for IRLM and the
LOCKTIME vauefor IMS.

IRLM TIMEOUT Value

The TIMEOUT value for IRLM controls the timing of IRLM time out actions. It defaults to 300 seconds but
may be changed with the following command.

F irlmproc,SET, TIMEOUT=seconds,imssubsystemname

If any lock request waits for thistime, the IRLM issues a DXR162l message and drives an IMS exit which
creates an SMF record type 79 subtype 15 (79.15). Thisrecord contains information about the lock holders
and waiters for the resource. By default, no other actionistaken. The DXR162I messageis:

DXR1621 irl mx CYCLE NUVBER nnnnnnnn PROCESSED FOR TI MEQUT.

The DXR162| message does not identify the waiter, the holder, or the resource with the lock conflict. These
areidentified in the IRLM Long Lock Detection Report which is generated from the SMF 79.15 records. Long
Lock detection is explained under "RMF 11 ILOCK (IRLM Long Lock Detection) Report” on page 57.

IMS LOCKTIME Values

The IMSwait time for the IRLM is defined with the LOCKTIME statement in the DFSV SMxx PROCLIB
member for online systems or in the DFSVSAMP DD data set for batch (DLI or DBB) jobs. The format of the
statement is:

LOCKTI ME=(nt i e, macti on, bti ne, bacti on)

Where:

mtime is the timeout value for MPP, IMP, and IFP regions, CCTL (CICS) and ODBA threads, or system
processes. It is specified in seconds from 1 to 32767.

maction is either ABEND or STATUS. ABEND indicates that MPP, IMP, IFP, CCTL, and ODBA
programs which timeout will abend with U3310. STATUS indicates that these programs which
timeout will receive a'BD" status code for the DL/I call. The defaultis ABEND.

btimeis the timeout value for BMP, JBP, DLI, and DBB regions. If btime is not specified, the value for
mtime appliesto all regions.

baction has the same meaning as maction but appliesto BMP, JBP, DLI, and DBB regions. If baction is not
specified, the value for maction appliesto al regions.

Some system processes, such as commands, ask for locks. If they time out, the processis ended. For example,
a command would fail.

The IMS lock timeout capability isrelated to the IRLM TIMEOUT value for the IMS subsystem. The IRLM
TIMEOUT vaue controls the timing within IRLM. When the IRLM TIMEOUT value is exceeded by alock
request, IRLM informsIMS. IMS then checksits LOCKTIME valueto seeif it has been exceeded. If it has

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 33

not been exceeded, the lock request is not ended. If it has been exceeded, the lock request is ended with either
a'BD' status code being returned for the call or the program being abended with aU3310. Since IMS only
checksits LOCKTIME valuewhen IRLM's TIMEOUT value has been exceeded, the IRLM TIMEOUT value
must not be larger than the smaller of the two IMS LOCKTIME values. To ensure that thisistrue, IMS
initialization processing communicates with IRLM. [t tellsIRLM to set its TIMEOUT value to the smaller of
itstwo LOCKTIME values. If IMS does not have a LOCKTIME value specified in DFSV SMxx of
DFSVSAMP adefault value of 300 secondsisused. The IRLM TIMEOUT value must be a multiple of the
IRLM local deadlock detection time. If the requested TIMEOUT value is not amultiple of the deadlock
detection time, the IRLM rounds up the TIMEOUT value. Thisisrarely a problem since deadlock detection
times are typically one second or smaller and TIMEOUT values are typically many seconds.

Y ou should be careful when using the "F irlmproc,SET, TIM EOUT=seconds,imssubsystemname"

command. The command changes the IRLM TIMEOUT value but does not cause IMS to change its
LOCKTIME values. Nevertheless, it could affect the timing of lock timeouts by IMS. If the IRLM
TIMEOUT vaue exceeds an IMS LOCKTIME value, the timeouts of lock requests will occur only after the
lock has waited for the IRLM TIMEOUT value. Increasing the TIMEOUT value may cause IMSto time out
lock requests later than the time indicated by its LOCKTIME vaues. Sincethe IRLM TIMEOUT vaueis
used for the timing of Long Lock detection, the command will always set this timing.

An enhancement to IMS Versions 10 and 11 is planned. The enhancement will allow users to changethe IMS
LOCKTIME values for an online system with an UPDATE IMS command. The format of the command is:

UPDATE | MS SET(LOCKTI ME(MSG(nt i ne) , MSGOPT(mact i on),
BMP(bt i ne), BMP(bacti on),
TELLIRLM Y| N)))

The meanings of mtime, maction, btime and baction are the same asin the IMS LOCKTIME statement in the
DFSV SMxx PROCLIB member as shown above. TELLIRLM(Y) indicatesthat the IRLM TIMEOUT value
for this IMS subsystem should be set to the lower of mtime and btime.

Table 12. Lock timer values

IRLM DEADLOK value | IRLM TIMEOUT value IMSLOCKTIME values
Only the first Specified to IRLM for an IMS | Specified to IMS; two values;
Specification subparameter is used)) oneisfor transactions and the
P Multiple of DEADLOK time | gther isfor batch
Used for Long Lock reportin
Use Used for deadlock) i ’ Used for lock wait timeout
detection Used to drive IMS for lock
wait timeout determination
When lock waits exceed When lock waits exceed this IMS exit isdriven by IRLM
thistime. IRLM time, message DXR162| is when alock has waited for the
Action C issued and waits are reported IRLM TIMEOUT value; IMS
determinesif they are . S .
deadlocked by L.ong Lock but the waits determinesiif it has waited for
continue the LOCKTIME value
© IBM Copyright, 2009 Version 8/4/2009

http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 34

Deadlocks

An overview of deadlocks was covered under “Deadlocks’ on page 6. This section provides more information
on deadlocks, including how they are resolved.

The overview section showed a simple example of a deadlock between two programs, but deadlocks may be
more complex. They may involve more than two programs. The following examplesillustrate this situation.

Example of Deadlock between Multiple Programs

The following is an example of a deadlock involving three programs.

Program A Program B Program C

1. Lock X Level 3)
2. LockY Level 3

3. Lock Z Level 3
4. RequestY Level 3

. WAIT
) 5. Request X Level 3
6. Request Z Level 3 WAIT
WAIT
DEADLOCK

Figure 5. Deadlock Between Multiple Programs

1. Program A requests alock on resource X at level 3. Thelock is granted.
2. Program B requestsalock onresourceY at level 3. Thelock is granted.
3. Program C reguests alock on resource Z at level 3. Thelock is granted.

4. Program C requests alock on resource Y at level 3. Thelock request cannot be granted because program C
already holdsthelock at level 3. Program C must wait.

5. Program B requests alock on resource X at level 3. The lock regquest cannot be granted because program A
already holdsthelock at level 3. Program B must wait.

A deadlock does not exist yet. Program A isnot waiting. If it releasesitslock on resource X, Program B
may be given the lock and proceed. It could then releaseits lock on resource Y, which would allow
program C to proceed.

On the other hand, the following could happen.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 35

6. Program A requests alock on resource Z at level 3. The lock request cannot be granted because program C
already holdsthelock at level 3. Program A must wait.

Now, all of the programs are waiting and cannot give up their locks. A deadlock exists.

Deadlock Detection Timing

The two lock managers, Pl and the IRLM, use different techniques to trigger their search for deadlocks.

The PI lock manager checks for a deadlock whenever a program’ s lock request would cause it to wait. Before
making the program wait, Pl checksto seeif the lock request will cause a deadlock.

The IRLM does not check for deadlocks as part of the lock request processing. It has an independent process
which istriggered by a user selected timeinterval. Thisistheloca deadlock cycle which is specified by the
first subparameter of the DEADLOK parameter on the IRLM execution procedure, DXJRPROC. Valuesfrom
100 to 9999 are interpreted as milliseconds. Values from 1 to 99 areinterpreted as seconds. The IRLM only
investigates those lock requests which were also waiting at the previousinterval, that is, have waited at least
the local deadlock cycletime. If oneisfound, the IRLM will seeif it isinvolved in adeadlock. The other
requests in the deadlock do not necessarily have to have waited for the cycle time. This means that no
deadlock is detected before the specified interval has elapsed. Some deadlocks may not be detected until a
program has waited almost two intervals. A typical value for the local deadlock detection timeis 1 second.
The second subparameter of the DEADLOK parameter is sometimes described as the number of local
deadlock detection cyclesin aglobal cycle. The IRLM does not use this subparameter. All local cyclesare
global cycles. If there are multiple IRLMSs, they coordinate their local cycles, that is, they make them the same
value. Multiple IRLMs check for deadlocks between subsystems at each deadlock cycle.

Choosing a Victim

When a deadlock occurs, the lock manager selects a program to be avictim. This meansthat the program’s
updates will be backed out and its locks released. This clears the deadlock and allows the other program or
programs to continue. Either of two things may occur when the victim is an IM S dependent region. It may be
terminated with a U0777 abend or an internal ROLB call may be issued and control returned to the program
with status code BC or FD. CICS programs receive an ADCD abend. ODBA threads are terminated and the
call receives an AIB return code, reason code, and error extension information indicating the deadlock.

In most cases IM S attempts to choose a victim whose backout will cause the least disturbance to the system.
For example, in an IMS TM environment it is much easier to handle the abend of a message processing
program than the abend of a non-message driven BMP. The system automatically reschedules the MPP but an
operator would have to restart the BMP. For this reason, the lock managers have a scheme for choosing the
victim which is based on the type of programs that are involved. The lock managers assign aworth value to
each participant in the deadlock. Thisworth value is assigned based on the type of program. Thevictimis
typically the program with the lowest worth value. IMS assigns worth values in the following order with the
first in the list having the highest values.

1. Batch (DLI or DBB) program which has done an update or a Fast Path online utility
2. Message driven BMP with MODE=MULT

3. Non-message driven BMP or JBP

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 36

4. Message driven BMP with MODE=SNGL

5. CPI-C driven program

6. Batch (DLI or DBB) program which has not done an update
7. CICStask or ODBA thread

8. MPPor IMPwith MODE=MULT

9. MPPor IMPwith MODE=SNGL

10. HALDB Online Reorganization utility

11. Fast Path (IFP) program

The program types at the top of thelist are least likely to be chosen as victims. For example, if a deadlock
between a non-message driven BMP (item 3) and a MPP with MODE=SNGL (item 9) occurred, the MPP
would bethevictim. Not al itemsin thelist apply to all environments. For example, items 2, 4, 5, 8, 9, and
11 do not apply to DBCTL subsystems.

Frequently, a deadlock will occur between two programs that are of the same type. When this occurs, the Pl
and IRLM lock managers have different algorithms for choosing which program will be the victim. Pl chooses
the one which has run the shortest time since its last sync point. IRLM chooses the one which has waited the
shortest time for itslock request. There are exceptions to the ILRM algorithm. For example, in some casesthe
IRLM will not choose a program which is processing a message which deadlocked on its previous schedule.
Thisis done to lessen the probability of multiple reoccurrences of the same deadlock. Similarly, if both
programs are in |FP regions, the IRLM chooses the one which has run the shortest time since its last sync point.

Even when the program types differ there are exceptions to using the worth value ranking for choosing a
victim. When there are multiple programs involved in the deadlock, the lock manager sometimes does not
select the program with lowest worth as the victim. 1t does this for some complex situations. For example,
selecting the program with the lowest worth may not eliminate the deadlock. Consider the following example.
Program 1 and program 2 both hold a share level lock on resource A. Program 3 holds an exclusive level lock
onresource B. Program 1 requests a share level lock on resource B. It waits. Program 2 requests a share
level lock on resource B. It waits. Program 3 requests an exclusive level lock on resource A. This creates a
deadlock. Inthis case, program 3 will be chosen as the victim even if its worth value is higher than that of
programs 1 and 2. If either program A or program B were chosen as the victim, the deadlock would not be
resolved. Instead of making both programs A and B victims, only program C is chosen to be avictim.
Another instance when the ranking is not used occurs with ablock lock for an insertin aKSDS. [If the request
for the block lock causes a deadlock, the inserting program will not be chosen as the victim.

INIT STATUS GROUPB Call

Application programs may issue an INIT call with STATUS GROUPB in the I/O area or the equivalent EXEC
DLI ACCEPT STATUSGROUP ('B") command. This call indicates that the program should receive control
when it is chosen as the victim in adeadlock. When the deadlock occurs, the DL/I call that creates the
deadlock receives a'BC' status code in the database PCB. IM S backs out its database resources, with the
exception of GSAM, to the last commit point. If IMSis the syncpoint coordinator, DB2 database resources are
backed out, any persistent MQ input messages are requeued, and any persistent MQ output messages are

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 37

backed out. If there are users of the External Subsystem Interface, their updates are also backed out. IMS
Transaction Manager output messages issued since the last commit point are backed out unless they were
inserted and purged using an EXPRESS=YES PCB. Input messages are returned to the message queue for
MPPs, IMPs, and message-driven BMPs. For IFP regions all input messages are returned to balancing group
queues.

Handling a Deadlock Victim

The following explains what happens to the victim in a deadlock when it has not issued the INIT STATUS
GROUPB call.

When avictim is chosen, al updates are backed out. The victim program is either abended or it is given an
indication that the back out has occurred. The abend is either an IMS U0777 abend for MPP, IMP, IFP, BMP,
or JBP regions, a U0123 abend for CPIC driven application programs or modified standard application
programs, or a CICS ADCD abend for CICS tasks. An FD status code is returned only when Fast Path
databases are being processed by a victim that is a non-message driven BMP or JBP. Thisis discussed below.
A UQ777 or U0123 abend will cause a back out of the program to itslast sync point. A CICS ADCD abend
will cause aback out of the program to itslast sync point if dynamic transaction back out (DTB) is specified.
Thiswill back out non-IM S resources, such as CICSfile control data sets. IM S database updates are always
backed out when deadlocks occur. |f the program has not created a sync point, the back out isto the beginning
of the program’s execution.

When an ODBA thread is the victim of a deadlock, the database updates are backed out and the DL/I call
completes with AIB "system failure” return code of x'00000108", a "thread termination™ reason code of
X'00000244' and error extension code x'10000309'. The AIB error extension code is the hexadecimal value for
the 777 abend code with the high order bit on. The ODBA thread isterminated. The application program can
no longer make calls on the thread.

For IMSTM systems, the application program may have processed one or more input messages since its last
sync point. If thisistrue, the input message or messages for MPP, IMP, or BMP regions are returned to the
gueue. Multiple input messages will have been processed only if MODE=MULT isused. For aFast Path
region, the input message isretained in its buffer. MPP, IMP, and |FP region transactions are rescheduled
automatically unless they are CPIC driven application programs or modified standard application programs.
No message is sent to the terminal operator and the operator is unlikely to be aware of the backout and
rescheduling.

BMPs, JBPs, and Fast Path utilities must be rescheduled if they are abended.

If HALDB Online Reorganization is the victim of adeadlock, it is automatically restarted by IMS.

When the victimisa CICS task an ADCD abend is created. The task may be restarted. For restart to be done,
the installation must specify that it wants both dynamic transaction backout (DTB) in the CICS system and
transaction restart for the transaction. Transaction restart is specified by the RESTART parameter when
defining the transaction to CICS.

Aswas mentioned above, not all victims receive abends. There are three exceptions.

Thefirst exception is aprogram which issues an INIT STATUS GROUPB call. Thisis described above under
"INIT STATUS GROUPB Call" on page 37.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 38

The second exception is for a non-message driven BMP or JBP which has a PCB that references a Fast Path
resource. It may create a deadlock situation with a call to either a Fast Path or full function database. If the
BMP or JBPis chosen asthe victim, it is not abended. Instead, an internal ROLB call is processed to backout
the program’ s processing and the call that caused the deadlock receives an FD status code. The application
program is alowed to handle the situation. The program may continue processing or choose to abend itself.
Generdly, it is preferable to continue since this will avoid the need to restart the job. The call that receives the
FD status code does not have to use a Fast Path PCB. If any PCB in the PSB references a DEDB or MSDB,
the non-message driven BMP or JBP will get the FD status code instead of the U0777 abend.

The third exception is for deadlocks found during sync point processing. This must involve MSDB resources
because locks for DEDBs and full function databases are not requested during sync points. This situation does
not apply to CICS tasks or ODBA threads because they do not have access to MSDBs. When deadlocks are
found during sync point processing, a U0777 abend is not issued. Instead, an internal ROLB call isissued to
back out any updates and release locks. If the programisa BMP or JBP, an FD status code is returned to the
call the caused the sync point. This could beaGU to IO PCB, aSYNC call, or aCHKP call. For message
driven BMPs, any input messages processed since the last sync point are returned to the queue. BMPsremain
scheduled and may retrieve any input messages again. Other types of programs do not get the FD status code.
For MPPs and JMPs the input message or messages are returned to the queue. For an IFP region, the input
message is retained in its buffer. MPP, IMP, and |FP region input messages are reprocessed automatically.
The MPP, IMP, or Fast Path program remains scheduled and will receive the same or another input message as
aresult of the GU to the |O PCB that caused the sync point. In either case, the situation does not require that
the program take any special action.

The following table summarizes the action taken on a deadlock victim when an INIT STATUS GROUPB call
has not been issued.

Table 13. Deadlock Actions without INIT STATUS GROUPB call
Program Type g,e,?g Igg:(nlg 1 | Action?
MPP or IMP Y orN UQ777, input message is reprocessed on reschedule
N UQ777, input message is reprocessed when BMP is
Message driven BMP r@chedu!ed. BMP rwghedul ing is not automatic.
v Original input message is returned to the GU 10-PCB call
which caused the deadlock
Non-message driven BMP
or JBP without FP PCB in N uor77
PSB
Non-message driven BMP
or JBP with FP PCB in Y orN FD status code
PSB
Fast Path (IFP) Y orN UQ777, input message is reprocessed automatically
CICSDBCTL N ADCD, backout and retry depend on CICS specifications
AIB return code, reason code, and error extension codes
ODBA thread N are set. Thread isterminated and the program can no
longer make calls on the thread.
Notes:

1. Thiscan only occur with MSDBs. MSDBs are not supported with CICS or ODBA.
2. Thedeadlock action always includes a backout

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 39

Deadlocks with CICS Resources

CICS application programs may access CICS resources, such as VSAM data sets, that are not controlled by
IMS. CICS uses enqueuing mechanisms to protect these resources. These include both CICS enqueuing
mechanisms, which it sometimes calls exclusive control, and VSAM’s own exclusive control facilities.

For more information on CICS enqueuing facilities and their use with CICS resources, see the CICS Recovery
and Restart Guide and the CICS Application Programming Guide for the version of CICS you are using.

It is possible for adeadlock to occur which includes both IMS and CICS resources. The followingisan
example of such a deadlock.

1. Program A requests alock on IMSresource X. Thelock is granted.
2. Program B requests aVVSAM record Y, causing an engqueue of Y. The request is granted.

3. Program B requests alock on IMS resource X. Thelock request cannot be granted because program A
already holds the lock at an incompatible level. Program B must wait.

4. Program A requests aVSAM record Y, causing an enqueue Y. The request cannot be granted because
program B has a conflicting enqueue for Y. Program A must wait.

A deadlock has occurred but IMS' s lock manager cannot detect it. It isnot aware of the enqueue conflict for
the VSAM record. Similarly, CICS enqueuing facility is not aware of the locks on IMS resources; however,
the deadlock may be broken by alock timeout. If the IRLM isthe lock manager and the LOCKTIME
parameter is used, the IMS lock request may be timed out by IMS. See"Lock Timeouts" on page 33 for an
explanation of this time out capability.

CICS can aso handle these situations by using atimeout facility. If a CICStask is suspended for longer than a
user specified time, the task istimed out and abended. One can view this as CICS deciding that a deadlock
must exist and choosing the waiter as a deadlock victim. In the example above, only Program A iswaiting on
aCICSresource, so it would be abended. Thiswould cause Program A to release itslock on IM S resource X
and allow Program B to continue. The time that the program is allowed to wait is specified in the DTIMOUT
value for each transaction. This should be specified for al CICS transactions using both IMS and CICS
recoverable resources. This should include the mirror tasks and CECI transactions. If DTIMOUT is not
specified and the IRLM TIMEOUT facility is not used, there is no timeout facility for the transaction and a
deadlock would persist until a system operator abended one of the waiting tasks.

Deadlocks with DB2 Resources

Deadlocks involving both IMS and DB2 resources may occur. Thisis similar to the situation with IMS and
CICS resources that is discussed above. The following is an example of adeadlock involving IMS and DB2.
It could occur in either an IMS TM, CICS, or DBCTL environment.

1. Program A requests alock on IMSresource X. Thelock is granted.
2. Program B requests alock on DB2 resource Y. Thelock is granted.

3. Program B regquests alock on IMS resource X. The lock request cannot be granted because program A
aready holds the lock at an incompatible level. Program B must wait.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 40

4. Program A requests alock on DB2 resource Y. The lock request cannot be granted because program B
aready holds the lock at an incompatible level. Program A must wait.

A deadlock has occurred but the lock managers cannot detect it. IMS and DB2 always use different lock
managers. Either IMS uses Pl and DB2 uses IRLM, or IMS and DB2 use different IRLMs.

As mentioned above in the "Lock Timeouts" section on page 33, alock request for an IMS DL/I call may
timeout. Thiswould resolve the deadlock. Similarly, DB2 aso has alock timeout function. DB2 lock
requests always have atimeout value. Any DB2 lock request that waits for longer than the specified timeis
assumed to bein deadlock. In our case, Program A would be the selected victim if the DB2 request times out.
The DB2 wait time for the IRLM can be defined on the DB2 DSNTIPI installation panel. The default valueis
60 seconds. This means that no deadlock between IMS and DB2 resources would be broken by a DB2 timeout
before 60 seconds has el apsed.

When a program’s DB2 lock request times out, the actions taken depend on the type of program that issued the
SQL call. MPPs, IMPs, message driven BMPs, and Fast Path (IFP) programs receive U0777 abends which
cause aback out to the last sync point. The input message or messages for aMPP, IMP, or BMP are returned
to the queue. For aFast Path (IFP) region transactions are rescheduled automatically. A message driven BMP
must be restarted by an operator. For non-message driven BMPs and JBPs, DB2 updates are backed out, an
internal ROLB call isissued to back out the IMS updates, and the SQL call receives a-911 return code. The
application program continues after receiving the -911. If the DB2 request that times out was issued by a
CICS task, the SQL call receives either a-911 or -913 return code. In either case, the CICS program continues
after receiving the return code. A -913 indicates that the SQL statement was unsuccessful but no backout of
previous SQL or IMS callswas done. A -911 indicates that all DB2 and IM S updates have been backed out to
the last sync point. The program may continue processing after either a-911 or -913 isreturned. The setting
of the ROLBI parameter in DB2's CICS Resource Control Table (RCT) determines whether the -911 or -913
will be used. If the DB2 request that times out was issued by aan ODBA thread, such asa DB2 stored
procedure, backout is not done automatically and the SQL call receives a-913 return code. The program
should invoke arollback as soon as possible using SRRBACK or ATRBACK.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 41

Retained Locks and Lock Rejects

Retained locks are locks held for afailed subsystem. Retained locks are still known to the lock manager, but
the holders of these locks are no longer active. The failed subsystem must be restarted before the locks can be
released. Requestors of these locks at an incompatible level do not wait. Thisis reasonable since await would
likely be for avery long time, possibly many minutes. Instead of waiting these lock requests are rejected.

Retained locks may occur in aBLDS environment. If one of the IMS subsystemsfails, its IRLM fails, or the
LPAR on which it isrunning fails, itslocks are retained. If only the IMS subsystem fails, its IRLM maintains
itslocksin aretained status. If the IRLM fails or the LPAR fails, the other IRLMs in the data sharing group
maintain the locks in aretained status. With BLDS the coupling facility lock structure contains information
about all locks protecting updates. Thisinformation is kept in the lock structure record list. If an IRLM fails,
the record list for itslocks is copied by the other IRLMsin the data sharing group into their storage. This
ensures that the locks are always stored in at least two locations. |f alock request isprocessed and it is
incompatible with one of these retained locks, the lock request is rejected.

Retained locks may aso occur with DBCTL services using either Pl or the IRLM. If the CCTL subsystem,
such as CICS, fails, it may be holding locksin an in-doubt status. IMS does not know if CICS will commit or
abort, so it cannot back out the updates and release the locks. Neither can it commit the updates and release
thelocks. IMS maintains the locks in aretained status. Requests for these locks at an incompatible level are
rejected. When CICS isrestarted and reconnected to IMS, the in-doubt units of work are resolved. They are
either committed or aborted. These actions cause the locks to be released.

The effect of alock reject depends on the use of the INIT STATUS GROUPX call or the EXEC DLI ACCEPT
STATUSGROUP('x") command. If either of theseis used, lock rejectsresult in aBA or BB status for the call
requesting the lock. The BB status code indicates that updates made since the last commit are backed out. The
BA indicates that only the current call isbacked out. In either case, the cal fails and the program may take
other actions. If neither INIT STATUS nor EXEC DLI ACCEPT is used, the application program receiving
thelock reject is abended. ThisisaU3303 abend. For IMS message processing programs, the input message
is placed on the suspend queue with the following exceptions. For IM S transactions involved in protected
conversations with RRS, the input message is discarded. For APPC CPIC driven application programs and
modified standard application programs, the U3303 abend is not issued. Instead, a U0125 abend isissued and
the transaction is not rescheduled. For CICS applications, the IMS U3303 abend resultsin an ADCI abend
code.

When a U3303 abend occursit is accompanied by a DFS33041 message.

DFS33041 | RLM LOCK REQUEST REJECTED. PSB=psb_nanme DBD=dbd_name
JOBNAME=j ob_name RGN=nnn SUBSYSTEM=subsyst em

psb_name The name of the PSB issuing the failed call

dbd name The name of the database with the retained lock

job_name The name of the zZ/OS job receiving the 3303 abend

nnn The number (decimal) of the PST receiving the 3303 abend
subsystem The name of the IM S subsystem that holds the lock

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 42

Database Level Data Sharing

Database level data sharing is used when a database is registered to DBRC with SHARELVL(1).
SHARELVL (1) ensuresthat if an IMS subsystem has authorization to update a database no other IMS
subsystem will be authorized to update it or to read it with integrity. Authorizations to read without integrity
areallowed. SHARELVL (1) also allows multiple IM S subsystems to have concurrent authorizations to read
the database with integrity when no subsystem has update authority. Locks do not have to be shared between
the subsystemsin these situations. Of course, locks are required within an IM S online subsystem.

Even though locks between subsystems are not required for databases using database level data sharing, they
can be used. In fact, when the subsystems are using IRLMs in the same data sharing group, a small subset of
locks are used. These are data set reference locks and extend locks. These are used so that when an updating
IMS subsystem extends a database data set, the other subsystems will receive the new extent information. This
avoids abends where the systems using read without integrity attempt to read blocks or Clsin the new extents.
The locks do not directly provide the new extent information to the reading subsystems, but they are used in
the process. The following explains how this process works.

When the IRLM isused with a SHARELVL of 1, 2, or 3, the database reference lock is acquired when a
database data set is opened. When anew extent is created for a database data set, the extending subsystem
uses the IRLMs to send information about the new extentsto all other holders of the data set reference lock.
The information sent is the set of control blocks for the new extent. The receiving subsystems add these
control blocks. This alowsthem to read the blocks or Clsin the new extent. This does not provide full
integrity to the subsystems. Instead, it reduces the probability of abends by the readers when the updating
subsystem extends a data set.

Thereis a second advantage to using the IRLM with database level data sharing. In aParallel Sysplex data
sharing environment the use of the IRLM also allows the use of IMS's cache structures in the Coupling
Facilities. These structures are used to implement buffer invalidations between IMS subsystems. These
invalidations are used to limit the chance that a system reading without integrity will use an old copy of a
block or CI which has been updated to a different state in another IM S subsystem. This does hot provide full
integrity to the subsystems. Instead, it reduces the probability of reading uncommitted updates or following
incorrect pointersto invalid data.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 43

Virtual Storage Use for Locks

Both the PI lock manager and the IRLM keep their information which represents locks in control blocks. This
section explains the effects that these control blocks have on the use of virtual storage.

If the storage available for locks is exhausted, the lock manager will abend the first program to request alock
that would exceed the limit. Usually, thiswill occur when a“runaway” program causes many lock requests to
occur without creating a sync point; however, the program receiving the abend will not necessarily be the
“runaway” program. It may be any other program in the system that happens to make the request that causes
the limit to be exceeded.

For MPP, IMP, IFP, BMP, and JBP regions, if the virtual storage available for locks is exhausted, the
application program will be abended and backed out. With the PI lock manager thiswill be a U0775 abend.
With the IRLM it will be aU3300 abend. With either lock manager, CICS tasks receive an ADLA transaction
abend and are backed out if dynamic transaction backout (DTB) is specified. In all casesthe IMS updates are
backed out. MPP, IMP, and message-driven BMP input messages are reprocessed unless a CPIC driven
application program or modified standard application program receives the abend.

Pl Lock Manager Virtual Storage

For IMSTM and DBCTL environments, the Pl lock manager keeps its control blocks above the 16 megabyte
linein the DL/I address space or in ECSA. The DL/l address spaceis used unless Fast Path databases are
included in the system. When Fast Path databases are in the system, all Pl control blocks, including those for
full function databases arein ECSA.

The maximum amount of virtual storage that may be used for PI control blocksis determined by the PIMAX
execution parameter. |If this parameter is not specified, the second parameter specified for CORE= on the
system definition IMSCTF macro determines the maximum storage for Pl control blocks. The specificationis
in 1K blocks. Of course, the storage may also be limited by the virtual storage availablein the region or ECSA.

Each PI lock requires about 48 bytes of virtua storage.

IRLM Virtual Storage

The IRLM keeps most of itslock control blocks above the 2-gigabyte bar in 64-hit storage of its address space.
Each IRLM lock requires about 540 bytes of virtual storage. The space for these control blocks may be limited
by the ZZOS MEMLIMIT parameter for the job or job step.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 44

Design Advice

This section provides general advice for designing databases, application programs, and systems to avoid
locking problems.

Minimize PROCOPT values

PROCOPT specifications in PSBs affect potential processing concurrency. For this reason, PROCOPT values
should be minimized, that is, PROCOPTs allowing updates should not be specified when updates will not be
done. The PROCOPT value determines the level a which full function database record locks and Fast Path
DEDB CI locks are requested. These locks may be shared by multiple programs which specify PROCOPT=G.
If an update PROCOPT is used, the locks may not be shared. If no updates are going to be done, the
PROCOPT should not include update values. Thiswill allow greater concurrency in the system.

Sometimes it may be advisable to generate a PSB with two PCBs for the same database. One PCB would have
PROCOPT=G and the other would have PROCOPT= A. Thisisuseful when a program reads frequently used
segment occurrences and sometimes updates these or other segment occurrences. |f the PCB with
PROCOPT=G is used for the reads, the program may share the segment with other concurrently running
programs. The PCB with PROCOPT=A may be used for the processing which requires updates. This
technique is not required for all programs because most programs do not have lock conflict problems. On the
other hand, this technique is useful in addressing some lock conflict problems.

Frequent Sync Points

Since locks have the potentia to prevent other programs from accessing data, systems need to be designed so
that locks are not held for excessive lengths of time. Typically, this requires frequent sync points to release the
locks. The time between sync points usually varies by program type and these are discussed below.

Holding locksis usually not a problem for online transactions. They usually run for a short time, a second or
less, and then reach a sync point. Thisreleases their locks and allows other programs to access the data that
they had locked. On the other hand, there are some types of online transactions which may cause problems.

CICS online transactions may use conversational programming which allows the program to wait on input
from aterminal user while holding locks. These waits are typically for amuch longer time. They may last for
15 seconds, 30 seconds, or even several minutes. Usually, CICS conversational programming is unacceptable
when locks are held across communications with terminal users.

Some online transactions do so much processing that they run for minutes. 1f they hold locks for this amount
of time, they may cause problems. Sometimes these programs may be broken into multiple units of work or
syncintervals. In IMS TM environmentsthisis usually done by having a transaction do part of the work, do a
program-to-program message switch, and then create a sync point (GU to 10-PCB). The next program then
continues the work. This next program actually may be another execution of the same program. In CICS
environments, the application program may use a SY NCPOINT command or TERM call to terminate one PSB
and then schedule another PSB. In either the IMS TM or CICS casg, breaking the work into multiple units of
work reduces the length of the time any lock is held. Of course, the application designer must consider
recovery requirements for the work that is broken into multiple pieces. If the system fails or an application
abends while one of these processes is active, the designer must ensure that it is recoverable and restartable.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 45

Batch jobs are usually the ones that cause locking problems because of the lengths of time that they hold locks.
These may be either BMPs, JBPs, or ODBA threads, such as DB2 stored procedures which perform batch
processing. These batch jobs usually require frequent checkpoints to create sync points. The required
frequency of the sync points will vary between jobs. Thereis atrade-off between the lack of concurrency from
holding locks and the overhead of taking checkpoints. Sometimesit is difficult to predict the required
frequency because the installation may not be able to predict data reference patterns or because the use of the
data may vary from timeto time. Since this required frequency is difficult to predict, it is usually desirable to
make the checkpoint frequently easily modifiable. This may be done by having the program read the desired
checkpoint frequency from a control data set or database record when it begins.

Most installations base checkpoint frequency on elapsed time or the amount of processing done. Processing is
usually measured by the number of segments or database records which are read or updated. Checkpoints
must be done at a point from which a program may be restarted. Usually, batch programs go through a
processing iteration and see if a checkpoint should be taken. That is, they check the elapsed time since the last
checkpoint or the number of database records or segments processed. If acheckpoint is not yet needed,
another iteration is made and the check repeated. This processis repeated until a checkpoint is taken and the
timers or counters are reset.

Almost al batch jobs require sync points, but there can be exceptions. If abatch job does not hold any
individual lock for along time, it probably does not require sync points. Locks for updates are held until a
sync point is reached, so update jobs almost always require sync points. Locks that are associated with
position in a full function database record are released either at a sync point or when position is moved to
another database record. If abatch job does no updates and does not hold position on any database record for a
long time, it probably does not require sync points. Remember that IMS can maintain a position for each PCB
in the PSB, so programs that use alot of PCBs usually hold positions on several dataset records.

Communications within a Sync Interval

Communication flows within a sync interval may delay the sync point. This could prevent the implementation
of frequent sync points.

OTMA and APPC may delay sync points while waiting on remote partners to respond to a sync point request.
This occurs with OTMA using commit mode 1 (send-then-commit) or with APPC when either uses
synclevel=confirm or synclevel=syncpt. In these cases locks are not released until the response from the
remote partner is received and processed. Communications delays may cause locking problemsin these
environments. If locking is a potential problem, it may be advisable to use synclevel=none to avoid these
problems.

The use of synchronous callout which was introduced in IMS Version 10 is another way that communications
may occur within async interval. Synchronous callout allows IM S applications to invoke services from
outside the IMS system. The application program waits within its sync interval for the response. Obviously, a
slow response could cause locksto be held along time. Synchronous callout is invoked with the DL/l ICAL
call. Users may specify atimeout value for the call. If the responseis not received within the timeout value,
the callout request is terminated and control is returned to the application program with areturn code of x'0100°
and reason code of x'0104' in the AIB control block. The application program can then do any further
processing and commit or back out. The default timeout value is 10 seconds, but the application may set any
other value in the 4-byte field. Times are specified in units of 0.01 seconds. All ICALs should set the
appropriate time out value and include logic to handle the timeout.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 46

Frequently Updated Records

Frequently updated records often create locking problems. When a segment is updated, the lock protecting the
updateis held until async point isreached. This means that no other program may access the data. For high
volume systemsit isimportant to avoid such “single thread” access. There are several designs that may lead to
frequent updated segments. Two of them are particularly significant.

Thefirst design is one that uses control segments. A control segment is one that contains control information
that many programs access. |If these programs update the data or access it using a PCB with update processing
intent, it islikely to cause aproblem. An example of thiskind of segment is one which contains the next
sequential number to assign, such as an invoice number. As each new invoiceis processed, the program gets
the number and incrementsit. In such a system, only one program could be assigning numbers at any time.
There are several techniques to avoid or minimize the locking conflict. First, it may be sufficient to delay the
retrieval and update of the number until the program is about to create a sync point. Thiswill minimize the
time that the lock is held and allow more transactions to processin atime period. Second, it may be necessary
to use several series of numbers. For example, there may be severa "next invoice numbers' stored in different
database records. Different types of invoices would get their numbers from the different database records.
Third, it may be necessary not to use sequential numbers. A randomizing technique may be used to choose a
number. If aduplicateis created, another number would have to be chosen but with large enough numbers this
could be minimized. Of course, a combination of these techniques may also be used. Besides sequential
numbers control segments may have totals from different processes or from other segments. A segment might
keep totals from all terminal operationsin the system. Such a segment is very likely to cause alocking
problem. It is more preferable to keep totals for each operator in separate segments and combine them when a
grand total is needed.

A second design that may lead to frequently updated records is a database with few roots. When aprogramis
positioned in a database record while using an update PCB, no other program may be positioned in the record.
When there are few records, this often leads to contention for database records. When a program has updated a
segment and moved to another database record, other programs may not be able to process updated database
record. If the IRLM isbeing used, no other program may enter the database record before the updater reaches
async point. If the PI lock manager is being used, there may be more concurrency but updated segments or
pointers may prevent programs from accessing other segments in the database record. When HDAM is being
used, few RAPs have the same effect as few roots because IMS locks RAPs, not roots, to lock database records.
Database administrators should be aware of the danger or implementing databases with few database records

or HDAM RAPs.

Using the RLSE Call

The solution to some locking problems requires that a program give up itslock on afull function database
record or Fast Path Cl. Thiswill alow other programs to access the record. It may be desirable to give up the
lock without requiring the original program to reach a sync point. Of course, the original program cannot have
updated the database record or Cl because this would cause the lock to be held until a sync point is reached.
To give up the database record lock or the Cl lock the program may issue aRLSE call. The RLSE call usesa
database PCB. For full function PCBs the call releases the database record lock held for the position of this
PCB when there are no uncommitted updates in the record. For Fast Path PCBsthe call releases all Fast Path
locks for unmodified data. These locks may be for multiple Fast Path databases.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 47

Using a "Get Lost" Technique

Before the introduction of the RLSE call in IMS Version 9, some installations used a"get lost" technique to
release locks held by a program. To give up the database record lock, the program either used the PCB to get
position on another database record or issued a call which resulted in no lock being held. This type of
movement off of a database record is sometimes called a“ Get Lost” technique. If a program needsto move
from a database record and not cause further lock conflictsit may move to a database record that will not he
accessed by any other program. This generally requires that a special root segment be reserved for this
program. The root may be associated with a user or terminal operator to ensure that no two concurrently
executing programs try to “get lost” on the same database record. If there are no such reserved roots, a special
technique may be used. This special call isaget unique (GU) call with a segment search argument (SSA) that
requests a root with akey equal to high values (X’ FF..."). Thiswill result in no lock being held for a database
record for thisPCB. A ‘GE’ status code will be returned on the call. With the introduction of the RLSE call,
the get lost is not required.

Using PROCOPT=E to Avoid Checkpointing

An explanation of PROCOPT= E appears under “PROCOPT of E” on page 29. Specifying PROCOPT= E for
aroot segment avoids locking for the database. This may eliminate the need for checkpointsin a special
circumstance.

Some installations have batch IM S jobs with no checkpoints. They would like to run these jobs as BMPs
under either IMSTM or DBCTL. Thiswould give them two advantages. First, logging for the job would go
to the online system’ s log instead of a separate log for the batch job. The installation could produce and
manage fewer logs when using BMPs. Second, dynamic backout would be invoked for all jobs abends, not the
subset that is backed out when BKO=Y is specified for abatch job. This can simplify operating procedures.
On the other hand, BMPs usually need frequent checkpoints to release locks. Locks need to be released for
two reasons.

1. Other programs may want access to the resources that are locked. When PROCOPT=E is used, this access
will not be granted because other programs that could access the resources will not be scheduled
concurrently with the PROCOPT=E program. This means that PROCOPT=E cannot be used, with or
without checkpoints, if concurrent use of the database is desired.

2. Locks need to be released to free virtual storage. Even though this storageis above theline, it is limited.
If the limit is exceeded, the application program will be abended. AnIMS UQ775 or U3300 abend or
CICS ADLA abend will occur. Thisisexplained under “Virtual Storage Use for Locks’ on page 44.
Since PROCOPT=E avoids locking, checkpoints are not needed to free this virtual storage. PROCOPT=E
may be used to avoid these abends when checkpoints are not taken.

In summary, PROCOPT=E may be used to run batch jobs as BMPs without adding checkpointsto release
locks if concurrent access to the database by other programsis not needed. The use of PROCOPT=E
eliminates locking and, therefore, the abends that would occur if virtual storage limits for locks were exceeded.

If the implementation of block level data sharing is planned, be careful about the use of PROCOPT=E to avoid
locking. When block level data sharing is used, locks are acquired for the database. PROCOPT=E forces
exclusive use of the database only in the IMS system where the PROCOPT=E job executes. Other systems
till have access to the database. When multiple systems share a database, locks are required to provide
integrity across the systems.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 48

Deadlock Detection

When a deadlock occurs, some timeis required to detect and handle the deadlock. Since the detection timeis
part of the time required to process alock request, this may affect response timesin a system. The importance
of this depends on the frequency of deadlocksin the system.

The choice of lock manager and the use of DB2 or CICS resources may effect this detection time. If the Pl
lock manager is used and no DB2 or CICS resources are involved, the deadlock will be detected as soon asa
call createsit. The deadlock may be broken and resolved before a noticeabl e effect occurs. Deadlock
detection is different with the IRLM. The IRLM only detects deadlocks after they have existed for at least the
deadlock detection cycle. The minimum cycle timeis 100 milliseconds and maximum is 99 seconds. A
deadlock detection cycle time of afew seconds or more may make deadlocks more noticeable. Typicaly,
installations use IRLM deadlock detection cycle times of one second or less. If DB2 or CICS resources are
involved with IMS resources, adeadlock is only broken by atimeout in CICS or DB2. The time specified for
the timeout cannot be so short that it would lead to timeouts when no problem exists; therefore, aimost any
deadlock between IMS and either DB2 or CICS resources will have a noticeable effect on response times.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 49

Locking Traces and Report Programs

IMS has traces and report programs that may be used to monitor locking activity. This section discusses those
traces and the information in the report programs. Instructions for executing the report programs are included
in the IMS System Utilities publication.

Lock Resource Names

When IMS requests alock from Pl or the IRLM, it requests the lock on aresource name. Thisisastring of
bytes that uniquely identifies the resource and type of lock. For example, alock on a database record in a
HIDAM database would include the RBA of the root segment and the identity of the database and data set in
which it resides. These lock resource names often appear in lock traces and lock reports. The following
explains the resource names used for the different types of locks.

IMS subsystem ID with IRLM local locking

When the IRLM isused for local locking, the subsystem ID is added to lock resource name. Local locking is
locking without data sharing. Adding the subsystem ID allows an IRLM to service multiple IM S systems
where not all databases are shared. Locks only need to protect resources within an IMS subsystem. Adding
the subsystem ID to the lock resource name prevents lock conflicts between local locks within different IMS
subsystems which otherwise would have the same resource name.

Full function locks

In full function lock resource names the DMB# identifies a database. When the database is registered and the
IRLM isused, the DMB# is the global DM B# from the RECON database record. When Pl isused or when the
IRLM isused but the database is not registered, the DMB# isthe local DMB#. Thisisthe relative number of
the DDIR control block for the database in the IMS online system.

In lock resource names the DCB# identifies the data set within the database. It isone byte. For afull function
non-HAL DB database thisis the same number that is used to assign database data sets to buffer subpoolsin
the DFSV SMxx member. The DCB# is 1 for primary indexes, unique secondary indexes, the primary data set
for non-unique secondary indexes and the data set containing root segments for HISAM databases. The DCB#
is 2 for overflow data setsin non-unique secondary indexes and HISAM databases. The DCB#is 1 for the
data set containing HDAM or PHIDAM roots. If there are multiple data set groups for HDAM or HIDAM,
successive data set groups use the successive DCB numbers. HALDB uses different schemes for different
database types. The DCB# for PSINDEX database data setsis aways 1. The following tables show the DCB#
that is associated with each data set in PHDAM and PHIDAM databases. When the DDNAME letter isY or

M through V, the DCB# a so has the x'80' bit turned on. For KSDSs the RBA address has the low order bit on.

Table 14. DCB numbers used with PHDAM databases

DDNAME letter | AIM L B/N|C/O|D/IP|EQ|FR|GIS|HT| /U | JV

DCB# 1 |23 4|5 6] 7] 8]9]10][11]12

1. Index component

2. Data component
© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 50

Table 15. DCB numbers used with PHIDAM databases

DDNAME letter | A/M L X/Y |BIN|C/O|DI/P|EQ]|FR|GIS

H/T

/U

IV

DCB# 1 |[2'][3F|4'][5] 6 | 7 [8] 9 10|11

12

13

14

1. Index component
2. Data component

Lock resource names for HALDB include the partition ID number when the IRLM is used with
SHARELEVEL 2 or 3 databases. Thisis added to the end of the lock resource name. The partition ID is
needed to create a unigue resource name since multiple partitions in the same database could have identical
DCB numbers and RBA values. The partition ID is not used with Pl or with SHARELVL 0 or 1 databases

since the each partition has its own DDIR control block and the relative number of the DDIR is used instead of

aglobal DMB#.

Lock Resource Name Formats

Pl always uses eight-byte lock resource names. Lock resource name lengths vary with the IRLM. Thelock
resource names used with the IRLM begin with a one-byte length field. The length includes the one-byte

length field. Thislength field is not shown in the formats which follow.

Database Record L ock

for HDAM or PHDAM using OSAM or ESDS

| 1

| 1

| RBA of RAP | DMB# | bCcB# | CP®
for HHDAM or PHIDAM using OSAM or ESDS

| RBA of root segment | DMB# | bcB# | CP®
for KSDS

| Hashed value of root key | DMB# | bcB# | CP®
Segment L ock

for HDAM or PHDAM dependent segments and HIDAM or PHIDAM segments

| RBA of segment | DMB# | DCB# | X'40
for HDAM or PHDAM root segments

| RBA of RAP | DMB# | DCB# | X'40
for KSDS

| Hashed value of root key | DMB# | DCB# | X'40

for HISAM ESDS

| RRN of the logical record | DMB# | DCB# | X'40

© IBM Copyright, 2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM

Version 8/4/2009

51

Block L ock

| RBA of block or Cl | DMB# | pcB# | cP® |!
Busy L ock

| XFF | czID' | DMB# | bcB# | cB® |*!
Extend L ock

| XFF | CXID' | DMB# | bcB# | cP |*?

Data Set Reference Lock

| XFF | CDID' | DMB# | bcB# | cB' |*

Command L ock

| XFF | C'CID' | X'7FFF' | XFF | CcB' |

Notes:

1. For SHARELVL 2 and 3 databases if the IRLM is used and the database is HALDB, the partition ID (2
bytes) is added to the end of the lock resource name.

2. If the database is not registered or if Pl isused, the DMB# is the local humber as determined by the
definitions in the IMS subsystem and the high order bit is off. If the IRLM isused and the database is
registered in the RECONSs, the DMB# isthe global number from the RECONSs and has the high order
bit turned on. Thereis one exception to this. If the database isHALDB and registered at SHARELVL 0
or 1, the DMB# isthe local number as determined by the definition in the IMS subsystem and the high
order bit is off.

3. Thisisablank (x'40) with local locking. Local locking is used with the Pl lock manager and with the
IRLM when the database is not registered with a SHARELVL of 2 or 3.

Fast Path Locks

In lock resource names the area identification includes either the global DM CB# or the DMAC number. The
global DMCB# is used when the database is registered and the IRLM isused. When the DEDB is not
registered or Pl is used, the DMAC number isused. Thisisanumber assigned by the IMS system.

Fast Path Cl Lock

| X'00 | RBA® | Area identification” | CF |

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 52

Fast Path Segment L ock?®

| B'10' | Low order 30 bitsof Cl RBA | Area identification” | CF |

Fast Path UOW L ock

| X'E4 | RBAof first Cl in UOW" | Area identification” | CF |

Fast Path Area Lock with IRLM

| XF8 | Database Name (8 bytes) | AreaName (8 bytes) | CF |

Fast Path Area L ock with Pl

| X'F8 | CAID' | Area identification” | CF |

Fast Path Buffer Overflow (OBA) L ock®

X'F2' Address of ESCDMOBU* X'FFFF CF

Fast Path M SDB L ock®

X'F1' Address of MSDB Control Word® MSDB Serid # CF

Fast Path VUNL OAD L ock

| X'F9 | CVUNLOAD ' (16 bytes) | CF |

Fast Path Multiple Area Structure L ock

| XFA' | Structure Name (16 bytes) | CF |

Fast Path Command L ock

| X'FF | C CID' | X'7FFFFF | CF |

Notes:
1. Thisisthe high order 3 bytes of the Cl RBA
2. With Pl the areaidentification is a 2-byte DMAC number and a byte of x'00". With IRLM the area
identification is the 2-byte DMCB number followed by the area number. The area number is one byte

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 53

when the number of areasin the database is 240 or less. Otherwisg, it istwo bytes and the C'F' suffix
follows the two bytes.

3. Whenthe IRLM isused, the 2-byte subsystem ID is added to the end of the resource name. This
prevents conflicts between locks in different IMS subsystems. This applies to systems with and without
data sharing since these resources cannot participate in data sharing.

4. Thisisthe address of the ESCDMOBU. The content of ESCDMOBU identifies the current owner of the
OBA lock.

5. The MSDB Control Word is an address which uniquely identifies arecord in an MSDB.

IMS Monitor Trace

The IMS Monitor Traceis used to collect information that is reported by the IMS Monitor report program. It
collectsinformation on waits for locks when either Pl or the IRLM is used as the lock manager.

The IMS Monitor traceis availablein either an IMS TM or DBCTL environment. It isturned on with either of
the following commands.

1. /TRACE SET ON MONITORALL
2. ITRACE SET ON MONITOR APDS

Thetrace information is collected on the IMS Monitor data set which is processed by the IMS Monitor report
program (DFSUTR20).

Pl and Lock Traces

IMS has two closely associated traces of lock information. They are the Pl trace and the lock trace. These
traces are written in the same table in virtual storage and optionally written to the IMSlog or an external trace
dataset. All eventstraced by the Pl trace are also traced by the lock trace. The additional eventsin the lock
trace appear when the IRLM isused. Thisincludesinformation about waits for locks. The Pl trace iswritten
to thelog or trace data set when any of the first three commands in the following list areissued inan IMS TM
or DBCTL environment.

The first two commands are equivalent since LOG is the default when OPTION isused. ALL adds wait times
tothe Pl trace. The keyword TIME may be used after OPTION. It requests that the wait time be included in
the trace record, but it does not cause the trace to be written to the log or external trace data set. The fourth
command causes the lock trace to be written to the log or external trace data set. It includes tracing of wait
times.

1. /TRACE SET ON PI OPTION
2. ITRACE SET ON Pl OPTION LOG
3. ITRACE SET ON PI OPTION ALL

4. ITRACE SET ON TABLE LOCK OPTION LOG

The trace records written by the PI and lock traces are the following.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 54

« Written by PI and lock trace.

- X'CA'—Entry for aDLI call. Used with Pl lock manager and IRLM.
- X'CA’ —Lock request using Pl lock manager

- X’CB’ —Lock request waited with Pl lock manager.

- X'C7" — Deadlock.

- X'C8 —Lock request using IRLM. Entry into lock manager.

- X’C9 —Lock request using IRLM. Exit from lock manager.

- X'CC’ — Exit from lock request handler. Used with Pl and IRLM.

« Written only by lock trace.
- X'C8' —Lock request suspended by IRLM. Beginning of wait.
- X'C8' - Lock request resumed by IRLM. End of wait
- X'D0Q' - Datasharing notify sent.
- X'D2' - IRLM status exit driven

The lock trace information is described in the IMS Diagnosis publications under "DL/I Trace." These
publications are IMS Version 9 Diagnosis and Reference, IMS Version 10 Diagnosis Reference, and IMS
Version 11 Diagnosis. CSECTSs for these and other trace records may be generated by assembling the
following macro from IMS's MACLIB (SDFSMAC).

IDLIVSAM TRACENT

Thereis no tracing by the Fast Path Lock Manager. Locks for Fast Path resources are only traced when await
isrequired and another lock manager is called.

IMS Monitor (DFSUTR20)

The IMS monitor isavailablein IMS TM and DBCTL environments. The IMS Monitor reports are created
from IMS Monitor trace records. For lock IWAITSs, IMS writes arecord when the wait begins and another
when the wait ends. The report uses these records to report on the elapsed time for these waits. Lock wait
times are shown in two of the IMS Monitor reports, the Program 1/0 report and the Region IWAIT report.
Deadlocks are shown in the Deadlock Event Summary section following the heading “*** Reports***”.

The program I/O report shows IWAITs by PCB within programs. The programs are identified by their PSBs.
IWAITs are identified by the characters“PI” in the DDN/FUNC column. "PI" is used even when IRLM isthe
lock manager. Thisisfollowed by the physical database’s DBD name and the segment code for the segment
being processed. If Pl waits occur for different segments, there will be aline in the report for each segment.
The number of waits, the mean wait times, and the maximum wait time are reported for each segment in each

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 55

PCB for the program. Thisreport is an excellent source for usein determining if locking is a problem for a
program.

The following is an example of the reporting of two lock waits for database RZCMAQ01.

PSBNAME PCB NAME | VAL TS TOTAL MEAN MAXI MUM DDN FUNC MODULE

RZCMAOO1 2 3419 1709 1991 PI RZCMAOOL...1

The Region IWAIT report shows IWAITs by region. It accumulates the IWAITsfor al programs that execute
intheregion. Itissimilar tothe Program I/O report. Waits for locks are identified by the characters“Pl” in
the FUNCTION column under the DL/I CALL S section of the report. Asin the program 1/0 report, "PI" is
used even when IRLM isthelock manager. The characters“Pl” are followed by the physical database’'s DBD
name and the segment code for the segment being processed. The number of waits, the mean wait times, and
the maximum wait time are reported for each segment in the region.

The following is an example of the reporting of waits for locks for databases SMWLJ001 and RZCMAOQOL in
region 45.

IM5 MONI TOR *** REGON IWAIT ***

......... IVAIT TIME
**REG ON 45 OCCURRENCES TOTAL MEAN MAXI MUM FUNCTI ON MODULE
DL/ CALLS
16 20959 1309 4696 Pl =SMALJOO1. . .1
19 48901 2573 26494 Pl =RZCVAOO1L. . . 1

The Deadlock Event Summary report may be used to determine how long it took to backout a program when it
was the victim in one or more deadlocks. The elapsed time for the backoutsislisted in the MEAN ELAPSED
TIME column for the call with level code ‘00" and a blank status code. Thisisthe call for which the victimin
the deadlock was waiting. Thelevel code of ‘00’ is used to indicate the call by the victim that caused the
deadlock.

Reporting of Waits for Space Management

Occasionally the report program will include lines which appear to be lock IWAITs but actually are not lock
waits. Instead, these are waits for space management which are handled by alatch mechanism, not locking.
When one of these latch waits occurs, IMS writes lock IWAIT monitor records; therefore, these latch waits are
reported asif they were lock IWAITS. Y ou can recognize these waitsin the report since they include a zero
for the segment number in the report. For example, you might see aline such as:

**REG ON 15 OCCURRENCES TOTAL VEAN MAXI MUM FUNCTI ON MODULE

DL/1 CALLS

1 172 172 172 Pl =RZCVAOO1. .. 0

These space management latch waits never cause deadl ocks since the holder never asks for alock or another
space management latch while holding one of these latches.

Pl Trace (DFSPIRPO)

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 56

The Program Isolation Trace Report Utility is used to report waits for locks when the PI trace has been written
to an IMSlog or external trace data set for a system using the Pl lock manager. Although the trace will include
records for every request made to the Pl lock manager, the report will only include those requests that had
waits. For each of these requests, the report lists the following:

Resource requested. Thisisthe DBD name, DCB number, and 4-byte resource ID. The 4-byte ID is
either the RBA, RRN, or hashed key.

Time of the request.
Elapsed time of wait except for Fast Path resources.

Names of requesting and holding PSBs

Thereport is sorted by database, data set, and resource ID. The report also includes the total number of waits
for each resource.

Thisreport is particularly useful for finding locking problems when the Pl lock manager is used.

RMF Il ILOCK (IRLM Long Lock Detection) Report

The RMF 11 ILOCK report is available when IRLM is used as the lock manager. It usesinformation from
SMF records to gather information about lock requests that have waited longer than the IRLM TIMEOUT
value. When these "long locks" occur, the report lists the holder of the locks and the waiters. The IRLM
TIMEOUT value defaults to 300 seconds but may be set to another value with the following command:

F irlmproc,SET, TIMEOUT=seconds,imssubsystemname

See "L ock Timeouts' on page 33 for information on using this command and its relationship to IMS lock
timeouts.

The ILOCK report requires the writing of SMF type 79 subtype 15 records. These may be specified with the
following z/OS command:

S RWF, ,, (SMFBUF(RECTYPE(79(15))))

The SMF records are written by IMS when its timeout exit routine is driven by IRLM. IRLM drives this exit
routine when alock request has waited longer than the number of seconds specified for its TIMEOUT value.
Thisvalueisset during IMS initialization. IMS providesits LOCKTIME value from the DFSV SMxx
PROCLIB member for online subsystems or the DFSVSAMP DD data set for batch jobs. If IMS does not
have aLOCKTIME vaue specified in DFSV SMxx of DFSVSAMP, a default value of 300 secondsis used.
The TIMEOUT value may be modified with the F irlmproc,SET, TIMEOUT =time,i mssubsystemname
command.

Reporting is generated by issuing the RMF Monitor Il | LOCK ALL command.
In the ILOCK report alock holder or waiter is identified as one of the following:

BLOCKER: Thisisaprogram that holds alock for which another program is waiting.
TOPBLOCKER: ThisisaBLOCKER which is not waiting on alock.
WAITER: Thisisaprogram that iswaiting for alock.
© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM 57

BLOCKER/WAITER: Thisisaprogram that is both a blocker and awaiter.

The following is a sample report.

|

| RVF - I LOCK | RLM Long Lock Detection Line 1 of 15
| Command ===> Scrol | ===> HALF
| CPU= 37/ 35 U C=2540 PR= O System= RVF5 Tot al
| State Type Lock_Name PSB Namre Elap_Tine CICS_ID
| IM5_I D Recovery_Token PST# Trx/Job VWait _Tine DB/ Area
e
| CF Structure ACOXLOCK at 07/28/ 2006 13:02: 10 Deadl ock Cycl e 00002EC7
e
| TOP BWP 09C943CFA7800101D700000000000000 DFSSAMBL 00: 06: 04

| BLOCKER ACO3 ACC3 0000000300000000 0006 | RLMIoPz

| TOP BWP 09C3614505800101D5700000000000000 DFSSAMB1 00: 06: 09
| BLOCKER ACOL ACOL 0000000600000000 0006 | RLMIGPA

| WAITER BW 09C3614505800101D5700000000000000 DFSSAMB2
| ACC2 ACC2 0000000800000000 0007 | RLMATA1 00: 05:52 DI 21PART

| WAITER BWP 09C943CFA7800101D700000000000000 DFSSAMB7
| ACO2 ACO2 0000000900000000 0008 | RLMMZ2 00:05:42 Dl 21PART

The ILOCK report is documented in the ZOS RMF Report Analysis and the ZOSRMF User's Guide
publications.

KBLA Deadlock Trace Record Analysis Report (DFSKTDLO)

The KBLA (Knowledge Based Log Analysis) Deadlock Trace Record Analysis Report utility (DFSKTDLO)
formats and summarizes data extracted from IMS x’ 67FF' 1og records which are written when deadlocks occur.
It produces a summary report, avictim report, and a detail report. This utility does not read trace records, it
only processes x'67FF' log records which do not require tracing.

The summary report includes the number of deadlocks on the log and summaries of deadlocks by hour, IMS
system, state, lock type, database, PSB, lock name, and RBA. Thisinformation is useful in understanding if
deadlocks are a problem and identifying the high volume deadlocks and their cause.

The victim report shows the participants in each deadlock and which participant was chosen as the victim.

The detail report provides more detailed information about each deadlock. Thisincludes the holders of locks,
the locked resources, the levels of locks, database names, PST numbers, and IM S calls that produced the lock
requests.

KBLA IRLM Lock Trace Analysis Utilities (DFSKLTxO0)

The KBLA (Knowledge Based Log Analysis) Lock Trace Analysis utilities may be used to report on lock
waits when using the IRLM. As the name implies, these utilities produce reports by processing IRLM lock

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 58

traces. There arethree utilities. Thefirstisthe KBLA Lock Anaysis Control File Creation utility
(DFSKLTAQ). It readsthe RECONs and produces a control file. Thisfileisused to match global DMB
numbersin the lock trace to their database names so that the names may be used in the report. The second
utility isthe KBLA Lock Trace Analysis Reduction utility (DFSKLTBO) utility. It reads the lock trace records
and produces an intermediate file. This file contains data on lock requests which resulted in waits as well as
detailed information on all lock requests. Thisfileisread by the KBLA Lock Trace Detailed Print Program
(DFSKLTCO) to produce its reports. These utilities may be invoked either through the KBLA IRLM Lock
Analysis panel or by creating and running your own JCL.

DFSKLTCO has options to limit reporting to a subset of databases, PSTs (dependent regions or threads), or to a
minimum wait time. There are three standard output reports. These reports list the output in database name
order, wait time order, and request completion order. The execution of these utilities is documented in the IMS
System Utilities manual.

The following is a sample summary report:

Suspended | RLM Lock Requests Summary Report - Wait Tine Order Page 001
Trace Date = 01/12/2005 Trace Start Tinme = 16:01:47 Trace End Tinme = 16: 06: 26
Trace El apsed Tine (secs) = 278
Trace I nput DSN = | M5. | SAL1. DFSTRAO1

Dat abase DS Lock Req Wait Not Int Tot al Aver age Maxi mum

Nare |d Count Count Count Ti me Ti ne Ti ne
BFLMSGY3 01 8628 115 110 9.198 0. 079 2.76
BFLMSGY7 01 8452 102 98 4.813 0. 047 4. 36
BFLMSGP 01 15862 181 169 4.401 0. 024 0. 64
BFLSUMP 01 3929 40 37 3.703 0.092 2.39
BCMILRD 09 1153 1 1 3. 400 3. 400 3.40

The wait count includes internal latch waits. The "Not Int Count" column is the count of "not internal" waits.
These are lock waits and the count does not include internal latch waits.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 59

The following is a sample detailed report:

0802
656 "0T :90 :9T TOO IMS| 0802
0802
0802
0802
0480
02T "0T :90 :9T TOO IMS| 0480
0480
069 "60 :90 :9T TOO IMS| 0080
069 "60 :90 :9T TOO IMS | 0080
#bas au 1L wnN 8dAL Jvdl

ovv0
0000
ov¥0
ov¥0
ov¥0
ovv0
0v80
ovv0
0000
0000
g404d

|

=)

=)
o

Dd

%6¥6¥¥¥¥

......... 1€ -------- -~ |-- bed

€00 abed

4 09€89T00 TT AVAINO4
d ¥083¢Tv¥0 TO dddINOd
4 00036000 €T AVAINO4
4 0¢Z8EVYTO0 TT AVAINOd
4 03vES000 0T AvAINOd
4 0VE0ZS00 90 Aavovd
d 008.TT¢E TO dIXIOvd
4 03072000 80 ANIINOG
d T003d660 TO TAN IO 109
d T003d660 TO TAN IO 109
S HSVH ~v8d S aa

....... 92 1In0osay -------

Odd ¢¢1
da g 8€0
Ddd ¢¢tT
Ddd ¢¢1T
Ddd 22T
[Odd 00T
da g 290
Odd 290
da g o0t
daig oot 4

|A7 adAL wnN adAL

<t <t 00 <t 00 0O W O © ©
LOOO o040

-4207-- ISd -----11
TOVH1SHA “TVS | 'S | = NSQ S00 /2T /T0

100"

¢e0
000
T00
00
[430)
700
G8¢

700 °
0
pasde 3

000

ccocococococoo

¢10”
266’
8EY
86€
121
ve”
0LT"
256
lLcl”
vel:

au il
1sanbay 207

189p 10 duop bay - 1.10day si1sanbay X207 NTH | papuadsns

pu3

110"
656 -
8EY
L6E "
vse -’
60¢°
0LT"
196"
lLcl”
€cL”

9T

au il liels
1sanbay 207
= 93)eg 9dell

Version 8/4/2009

© IBM Copyright, 2009

http://www.ibm.com/support/Techdocs

60

IMS Locking with Program Isolation or the IRLM

File Select and Formatting Print Utility (DFSERA10)

This File Select and Formatting Print Utility (DFSERA10) is used to print and produce reports from IMS logs
and external trace data sets. There are several exit modules that are used to produce particular reports. This
section includes information on three of these modules which produce reports of locking information.

Record Format and Print Module (DFSERA30)

The Record Format and Print Module (DFSERA30) is one of the exits used with the File Select and
Formatting Print Utility (DFSERA10). This module has the capability to produce a Deadlock Analysis report.
Thereport is produced from the X’ 67FF log record that is created when a UQ777 abend occurs. Thelog
record is created with both the PI lock manager and the IRLM. Thislog record contains information about
resources and lock requestors involved in the deadlock. For each resource involved in the deadlock, the report
includes the database name, the lock’ s resource ID and the root segment’skey if it isavailable. For the
requestor waiting on the resource, the report includes the following

e Job name or transaction code

e PSB name

Region type (MPP, BMP, etc.)

Type of call made (GET, ISRT, etc.)

Lock request function (used to identify database record locks, dependent segment locks, etc.)

Lock level (called state in the report)
For the requestor holding the lock on the resource, the report includes the following
e Job name or transaction code
e PSB name
¢ Region type (MPP, BMP, etc.)
e Lock level (caled statein the report)
Thisinformation makes it easy to discover the programs and resources involved in deadlocks.

The report is usable with any log containing a U0777 abend. The X' 67FF log record from which the report is
generated is created whether or not any traces are on.

The following is a sample deadlock report. In this report the deadlock has occurred because transaction
TRLDDC1 in IMS2 iswaiting on ablock lock in database CMLDDCDB at RBA 7EB22000. Thislock is
currently held by transaction USMEED2 in IMS1. At the same time transaction USMEED?2 is waiting on the

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 61

database record lock in the same database at RBA 7EB22B3E. Thislock isheld by transaction TRLDDC1.
The database record locks are held and requested at IRLM level 6.

R EEEEEEEEE RS R R R R R R R R R R R RS E R R R R EREEEEEEEEEES]

DEADLOCK ANALYSIS REPORT - LOCK MANAGER IS IRLM
RESOURCE DMB-NAME LOCK-LEN LOCK-NAME - WAITER FOR THIS RESOURCE IS VICTIM
01 OF 02 CMLDDCDB 08 7EB22000843A01D7
KEY FOR RESOURCE IS FROM DELETE WORK AREA
KEY=(200414913326180)

IMS-NAME TRAN/JOB PSB-NAME PCB--DBD PST# RGN CALL LOCK LOCKFUNC STATE
WAITER IMS2 TRLDDC1 CMLDDCDB CMLDDCDB 00003 MPP DLET GBIDP 22400318 04-P
HOLDER IMS1 USMEED2 CMLDDCDB -------- 00007 MPP ---- ----- -=------- 04-P
RESOURCE DMB-NAME LOCK-LEN LOCK-NAME
02 OF 02 CMLDDCDB 08 7EB22B3E843A01D7
KEY IS ROOT KEY OF DATA BASE RECORD ASSOCIATED WITH LOCK
KEY=(200414913326180)

IMS-NAME TRAN/JOB PSB-NAME PCB--DBD PST# RGN CALL LOCK LOCKFUNC STATE
WAITER IMS1 USMEED2 CMLDDCDB CMLDDCDB 00007 MPP GET GRIDX 30400358 06-P
HOLDER IMS2 TRLDDC1 CMLDDCDB -------- 00003 MPP ---- ----- -------- 06-P

DEADLOCK ANALYSIS REPORT - END OF REPORT

R EEEEEEEEE RS R R R R R R R R R R R R R R R R R EREEEEEREEEES]

More detailed information about the report isincluded in the description of the Record Format and Print
Module (DFSERA30) in the IMS System Utilities publication.

Pl Trace Record Format and Print Module (DFSERA40)

The PI Trace Record Format and Print Module (DFSERA40) is one of the exits used with the File Select and
Formatting Print Utility (DFSERA10). It formats the trace records produced by the PI and lock traces.

When the PI lock manager is used, atypical sequence for aDLI call with two locks requests, the second of
which must wait, would be the following.

1. X'CA'—Entry for aDLI call.
2. X'CA'—Lock request.
3, X'CC' —Exit from lock request handler.
4. X'CA'—Lock request.
5. X'CB'—Lock request. Request waited.
6. X'CC' — Exit from lock request handler
If the IRLM were used, the same call and lock requests would produce the following records.

1. X'CA'—Entry for DLI call.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 62

7.

8.

X'C8' — Lock request entry into lock manager.

X'C9' — Lock request exit from lock manager.

X'CC —

Exit from lock request handler.

X'C8' — Lock request entry into lock manager.

X'C8' — Lock request entry suspended.

X'C8' — Lock request resumed.

X'C9' - Lock request exit from lock manager.

9. X'CC' — Exit from lock request handler.

The printing of X'CC' trace records by DFSERA40 indicates alock request function in the column headed
"ACT". Theserequest functionsinclude GRIDX, RRIDX, GSEGL, and similar five character designations.
The following is a summary of these functions.

Theformat is‘abbbc’ where:

. a— Thefirst character is usually one of the following:

G Get—alock

R Release—release alock

T Test—test alock

RID
SEG
ZID
QCM
TLK
ALL
BID

XID

. bbb — The middle three characters are usually one of the following:

database record lock

segment lock

data set busy lock (open, close, extend)

Q command code lock

test alock (wait if conflict, but do not lock)
all locks (used to release all locks)

block or ClI lock (used only by data sharing)

data set extension (used only by data sharing)

© IBM Copyright, 2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM

Version 8/4/2009

63

« C—Thelast character is usually one of the following:

—

local lock (used for local locking; with data sharing only used for Fast Path)
local lock and global lock (used for both local locking and data sharing)
global lock (used for data sharing, but not local locking)

global lock (used for data sharing, but not local locking)

Thisisacombination of two requests used with GRID. It indicates a request to get a new root
lock (GRIDX) and then release the old root lock (RRIDX)

Thisisaspecial case of X. Itisused with RRID to indicate that the lock and global aternate lock
should bereleased. The alternate lock is associated with a previoudly locked database record, not
the last one locked. It isheld while other database records are locked and then examined in
attempting to satisfy a call

Using this information, we can interpret the following common function requests.

GRIDX
RRIDX

GRIDU

RRIDW

GSEGL
RSEGL
GQCMX
GFPLL
RFPLL
TTLKL
GZIDL
RZIDL

RALLX

get alock (local lock and data sharing) on a database record
release alock (local lock and data sharing) on a database record

get alock (local lock and data sharing) on a database record and release the lock on the
previous database record

release alock (local lock and data sharing) on the aternate database record, that is, not the
last one locked.

get aPl lock on a dependent segment

release a Pl lock on a dependent segment

get a Q command code lock (local lock and data sharing) on a segment
get aFast Path lock

release a Fast Path lock

test aPl lock

get a Pl data set busy lock

release a Pl data set busy lock

release al locks (sync point processing)

More information on the lock request function may be found by assembling the following macro from IMS's
MACLIB (SDFSMAC).

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 64

DFSLR FUNC = HELP

IMS Trace Table Record Format and Print Module (DFSERAG0)

The IMS Trace Table Record Format and Print Module (DFSERAG60) is one of the exits with the File Select
and Formatting Print Utility (DFSERA10). It writesall trace records that are on the log or external trace data
set. It does minimal formatting of these records and produces a "dump-like" output. For the X’ CC’ recordsit
decodes some of the fieldsin the record to list the lock request type, whether the lock request is conditional or
unconditional, and the lock level. The lock request types, such as GRIDX, are the same as are documented for
the DFSERA40 module in the IMS System Utilities publication. The lock levels used are the following:

e E-—Pllevel 4

e U-Plleve 3

e S—Pllevel 2

e R-Plleve 1

Since DFSERA60 does minimal formatting of the trace records, descriptions of the records are usually needed
when working with the output this module. They are described in the IMS Diagnosis publication under “DL/I
Trace”. DSECTsfor these trace records may be generated by assembling the following macro from IMS's
MACLIB.

IDLIVSAM TRACENT

Trace and Report Matrix

The following table summarizes the programs that produce reports on locking activity.

Table 16. Locking Trace and Report Programs
P?gg?arrtn Rgalﬁf od Lock Mgr. Information Reported
Lock . Dead-
Pl | IRLM Reguests Waits Locks FP

IMS Monitor Monitor | Y Y N Y Y Y
DFSPIRPO Pl orLock | Y N N Y N N
RMF Il ILOCK SMF N Y N Y N Y
DFSERA30 None Y Y N N Y Y
DFSERA40 PlorLock | Y Y N N Y Y
DFSERAGO PlorLock | Y Y Y Y Y Y
DFSKLTCO Lock N Y Y Y N Y
DFSKTDLO None Y Y Y* Y* Y Y

* Only for locks which are participants in deadl ocks.

© IBM Copyright, 2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM

Version 8/4/2009

65

IMS Performance Analyzer for z/OS Reports

The IMS Performance Analyzer for zZ/OSis an IBM product which produces performance reports from IMS
logs and IMS Monitor data sets. Several of these reportsinclude locking information. Three sample reports
are shown below. Information about all of the available reports and their contentsis available in the IMS
Performance Analyzer for zZ/OS Report Reference publication.

Deadlock Summary

The IMS Performance Analyzer for zZ/OS Deadlock Summary report provides a summary of deadlocks by
database. It may be used to identify databases with a high incidence of deadlocks. The following isan
example of the Deadlock Summary report.

Start 21May2006 16.24.57.06 | M5 Performance Anal yzer End 21May2006 16.30.22.96 Page
3

Deadl ock Summary

**************** LOSi NG Pr Ogr am %% #x % ks k5 x %% kxRS RSk W DT NG PFOQE AM * %R xRk ko
DVB-nane | M5-nane Tran/Job PSB-name PCB--DBD Deadl ocks DVB-name | M5-nane Tran/Job PSB-name PCB--DBD # Waits

DBDO1P | MD3 MKR#LK1A FUNPSBO1 DBDO1P 1 DBDO1P | MD3 MKR#LK1B FUNPSBO1 DBDO1P 1
DBDO1P | MD3 MKR#LK1C FUNPSBO1 DBDO1P 1
DBDO1P | MD3 MKR#LKLD FUNPSBO1 DBDO1P 1
DBDO1P | MD3 MKR#LK1ID FUNPSBO1 DBDO1P 1 DBDO1P | MD3 MKR#LK1IA FUNPSBO1 DBDO1P 1
DBDO1P | MD3 MKR#LK1B FUNPSBO1 DBDO1P 1
DBDO1P | MD3 MKR#LK1IC FUNPSBO1 DBDO1P 1

Total nunber of Deadl ocks = 2

Deadlock List

The IMS Performance Analyzer for zZ/OS Deadlock List report is similar to the Deadlock Analysis report
created by DFSERA 30 as shown on page 62. The Deadlock List report enhances this report to include
explanations of some of the datain the report. The following is an example of this report.

© IBM Copyright, 2009 Version 8/4/2009

http://www.ibm.com/support/Techdocs
IMS Locking with Program Isolation or the IRLM

66

3007 100y ‘1O=0% |4
91epdn=91e 1S

puooUN=9pPaA
$)007 1004 [eq0 P pue [ed07 18)=2und 8/£00¥0¢ (1id‘@repdn) d-90 XA MO 1P ddN £0T00 d20anv 8¢¢cd IN 8CCLIN JUXAIN |1 191 1N\
(14d ‘@repdn) d-90 ddN 8T000 822d N 82TZLIA JUXEIN | 19320 |g
oun §14207 91el1S X007 |[[|eD NOd #1Sd d9d--90d aueu-gsd qof /uel] aueu-gn |

+ B0ONd """ "« ov8d 040d¥d90 06L0TETO 000000
"' 'paisanbal A WvaH S| pake [dsip A8y ‘loydoue WvaH uo Bu 13207
(2000 = @ISS ‘€207 ‘T0 = @0a ‘0608 = #ANA ‘O3vAZY00 = Vad) 20000¥T0060803vICH20 0T dcoawv ¢0 40 20
xx WILDIA S1 92IN0S3aJ S 1Yyl 10} 131 IPN «x« aueu -)207 Ud |-)207 aueu-ghNg 99 Inosay

[e207 ‘yled 1sed ‘1eD=6e |4

|19X3=91e 1S

puoouN=apaN
4207 d4 189=9%und 04¥00¥06 (19x3) 80 11dHO 184S | ddN 8T000 dced IN 8¢cd IN 8CCLIN JUXdIN | 191 1N\
(19x3) 80 ddN €0T00 8¢¢cd IN 8CCLIN JIXdIN | 18420 |9

oun j32307 91elS 007 [leD NOJd #1Sd ddd--90d aueu-dsd qor /uell aueu-gp |
a|ge | leAe 10U S| 82.In0Sal 0} Aay
(@207-4 ‘TO = Nv ‘3ST8 = #dOAA ‘0000800 = vad) 90T0IST80¥O80000 80 TOCZd IA 20 10 TO
aueu -)2907 Ud |-)}007 aueu-gNd 99 Inosay
NI S1 Jabeugy X007 - 1i40day S ISA |euy Y20 |pead
€v30T4a000000000 = Ouday 900ZABNTZ @1eQ €/ :2Z :0€ 9T au L ,//0N = ON pusqvy p 10281 pusqge opnasd
1S 17 Y20 |pead

T obed 19zA jeuy sduBL IO JI1ad SN | 90 LG '¥Z '9T 900ZABNTZ 1./e1S

Version 8/4/2009

http://www.ibm.com/support/Techdocs

© IBM Copyright, 2009

67

IMS Locking with Program Isolation or the IRLM

Fast Path DEDB Resource Contention Summary

The IMS Performance Analyzer for zZ/OS includes a Fast Path DEDB Resource Contention Summary report.
This report provides summary information about IWAITs on DEDB locks of various types, including Cl,
UOW, segment level, area, buffer overflow, MSDB and command locks.

The following is an example of this report.

Report from 09Jun2006 14.25.56. 36 IM5 8.1.0 I M8 Performance Anal yzer 4.1 Report
Fast Path DEDB Resource Contention Sunmary
From 09Jun2006 14.26.11.74 To 09Jun2006 14.29.21.57 Elapsed= 0 Hs 3 Mns
**xx Cl Lock |WAIT **x* Shar
Area Shari ng El ap/ Count Max | VWAI T Pct Tot Pct Tot A
Nane Type Count s Sc.MI.Mc St Dev Sc.MI.Mc Counts IWEl p B :
C:

DB23AR0 A 3 3.313 0. 466 5.498 9. 09% 0. 05%

DB23AR1 A 4 2.222 0. 551 3. 386 12.12% 0. 04%

DB23AR3 A 1 4.871.974 0. 000 4.871.974 3.03% 24.50%

DB23AR4 A 1 0. 257 0. 000 0. 257 3.03% 0. 00%

DB23AR5 A 11 1. 358. 286 1.620 4.981.761 33.33% 75. 15%

DDO1ARO A 13 3.880 0.499 6.863 39.39% 0.25%

** Tot al 33 602. 504 2.668 4.981.761 100.00% 100.00%

x% Area Lock |WAIT ** Shar
Area Shari ng El ap/ Count Max IWAIT Pct Tot Pct Tot A
Name Type Count s Sc.MI.Mc St Dev Sc.MI|.Mc Counts I WElp B:

C:
BANKCO0 C 11 18.813 0.129 22.795 39.29% 15.18%
BANKCO1 C 17 68. 036 2.828 837.022 60.71% 84.82%
** Total 28 48. 699 3.118 837.022 100.00% 100. 00%

*xx% Cl Lock |WAIT *x**

| Average SD/ Avg Max- Val ue|

| 3.313 .471 5.498|

|
Range| Count

in Areaname=DB23AR0

|
Count

Average SD/ Avg Max- Val ue|
2.222 .556 3. 386|

Ar eaname=DB23AR1
Share Type=A

in

D EEEEEAAA AR SR A A AR R Rk
A *EkEExER Rk

A Hrrrrrrnnn

|
|
|
|
|
|
0| I
|
|
|
|
|
|

------- [R A R
10 20 30 40 50%

|
Count

Average SD/ Avg Max-Val ue|
.005 4.871.974|

4.871.974

in Areaname=DB23AR3
Range Share Type=A

L FEAEEE AR E R A A AR R Ak

[
1 10 20 30 40 50%

to 09Jun2006 14.30.06.71

09. 836. 240 Secs
ing Types:
Area / Non Level Share
1 IRLM Bl ock Level Share
2 IRLM Bl ock Level Share

ing Types:

Area / Non Level Share
1 IRLM Bl ock Level Share
2 IRLM Bl ock Level Share

Average SD/ Avg Max-Val ue
0. 257 . 005 0. 257
|
Count Ar eaname=DB23AR4
Share Type=A

in

|
|
|
|
|
|
.
|
|
|
|
|
|

Average SD/ Avg Max- Val ue|

|

Sc M|l Mc| Range Share Type=A |
To Maxi muni (o] |
256. 000| (o] |
128. 000| [o]] |
64. 000| [o]] |
32.000] (o] |

16. 000| [o]] |
8000' 1|************* |

4. 000 D FEEE R AR AR AR |
2.000| 0| |

1. 000| [o]] |

| |

| B

[=-=---- [A O A

Total =| 3 10 20 30 40 50%

| Average SD/ Avg Max- Val ue|

| 1.358.286 1.624 4.981.761|

| |

Range| Count in Areanane=DB23AR5 |

Sc M| Mc| Range Share Type=A |
To Maxi nunj | Fr kR r A E AR |
256. 000| [o]] |
128. 000| [o]] |
64. 000| IWEAAA |
32.000] [o]] |
16000' 2|******* |

8. 000| 1| xxx* |

4_ Oool 2 kok ok ok ok ok ok |
2.000| L xrkx |

1. 000| 1| xrkx |

| —

[=-=---- [A O A

Total =| 11 10 20 30 40 50%

Average SD/ Avg Max- Val ue|

3.880 .503 6. 863|
Count in Areananme=DDO1AR0
Range Share Type=A
0l
0]
0]
0l

I RAAAAAEEE
IR

| EEkEE R

B HxH xRk A AR KA Ak

|

|

|

|

|

|

|

0| |
|

|

|

0l |
|

------ [N Y
10 20 30 40 50% |

602.504 2.673 4.981.761
Count in Areaname=** Tot al
Range Share Type=

4] xrxkx

0]

0]

1| *

0]

5|kkkkkk

4] xrxkx

Q| KKKk kKKK

7|kkkkkkkk

TR

------ [L T T
10 20 30 40

© IBM Copyright, 2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM

Version 8/4/2009

68

Glossary

APPC. Advanced program-to-program communications, a programming interface standard for
communications using SNA LU 6.2.

BLDS. Seeblock level data sharing

Block level data sharing (BLDS). A kind of data sharing that enables application programsin different IMS
subsystems to update concurrently.

Commit point. The point at which an application program commits that a section of work is done and that the
data it has modified or created is consistent and complete. Its output, which has been held up to that time, is
sent to its destination(s); itsinput (if any) is removed from the message queues; and its database updates are
confirmed and made available to other applications. A commit point occurs when a program terminates
normally, when it issues a checkpoint call or command, or when it issues acommit verb. If aprogram
processes messages, a commit point may also occur when it retrieves a new message. Commit points are also
called synchronization points or sync points.

CPIC driven application program. An application program that uses CPI communications calls to receive
an incoming message and to send areply.

Database Control (DBCTL). AnIMSfacility that provides an IMS Database Manager subsystem without the
IMS Transaction Manager. It may be used by CICS, ODBA threads, and BMPs for access to IM S databases.

Database level data sharing. A kind of data sharing that enables one IM S subsystem to update a database
while other IM S subsystems read the database without integrity or allows multiple IMS subsystemsto read a
database with integrity.

Databaserecord. Inadatabase, acollection of segments that contains one occurrence of the root segment
type and al of its dependents arranged in a hierarchic sequence. It may be smaller than, equal to, or larger
than the access method logical record.

Data entry database (DEDB). A Fast Path database that consists of one or more areas, with each area
containing both root segments and dependent segments.

Data sharing. The concurrent access of databases by two or more IMS subsystems. The IM S subsystems
can bein one processor or in separate processors. They can share data at either the database level or the block
level.

DBCTL. SeeDatabase Control

DDIR. Database directory control block. AnIMS system contains one of these control blocks for each
database defined to the system.

DEDB. Seedata entry database

ECNT. Extended Communications Name Table, a control block related to an IMS terminal and used as an
index to terminal related MSDBSs.

EPS. See Extended pointer set

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 69

Extended pointer set (EPS). InaHALDB, an expanded segment prefix that includes information that allows
the use of indirect pointers. An EPS s created for logical child segments and secondary index segments.

Fast Path databases. Two types of IMS databases designed to provide high availability and fast processing
for IMS applications. See aso main storage database (M SDB) and data entry database (DEDB).

Full function databases. |IMS databases that provide awide range of capabilities, including logical
relationships and secondary indexing. Full function databases include HDAM, HIDAM, PHDAM, PHIDAM,
PSINDEX, HSAM, HISAM, SHSAM, SHISAM, and INDEX.

HALDB. SeeHigh Availability Large Database.

HAL DB Online Reorganization (OLR). A function of IMSthat allows non-disruptive, online
reorganization of PHDAM and PHIDAM partitions.

High Availability Large Database (HALDB). A partitioned full function database. The supported database
organizations are PHDAM, PHIDAM, and PSINDEX.

I ndependent overflow (IOVF). |naDataEntry Database (DEDB) the part of the area which contains roots
and direct dependents which have overflowed from the UOWSs containing RAP Cls and dependent overflow
Cls.

Internal Resource Lock Manager (IRLM). AnIMS component that provideslock management for use by
IMS subsystems that share data at the block level. The IRLM also may be used to provide lock management
for resources accessed in a single system.

IOVF. Seelndependent overflow

IRLM. Seelnternal Resource Lock Manager

Logical relationship. In adatabase, a path between two independent segments where the relationship is user
defined.

Logical child. Inadatabase, apointer segment that establishes an access path between its physical parent
and itslogical parent. Itisaphysical child of its physical parent and alogical child of itslogical parent.

Logical parent Inadatabase, the segment to which alogical child points. It can aso be aphysical parent.
Furthermore, it contains the common reference data. The pointer in the logical child to the logica parent can
be symbolic or direct.

Main storage database (MSDB). A Fast Path root segment database which residesin main storage.

Modified standard application program. AnIMS application program that uses CPI-C callsto alocate
LU 6.2 conversations and sends and receives data.

MSDB. See Main Sorage Database
ODBA. See Open Database Access
OLR. See HALDB Online Reorganization

Open Database Access (ODBA). A calableinterface that can be used by a z/OS application program to issue

DL/l callsto an IMS DB system. The application program must use Resource Recovery Services (RRS) of
© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 70

z/OS asa sync point manager. ODBA isused by DB2 Stored Procedures, WebSphere Application Server,
ODBM, and other address spaces to access IM S databases.

Output Thread. An asynchronous task which writes committed DEDB updatesto disk, aV SO data space, or
a Coupling Facility structure.

PHDAM. A partitioned Hierarchical Direct Access Method database organization, one type of High
Availability Large Database (HALDB).

PHIDAM. A partitioned Hierarchical Indexed Direct Access Method database organization, one type of High
Availability Large Database (HALDB).

Physical child. In adatabase, a segment type that is dependent on a segment type defined in the next higher
level in the database hierarchy. All segment typesin adatabase, except the root, are physical children since
each is dependent on its parent.

Physical parent. |nadatabase, a segment type that has a dependent segment type defined at the next lover
level in the physical database hierarchy.

Pl. Seeprogramisolation

Pointer segment. In asecondary index, the segment that contains the data and pointers used to index the
target segments.

Private attribute. With the IRLM, the private attribute in alock requests prevents the lock from being held
by requestors from different subsystems.

Program isolation (Pl). AnIMSfacility that separates all activity of an application program from any other
active application program until that application program indicates, by reaching a synchronization point, that
the dataiit has modified or created is consistent and complete.

Program isolation (PI) lock manager. AnIMSlock manager that supports only local locking. The Pl lock
manager is used in systems for which no IRLM has been defined.

Protected conversation. A protected conversation links separate pieces of a distributed application into a
single transaction using RRS. All resource managers participating in the protected conversation either commit
or back out together.

PSINDEX. A partitioned secondary index database organization, one type of High Availability Large
Database (HALDB).

RAP. Seeroot anchor point
RBA. Seerelative byte address

Relative byte address (RBA). Addressin a database data set that is expressed as a number of bytes from the
beginning of the data set.

Relativerecord number (RRN). Addressin adatabase data set that is expressed as a number of logical
records from the beginning of the data set.

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 71

Resour ce Recovery Services (RRS). A component of zZ/OS which provides a global syncpoint manager that
any resource manager on z/OS can exploit.

Root addressable part. In aDEDB, the part of the area which contains Cls with root anchor points and the
dependent overflow Cls.

Root anchor point (RAP). InaDEDB, HDAM, or PHDAM database, a pointer at the beginning of a
physical block or CI that points to aroot segment whose key randomizes to that RAP.

RRN. Seerelative record number.

RRS. See resource recovery services.

SDEP. See sequential dependent segment.
Secondary index. See secondary index database

Secondary index database. Anindex used to establish accessibility to a database by a path different from
the one provided by the database definition. It contains pointer segments.

Sequential dependent segment (SDEP). A segment of a data entry database that is chained off the root
segment and inserted (last-in first-out) into the last part of a DEDB area. After being inserted by an online
program, the SDEP cannot be modified.

Shared VSO. Theimplementation of VSO in which an areaisread into a coupling facility structure so that it
may be shared by multiple IMS systems.

Source segment. A database segment containing the data used to construct the secondary index pointer
segment.

Syncinterval. See unit of work
Sync point. See commit point
Synchronization point. See commit point

Target segment. In adatabase, the segment pointed to by a secondary index entry, that is, from an index
pointer segment.

Unit of reorganization (UOR). A set of database records which are reorganized by HALDB online
reorganization in one unit of work.

Unit of work (UOW). (1) For aDEDB, anumber of contiguous Clsin the root-addressable part of an area.
(2) A set of updates which are committed by a program at the sametime. Thistimeis called acommit point or
sync point. If acommit point is not reached, which would happen if the program abends, all of the updatesin
aunit of work are undone or backed out. A unit of work is sometimes called a sync interval.

UOR. See unit of reorganization
UOW. Seeunit of work

Virtual Storage Option. An option for DEDB areas that maps an area into a data space or a coupling facility

structure when the areais opened. The share level of the database determines whether a data space or coupling
© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 72

facility structureisused. Any VSO area Cl that has been loaded into a data space or structure is subseguently
read from the data space rather than from DASD.

VSO. SeeVirtual Sorage Option

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 73

© IBM Copyright, 2009 Version 8/4/2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM 74

Index

COLT s 41
S J R 41
abend.......ccoeeeveeeeiiene 32, 33, 36, 38, 39, 44, 48, 61
ACCEPT STATUSGROUP.........ccoeecveenen. 37,42
ADCD ... 36, 38, 39
ADCl ..ot 42
ADLA oo 44, 48
2 e O 32,42, 69
ATRBACK ..ot 41
BA e 42
Batch Backout Utilityccceeeevevvneneeenesee 5
BB e s 42
B e 36, 37
] SO = 5
] SO o 48
BLDS......... 1,2,3,9, 11, 12, 13, 14, 29, 30, 42, 69
block ...1, 11, 12, 13, 16, 24, 31, 37, 43, 48, 50, 52,
63, 69, 70, 72
block level data sharing 1,12, 13, 31, 48, 69
BIOCK 1OCK.......veeiveecteieeee et 11, 37
BMP.....5, 31, 33, 34, 36, 37, 38, 39, 41, 44, 58, 61
busy 10CK......cooceeieeeecc 12, 63, 64
O I 42
CHANGE.........coe e 22,24, 25
(O | TR 5,39

Cl 3,11, 12, 13, 16, 20, 21, 22, 23, 43, 45, 47, 52,
53, 63,72, 73

CICS...5, 33, 36, 37, 38, 39, 40, 41, 42, 44, 45, 48,
49, 58, 69

(o2 [0 TR 13,63

commandb, 9, 11, 14, 15, 16, 22, 23, 25, 26, 27, 28,
34, 45, 54, 57, 63, 64, 69

command 10CK.........cccovvrereiiiiicre e 25, 26
COMMIL POINE.....ccvvireeere e 37,69, 72
CORES ..ottt 44
coupling faCilityccooevvereerere e 42
CPIC driven application program......32, 38, 42, 69
data set reference locK.......coovveeeeeieeiiiecnnnen, 14, 43

datasharing...1, 2, 4, 12, 13, 14, 30, 31, 43, 48, 50,
63, 64, 69

database record ...3, 8, 9, 10, 11, 15, 16, 17, 18, 19,
20, 23, 29, 45, 46, 47, 48, 50, 61, 63, 64

DB2...oie 1,37,40,41, 49,71
DBB ..o 31, 33, 36, 37
DBCTL 1, 2,37, 39, 40, 44, 46, 48, 54, 55, 69
DBFLGSYN ..o 31
DCBH ..o 50, 51, 52
DDIR. ..ottt 50, 51, 69

deadlock..2, 6, 7, 20, 34, 35, 36, 37, 38, 39, 40, 41,
49, 56, 58, 61

© IBM Copyright, 2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM

Deadlock AnalysiSreportccocveveeeereerenne. 61, 66
Deadlock List report......coeveeerereenieiencneie e 66
Deadlock SUMmary report.........ccoeveeeeeeeereeniennes 66
DEADLOK ...ttt s 34
DEDB........ 6, 20, 21, 23, 24, 39, 45, 69, 70, 71, 72
D] 15, 22,23
DFES3304 ...ttt 42
DFSBBOO00ceiiitiieeeeriesieee e 5
DFSERALOD.....cceieeieeeeee e 61, 62, 65
DFSERAS3D......ccctiieeereneeecree e 61, 62, 65, 66
DFSERAZQ.......ccooiiiieerereeeneeeeas 3, 62, 63, 65
DFSERAGBD.......ccoeirieieireresie e s 65
DFSKLTAD. ..o 59
DFSKLTBO ...ttt 59
DFSKLTCO...ctieeieieieeeerie e 59, 65
DS G I O 58, 65
DFESLOGAL ...ttt s 31
DFSLR .. s 65
DFSPIRPOcoeiiiieeeereneeeeee e 56, 65
DFESUTR20.......cciirieirenieneieesiesee e 54, 55
DFESXFER ...ttt s 31
DLET it 24,25
DLI oot 15, 31, 33, 36, 37, 55, 62
DMBH. ..ottt 50, 52
DMOCBH ...t 52
D 1 2 PRSP 38, 44
DXRILB2ZI ...ttt 33
dynamic transaction backout 38, 44
ECSA ..ot s 44
EMH .o 5
EPS....o e 17,18, 70
ESDS....o e 11, 16,51
EXCIUSIVE. ..o 29, 30, 37, 40, 48
EXEC DL ot 15
EXEENA 1OCK ..o 13
extended pointer Sef........ccooevvervveeceeene 17, 18,70
Firlmproc......cccevcvvvvenceese e 33, 34,57

Fast Path... 1, 2, 3, 9, 20, 22, 23, 25, 26, 27, 28, 36,
37, 38, 39, 41, 44, 45, 47, 52, 53, 55, 64, 69, 70
Fast Path DEDB Resource Contention Summary

FEPOM ... 68
I SR 36, 38, 39
File Select and Formatting Print Utility ..61, 62, 65
FLD e 22,23,24,25

full function.. 3, 8, 9, 15, 20, 24, 25, 26, 29, 39, 44,
45, 47, 50, 57

[T 61
gEt hOId.....ooicieeecec e 15, 23,24
01 [0 SRS 48
GFPLL ..t 64

Version 8/4/2009

75

GQCMX .ttt 64
GRIDU. ... 64
GRIDX ..ot 63, 64, 65
GSEGL ..o 63, 64
(74 | 5] IR 64
HALDB Online Reorganization 11, 30

HDAM ..8, 9, 10, 11, 12, 15, 17, 18, 29, 47, 50, 51,
70,72

HIDAM.............. 8,9, 10, 11, 12,17, 18, 29, 50, 51
HISAM 8,9, 10, 11, 12, 18, 19, 50, 51, 70
hold.....cccooiiiiinn 3, 6,11, 15, 23, 24, 37, 45, 46
HSSP...o e 21
[FP i 5,31, 33,37, 38, 39,41, 44
ILOCK ..ttt 57, 58, 65
IMS MONILOvveeevceeee e 54, 55, 65, 66
IMS Performance Analyzer for Z/OS.................. 66
independent overflowccoceecevvvvcceeceesecene, 21
INDICES......ciiieerene e 19
INIT o 37, 38, 39, 42
INSEIT .o 12, 16, 20, 37
TOVF ..t 21,70
IRLM ..1,2,3,4,6,8,9,10, 11, 12, 13, 14, 15, 16,
20, 23, 26, 27, 28, 33, 34, 36, 37, 41, 42, 43, 44,
47,50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
65, 70, 71
IRLM Lock Trace Analysis Utilities.................. 58
ISRT ..t 24, 25, 60, 61
JBP..it e 31, 33, 36, 39
IMP i 31, 32, 33, 38, 39, 41
KBLA e e 58
Knowledge Based Log Analysis..........ccccecenuneee 58
KSDS...i e 11, 12,13, 16, 37,51

level...2, 3,4, 6, 8,9, 10, 11, 12, 13, 14, 15, 18, 20,
21,22, 23, 24, 26, 27, 28, 29, 35, 36, 37, 40, 41,
43, 45, 48, 56, 61, 65, 69, 70, 71, 72

10CaAl CYCl@...eeiiiiieee e 36
[OCK FEJECL.....ceeeeeeet e 42
[OCK SLIUCIUIE ... 42
LOCKMAX ..ottt 31
LOCKTIME. ..ot 33, 34,57
LOGALLKH ..ot 31
logical relationship........cccceeevereneeieneseene 17,29
modified standard application program .. 32, 38, 42
Modified standard application program.............. 70
MPP........... 5, 31, 32, 33, 36, 37, 38, 39, 41, 44, 61
MSDB......ccoovreerreenens 6, 23, 24, 25, 39, 53, 54, 70
(@] A 27,53
ODBA ..o 5, 33, 36, 37, 38, 39, 69, 70
OLR et 30,70
(0] 01 o IHRUURURURRRN 12,13, 14, 16, 27, 28, 63
(@ 15T2Y 1V S 3,11, 12, 16,51
OUtpUt threadceveeereeeeee e 23

© IBM Copyright, 2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM

PCB 8,9, 18, 20, 21, 22, 23, 29, 37, 39, 45, 46, 47,
48, 55, 56

PHDAM 8, 9, 10, 11, 12, 15, 17, 29, 50, 51, 70, 71

PHIDAM 8,9, 10,11, 12, 17, 29, 50, 70, 71

Pl12346,89, 10, 11, 12, 13, 15, 16, 20, 23,
32, 33, 36, 37, 41, 42, 44, 47, 49, 50, 52, 53, 54,
55, 56, 57, 61, 62, 64, 65, 71

I I o= S 3
Pl Trace Record Format and Print Module.....3, 62
POINLEN.......covierieeererenen, 12,17, 18, 29, 69, 70, 72
private attribute...........cccccvvvreennene 4,11,12,13,71
PROCOPT ... 8, 9, 20, 22, 23, 24, 25, 29, 30, 45, 48
PROCOPT=E ...ttt 29, 48
Program 1Solationcccceeeeeeeeresenesicenen e 1,57
protected CONVErsation...........ccevevereeieereeseeneenn 42
Protected Conversation.............ccceeeeeeveeeeeceeeeneene. 71
PSB....cccooereceeree 8, 19, 29, 39, 45, 46, 58, 61
PSINDEXccoiiiee e 50, 70, 71
PST e 23,58, 60
Q command code........cccvvvevvenieie e 15, 22
RALLX oottt 64
RAP............ 8,9, 10, 15, 17, 18, 20, 51,52, 71, 72
RBAS, 10, 17, 18, 21, 50, 51, 52, 53, 57, 58, 60, 71
O 41
read........ce...... 2,23, 29,43, 46, 58, 59, 69, 72, 73
Record Format and Print Module.................. 61, 65
release.... 6, 9, 15, 20, 23, 35, 39, 40, 45, 48, 63, 64
REPL ...t 24, 25
Resource Recovery ServiCes.......oovveveniereeeene 72
Retained 10CKS........ccoocveeiecece e 42
RFPLL ..o 64
RLSE ..., 8,9, 25, 30, 47, 48
Y 57, 58, 65
ROLB ..o, 5, 6, 36, 39, 41
ROLL ettt 5
[O S T 5
root addressable part.........cccocevevvcereeeienenennn. 21,72
RRIDW......ooiitiiiie et 64
RRIDX ..ooeieeiieecee ettt 63, 64
RRN.....cooveiieieeeeee e 10,51,57,71, 72
RRS ..o 42,72
S = I 64
74 |] 64
secondary index.........coceeveenenne 9,18, 19,29, 71, 72
segMeNt [0CK.......cccov v, 23,63
SENSEG. ...ttt 19
SET S e e 6
SETU ..ttt 6
share............ 2,8, 14, 26, 30, 37, 45, 48, 69, 70, 72
SHARELVL ..ccviieee e 2
SpPace ManNagEMENT.........cccovcrevrieieiiee e 56
SOL e 41
SRRBACK ...ttt 41

Version 8/4/2009

76

SYNC e 5,39
sync point5, 8, 9, 10, 11, 12, 15, 18, 21, 22, 23, 24,
30, 31, 37, 38, 39, 41, 44, 45, 46, 47,64, 72

SYNCLKS ... 31
SYNCPOINT ..ot 45
TENQ. .ot 10, 15, 29
I = 45
test eNqQUEUEccevveeeeieeeeeeeeee e 10, 15, 29
threadccocvvveeiicieiiee 5, 21, 23, 37, 38, 39, 47
TIMEOUT ..o 33, 34,57
traCe....covveveerer e, 54, 55, 57, 58, 59, 62, 63, 65
B L - 64
L0112 T 38
UOL24 ... s 32
UOL25 ..ot 42
UOTT5 ettt 44, 48
UOT77 e 32, 36, 38, 39, 41, 61
L0 A4 T 6
04 32,42

© IBM Copyright, 2009
http://www.ibm.com/support/Techdocs

IMS Locking with Program Isolation or the IRLM

U3B300.... e 44, 18
LU0 S 31
LU0 S 42
unit of reorganizationccccecveneee. 9,12,30,72
UNit Of WOTK ..o 21,72
UOR ..ot 30, 72
UOW e 21,53, 72

update2, 8, 9, 11, 12, 13, 15, 16, 21, 24, 36, 37, 43,
45, 46, 47, 69

VERIFY o 22,24,25
Virtual Storage......cooovvvveeeeeneseneeeneneene 44, 48, 54
VSAM Lo 3,11,12,40
A5 © I 21,23,27,71,72,73
VUNLOAD ..ottt 27,28, 53
D ARSI 31
AL e 31
X'BOB7 e 31
XIBTFF ot 58
XFERLHLD ...t 31

Version 8/4/2009

77

