Unit 3 -
Transaction Scheduling /
Execution
&

IMS DB Processing

@ KIESSLICH CONSULTING
KC110 unit 3 page 1

What this unit is about
After IMS has completed the processes related to classifying and queuing input
messages, instances of IMS transactions will remain in the message queues waiting to be
scheduled. In this unit, we will examine what processing the IMS Scheduler must
perform as part of selecting, and preparing, a message for processing by a Message
Processing region.
What you should be able to do
After completing this unit, you should be able to:
e Describe the Transaction attributes of Class and Priority and how the IMS
Scheduler uses these attributes to select transactions for processing
* Understand other Transaction attributes, and programming techniques, that
can be used to improve the effectiveness of IMS Scheduling
* List the major Scheduler-related storage pools and the process of loading the
required scheduler-related control blocks into these pools

* Understand the options available and how to specify IMS database-related
buffers

IMS/TM Tran/MSG Execution flow

User
Ty

A
A
| Z/0S |
VTAM Control Region IMS/ IMS/ IMS/ IMS/
Receive MPR MPR BMP IFP
| Task APPL APPL APPL APPL
: IIIII : : IIIII : I_ I_ ﬂ
Scheduler R s E e . iaas
Task e B HEEEEH B TR R T
— Sl [it I Pl | I Py |
Manager — * 1
Expedited
Message
Handler
— e
Message IMS
Queue DB(s)

@ KIESSLICH CONSULTING
KC110 unit 3 page 2

Notes:

An MPR (Message Processing Region) is the execution/working
environment for application program.

There are (usually) multiple Message Processing regions active at any given time.

Although we are showing an IFP region and the Expedited Message Handler, we will
not be discussing these.

Message Classes and Priorities

« TRANSACTIONS are assigned two (2) key attributes:

1. Class, and 77[4
2. Priority:
CLASSES TRANSACTIONS (PRTY)
001 » SKILLINQ (8)
SKILLUPD (5) a
PAYROLL (4)

002 > INVENT (10)
STOKSTAT (8)

003 > ORDER (6)
RECEIVE (4)

=== Transactions are ordered by priority within class...

» Class and priority can be changed via /ASSIGN command

@ KIESSLICH CONSULTING
KC110 unit 3 page 3

IMS Message Scheduling m,
® Scheduling is the process in which IMS matches up messages to be processed with
available Message Processing Regions (MPRs)

® Application programs are automatically scheduled into MPRs to process messages

IMS MESSAGE-QUEUE IMS/ IMS/ IMS/
S St PRIY-G MPR1 || MPR2 || MPR3

Classes Classes Classes
2,3,41 3,4,5,6 456,7

MESSAGE 1

4
MESSAGE N

SKILLUPD
CLASS=1, PRTY=5

MESSAGE 1

|
MESSAGE M

IMS SCHEDULER TASK

=P Driven primarily by the enqueuing of messages ...
i KC110 wunit 3 page 4

Notes:

The importance of a class number (1-999) is solely dependent on the current
configuration of executing MPRs.

* In this example, Class 1 seems unimportant since it can only be executed in a
single MPR (MPR1)

* Also, in this example, Class 4 seems to be the most important since it can be runin
any of the three MPRs

* APPL PGMs are not “scheduled” , they are loaded (SMB points to PGM), so the
region gets control (after prime) and the very first GU IOPCB is already done © -
and then region controller BAKR to program controller ! With parm according
defined / assigned PGMNAME (load / fetch)

 Additional factors affecting scheduling

Message Queue Limit Priority

ny

IMS MESSAGE-QUEUE
SKILLINQ y | TIME 1 TIME 2 TIME 3
CLASS=1, Normal
PRTY=(8,10,30) -
PROCLIM =20 N Prio (8 8 8
—t LIMIT PRIORITY 10 10 10
LIMIT COUNT 30 30 30
MESSAGE N CURRENT QUEUE # 8 31 11
I PROCESSING LIMIT 20 20 20
SKILLUPD
CLASS=1,
PRTY=(9,12,4)
PROCLIM=5
NORMAL PRIORITY 9 9 9
MESSAGE 1 LIMIT PRIORITY 5 12 12
— LIMIT COUNT 4 4 4
CURRENT QUEUE # 2 1 3
PROCESSING LIMIT 5 5 5
MESSAGE M
@ KIESSLICH CONSULTING | KC110 unit 3 page 5 |
Notes:

The purpose of Limit Priority is to encourage the Scheduler to select transactions that

are queuing instead of others that have a higher Normal Priority.

In this example, at Time 2, the Priority of SKILLINQ is set to 10 instead of the normal 8

in response to queuing.

The Scheduling decision (what transaction to process) for an MPR is made when
it is available (not processing):

* After scheduling has completed and processing begins, the MPR will
continue to process the selected transaction even if more important

transactions are queued.

* The PROCLIM parameter permits the IMS Scheduler the opportunity to
periodically re-validate that MPRs are processing the right work

SCHEDULING , PRTY and PROCLIM

Please review by reading the IMS docs !! 744

> Here (MPP Scheduling)

» Here (PRTY)

And here : (PROCLIM) or HERE

Related reading: For information on scheduling options,
see : Choosing IMS options for performance

» ...also here: Dave Viguers “Scheduling” summary

@ KIESSLICH CONSULTING
KC110 unit 3 page 6

Program scheduling:

If the response-time breakdown data indicates large and variable input queue times,
check the Region Occupancy figures.

If all message regions have high occupancy, then another message region might be
required. Alternatively, it might be possible to reduce occupancy by reducing program
load or program execution times. If some or all of the IMS message regions are not busy,
analysis of IMS PA Transaction Transit reports by transaction and class probably shows
that one transaction or class is more critically hit than others. In this case, you should
review the designation of classes and the allocation of classes to regions. PROCLIM and
PARLIM should be reviewed also.

Related reading: For information on scheduling options, see ...
https://www.ibm.com/docs/en/ims/15.5.0?topic=tuning-choosing-ims-options-performance

Programs executing as wait-for-input never show 100% occupancy even when they are
in the region 100% of the time. Zero occupancy might be cause to review operator
procedures, with instructions to manage the number of message regions based upon
display of the queues.

The IMS PA Transaction Transit reports Graphic Summary is useful to analyze
input queuing time by time of input across the entire measurement period.
This can be used to discover if high input queue times result from a transient
peak in transaction volumes or from a more sustained phenomenon.
DFSILTAO can be used for the same purpose, although its output is numeric
rather than graphic.

Dave’s Scheduling is at the same folder here.

PARLIM:

In local env. It’s the value compared against TRAN queue depth (see also
MAXRGN parm at TRAN stmt),

In shared env. it’s different.

The problem: IMS doesn’t know the actual message queue count due to
messages being queued out on the coupling facility / Shared Queue.

See new field SMBGUCNT which represents the successful consecutive
message GU count - now compared with PARLIM.

(Instead of local IMS behavior : comparing the number of queued messages
with the PARLIM threshold value)

PARLIM=0 is triggering always another region start and schedule (limited
maybe by MAXRGN only) , but could cause a lot false schedules.

See the NOTE box here:
https://www.ibm.com/docs/en/ims/15.5.0?topic=environments-transact-
macro

More scheduling options

* Wait-For-Input (WFI) transactions:
— Allows a program to remain scheduled to wait for the next transaction,
subject to PROCLIM=
* The idea here is to allow an already scheduled MPR to wait for message
from an important transaction instead of permitting the MPR to be
scheduled for another transaction

y

* Parallel scheduling:
— Allows the same program to be scheduled in parallel

address-spaces at the same time
* Subject to queue-count of each transaction code Upper limit maximum
* This is not the default and may not always be desirable
— A consequence of parallel scheduling is that transactions can not
always process in FIFO sequence

* After scheduling completes, the application program load modules must be loaded
before execution begins:
— This might take a relatively long time
— IMS Preload options results in loading the application programs into certain
regions as the regions initialize instead of after scheduling

@ KIESSLICH CONSULTING
KC110 unit 3 page 7

Notes:

There are many more IMS transaction attributes than are shown here. Almost all can
be dynamically modified without requiring an IMS system restart.

Message Processing Programs

sauwall - LTERM - HoC NS Ty
123456 CHI101 SCREEN
IMS TM IMS/MPRA IMS/MPR2
Control Region (Class 2,3,4,1) (Class 4,5,6,7)
1. MESSAGE QUEUED
2. IMSMPR2 AVAILABLE : > >
MSHIPRT AVALASLE 4. INQPGM LOADED THIS REGION
3. E(EJS:Z'ROL BLOCKSLOADED 0\ ™ £y ECUTION BEGINS AEING ol
HERE... WORK
5. GET MESSAGE FROM
QUEUE...
6. GET DB SEGMENTS
FOR INQUIRY...
7. INSERT MESSAGE
REPLY BACK TO THE
9. SEND MESSAGE FROM g %?E,\LAJE\I i
SKILLINQ XXX | ResuLTs | INVPGM
JNVENTUP XXX VENPGM

| Kc110 unit3 page 8

Scheduled Transaction flow ™,

// EXEC PGM=DFSRRC00, PARM='MSG,002003004001,..."

Control Region

Message Region 1

Application Program:

INPUT MESSAGE

» GET MESSAGE <=

»| AcceEssDB

DATABASE(S) <

INSERT REPLY

OUTPUT MESSAGE <

GET NEXT MSG ==
TERMINATE

@ KIESSLICH CONSULTING
KC110 unit 3 page 9

Notes:

The EXEC statement at the top of this page shows the first few parameters associated
with the JCL of a Message Processing Region.

* Note the '002003004001' portion of the PARM field. This indicates that *THIS*
MPR will primarily try to process class 002 transactions; if none available, process
class 3 transactions; and so on.

* ,The sequence of specifying the classes determines relative class priority within
the message region. In the example, all class 1 messages are selected for
scheduling before any class 2 messages are considered. Class numbers cannot be
greater than the maximum number of classes that are specified during system

definition.”

COBOL coding example

7"44
READ THE INCOMING MESSAGE:
CALL 'CBLTDLI' USING GU, IOPCB, IO-AREA

CHECK THE STATUS CODE:

IF STATUS-CODE = 'QC'
END THE PROGRAM - OUT OF MESSAGES

HANDLE THE REQUEST:
BLAH, BLAH, BLAH.

SEND THE REPLY

CALL 'CBLTDLI' USING ISRT, IOPCB, IO-AREA.

LOOP TO THE TOP TO GET THE NEXT MESSAGE.

@ KIESSLICH CONSULTING

| KC110 unit 3 page 10

Notes:

Note that the IMS TM calls are very similar to IMS DB calls and that unit of data
transfer between IMS and the program is a segment.

Output messages queued to final destination

"y
@eue Block Data SD o
Short Message Da@

MSG 1 (complete) Ny

First Messag&l

Response |Exclusive | System

| Other | Backup | Last Message
|

MSG 2 (1st Seg)l MSG 2 (1st Seg) |

MSG 3 (3rd Seg) k\\\\\\i‘
----....... /

First Message

*

Long Message Data ?D

CNT
LTERMA

rl-l-l-l-l-l\

L}

MSG 3 (1st Segment) N

LR

MSG 3 (2nd Segment) hoay

m==_Queue Pointer
=== === Pointer to Next Message MSG 4 (1sL.2nd& 3rd Seg

ment)
= mmm == ' Pointerto Next Segment'K'ESSL'CHCONSU"\ /Eeﬁll:l

LOCAL Queue : Queue DATASETs !!!

Notes:

Here is a depiction of how multiple messages, potentially each composed of multiple
message segments, are chained from the appropriate [TERM/QBLKS destination following
commit.

SharedQueues : totally different !! See SharedQueues Setup Class !!!

Communications overview: Output message

ECSA

VTAM - IOBUF

Me s s age <

(1 of 2)

IMSCTRL EPA

HIO - POOL

OUTBUF

Me s sage

<
}

OUTRBUF

l Message lI

m

@ KIESSLICH CONSULTING

KC110 unit 3 page 12

Communications overview: Output message

(2 of 2)

* HIOP (High I/O Pool) resides in IMS CTRL EPA:

Fixed Pool storage management so additional storage can be allocated
upon demand.
* Alternate primary and secondary storage quantities can be defined in
DFSSPMxx member.

HIOP contains primarily for buffers used for VTAM output message
* Also used for RECANY pool, VTAM MSC Link Buffers, and MFS workarea
Defined in:

OUTBUF=size parameter of TYPE/TERMINAL macro
The size must be equal or lower than PRIMARY UNIT Size defined in the Request

Unit Size of MODETAB
* See topic z/OS-VTAM INTERFACE

* CIOP (Communication I/O Pool) resides in IMS CTRL PVA

Fixed Pool storage management so additional storage can be allocated

upon demand, but is generally <100K in size
* CIOP contains MFSTEST Buffers (/TEST MFS) which, if requested,
will never be freed; also contains IMS System restart work areas

w NICJoLINTT WWINOUVLT NG

| Kc110 unit3 page 13

Message Queue: Output messages (1 of 2)

LOGICAL
TERMINAL

(LTERM)

z/OS
f IMS/TM IMS/MPR1 IMS/MPR2
[)I-GET FROM] GET FROM
i QUEUE
QUEUE QUEUE
MANAGER | ¢ oV ...V o 1 e
I: INSERT INSERT TO
QUEUE
— TO QUEUE
L QUEUE e
BUFFERS = APPL APPL
l l — —-— —_— - . - == mmm wm=m umm=

DATA SET(S)

@ KIESSLICH CONSULTING

All INPUT and OUTPUT messages are queued... But not
necessarily stored in queue data sets

KC110 unit 3 page 14

Message queue: Output messages (2 of 2)

1.

TRANX

MSG1 (LTERMA) TRANX

MSG3 (LTERMX) TRANX

MSG4 (LTERMQ) TRANX

MSG7 (LTERMX) TRANX

INPUT TRANSACTION Messages are QUEUEd by SMB

TRANY

ny

MSG2 (LTERMB) TRANY
MSGS5 (LTERMZ) TRANY

MSG6 (LTERMA) TRANY

@ KIESSLICH CONSULTING

MESSAGE-QUEUE BUFFERS (Control Region)
MSG1 RPL3 |RPL2 |MSG5 | MSG7
RPLA MSG6
MSG2 MSG4 MSG3
2. OUTPUT MESSAGES are QUEUEd by LTERM
or if program switch, SMB (not shown)
—— LTERMA LTERMB
MESSAGE
QUEUE RPL1 (TRANX)
RPL2 (TRANY
DATA SETS RPL3 (TRANX) ()

KC110 unit 3 page 15

Transaction Flow summary (1 of 2)

Event associated with Event associated with)717
Input and Output Msgs Appl. Pgm Processing
wait for poll <1>
Data T;ansfer <2>
Input Msg‘hrocessing <3>
Input éueuing <5>
<6> Scheduling
<7> Progrgm Load
<8> Program Initialization
Msg Queue GU <9> » Msg QJeue GU

@ KIESSLICH CONSULTING
KC110 unit 3 page 16

Notes:

On this page and the next, we review the steps in the life of an IMS transaction. The
important point to note here is that processing of transactions occurs autonomously in
MPRs after they have been scheduled; the Control Region is responsible for receiving
and delivering the input and output.

Missing <4> : in case of SharedQ is CQS put / get

Transaction Flow summary (2 of 2)

Event associated with Event associated with

Input and Output Msgs Appl. Pgm Processing)717
—
<10> Program Execution
wait for Synch Point <13>
v
<14> Synch Point
GU for new msg
or
wait for selection <15> Program Termination
Output Msg Processing <16>
Data Transfer <17>
Output Queui Processing _qg.

@ KIESSLICH CONSULTING
KC110 unit 3 page 17

Missing <12> : in case of SharedQ is CQS put / get

IMS/TM TX : COBOL coding example

READ THE INCOMING MESSAGE:
CALL 'CBLTDLI' USING GU, IOPCB, IO-

AREA
CHECK THE STATUS CODE:

IF STATUS-CODE = 'QC'
END THE PROGRAM - OUT OF MESSAGES

HANDLE THE
REQUEST: BLAH,
BLAH, BLAH.

SEND THE REPLY

CALL 'CBLTDLI' USING ISRT, IOPCB,

"ty

IOgAREA.

LOOP TO THE TOP TO GET THE SAGE
NEXT
(ISSUE GU Call).
Either a new GU Call to the IOPCB
OR or
GORBACK (terminate) Normal Program End
Trigger IMS Syncpoint Processing
@ KIESSLICH CONSULTING
KC110 unit 3 page 18
Notes:

The GU call to the IOPCB is one of the ways that an application can “explicitly” commit
a UOW. In most cases, program end serves as an implicit commit point; several examples
in which this is not true are when using FastPath and Java being two examples where an

explicit commit is expected.

MSGQ Pool: Output message queuing (1 of 2)

7;
I M S CTRL o

Queue Blocks

Logica Q1
Terminal Response Msg Queue

S1 (Msgl) on Q1

.

S2 (Msgl) on Q1

L\

Q2

Exclusive Msg Queue

Q3
System Msg Queue

Q4
Other messages

Q5
Backup Msg Queue

Message 1 on Q5

@ KIESSLICH CONSULTING

| KC110 unit 3 page 19

Notes:

Messages destined for a given logical terminal are queued in one of a set of 5 chains for
that terminal’s QBLKS. The queuing of output messages to a QBLKS destination occurs as
part of application commit processing.

On which particular output subqueue a message is queued, depends on the type of
the message.

The QBLK of each logical terminal is pointed to by the [TERM’s CNT control

block. CNT = Communication Name Table

MSGQ Pool: Output message queuing (2 of 2)

Q1 RESPONSE QUEUE

This queue is used for response type messages, when a terminal is in response mode or %
conversational mode. This queue can contain only a single message.

Q2 EXCLUSIVE MODE QUEUE
This queue is used for replies to a transaction from a terminal in exclusive mode (/EXC command).

Q3 SYSTEM MESSAGE QUEUE

This queue is used for system messages, which includes /BRO messages, output from the /DIS
command and all system generated messages DFS.... .

Q4 OTHER MESSAGES
This queue is used for application program output, message switches and alternate PCB output.

Q5 BACKUP MESSAGE QUEUE

This queue is used to resend messages from terminals with the resend feature. It is also used for
conversational replies, which are kept for the purposes of /[HOLD and /RELEASE and for resending on
restart. In these cases IMS has to keep the last conversational response, even though they were
successfully received.

Q0 INCORE QUEUE
Note that the documentation also refers to an incore queue called Q0. All messages in this queue are
sent immediately and do not use QPOOL or queue data sets.

@ KIESSLICH CONSULTING
KC110 unit 3 page 20

Local Queues © |

Message Processing Calls

FUNCTION PCB CODE
RETRIEVING MESSAGES: I0-PCB GUbb
GET UNIQUE 10-PCB GNbb
GET NEXT
SENDING MESSAGES to I0-PCB ISRT
ORIGINATING TERMINAL:
INSERT
SENDING MESSAGES to ALT-PCB CHNG
ALTERNATE TERMINALS: ALT-PCB ISRT
- CHANGE ATL-PCB PURG
- INSERT
- PURGE
- By EXPRESS PCB
CHECKPOINTING of the I0-PCB CHKP
BATCH APPLICATION: 10-PCB SYNC
CHECKPOINT
SYNC-POINT

Acrord32.exe /A “page=124"
C:\Users\T450p\Desktop\WundW _final\Material\dfsapglO_notes.pdf

Scheduling a Transaction:

PST1

PDIR |

CLASS
001 | 002

003 | 004

1/Region

No Messages

SSQ 3

[] 7
The Internal Perspective MY
|| ||
| |
) TCT2 J SMB
14 TRANX
T 13 NXT 4
A 1_2 PDIR 4
] SCHD
B : wsg *+
3 PRTY
SMB
1 PARLIM
0 i JE
1/Class 1/Transaction
Idle for Intent
Procopt=EX
PSB busy WFI
Pool Space Failure
SSQ 4 -SS 6
aa i | K110 unit3 page 22 |

TAB — Transaction Anchor Block

IMS Transaction Schedule: Algorithm (1 of 2)

* Scheduler gets control: 7714
— At MPR initialization
— When a new message is enqueued on an SMB
— At application program termination
— If a CICS thread is released

* Schedule transaction to process in dependent regions on their

request

* Select Transactions to schedule by priority within class

— By class:
* Assign a class to each TX code (1-999)
e Assign 1-4 classes to each MPR

— By priority within class:
* Assign a priority to each TX code (0-14)
* Optional automatic priority change (Limit Priority) when there is

a large queue build-up

 Allocate and reserve resources for dependent regions/threads

@ KIESSLICH CONSULTING
| KC110 unit3 page 23 |

IMS Transaction Schedule: Algorithm (2 of 2)

* Maintain priority control when resource not available (via SSQs) 77‘4
* Once all resources are available Message Priming takes place
which means:
— Copy TX (SPA) MESSAGE into PSBW Pool in preparation for 'GU I/O-

PCB'
* Therefore, first application call should be 'GU I/O-PCB'

* As Scheduling completes, the MPR is activated to load then execute
the application program
* Free resources when application program terminates:
— Free scheduler-related resources after Commit or ABEND
processing has finished
* Database changes are either finalized or rolled-back and
locks are released
— The completion of application processing will cause this entire
process to repeat and allow another transaction to process in the
dependent region

@ KIESSLICH CONSULTING
| KC110 unit3 page 24 |

IMS TRAN Scheduling Steps

DBT - CONTROL REGION DLISAS
& CHECKPOINT RESTART
DL/I
COMMON SERVICE I— SCHEDULING DMB Pool
COMMUNICATION P P P
SECQNDARY MSGQ S S S
’ . RECA MFS POOL T e T
I Pool POOL 1 2 n
e [T Fp
ive
Any Buffer P I R 3
] al
TX PSIL 1 T
| Message PSIL 2 Update pointer
PSIL 3 J
__-_f_rzﬂ -
PSIL 4 Update
USER ; pointer
PSILn 1
DDIR
DFSRESL MODB SA — 2
\\RESLIBII oDB SB -
PROCLIB
MODBLKS QOBLKS
W ‘ FoRVATA || smmMse ACBLIBA Load if not_|
V7Y | [pp—— ForwaTB) | _ ACBLIBB in storage
FORMAT || MATRIXB)

@ KIESSLICH CONSULTING

KC110 unit 3 page 25

Block loader — or block mover

PSIL (PSB Segment Intent List created by ACBGEN) already in storage:

* |f not:

BLR (Block Loader) gets control [1].

DMBs (Data Management Block) already in storage (information in DDIR)

* |f not:

BLR (Block Loader) gets control [2] and [3].

IMS TRAN Scheduling Steps...

SEC%#R{-\RY

7

; OR
j 7

DFSRESL ODBLKSA.
“RESLIB”
——
MODBLKS ;
MATRIX @, 3

IMSACB |YyaTRIXA
FORMAT IMATRIXB)

DBT - CONTROL REGION

y

@ KIESSLICH CONSULTING

DLISAS
& CHECKPOINT RESTART
| DL/I
COMMON SERVICE SCHEDULING DMB Pool
COMMUNICATION P P P
MSGQ S S S
RECA MFS pooL | T | T [~ T PSB Pool
Pool POOL 1 2 n SAS
Receive ' P Update pointer
Any Buffer P DI R |
|]
> PSIL 1 PSB Pool
Message PSIL 2 L - EC_SE —
PSIL 3
PSIL 4
T
]
PSILn _ IBSB Work 4
| _DDR_ | poo1
— - 6
— — make space
—] Load if not
in storage
QBLKS ——
FORMATA SHMSG
FORMATB, LGMSG ACBLIBB

| KC110 unit 3 page 26

PSB (Program Specification Block) already in storage (information in PDIR).

If not:

 BLR (Block Loader) gets control [4] and [5].

To get space in the PSB Work pool:

* BLR (Block Loader) gets control [6].

e If not: POOL SPACE FAILURE.

Program code is loaded into MPR. Databases allocated if available and currently
unallocated. Databases authorized if registered with DBRC. UOR (Unit Of Recovery)

started if update intent.

IMS/TM Control Block Relationship

PSTQ

SCD

psT {

PST

PDIR T

psTQ 1

ny

SMB T

DMBPOOL

DMB

| ACBLIBA/B |

PDIR

PSBPOOL

PsB 1

> PSB

PSIL V

PGMBUSY

TTR

SIZE

PSIL

DDIR <«

A

pve |

.
Segment 1 Intent

)%

TTR

SIZE

@ KIESSLICH CONSULTING

KC110 unit 3 page 27

Functions of Block Loader (or Block Mover)

Get space in PSB Pool for block required

[1] Read and load PSIL (if not in pool) 7“/14
— Check for database conflicts
— Get space in DMB pool for blocks required

[2] Read and load DMB (if not in pool) [4]
Read and load PSB (if not in pool) [6] Get
space in PSB Work pool

The Block Loader (runs under a dependent TCB) can acquire resources for
different PSTs in parallel but only for different pools.

Scheduling waits when resource not available and might eventually
fail if space can not be allocated g

IMS does n o t require all databases
to be available to allow successful scheduling

(see topic "Enhanced Scheduling")

@ KIESSLICH CONSULTING
| KC110 unit3 page 28 |

IMS Scheduling
Related Pools and CBs (1 of 4)

7"44
* PST
— Partition Specification Table resides in ECSA:
e PSTis used to control each thread and region
* Size 10K,..,15K (if IRLM and FP)
* MAXREGN= or PST= parameter defines the minimum of PSTs
* MAXPST= parameter defines the maximum of PSTs

* PSIL

— PSB Segment Intent List resides in ECSA:
* Created by ACBGEN
* Used to check for DB conflicts (for example, PROCOPT=EX)
* Size = PSBSIZE - (SASSIZE + CSASIZE) from ACBGEN **

@ KIESSLICH CONSULTING
KC110 unit 3 page 29

* %

See foil 38

IMS Scheduling
Related Pools and CBs (2 of 4)

* PSB: ™,
— PSB pool location in storage depends on LSO= value:
e If LSO not=S, complete PSB is in ECSA
* If LSO=S (there is a DLISAS address space), PSB is split
— PSBP (JCL Parameter CSAPSB=) is in ECSA
— DPSB (JCL Parameter DLIPSB=) is DLISAS EP
— Space is required during application program execution and marked inactive as
part of termination processing
— If not enough free space available, the PSB cannot be scheduled
(Pool Space Failure)
* IMS will delete inactive PSBs in pool until sufficient contiguous space
is created

— Space requirements listed in ACBGEN

* PDIR
— PSB Directory resides in ECSA:
* Contains information of PSB (that is, location of PSB)
* 56 bytes per APPLCTN macro
* Built at IMS Initialization

— Might be updated at schedule time | KC110 unit3 page 30

IMS Scheduling
Related Pools and CBs (3 of 4)

DMB:
— DMB (Database) Pool resides in EP of DLISAS or Control Region
— Execution time version of DBD
— DMB= parameter defined in execution JCL
— If not enough free space available, the PSB cannot be scheduled

(Pool Space Failure)

y

* IMS will delete inactive DMBs in pool and close the associated database

data sets until sufficient contiguous space is created
— This can cause a disastrous impact to system performance

— Space requirements listed in ACBGEN

DDIR:

— DMB Directory resides in ECSA
* Contains information of DBD (that is, location of DBD)
* 76 bytes per DATABASE macro
* Built at IMS Initialization
— Might be updated at schedule time

@ KIESSLICH CONSULTING

KC110 unit 3 page 31

IMS Scheduling
Related Pools and CBs (4 of 4)

* PSBW: ™,
— PSB Work pool resides in ECSA
— Inter address space work area to process DL/I requests
* |/O area (DB segment data)
e SSAs
* PCB key feedback area
* Space is required during application program execution and freed as
part of termination processing. If insufficient, contiguous space
available, the PSB cannot be scheduled (Pool Space Failure)
— Space listed in ACBGEN

— PSBW-= parameter defined in BUFPOOLS macro or execution JCL

 DBWHP:

— DBWP resides in CSA
— Work area for DL/I:
* Call analyzer
* Delete processing
* Retrieve module
* Segment compression routines
— A DBWP space failure pseudo abends the transaction
* Not really a Scheduler-related pool

— DBWP= parameter defined in execution JCL

KC110 unit 3 page 32

DMB Pool Space Handling: Non-resident pool

F3 = remembered

1,...,3 =DMB busy

A....D = DMB inactive PEc | F5 | oP{e |DmB3

DMB - Pool

free space
F1 DMB 1 F2 DMB 2

A F3 DMB D F4

-~ AN

A is the oldest

¥ 3

If DMB pool space needed, IMS must
close
the database (all data sets) before
its DMB can be stolen

@ KIESSLICH CONSULTING
KC110 unit 3 page 33

Notes:

Database Management Block resides in Ext Private DLI space ;

DMB sizes (pool recommendation) is listed in ACBGEN.

Space is managed on a variation of a LRU (Least-Recently-Used) algorithm: Oldest
DMB is analyzed and its space stolen only if the steal will produce sufficient space; If
not, next oldest will be examined; this will continue until a large enough unused
DMB can be identified and freed; If this still does not work, IMS frees all unused from
oldest to newest; if this still does not produce enough space (maybe all/most DMBs
are busy), a Pool Space failure occurs.

No pool compression but adjacent free space is consolidated and largest free space
is remembered. Each block requires contiguous space so fragmentation is possible;
stealing a DMB can have a serious performance impact since this requires that the
associated DB gets closed!

With Online Change a new/changed DMB will be loaded into the non-resident pool
(even if RESIDENT is specified) until next IMS start (makes it resident again).

PSB Pool Space Handling: Non-resident pool

o PSB - Pool
Bcoi PSB Cloning PSB
PSB PSB
. PSB

F3 = Remembered
free space PSB - Pool

F1 PSB 1 F2 PSB 2

P8A | F3 | PsBD |F4
A,...,.D = PSB inactive

Ads the oldest Gc | F5 | PpMB |PsB3

< <

1,...,3 =PSB busy

New PSB

KIESSLICH CONSULTING

| KC110 unit 3 page 34

Notes:

Program Specification Block resides in ECSA / EDLI.

PSB sizes are listed in ACBGEN.

PSB is required only during application program execution

If parallel scheduling, each dependent region requires its own copy of the PSB:
Additional I/O to ACBLIB might not be needed as a PSB can be cloned by copying from a
busy copy elsewhere in storage.

Space is managed in the same way as was described for DMBs, but a steal will not cause
as severe an impact as no data sets are closed as part of a PSB steal.

With Online Change, a new/changed PSB (as DMB) will be loaded into the non-resident
PSB (as DMB) pool -even if RESIDENT is specified - until next IMS start.

PSB/DMB Pool: RESIDENT Pool (1 of 2)

* Each resident pool resides in EDLI or ECSA and is a different pool that
is separate from the PSB/DMB non-resident pool

— Size will be evaluated during IMS initialization

* Based on size of resident PSB/DMBs; NOT on SysProg specification
— Resident PSBs/DMBs are never deleted
— The IMS startup parameter RES=Y creates resident pools and loads:

* PSIL

* PSBs defined as RESIDENT (defined in IMS Gen APPLCTN macro with the
RESIDENT parameter or through a DRD PROGRAM definition with the
RESIDENT(Y) attribute)

* DMBs defined as RESIDENT (defined in IMS Gen DATABASE macro with the
RESIDENT parameter or through a DRD DATABASE definition with the

RESIDENT(Y) attribute)

* If parallel scheduling and the PSB is busy, it is copied from the Resident
PSB pool into the NON-resident PSB pool

@ KIESSLICH CONSULTING
KC110 unit 3 page 35

Notes:

The size for Resident pools is not directly specified in IMS parameter. As part of
startup. IMS allocates sufficient space to store control blocks with this attribute

PSB/DMB Pool: RESIDENT Pool (2 of 2)

* With online change, a new/changed PSB will be loaded into
the non-resident pool

* PSB pool until next IMS start
— Even if RESIDENT is specified:
* Old version remains in resident pool but is not used

* This should be considered if frequent use of Online Change and
RESIDENT

@ KIESSLICH CONSULTING
| KC110 unit3 page 36 |

,Considered” only if private storage use grows and grows ... potentially paging then (all
what’s not fixed)

PSB Cast Out Algorithm Redesign (V12+)

e PSBcastout (making room for a new PSB being scheduled by “casting out” an
old not-in-use PSB) can be inefficient:

— Current algorithm is fine if a single PSB can be found which, if freed, will
make the requisite space in the pool for the new PSB, but...

— If more than one PSB needs to be freed, then algorithm starts “randomly”

throwing out PSBs from the pool, hoping that a big enough hole will be

made for the new PSB.

— Several latches (internal fencing) prevent scheduling of any other work
during this cast out processing (since PSB pool is necessary in scheduling)

— PSBs are chained in physical order within the pool, so:
* For each PSB checked, also check its neighboring PSBs, neighbor’s
neighbors, etc. Free a group known to make the space vs. random
“Swiss cheese” freeing.
* Also better / clever latching now (only once)

0_"DO—|f'D03m3“O_h“f'D'U

@ KIESSLICH CONSULTING
| KC110 unit3 page 37 |

There are several inefficiencies in the way that PSB cast out processing works today
(module DFSDLMPO).

There is lots of latching and unlatching around the unchaining of various database
blocks that is unnecessary, because the latch header is often the same for these blocks.
Rather than pay the overhead of latching and unlatching for each block unchained, the
code could be changed to get the latch once, unchain all blocks that need to be under
that latch, and then release the latch.

The cast out algorithm itself has a mode into which it can fall that has caused
performance problems at some customers.

* “Pass 1” of the cast out algorithm scans the PSB pool looking for the oldest
not-currently-in-use PSB in the pool that is large enough such that casting it
out of the pool will make enough room to contain the new PSB trying to come
into the pool. If such a PSB can be found, then the algorithm is done, and the
space is found reasonably fast.

* “Pass 2” of the cast out algorithm is the problematic part. If there is no one
single PSB that can make the space, the code picks the least recently used
PSB, removes it from the pool, and then retries the get for space. If the
search fails again, it picks the second least recently used PSB and removes it,
and retries. It keeps doing this until a big enough hole is made in the pool for
the new PSB to fit. All of this is done while holding several scheduling-related
latches, and thus, scheduling is delayed for other PSTs while the current PST
works on finding space in the pool. For a large pool, this is sort of like trying
to make a door in a wall by shooting it at random spots with a BB gun. It

might make a hole eventually, but it will take a while.

It turns out that the PSBs are chained together in physical order within the
pool. Soitis possible to locate the PSB on the right and the left of a
candidate PSB. If those PSBs are also not in use, then their space could be
added to the current candidate’s space to make a more intelligent choice
about what PSBs to free, rather than waiting for the needed space to be
formed by random “Swiss cheese” freeing.

Note: This changed cast out algorithm is incorporated in IMS V13.

sizes f

PSB/DMB/PSBW
rom ACBGEN output (1 of 2)

DFSUACB0 MESSAGES AND CONTROL STATEMENTS

BUILD PSB=ALL DN\B
DFS0940I DBD ADFASIGN HAS BEEN ADDED IN LIBRARY. DMB SIZE = 000640 Poo\
DFS0940I DBD ADFAAUDT HAS BEEN ADDED IN LIBRAR DMB SIZE = 000904 BNES
DFS0940I DBD ADFAMSGS HAS BEEN ADDED DMB SIZE = 000696 BYTES
DFS09401 PSB ADFABCTL HAS BEEN ADDED BYTES
DFS0941I PSB ADFABCTL IF USING DL/I SE ADDRFASS SPACE, CSA SIZE = 000608,
SAS SIZE = 007888
DFS0589I PROCESSIN ETED FOR PSB----ADFABCTL. PCB = 000960, PSB =§008544,
WORKAREA = 002848,

TOTAL = 011392
DFS0593I PSB--ADFAB WORKAREA BREAKO = 000256, XIO = 000008,
IOA = 001728, SEG = 000 SA = 00840
DFS0940I PSB ADFABCTP HAS B ADDED IN LIBRARY. p] Going into PSBP |rxs
DFS0941I PSB ADFABCTP IF USING SEPARATE ADDRESS SPAC J¥ going into DPSB |, s
AS SIZE = 008160.
DFS0589I PROCESSING COMPLETED FOR PSB-—— PCB = 000960, PSB = 008816,
WORKAREA = 002848,

TOTAL SIZE = 011664
DFS0593I PSB--ADFABCTP WORKAREA BREAKOUT. NDX = 0002 XIQ_= 000008
IOA = 001728, SEG = 00008, Needed from

PSBW

@ KIESSLICH CONSULTING
: KC110 unit 3 page 38

® 0000606060600 0606060606 060606060 0 90 0

PSB/DMB/PSBW

sizes from ACBGEN output (2 of 2)

WORKAREA = 001744,
TOTAL SIZE = 002880

SEG = 00008,SSA = 00560

DFS0589I PROCESSING COMPLETED FOR PSB----2 . PCB =

DFS0593I PSB--Z WORKAREA BREAKOUT. NDX = 000056, XIO

PSB = 001136,

000688, IOA = 000420,

DFS0591T MAX PCB SIZE = 001544,MAX PSB SIZE = 009104, MAX WORKAREA SIZE = 012240

MAX TOTAL SIZE = 021200
DFS0942I IF USING DL/I

,MAX CSA = 000704 MAX SAS = 008448 AVERAGE CSA =j000348

AVERAGE SAS = 002922.

DFS0590I END OF ACBLIB MAINTENANCE. H

@ KIESSLICH CONSULTING

CONDITION CODE WAS 00000008 l‘

POOL Sizing

KC110 unit 3 page 3

®
®
®
®
®
®
®
®
®
®
®
®
®
o
®
®
®
®
®
o
o
(1
®

Notes:

For messages:
* DFS0940I
* DFS0941I
* DFS0589I
* DFS0593I

See IMS Messages and Codes Reference manual.

Pool Space estimation for IMS System (1 of 2)

DBWP Size = 12k + 4k * MAXPST
PSBWP Size = max PSBW size * MAXPST

Non - resident and non-parallel scheduling:

PSBP(CSA) Size = Sum of PSB(CSA) sizes + Online Change Size
PSBP(DLI) = Sum of PSB(DLI) sizes + Online Change Size =
DMBP Sum of DMB sizes + Online Change

Non - resident and parallel scheduling:

PSBP(CSA) Size = Sum of PSB(CSA) sizes +
max PSB size (CSA) * (MAXPST -1) * 2.5 + Online Change

PSBP(DLI) Size = Sum of PSB(DLI) sizes +
max PSB size (DLI) * (MAXPST -1) * 2.5 + Online Change

DMBP Size = Sum of DMB sizes + Online Change

@ KIESSLICH CONSULTING

| KC110 unit3 page 40 |

This is a starting point for a new IMS system for which you have no historical pool usage
information:

- Online change Size of resources activated via Online Change or DRD.
- *25 Factor to avoid/minimize fragmentation for PSBs,
since larger are more prone to fragmentation than DMBs.
- MAXPST Sum of MAXTHRDs plus max number of regions (MPPs, BMPs).

All sizes are reported (or can be calculated) from ACBGEN output.
Only online PSBs/DMBs should be considered and of course not those PSBs and DMBs
(DBDs) used only for Batch processing.

Pool Space estimation for IMS System (2 of 2)

Resident and non-parallel scheduling:

PSBP(CSA) Size = Online Change
PSBP(DLI) Size = Online Change
DMBP Size = Online Change

Resident and parallel scheduling:

PSBP(CSA) Size = max PSB(CSA) size * (MAXPST - 1) * 2.5 + Online Change
PSBP(DLI) Size = max PSB(DLI) size * (MAXPST - 1) * 2.5 + Online Change
DMBP Size = Online Change

Consider ACBIN64 (DFSDFxxx Mbr) ... more a few foils later !

@ KIESSLICH CONSULTING

KC110 unit 3 page 41

https://www.ibm.com/docs/en/ims/15.5.0?topic=pools-creating-sizing-64-bit-storage-
pool

DB Pools Backed by 64-bit Real Storage

= DB storage pools moved to 64-bit real storage (still in 31-bit
virtual). When page fixed, these pools will now use 64-bit
real storage:

— DBWHP: DB work pool
— DLDP: DMB pool

— DLMP: PSB CSA pool
— DPSB: DLI PSB pool
— PSBW: PSB work pool

= Target customers:
— Customers with large pools (typically, PSB), who
* Want to page fix them to avoid delays referencing old PSBs that have

been paged out, but
* Who cannot page fix them due to 31-bit real storage constraints.

@ KIESSLICH CONSULTING
| KC110 unit3 page 42 |

Prior to IMS V12, the pools listed here were all obtained in 31-bit virtual storage, backed
by 31-bit real storage when page fixed. In IMS V12, they will continue to be in 31-bit
virtual, but will be allowed to be backed by 64-bit real. The target customers for this are
those who have large pools, and who want to page fix them for performance, but who
cannot because doing so causes a 31-bit real storage shortage.

DB Pools Backed by 64-bit Real Storage...

The DB pools had been allocated LOC=(31,31)
— 1t 31 = allocate in 31-bit virtual storage
2nd 31 = allocate in 31-bit real storage when page fixed

= When not page fixed, storage can be anywhere in real storage.

= When page fixed, storage is forced to the real range specified by the
second value of the LOC= parameter

— For large fixed pools, this can cause a real storage shortage, because
when fixed, LOC=(31,31) constrains real storage to 31-bit.

= |nIMS V12, the DB pools are allocated with LOC=(31,64)

— Virtual storage remains 31-bit, but...
— Real storage can be 64-bit, even when fixed — no longer constrained!

@ KIESSLICH CONSULTING

| KC110 unit3 page 43 |

DLI pools had been allocated with LOC=(31,31). The first parameter indicates where the
virtual storage should be located... 31-bit in this case. The second parameter indicates
where the real storage backing the virtual storage should be located when fixed. Also
31-bit in this case.

When storage is allocated and is not page fixed, it can reside anywhere in real storage.
This is because non-fixed storage pages can be stolen and paged out, moved, etc. at any
time. No one can (or should) be concerned with a real address of a non-fixed page of
storage, because as soon as you know the address, it can change.

However, when pages are page fixed, then the second LOC= parameter comes into play
as a constraint. Pages that are allocated LOC=(31,31) are forced to be backed by 31-bit
real storage. 31-bit real is, today, a scarce resource. If a customer has large DB pools
and wants to page fix them, they can run into 31-bit real storage problems, because
there is not enough to hold the DB pools plus other users of 31-bit real storage.

In IMS V12, DB pools are now allocated with LOC=(31,64). Virtual storage is still located
in 31-bit, but now the pages themselves can be in 64-bit real, even when they are page
fixed.

DB Pools Backed by 64-bit Real Storage...

IMS V11 and earlier (page fixed pools) IMS V12 (page fixed pools)

Virtual Storage (31-bit)

Real Storage (64-bit)

2 GB bar

DB Pool

16 MB line

2 GB bar

16 MB line

Virtual Storage (31-bit)

Real Storage (64-bit)

2 GB bar

DB Pool

16 MB line

2 GB bar

16 MB line

@ KIESSLICH CONSULTING
| KC110 unit 3 page 44

This chart shows this pictorially. The left half of the chart shows the pre-V12 situation.
The DB pools live in 31-bit virtual storage, which means they must be allocated with a
virtual address less than X’80000000’. If these pools are page fixed, their real storage
also must be in storage < X’80000000". In the 64-bit real space, 31-bit storage is quite a
small part of the total storage available, and it is easy to run out.

The right half of the chart shows the IMS V12 situation. Here, the pools are still in 31-bit
virtual. However, when they are page fixed, they can now live in 64-bit real storage, and
have a much wider range of allocation possibilities.

Also note: Although the pictures on this chart show the pool’s real storage as one
contiguous piece, be aware that this is not true. The real storage frames can be
scattered throughout the real storage — there is no requirement for them to be
contiguous.

64-bit ACB storage pool (1 of 2)

= PriortoIMS 11
e At control region initialization :
— Resident DMBs and PSBs are loaded into 31-bit extended

storage of DLISAS or CTL (w/o DLISAS)
— DEDBs are loaded into ECSA

* During execution
— non-resident DMBs and PSBs are loaded on demand into

31-bit non-resident pools (DMB and PSB pools)
= V11
— An optional 64-bit storage pool to cache ACB members can be
created in IMS 11 for non-resident PSBs and DMBs
— The goal is to improve storage utilization and performance
e Reduces I/Os to the ACBLIB and
* Improves ACBLIB performance for shops with large ACBLIBs

@ KIESSLICH CONSULTING
| KC110 unit3 page 45 |

The 64-bit ACB storage pool enhancement provides a separate pool for non-resident
ACBs as an option to improve storage utilization and performance for those customers
who have heavy I/0 activity to the ACBLIB or have large ACBLIBs with many members.

64-bit ACB storage pool (2 of 2)

= With IMS 11 and 64-bit ACB storage pool
— At control region initialization : Same as pre-IMS 11
— During execution :

* non-resident DMBs and PSBs are loaded into 64-bit ACB
storage pool after being loaded on demand into 31-bit
non-resident pools

* Resident DMBs and PSBs will not go into 64-bit ACB
storage pool

 DEDBs will not go into 64—bit ACB storage pool

— Supported in all online configurations (IMS/TM, DBCTL, DCCTL,
SAS and non—SAS, XRF, FDBR)
e DCCTL only has PSBs
* No batch support
« DOPT PSBs not supported

@ KIESSLICH CONSULTING

| KC110 unit3 page 46 |

At execution time, as non—resident PSBs and DMBs are loaded from ACBLIB into the 31—
bit non—resident pools, these non—-resident PSBs and DMBs are also loaded into the 64—
bit ACB storage pool, so they will be more easily accessible later.

All online configurations of IMS have support for a 64—bit ACB storage pool.
There is no support for this capability in batch (well, why it should there ??)
DOPT PSBs are not supported.

Specifying the 64—-bit ACB storage pool

* Specification of the 64—bit ACB storage pool is in the new DATABASE
section of the DFSDFxxx PROCLIB member

* Parameter is ACBIN64=nnn where nnn is the number of gigabytes for the
64—bit ACB storage pool (1-999)

* 64-bit ACB pool needs to be large enough to contain both non-resident
PSBs and non-resident DMBs

e Minimum would be sum of sizes of 31-bit non—-resident PSB and

DMB pools
e Maximum would be a total size of all non resident
ACB members Remember
* Recommendation is to start with 1 or 2 gigabytes to specify
ACBING64-= in
DFSDFxxx
<SECTION=DATARBRASE> member for
FDBR if using
ACBIN64=1

@ KIESSLICH CONSULTING

| KC110 unit3 page 47 |

The 64-bit ACB storage pool is defined in a new section of the DFSDFxxx PROCLIB
member called DATABASE. The parameter that must be specified is ACBIN64=nnn
where nnn is the number of gigabytes of storage for this new pool. If the ACBIN64
parameter is not present, the 64—bit ACB storage pool will not be created and used.

ACBING64 considerations (1 of 3)

= Scheduling considerations with non—-resident ACB resources

— At first scheduling of a program, a PSB and any related DMBs
are loaded into the 31-bit non-resident pools and are also
loaded into the 64—bit ACB storage pool.

— At subsequent schedulings of this program , ACB members not
found in the 31-bit non-resident pools are copied from the
64bit ACB storage pool (above the bar) back to the 31-bit non-
resident pools (which avoids I/O to ACBLIB).

— If the 64-bit ACB storage pool is full , the LRU algorithm will be
used to remove old members to make room for new members

@ KIESSLICH CONSULTING

KC110 unit 3 page 48

ACBING64 considerations (2 of 3)

= Online change considerations for affected ACB members
— will be removed from the 31-bit non-resident pools
— will be Deleted from the 64-bit ACB storage pool

= Type-2 DELETE command considerations :
DELETE DB and DELETE PGM will
— Remove ACB members from the 31-bit non-resident pools
— Delete ACB members from the 64-bit ACB storage pool

= (Minimal) Impact on managing DMBs
— DMBs today are either defined as resident or are always in
the non-resident DMB pool
— Most likely new 64-bit ACB storage pool will have minimal
impact

@ KIESSLICH CONSULTING
KC110 unit 3 page 49

ACBING64 considerations (3 of 3)

* |mpact of managing PSBs will depend on scheduling patterns (WFls

have no scheduling)
— PSBs defined as resident today :

* If large number of PSBs to be scheduled, investigate reducing /
eliminating resident PSBs, increasing the size of the non-resident PSB
pool, and using the 64-bit ACB storage pool

* No noticeable performance impact of retrieving the PSB from 64-bit
ACB pool versus from the resident PSB pool

— PSBs using the non-resident PSB pool today

* If non-resident PSB pool is sized larger to reduce/eliminate ACBLIB
I/Os, investigate using a smaller non-resident PSB pool with the 64-
bit ACB storage pool

* 64-bit ACB pool removes potential I/O for PSBs

= Benefits to summarize
— Improved technique for better management of non-resident ACBs
— Goalis to improve storage utilization and performance for ACBs
* Reduces I/Os to the ACBLIB
* Improves ACBLIB performance for customers with large ACBLIBs
— Improves ACB usability for customers where ACBLIB access impacts

performance and growth
=2 | KC110 unit 3 page 50

The actual impact will be based on the scheduling patterns of each IMS system !

For PSBs that are defined as resident today, if many of these are scheduled, it may be
more efficient to make some or all of them non-resident, increase the size of the non-
resident PSB pool, and use the 64-bit ACB storage pool to access them when needed.
You can using the saving from reducing/eliminating resident PSBs to increase the size of
the non-resident PSB pool. For PSBs that are non-resident today, if the non-resident
PSB pool has been sized larger to reduce/eliminate ACBLIB 1/Os, then using the 64-bit
ACB storage pool would make it possible to reduce the size of the non-resident PSB pool.
This would be helpful for customers with large numbers of PSBs that cannot always be
found in the non-resident PSB pool today.

Querying the ACBIN64 storage pool

A new QUERY POOL TYPE(ACBING64) can be used to monitor the
usage of the 64-bit pool

QUERY POOL TYPE(ACBIN64) SHOW/(STATISTICS)

PoolName Type CC Size Mbrs Used Free Overflow
ACBIN64 Cache64 0 2048 10000 25 75 0

QUERY POOL TYPE(ACBIN64) SHOW(ALL)

PoolName Type CC Size Mbrs Used Free Overflow Gets Hit Miss
ACBIN64 Cache64 02048 3700 25 75 510000 90 10

Isrt Del Lmbr Ltype Lsize Smbr Stype Ssize
300 20 PAYROLL PSB 2000 DEBIT INT 100

@ KIESSLICH CONSULTING
| K110 unit3 page 51 |

Here is an example of the new formats for QUERY POOL TYPE(ACBIN64) command.

Statistics for ACBIN64 storage pool

PoolNm Pool name (ACBING4)

Type CACHE64

Size Pool size in megabytes

Mbrs Total number of buffers stored in the pool, whether in use or not

Used Number of buffers currently in use (number of ACBLIB members in pool)

Free The percentage of the pool that has not been reserved for buffers or control
data

Overflow Total number of overflow buffers in use

Gets Number of FIND calls, whether successful or not

Hit Number of successful FIND calls

Miss Number of unsuccessful FIND calls

Isrt Number of buffers added to the pool

Del Number of buffers deleted from the pool, including castouts

Lmbr Name of largest member in the 64-bit pool

Ltype The resource type of the largest member in the 64-bit storage pool

Lsize Size in kilobytes (K) of the largest member

Smbr Name of smallest member in the 64-bit pool

Stype The resource type of the smallest member in the 64-bit storage pool

Ssize Size in kilobytes (K) of the smallest member.

@ KIESSLICH CONSULTING

| KC110 unit3 page 52 |

The same type of information that is provided by a type-2 QUERY POOL TYPE(ACBING64)
command will be logged in a new type ‘4515’ checkpoint log record.

Monitoring the ACBIN64 storage pool

New log record — type X’4515’
— Contains statistics from new QUERY POOL TYPE(ACBING64)
command

= New monitor record types
— Type 74 - Issued when a get request for a PSB in the 64-bit pool is started
— Type 75 - Issued when a get request for a PSB in the 64-bit pool ends
— Type 76 - Issued when a get request for a DMB in the 64-bit pool is started
— Type 77 - Issued when a get request for a DMB in the 64-bit pool ends

Supported by IMS Monitor in the Region IWAIT Scheduling +
Termination report
Supported by IMS PA tool

@ KIESSLICH CONSULTING

| KC110 unit3 page 53 |

The IMS Monitor will record four new record types for usage of the 64-bit ACB storage
pool: type 74 indicates that a get request for a PSB in the 64-bit pool has started, type
75 indicates that a get request for a PSB in the 64-bit pool has ended, type 76 indicates
that a get request for a DMB in the 64-bit pool has started, and type 77 indicates that a
get request for a DMB in the 64-bit pool has ended.

These new monitor record types are supported by the IMS Monitor and the IMS PA tool.

ACBING64 storage pool — IMS Monitor REGION IWAIT
report

IMS MONITOR *** REGION IWAIT *** TRACE START 2008 123, 08:01:32 TRACE STOP 2008
123, 08:11:48 PAGE 0018
......... IWAIT TIME..........
**REGION 2 OCCURRENCES TOTAL MEAN MAX IMUM FUNCTION MODULE
SCHEDULING + TERMINATION
2 32975611 16487805 23293621 NO MESSAGES MSC
...SUB-TOTAL. ..
- 2 32975611 16487805
1 5807 5807 5807 PSB=DDLTRN24 BLR-64BIT
1 1985 1985 1985 INT=DDLTRN24 BLR-64BIT
3 5115 1705 1965 PSB=BMPFPEO7 BLR
1 1154 1154 1154 INT=BMPFPEO7 BLR
3 3040 1013 1199 PSB=BMPFPEO5 BLR
1 1028 1028 1028 INT=BMPFPEO5 BLR
1 1739 1739 1739 PSB=BMPFPEO2 BLR-64BIT
1 1628 1628 1628 INT=BMPFPEO2 BLR-64BIT
1 3100 3100 3100 PSB=BMP255 BLR-64BIT
. .TOTAL. . .
77 15 33056434 972248
DL/I CALLS
! = 1

This is an example of the IMS Monitor REGION IWAIT report that shows activity in the
64-bit ACB storage pool.

IMS DB processing (Full Function)

03 DLISAS

DLI/I

DMB Pool

PSB Pool SAS

ENQ/DEQ Table

Resident DMBs/PSBs

DB - Buffer Pool

1

DATABASE

KC110 unit 3 page 55

Notes:
After scheduling completes, most interaction between the application and IMS
databases involve the DLISAS Address Space
Databases opened when first accessed
Read I/0 (if segment not in DB buffers)
Data updated in buffer after locks have been granted
* Updates logged
* Write I/0 usually deferred until commit point Updates locked until commit
point.

IMS Database Buffers

DLISAS Extended Private Area

shared Resource
(LSR) Pool

3 - 32,767 Buffer:
with a variety of si

3 - 32,767 Buffers
with a variety of siz:

.5K through 32K

S/B Defaults:

- 4 Buffer Sets
- 10 Buffers per Set

Up to 25 Sets possible

E 16MB—

IMS has three buffer handlers\

» VSAM Buffer Handler

« OSAM Buffer Handler

* OSAM Sequential Buffer Handler
- All have buffers in DLISAS EPA

@ KIESSLICH CONSULTING

| K110 unit3 page 56 |

Notes:

In addition to storage for the Pools we have discussed earlier, the DLISAS also is used for
IMS Database Buffers and Lock Tokens (“PI ENQ/DEQ Pool”) if Program Isolation is used
as the lock manager.

OSAM SB ? Anticipating ... “in advance buffering” assuming more sequential processing

Only OSAM © possible — “we” own it — IMS core code !

OSAM Buffer Pool Definition

CONTROL STATEMENTS (DFSVSM**) specifications:

IOBF=(bufsize,# buffers,fix1,fix2,id)
DBD=dbdname(data set number,id)

Always try to
fix Buffer

Prefix !
(@)

Sample:

IOBF=(512,12,Y,Y)
IOBF=(2048,5,Y)
IOBF=(4080,6,Y,Y, PROD)
IOBF=(4096,6,N,Y)
IOBF=(12288,4,Y,Y,c0ST)
DBD=DBD3 (1, PROD)
DBD=DBD4 (2 ,CUST)

@ KIESSLICH CONSULTING
KC110 unit 3 page 57

IOBF Defines each OSAM subpool
* bufsize and #buffers is used to specify size and number of buffers in this
subpool
* no subpool specified: there is only one global ... number 001 / or the first as

global one ... 001, for all those which are not assigned to a specific other pool
id

* The following parameters (values are Y / N) request long-term-page-fix for:
v fix1 — for Buffers and Buffers Prefixes (Header) - You might like to
specify "Y"
v’ fix2 — for Buffer Prefixes and Subpool Header (control blocks) - You
always should specify “Y”
v" id (optional) is 1 - 4 alphameric characters to name the subpool

DBD is used to assign the database data set to that certain OSAM buffer subpool with a
matching ID of OSAM pool
* DATA SET NUMBER is determined by the order of the DATASET macros in the
specified DBD.

Please note changes here when in HALDB !

Structure of VSAM Shared Resource Pool

06 VSAM Buffer Handler Pool

BUuiter Pool Fretix

KC110 unit 3 page 58

Buffer Pool Prefixes are used by the buffer handler to identify the content of individual
buffers.

VSAM Subpool Definition is specified in Proclib member DFSVSAMP (BATCH) or
DFSVSMxx (Online).

IMS sample VSAM buffer pool for a control region:

VSRBF=512,8 VSRBF=1024,8 VSRBF=2048,4 VSRBF=4096,4

OLDSDEF OLDS=(00,01,02),BUFNO=005,MODE=DUAL, WADSDEF WADS=(0,1)
BGWRT=YES,INSERT=SEQ,VSAMPLS=LOCL

6VSAM Buffer Pool Definition example
v

PTIONS VSAMPL=LOCL (default) no HIPERSPACE is considered .
POOLID =IDG General Pool:
VSRBF =, For all DBs not assigned to a

specific POOLID and
must be the first subpool

POOLID =ID1

VSRBF =1024,8

VSRBF =2048,16

VSRBF =4096,30

POOLID =ID2,FIXINDEX=YES
VSRBF =2048,24,

VSRBF =4096,10

POOLID =ID3,FIXDATA=YES
VSRBF =1024,12

DBD = DBD11,(1,ID1)
DBD =DBD1D,(1,ID1)
DBD = DBD3I,(1,ID2)
DBD = DBD41,(1,ID2)
DBD = DBD4D,(1,ID3)
WHERE: POOLID : Pool Id used to assign data set to pool
nn,nn,type : TYPE: | = Index Subpool, D = Data Subpool
FIXDATA =, FIXINDEX= : Page fix buffers
FIXBLOCK = : Page fix control blocks
DBD = : Assign data set to matching Pool ID
= KC110 unit 3 page 59
Definition in:
IMS . PROCLIB (DE'SVSMxx) orin:
/ /DESVSAMP 155 J

Virtual Storage Constraint Relief (VSCR) was provided long ago for IMS buffers.

* Buffers and VSAM control blocks are allocated in DLISAS EPA so a large number of
buffers might be used.

Multiple VSAM LSR Pools (multiple POOLID statements) permit:

* Multiple subpools with same buffer size

* DB might be assigned to a specific LSR pool

* Subpool might be designated as a KSDS INDEX ONLY subpool

* Subpool could/should be large enough to enable most of the KSDS INDEX Cls for
important databases to remain in storage

* Number of buffers 3,.., 32767

3VSAM Buffer Pool Definition example
)

OPTIONS VSAMPL=LOCL (default) no HIPERSPACE is considered

POOLID =IDG General Pool:
VSRBF S For all DBs not assigned to a
........... . specific POOLID and

must be the first subpool

POOLID =ID1

VSRBF =1024,8

VSRBF =2048,16

VSRBF =4096,30

POOLID =ID2,FIXINDEX=YES
VSRBF =2048,24,1

VSRBF =4096,10

POOLID =ID3,FIXDATA=YES
VSRBF =1024,12

DBD = DBD1l,(1,ID1)

DBD =DBD1D,(1,ID1)

DBD = DBD3I,(1,ID2)

DBD = DBD4l,(1,ID2)

DBD = DBD4D,(1,ID3)

WHERE: POOLID : Pool Id used to assign data set to pool

nn,nn,type : TYPE: | = Index Subpool, D = Data Subpool
FIXDATA =, FIXINDEX= : Page fix buffers
FIXBLOCK = : Page fix control blocks
DBD = : Assign data set to matching Pool ID

= KC110 unit 3 page 60

For HALDB is different !

Using Multiple VSAM Buffer Pools

——jl VSAM LSR POOL ID = ID1

ay» 8 Buffers x 1024 Bytes
DBD'lDE_’ 16 Buffers x 2048 Bytes

@ Esos B 30 Buffers x 4096 Bytes
DBD-ZDE—P

DBD-31 1=2048 » VSAM LSR POOL ID = 1ID2

24 Buffers x 2048 Bytes

10 Buffers x 4096 Bytes

DBD-41

» VSAM LSR POOL ID = ID3

12 Buffers x 2048 Bytes

DBD-4D D=2048

@ Koo

[KC110 unit3 page 61 |

Notes:

In this example, we have multiple database data sets that have a common Cl Size:

* Note that the KSDS Index components for DBD-I1 and DBD-3I and ESDS
Data component for DBD-4D have a common Cl size of 2048.

* By being able isolate these three VSAM components into separate buffer
pools, we prevent buffers stealing between these databases.

Allocation of a data set to a subpool occurs at OPEN time only.

VSAM Hiperspace

< Database >

C
D
I/O E B

19)>

VSAM _LSR SUBPOOL

e,

Addressability: Byte

Move J4K
Real Storage > 2 GB HiperSpace Buffering was appropriate when IBM
Processors had two types of Storage: Central and
D Expanded

* Current z-Series Processors only have Central storage
— Use of HiperSpace, while still supported,
involves moving data from one area of memory
Th n anothert f IMS HiperS Buffers f
ility - e The movement o iperSpace Buffers from one

Addressability : Page portion of memory to anotherl};

wasted overhead
* Convert your existing IMS VSAM HiperSpace to real

IMS VSAM Buffers

@ KIESSLICH CONSULTING
KC110 unit 3 page 62

Notes:
HiperSpace was implemented to improve Buffer Hits and reduce Read 1/O operations
when the amount of LSR buffers was limited by hardware constraints.
Although no longer recommended, if HiperSpace is used the following points apply:
LSR subpools using HiperSpace should be multiples of 4 K.
Each subpool has one set of BUFCs (buffer control blocks) and two sets of buffers:
* Each BUFC points to a buffer, either in the address space or in HiperSpace
* Both sets of buffers are managed on a least-recently-used basis
When a buffer is stolen from the address space buffer pool, it is moved to the
HiperSpace buffer pool. If the buffer was altered, it is written to DASD prior to being
moved.
When a buffer is stolen from the HiperSpace pool, its contents will be discarded.
When a VSAM request requires a Cl, VSAM will look for the Cl in buffer to avoid I/0O.
If requested Cl found in HiperSpace, VSAM will move HiperSpace buffer contents to an
address space buffer. This will usually force an address space buffer to HiperSpace.
I/O always performed with address space buffers.
Application programs (IMS) cannot reference buffers in HiperSpace.
HiperSpace is no longer recommended as a performance option.

HiperSpace Activation

Example:

RBF = 2048,12

RBF = 4096,10,D,HS30

RBF = 8192,4,1,HS20,HSO

@ KIESSLICH CONSULTING
KC110 unit 3 page 63

Notes:
Hiperspace parameters added to VSRBF=
HSnn number of Hiperspace buffers needed:
-n=0to 16,777,215
HSOPTIONAL Hiperspace buffers optional (default):
* |Initialization will *proceed* even if not enough HiperSpace is available to
meet requested amount
HSREQUIRED HiperSpace buffers required:
* Initialization will fail if not enough HiperSpace is available.
Buffers for smaller buffer sizes (that is, <4K) should be in 4K increments since 4K is the
management size.

VSAM Number of Strings

DFSVSMx

POOLID = ID1,STRINGMN = # of VSAM Strings

Max # of concurrent VSAM requests
for FF DBs using POOLID = ID1

OPTIONS VSAMPLS = LOCL,STRINGMX = # of VSAM Strings

Max # of concurrent VSAM requests
for all pools

@ KIESSLICH CONSULTING
| KC110 unit 3 page 64

Notes:

The Interface between IMS and VSAM requires a String in order to perform I/O
operations.

In general, the parameter used to specify the number of strings should not be specified.
STRINGNM and STRINGMX parameters can be used to allow independent control of
VSAM number of strings allocated for DB 1/0O.

STRINGMX allows PSTs and VSAM strings to be tuned independently (consider
MAXPST=).

BMP processing: Non-message-driven (1 of 2)

b) >
« BMP started by JCL or z/OS console

// EXEC IMSBATCH,MBR=pgmname, PSB=psbname, ...

Security verification

PSB and DMBs loaded (if currently not in pools)
— Databases authorized if registered with DBRC

Region (PST) assigned or created (up to MAXPST=)
UOR started (if UPDATE intent)
Multiple (hopefully! *) UORs

PSB remains scheduled until PGM termination

@ KIESSLICH CONSULTING
| KC110 unit3 page 65

Notes:

Most of the BMP processing performed by customers is through the so called non-
message-driven BMPs. These jobs use the services of the Control Region, the DLISAS and
DBRC, but do not access IMS Message queues.

* Hopefully — because overhead of region start / stop and work inbetween (
checkpoints !1!1)

BMP processing: Non-message-driven (2 of 2)

03 BMP Program

‘ Restart (XRST)

Read Input File

DL/I Processing

A OC

reposition

Write Output File

Commit Point (CHKPT)

»lat
Lt Dl

backout

<+—— A O C
-
O

End of Program (implicit commit)

@ KIESSLICH CONSULTING
KC110 unit 3 page 66

Notes:

An option available to any type of BMP (non-message-driven shown here) is the use of
the CHKPT and XRST calls. When used together, these calls permit application to
periodically commit work that can be restarted from the point of failure without the
need to redo all earlier processing.

CHKPT file - GSAM

Database buffers — Control block overview

OSAM Buffering

VSAM Buffering

{IBPQOL) (ISUBPL) 1K — Bufiers
\OBE ¥ [SPL ISAM/OSAM
1K
X 'g* |4 st Subpool / Bffr. Prefix //i:' K
) e :’//) 1K
(IBFPRF)—» o /" 1K
™Y
R
)_//
_) 2K
Sco 1ISPL__ |
2K
5 5 Bffr. Prefix
w / 2K
SCDDBFSP & P s
SCDDEBFPL s — 2K
//DFSVSAMP DD
10BF = (1024,4,%,N)
—_— e e — i £ v e s ATOBEYS C2OAB NN
DL/1 Buffer Handler Pool {(IDABSPH) VSRBF = 1024,4
(BFSP) BFSP EOC%E_ VSAM Subpool (1) VSRBF = 2048.4
refix -
BSPH]Subpool
(8FUS) [BFUS | Subpool //,E Header VSAM 1K Buffers
Stat Blk (IDABUFC) Buffer sl K
BFUS Control Blk / 1K
1K
For VSAM L
(RPLI) [RPLI %Macm Sk / 1K
By IMS
RPLI .
RPLI | i
BH
(DLTR) Trace .
Table VSAM Subpool {(2) VSAM 2K Buffers
BSPH !Subpool
(Header / 2K
Buffer
Control Blk 2K
The names within
parenthesis are the " 2K
DSECT-names
” / 2K

@ KiessLic

H CONSULTING

| KC110 unit 3 page 67

Deep dive digging here: IMS Debugging class !

