
What this unit is about
External subsystems might need to connect to IMS for several important reasons. CICS
systems might need to connect to an IMS Control Region so that CICS transactions can
have access to IMS DB data. IMS transactions might need to connect to DB2
subsystems in order for access to data stored in DB2.
What you should be able to do
After completing this unit, you should be able to:
Learn how IMS can serve as a database manager for CICS transactions
Describe the steps required to allow access between IMS and DB2 and between IMS
and CICS
Understand the role of the transaction manager and the database manager in the two-
phase commit process
Describe how the two-phase commit works between CICS and IMS and between IMS
and DB2 in order to assure data consistency across database managers
Attention : also newest WAS connectivity locally will use ESAF !

Unit 6 –
Connecting IMS to CICS and

DB2

KC110 unit 6 page 1

Notes:
A CICS Connection is always initiated from CICS either at CICS startup or from CICS
terminal via a dialog by using a specific Database Resource Adapter (DRA) startup
table.
A CICS can only be connected to one IMS at a time. CICS can disconnect from IMS and
connect to another IMS by using another DRA startup table without restarting CICS.

We’re talking about DLI … - NOT the CICS-IMS connection as an ISC (VTAM!) !

TABLE = 00 … or another DFSPZPxx siffix

DFSPZP00
.
.
.
.

DBCTLID=IMST

.

.

S IMSTM

IMST

MSID=IMST

CICS
Use DRA
Startup
Table = 00

IMST

CICS Transactions can use IMS as an External
Database Manager

S CICSPROD

CICS Connection to IMS (1 of 2)

KC110 unit 6 page 2

Notes:
There is a transaction provided by CICS that enables the stopping and starting of the
connection between CICS and IMS.

CICS Connection to IMS (2 of 2)
• When CICS is started, the connection to IMS can be restarted

automatically by including DFHDBCON in the PLTPI list
• CICS and IMS can be started and stopped independently:

– The connection between CICS and IMS is made by using the CICS
transaction

C D B C

– This transaction invokes program DFHDBCON
– A parameter in the DRA startup table passed to this program

identifies which IMS system that this CICS should connect to
– If IMS is not available the transaction CDBC can retry the request

automatically after a user-specified interval (TIME= parameter in
DRA startup table)

• At CICS Warm Start / Emergency Restart, the DRA module
with the suffix last used will be loaded.

– At Cold Start, the DRA module with suffix 00 will be used
automatically KC110 unit 6 page 3

Enabling CICS - IMS connection (1 of 2)
• The DRA module with suffix other than 00 can be used

automatically by specifying:

INITPARM=(DFHDBCON='xx') in the SIT

• The connection can be terminated using the CDBC transaction

• CICS Resource Definition:
– Include group DFHDBCTL for IMS required resources
– Destination Control Table (DCT)

DFHDCT: DESTID=CDBC

– Program List Table (PLT) (post initialization) for automatic connect:

DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM DFHPLT
TYPE=ENTRY,PROGRAM=DFHDBCON

• Use CICS Tran CDBI to display CICS-IMS Connection Status
KC110 unit 6 page 4

Notes:
Not all IMS commands can be issued from CICS CDBM.
Details of the CICS to IMS attach are described in the CICS IMS Database Control Guide
CICS manual.

Enabling CICS - IMS connection (2 of 2)
• IMS operator commands from CICS:

– Can be issued using the CICS supplied transaction CDBM

DFHDCT: DESTID=CDBM

• IMS Steps required to enable the CICS to IMS interface:

1.Generate a PSB (and corresponding ACB) with no PCBs: PSBGEN

LANG=ASSEM,PSBNAME=DFHDBMP,IOASIZE=1000

1. Define to IMS with an APPLCTN macro (or DRD equivalent):

APPLCTNPSB=DFHDBMP,SCHDTYP=PARALLEL,PGMTYPE=BATCH

KC110 unit 6 page 5

T h r e a d - T C B

CONNECT
T h r e a d - T C B

D
R
A

CICS

PST 1

.

.

.

.

PST 4

PST 3

PST 2

PST nPST n

.

.

.

.

.

.

.

PST 4

PST 3

PST 2

IMS - CONTROL - REGION
and CHECKPOINT RESTART

BMP

CICS / IMS Interface CB Structure

KC110 unit 6 page 6

The Database Resource Adapter (DRA) modules and DRA startup table are
loaded. The DRA is:
• IMS code
• Resident in CICS address space
• The interface between CICS and IMS
Thread TCB attached and threads established dependent on MINTHRD=
parameter in DRA startup table. A THREAD is:
 A set of control blocks which provide a communication path
between a CICS transaction and IMS.
 Maximum of 999 concurrent threads.
 z/OS TCB associated with each thread.
• MINTHRDs allocated at start of connection.
• Additional threads can be created dynamically up to a maximum of
MAXTHRD= or MAXPST=.
• Each thread is assigned to a specific PST.
• PSTs assigned to MINTHRD= threads are never freed as long as the CICS-
IMS connection exists.
• PSTs assigned to additionally created threads (up to MAXTHRD= or MAXPST=) are
freed as soon as the thread is collapsed. This is expensive from a CPU perspective
since it requires terminating the z/OS TCB.

Notes:
For CICS transactions that need to process DL/I DB calls, a special CICS Schedule PSB
call is required; a scheduling request might be delayed if there are insufficient available
CICS-IMS threads available. When the schedule PSB request is received by IMS, the IMS
scheduler acquires storage and loads the appropriate scheduler related control blocks
(PSB, DMB, and so on).

CICS PSB scheduling
• At the time the CICS–IMS Connection is established, CICS pre

builds MINTHRD threads and the associate control blocks
– Including z/OS TCBs ; remain after terminate

• Later, a CICS transaction requests a thread by issuing the CICS
DLI Schedule PSB xxxxxxxx request
– If free thread is available, it is assigned
– If no free thread and current number of threads less than MAXTHRD

(and number of IMS PSTs less than MAXPST)
• New thread created and assigned
• This thread, and its associated TCB, are freed at the time this CICS task

terminates
– If no free thread and we are at limits described above, wait for thread

• When thread is eventually assigned, continue the IMS
schedule process described in Transaction Schedule unit
– Acquire pool space and load corresponding Scheduler control blocks

• Release IMS pool space and CICS Thread at Task Commit
– Every CICS task instance requires the services of the IMS Scheduler

KC110 unit 6 page 7

Notes:
CICS is the Transaction Manager and Coordinator Controller (CCTL) that determines
whether a UOW (and all work performed by participants in the UOW) should be
COMMITTed or ABORTed (Backed out).
IMS is the database manager and Participant

CICS-Syslog

CICS
Related Information

Two-Phase
Commit

C
I

C
S

I
M

S
C

T
L

O L D S

DBCTL related
Information

CICS Logstreams defined to
MVS Logger as:

 LOGR structure in CF
or

 DASD Data sets

CICS-IMS two-phase commit overview

KC110 unit 6 page 8

Notes:
The various processing steps of the two-phase commit are described in detail on the
next several pages.

Phase
2

Phase
1

Phase 2Phase 1

1

CICS

IMS

10

11

4

Begin of

commit

Syncpoint

5

6

9 14

Old point of

consistency
Instant of

commit

New point of

consistency

3

2

DATA

a
backed

out at

restart

b
backed

out at

restart

c
indoubt at

restart;
either

backed out
or

committed

d
committed

at

restart

Unit of Recovery

x'5607'

Sched

x'5610'

Prepare

x'3730'

Commit

12

13

x'5612'

End Phase 2

8

7

x'5611'

End Phase 1

CICS-IMS two-phase commit process

KC110 unit 6 page 9

CICS-IMS 2PC Process (2 of 4)
• A two-phase commit process is required when the IMS database system is accessed from CICS. To

synchronize data between the database system and a transaction manager, any data change in one
system must be matched by complete data changes in the other. Before either subsystem
completes the commits of changed data, it must be decided whether all subsystem can make its
corresponding change. The Change Coordinator (CCTL), CICS in this case makes the Commit or
Abort decision. Throughout the two-phase commit, the subsystems must be able to communicate
about the disposition of the unit of work.

• CICS and IMS use a two-phase commit process to communicate with each other. Extensive logging is
performed by each subsystem to document its progress through the commit process. This logging is
used to determine how to proceed (commit or backout) if a failure occurs during commit.

– Phase-1 is initiated by the Change Coordinator (CICS in this case). It (the CCTL) instructs each subsystem to
determine independently whether it has recorded sufficient recovery information in its log, and can commit its
work. For Full Function databases this means changed data will be written to the database after the
corresponding log records have been written. Phase-1 is also called PREPARE PHASE. At the end of
Phase-1, the change coordinator (CICS in this case), determines whether it and all participants (IMS in this
case) are able to proceed with phase-2 of the commit. If it decides that commit should proceed, it instructs
all participants to begin Phase-2. Otherwise, it (CICS) tells all participants to Abort/backout this unit of work.

– In Phase-2, held resources are freed (i.e. locks are released). Changed data is now available for other
users). Phase-2 is also called COMMIT PHASE. Even if one subsystem/participant terminates abnormally
during Phase-2, the operation is considered "complete“ by the non-terminating systems/participants. Any
remaining changes (mainly log updates) are applied and locks are released by the failed system the next
time it restarts.

• The commit processing is initiated by an application syncpoint or PSB termination or normal CICS end
of task processing (4).

KC110 unit 6 page 10

CICS-IMS 2PC Process (3 of 4)
• Phase-1 of commit processing begins (5).

– As CICS begins the Phase-1 processing, so does the IMS (6). IMS successfully completes
Phase-1 (7), writes this fact to the log, and notifies CICS. CICS receives the notification (8). If
CICS determines that all participants (including itself) can commit, it logs that fact (9).

– Now that the decision has been made, it will be honored after any subsequent failure and
recovery of either system.

• CICS begins Phase-2 of the processing - the actual commit of the UOW:
– It notifies IMS to begin its Phase-2 (10). IMS logs the start of Phase-2 (11) and completes it

successfully at (12), which is then a new point of consistency for IMS.

– CICS finishes its Phase-2 processing (14). The data controlled by both subsystems is now
consistent and available to other applications.

• If either participant fails prior to the end of Phase-1, it does not need to be able to
communicate with other subsystems in order to decide how to treat an inflight UOW
–inflight UOWs will always be backed out during restart. Also, if either participant
fails after starting Phase-2 starts, no further communication with the other
subsystem is required either for it to free *its* resources. Only if a system fails in
the indoubt window between Phase-1 end and Phase-2 start will it be required to
reestablished communications in order to determine how to proceed.

KC110 unit 6 page 11

CICS-IMS 2PC Process (4 of 4)
The status of a unit of recovery after a failure depends upon the moment of
failure.

• INFLIGHT

If CICS or IMS fail before finishing Phase-1 (period a or b); during
restart, IMS backs out the updates.

• INDOUBT

If IMS or CICS failed after finishing Phase-1 and before Phase-2 (period c);
only CICS knows if the failure happened before or after the commit (point 9).
If it happened before the commit it must be backed out; if it happend after,
IMS must make the changes and commit them. If IMS failed, at restart, IMS
waits for information from CICS before processing the unit of recovery. If
CICS failed, IMS will patiently wait for instruction from CCIS on how to
proceed; CICS will inform IMS as part of its (CICS’s) restart, what to do with
all indoubt UOWs.

• IN-COMMIT

If IMS failed after it began its own Phase-2 processing (period d); it
makes the committed changes as part of restart.

KC110 unit 6 page 12

Phase 2Phase 1

Phase 2Phase 1

CICS

IMS

10

11

1

old point of

consistency

4

a

Syncpoint

5

6

Begin of

commit

9

Instant of

commit

13 14

new point of

consistency

3

2

DATA backed

out
at

restart

b
backed

out
at

restart

d
committed

at

restart

x'5607' x'5610' x'3730'

12

x'5612'

Unit of Recovery

Sched Prepare Commit End Phase 2

CICS-IMS single-cycle commit process

KC110 unit 6 page 13

Notes:

If IMS is the only external resource manager for a specific UOR; even a different
instance of the same transaction could involve changes involving a differing number of
participants: zero participant, one participant (can use single cycle or two-phase
commit), or multiple participants (and MUST use two-phase commit). The Commit
Coordinator (CICS in this example) determines what to require of the participant(s) at
application commit time.

With single-cycle commit, CICS calls IMS once to

commit or abort. Several benefits of SCC:

• Reduces number of log records
• *End-Phase-1 (x'5611') and CHKW eliminated
• Reduces calls across interface
• No calls resulting from a PREPARE phase

No indoubt phase; the only reason that there is an indoubt phase with two-phase
commit is that the Commit Coordinator needs to receive confirmation from multiple
participants before deciding to commit

IMS CTL

Transaction
Manager

or
DCCTL

TX

LTERM

SSM =

DB2 A

DB2 B
(all DB2s)

Application

EXEC SQL Thread

MPP

DB2 B

Thread from MPP to DB2 necessary for:

1. Process SQL requests
2. Give back the results

DB2 A

DRDA

IMS Transactions can use DB2 as an External
Database Manager

IMS/TM connections to DB2 (1 of 2)

KC110 unit 6 page 14

Notes:

Like the CICS to IMS connections, the connections between IMS and DB2 are called
threads.

There are two types of IMS-DB2 threads:

• Transaction threads (shown on this page) exist between a dependent region and
DB2 and are used to process SQL calls; there is a single transaction thread per
IMS Dependent region.

• Command threads (shown on the next page) are established between the IMS
Control Region and DB2, and are used to process commands and to coordinate
two-phase (or single-cycle) commit processing.

In spite of the fact that there are two types of threads associated with the IMS-DB2
interface; from a systems programming perspective, the establishing and supporting of
this interface is much simpler than the CICS-IMS interface.

EXT SUBSYS also : MQ , if application does specific MQPUT and MQGET calls !
These APPLs are often triggered by MQ LISTENER BMP

IMS Control Region

Transaction
Manager

or
DCCTL

DB2 B

Attachment

SSM =

DB2 A

DB2 B
(all DB2s)

DB2 A

ƒ Attachment from CTL to DB2 necessary for:

1. The two-phase commit (serializing of Sync Point
Processing) or Single Cycle Commit

2. Commands from IMS to DB2

IMS/TM connections to DB2 (2 of 2)

KC110 unit 6 page 15

• A Relational Database is perceived externally as a collection of
Tables

• All data relationships are represented by column (field) values
• DB2 Tables are defined and manipulated using the SQL

Language

ROW

COLUMN

B01 PLANNING 000020 A00

What is a Relational Database?

ADMRDEPTMGRNODEPTNAMEDEPTNO

000010COMPUTING
SERVICE

A00

A00000020PLANNINGB01

KC110 unit 6 page 16

Notes:

DB2 is the IBM relational database manager that runs on z/OS. Terminology
for DB2 databases is different than the terminology associated with IMS
databases. DB2 tables are analogous to IMS Segment types; DB2 rows
correspond to IMS segment instances; DB2 columns correspond to IMS
segment fields.

IMS Attachment Facility (ESAF)
• Connection between IMS Subsystems and one or more DB2

Subsystems
– A single dependent region can only be connected to a single DB2

system at a time

• Communication between IMS users and DB2
– Command Thread
– Transaction Threads

• Application Programming Interface:
– DB2 Precompiler
– Language Interface

• Coordinated Recovery/Restart
– Unit of Work/Unit of Recovery
– Two-Phase Commit Protocol
– Indoubt Thread Resolution

KC110 unit 6 page 17

Notes:
DB2 has a multi-address space architecture similar to IMS’s.
Same LPAR : Xross Memory !

• IMS and DB2 must be on same LPAR

• One DB2 S/S can be connected to multiple IMSs

• One IMS S/S can connect to multiple DB2s

• One IMS dependent region (or batch IMS Job) can connect to a single DB2 at a
time

• One application program can access only one DB2 per schedule

DB2
TABLE

DB2
LOG

BSDS

DB2
CATLG

DIR

IMS
LOG

IMS
DB (S)

RECON

z/OS

z/OS Environment

DB2IRLM

DBSASSSASIRLM

IMS

DL/I
BATCH

IRLMBMPIFPMSGDBRCDL/I
SAS

IMS/
TM

KC110 unit 6 page 18

Notes:
These are some of the IMS commands that can be issued from IMS that can control
DB2. The functioning of these commands will require appropriate security authority.
Note the ”-” that precedes the DISPLAY command. Just as IMS frequently uses “/” as a
control character, “-” is a frequent subsystem recognition character for DB2.

• Subsystem commands processed by IMS:
/DISPLAY SUBSYS xxxx

Displays status of connections

/STOP SUBSYS xxxx

Disconnects DB2 from IMS

/START SUBSYS xxxx

Reconnects DB2 to IMS after /STOP

• Subsystem Request command forwarded to DB2:
/SSR -Display

DB2 Command “-DISPLAY" sent to DB2

IMS DB2-related commands

KC110 unit 6 page 19

There is no indication in the IMS Gen (or DRD) definition for a program or transaction
entry that specifies whether or not DB2 will be used; this obviously reduces IMS
systems programmer involvement when application decide to use DB2.
The SSM names are based on IMSID concatenated to the SSM= value specified for IMS
regions startup parameters. For example, IMS system IMSP with SSM=DB20 would
result in member IMSPDB20 of IMS.PROCLIB being used. That member might contain
multiple lines, each corresponding to a different DB2 system that this IMS is to connect
to.
Applications that use DB2 (or CICS) must run a DB2-supplied pre-compiler step as part
of the compile (or assemble) and link-edit job; there is no IMS pre-compiler.
ACBNAME = PLANNAME .. Or RTT definition (Resource Translation Table) to relate
ACBNAME to different PLANNAME

IMS-DB2 system definition
• No specific IMSGEN or DB2 installation requirements, except

defining programs and transactions to IMS:
APPLCTN PSB=PRGMA
TRANSACT CODE=TRANA

• Must define the IMS-DB2 connections
– SSM member in IMS.PROCLIB define DB2 subsystem connections:

• Easy to code – mainly needs DB2 subsystem name and subsystem
recognition character

• Different IMS regions might have unique members
• DB2 Precompiler:

– Checks syntax of SQL calls
– Replaces EXEC SQL with CALL DSNHLI
– Creates DB Request Module (DBRM)
– Includes timestamp in source and DBRM

• Compile Modified Source
CALL DSNHLI

• Link-Edit with IMS call interface module (DFSLI000)
Entry point is DSNHLI

KC110 unit 6 page 20

Notes:
Here IMS/TM is the Transaction Manager and Coordinator Controller (CCTL) that
determines whether a UOW should be COMMITTed or ABORTed (Backed out). DB2 is
the database manager and Participant

DB2-related
Information

DB2 LOG

IMS/TM-related
Information

O L D S

Two-Phase
Commit

IMS/
TM

D
B

2

IMS - DB2 two-phase commit overview

KC110 unit 6 page 21

Although not shown, the IMS-DB2 attach also supports single-cycle commit.

IMS-DB2 2PC Process
Old point of
consistency

Begin of
commit

x'5601'

Instant of
commit

x‘3730'

New point of
consistency

x'5602'

Phase
2

Phase
1

Phase
2

Phase
1

IMS

DB2

10

11

1 4

Syncpoint

5

6

9 14

3

2

DATA

a
backed

out

at

restart

b
backed

out

at

restart

c
indoubt at

restart;

either

backed out

or

committed

d
committed

at

restart

Unit of Recovery

12

138

7

Sched Prepare Commit End Phase 2End Phase 1

x‘0020‘
Sub x’02’

x‘0020‘
Sub x’01’

x‘0020‘
Sub x’04’

x‘0020‘
Sub x’08’

x‘0020‘
Sub x’10’

KC110 unit 6 page 22

Phase-1 is initiated by the Change Coordinator (IMS/TM in this case). It (the CCTL)
instructs each subsystem to determine independently whether it has recorded
sufficient recovery information in its log, and can commit its work. For DB2 databases
this means that log records that correspond to changed data will need to be written to
the DB2 log. Phase-1 is also called PREPARE PHASE. At the end of Phase-1, the change
coordinator (IMS/TM here), determines whether it (and its changed IMS DB data) and
all participants (DB2 here) are able to proceed with Phase-2 of the commit. If it decides
that commit should proceed, it instructs all participants to begin Phase-2. Otherwise, it
(IMS) tells all participants to Abort/backout this unit of work.
In Phase-2, held resources are freed (that is, locks are released). Changed data is now
available for other users). Phase-2 is also called COMMIT PHASE. Even if one
subsystem/participant terminates abnormally during Phase-2, the operation is
considered complete by the non-terminating systems/participants. Any remaining
changes (mainly log updates) are applied and locks are released by the failed system
the next time it restarts.

IMS-DB2 2PC Process (2 of 4)
• A two-phase commit process is required when the DB2 database system is accessed from IMS

transactions.

To synchronize data between the database system and a transaction manager, any data change in one
system must be matched by complete data changes in the other. Before either subsystem completes
the commits of changed data, it must be decided whether all subsystem can make its corresponding
change. The Change Coordinator (CCTL), IMS in this case makes the Commit or Abort decision.
Throughout the two-phase commit, the subsystems must be able to communicate about the
disposition of the unit of work

• IMS and DB2 use a two-phase commit process to communicate with each other. Extensive logging is
performed by each subsystem to document its progress through the commit process. This logging is
used to determine how to proceed (commit or backout) if a failure occurs during commit.

• The commit processing is initiated by an application syncpoint or transaction termination process, GU
to I/O PCB or MPR processing end (4).

KC110 unit 6 page 23

IMS-DB2 2PC Process (3 of 4)
• Phase-1 of commit processing begins (5):

– As IMS/TM begins the Phase-1 processing, so does the DB2 (and IMS/DB) (6). DB2 successfully
completes Phase-1 (7), writes this fact to the log, and notifies IMS/TM. IMS/TM receives the
notification (8). If IMS/TM determines that all participants (including itself) can commit, it logs that
fact (9).

– Now that the decision has been made, it will be honored after any subsequent failure and recovery of
either system.

• IMS/TM begins Phase-2 of the processing - the actual commit of the UOW:
– It notifies DB2 to begin its Phase-2 (10). DB2 logs the start of Phase-2 (11) and completes it

successfully at (12), which is then a new point of consistency for DB2.
– IMS/TM finishes its Phase-2 processing (14). The data controlled by both subsystems is now

consistent and available to other applications.

• If either participant fails prior to the end of Phase-1, it does not need to be able to
communicate with other subsystems in order to decide how to treat an inflight UOW
– inflight UOWs will always be backed out during restart. Also, if either participant
fails after starting Phase-2 starts, no further communication with the other subsystem is
required either for it to free *its* resources. Only if a system fails in the indoubt
window between Phase-1 end and Phase-2 start will it be required to reestablished
communications in order to determine how to proceed.

KC110 unit 6 page 24

IMS-DB2 2PC Process (4 of 4)
The status of a unit of recovery after a failure depends upon the moment of failure.

• INFLIGHT

If IMS/TM or DB2 fail before finishing Phase-1 (period a or b); during restart, DB2
(and IMS DB) backs out the updates.

• INDOUBT

f IMS/TM or DB2 failed after finishing Phase-1 and before Phase-2 (period c); only
IMS/TM knows if the failure happened before or after the commit (point 9). If it
happened before the commit it must be backed out; if it happened after, DB2 must
make the changes and commit them. If DB2 failed, at restart, DB2 waits for
information from IMS/TM before processing the unit of recovery. If IMS/TM failed,
DB2 will patiently wait for instruction from IMS/TM on how to proceed; IMS/TM will
inform DB2 as part of its (IMS/TM's) restart, what to do with all indoubt UOWs.

• IN-COMMIT

If DB2 failed after it began its own Phase-2 processing (period d); it makes the
committed changes as part of restart.

KC110 unit 6 page 25

IMS RRS Attachment Facility
(RRSAF)

• Connection between IMS Subsystems, DB2 Subsystems and
maybe others (WAS)

– A single dependent region can only be connected to a single DB2 system
at a time

• Communication between IMS users and DB2
– Command Thread
– Transaction Threads

• Application Programming Interface:
– DB2 Precompiler
– Language Interface

• Coordinated Recovery/Restart
– Unit of Work/Unit of Recovery
– Two-Phase Commit Protocol
– Indoubt Thread Resolution

KC110 unit 6 page 26

News
Watch out for recent changes in WAS / WOLA and IMS attach via ESAF !!!
(IMS V13 or V14 news)

Applications that use DB2 (or CICS) must run a DB2-supplied pre-compiler step as part
of the compile (or assemble) and link-edit job; there is no IMS pre-compiler.
ACBNAME = PLANNAME …
Or use RTT definition (Resource Translation Table) to relate ACBNAME to different
PLANNAME

IMS-DB2 system definition
• No specific IMSGEN or DB2 installation requirements, except

defining programs and transactions to IMS:
APPLCTN PSB=PRGMA
TRANSACT CODE=TRANA

• Must define the IMS-DB2 connections
– SSM member in IMS.PROCLIB define DB2 subsystem connections:

• Easy to code – mainly needs DB2 subsystem name and subsystem
recognition character

• Different IMS regions might have unique members
• DB2 Precompiler:

– Checks syntax of SQL calls
– Replaces EXEC SQL with CALL DSNRLI
– Creates DB Request Module (DBRM)
– Includes timestamp in source and DBRM

• Compile Modified Source and Link-Edit with IMS call interface
module (DFSLI000)

Entry point is DSNRLI

KC110 unit 6 page 27

