
Attention : WAS connectivity will support ESAF (local , same LPAR) !
See also the part 2 / WOLA topic

Unit 9 - 1

More IMS
Connectivity

KC110 unit 9_1 page 1

Access to IMS transactions and data can be accomplished using a variety of
mechanisms that are available in today’s environment. The answer to the question of
which solution is best suited to an application, however, depends on the requirements
that have been specifically identified for that application.
There are basically two choices for TCP/IP environments: IMS Connect and WebSphere
MQ (MQ). For WebSphere MQ there are two alternatives: The “IMS Bridge” and the
IMS External Subsystem Interface (ESS).
IMS applications can access WebSphere MQ messages in these two ways:

1. The IMS application uses the MQ API to Get and Put messages with syncpoint
coordination with IMS

 IMS BMP MPP IFP (not JMP or JBP)
Requires connecting MQ to IMS via ESS
Link program with MQ IMS stub (CSQQSTUB)

 WebSphere MQ messages can be inserted to the IMS Message Queue
by an application program (BMP/MPP)

Could be a Trigger message (MQ IMS BMP Trigger Monitor)
Could be the real Message

 IMS Batch
No ESS interface
Syncpoint coordination requires RRS
Link program with WebSphere MQ two-phase commit batch stub

CSQBRRSI or CSQBRSTB+ATRSCSS

IMS Application Access to
WebSphere MQ Messages

1. Connecting WebSphere MQ and IMS via ESS

 Using the MQ API with IMS Applications

2. WebSphere MQ IMS Bridge

 WebSphere MQ IMS Bridge Security

KC110 unit 9_1 page 2

2. The WebSphere MQ IMS Bridge puts the message on the IMS Message
Queue via OTMA

 The WebSphere MQ IMS Bridge is code in the MQ Queue
Manager

 Does not require connecting WebSphere MQ to IMS via ESS
But the ESS connection could also exist for programs using the MQ
API

 Requires OTMA configuration in the MQ CSQZPARM

Connecting WebSphere MQ and IMS via ESS

WebSphere MQ for z/OS attaches to IMS just like DB2 using the
external subsystem (ESS) (ESAF) interface

OTHER
MQ

SYSTEMS

IMS
DBRC

IMS
DLISAS

IMS
BMP

MQ
QUEUE

MANAGER

MQ
CHANNEL
INITIATOR

CICS TSO BATCHIMS
CONTROL
REGION

IMS
MPR

ESS Interface

IMS
BATCH

RRS

DBCTL

ISC/LU 6.1OTMA

KC110 unit 9_1 page 3

KC110 unit 9_1 page 4

Connecting W/MQ and IMS via ESS
Define WebSphere MQ to IMS by adding ESS information to the IMS
PROCLIB (member name IMIDxxxx)

FORMAT: SST=,SSN=,LIT=,ESMT=,RTT=,REO=,CRC=

SST: Subsystem Type - “MQS”

SSN: Subsystem Name - MQ subsystem

LIT: Language Interface Token - See CSQQDEFV

ESMT: External Subsystem Module Table - “CSQQESMT”

RTT: Resource Translation Table - Not Used by MQ

REO: Region Error Option - “R”, “Q”, or “A”

CRC: Subsystem Recognition Character - Not Used by MQ
– The /SSR command is not supported

Connecting W/MQ and IMS via ESS

• Place the MQ authorized library (HLQ.SCSQAUTH) in the IMS
control region and dependent region DFSESL concatenations

• Copy module CSQQDEFV from HLQ.SCSQASMS to be
customized, assembled, and linked into an authorized library
in the IMS control region STEPLIB concatenation

CSQQDEFV CSECT
CSQQDEFX NAME=CSQ1,LIT=LIT1,TYPE=DEFAULT
CSQQDEFX NAME=CSQ3,LIT=LIT2
CSQQDEFX TYPE=END

KC110 unit 9_1 page 5

KC110 unit 9_1 page 6

Using the WebSphere MQ API with IMS
Applications

WebSphere MQ application stubs
• An application program must be linked with a “stub” module in order to

use the MQ API

• There are three possible “stubs” that can be used in IMS applications

– CSQQSTUB

• IMS stub
• WebSphere MQ knows the application is running in an IMS environment
• Provides two-phase commit for IMS and MQ API calls

– CSQBSTUB

• Batch stub
• WebSphere MQ does not know the application is running in an IMS

environment
• There is no two-phase commit with IMS

Using the WebSphere MQ API with IMS
Applications (2)

Calls to MQ, IMS and DB2 can be made within the same
unit of work (UOW)

• MQ API calls

• IMS IOPCB calls

• IMS ALTPCB calls

• IMS database calls

• DB2 calls

KC110 unit 9_1 page 7

At normal syncpoint....
• IMS input message is dequeued
• IMS NON-EXPRESS output messages are sent
• IMS EXPRESS output messages have already been sent
• IMS database updates are committed
• DB2 updates are committed
• MQ input messages marked with SYNCPOINT, or MARK_SKIP BACKOUT are

dequeued
• MQ input messages marked with NO_SYNCPOINT have already been

dequeued
• MQ output messages marked with SYNCPOINT are sent
• MQ output messages marked with NO_SYNCPOINT have already been sent

If the IMS application is message driven (BMP or MPP) the MQ connection handle is
closed for security reasons

 Connection security is by Userid
 Each message can be from a different Userid

At abnormal termination or ROLx....
• IMS input message is dequeued

 IMS has Non-Discardable Message Exit
• IMS NON-EXPRESS messages are discarded
• IMS EXPRESS output messages have already been sent

IMS and MQ Units of Work
• An IMS commit is also an MQ and DB2 commit
• SYNC, CHKP, GU to IOPCB (MODE=SNGL), normal pgm

termination
• An IMS backout (ROLB) is also an MQ and DB2 backout
• Any IMS abend is also an MQ and DB2 backout
• ROLL, miscellaneous abends

– At normal syncpoint....

• IMS input message is dequeued

• IMS NON-EXPRESS output messages are sent

• IMS EXPRESS output messages have already been sent

• IMS database updates are committed

• DB2 updates are committed

• MQ input messages marked with SYNCPOINT, or MARK_SKIP BACKOUT are dequeued

• MQ input messages marked with NO_SYNCPOINT have already been dequeued

• MQ output messages marked with SYNCPOINT are sent

• MQ output messages marked with NO_SYNCPOINT have already been sent

If the IMS application is message driven (BMP or MPP) the MQ connection handle is closed for security
reasons (Connection security is by Userid , Each message can be from a different Userid)

KC110 unit 9_1 page 8

Using the WebSphere MQ API with IMS
Applications (3)

• IMS database updates are backed out
• DB2 updates are backed out
• MQ input messages marked with SYNCPOINT are re-queued
• MQ input messages marked with NO_SYNCPOINT have already

been dequeued
• MQ input messages marked with MARK_SKIP_BACKOUT are not

backed out
 They are passed to a new UOW
 If the new UOW abends for any reason the message will be

re-queued
• MQ output messages marked with SYNCPOINT are discarded
• MQ NO_SYNCPOINT output messages have already been sent

STROBE shows MQ CPU in detail by Module/Section
– Note the expense of MQCONN

#PUP ** PROGRAM USAGE BY PROCEDURE **

.SYSTEM SYSTEM SERVICES .MQSRIES MVS/ESA MQSERIES

MODULE SECTION FUNCTION % CPU TIME MARGIN OF ERROR 6.86%
NAME NAME SOLO TOTAL 00 7.00 14.00

CSQILPLM MQ DATA MGR SERVICE RTN .98 .98 **
CSQLLPLM MQ LOCK MGR SERVICE RTN 1.47 1.47 ***
CSQMLPLM MQ MSG MGR SERVICE RTN 1.47 1.47 ***
CSQPLPLM MQ BUFFR MGR SERVICE RT .49 .49 *
CSQQCONN CSQQCONN MQSERIES IMS ADAPTER 12.25 12.25 ******************
CSQQDISC MQSERIES IMS ADAPTER 1.96 1.96 ***
CSQQNORM MQSERIES IMS ADAPTER .49 .49 *
CSQSLD1 MQ STG MGR GLBL MOD EP .49 .49 *
CSQWVCOL MQ IFC RECORD COLLECTIO 1.47 1.47 ***

----- -----
SECTION .MQSRIES TOTALS: 21.07 21.07

KC110 unit 9_1 page 9

Using the WebSphere MQ API with IMS
Applications (4)

In a message driven environment MQ forces a Close/Disconnect and Connect for each
message – not each schedule.
This can cause problems in a WFI/PWFI environment with Triggered Queues.
If there are no more messages on the IMS queue and the IMS application does a GU to
the IOPCB IMS does not notify MQ for TERM THREAD until the next message arrives or
a QC is returned to the IMS application. During that time the MQ Queue may still be
open.
MQ internally closes all open queues when it receives TERM THREAD. If there are
triggered queues open new messages arriving in MQ will not generate trigger
messages because the queue is open. To avoid this problem the IMS application should
explicitly MQCLOSE any triggered queues before issuing the next GU to the IOPCB.

In a message driven environment MQ forces a Close /
Disconnect and Connect for each message – not each schedule !
• That is because MQCONN authority is by Userid and each message can be from a

different user

• MQCONN and MQDISC are very expensive and do a lot of I/O to STEPLIB

• Preloading all of the CSQQxxxx modules in the MQ authorized library eliminated
the overhead and STEPLIB access

 This is an absolute MUST if your MPP transactions issue MQ API calls

 It is also required for message-driven BMPs

• Another customer reported that preloading CSQACLST, CSQAMLST, and
CSQAVICM to do data conversion was helpful

KC110 unit 9_1 page 10

Using the WebSphere MQ API with IMS
Applications (5)

In a message driven environment MQ forces a Disconnect and Connect for each
message – not each schedule

There is an alternative if your application does not require syncpoint coordination for
MQ calls and IMS
You can link the application with the MQ batch stub – CSQBSTUB
Then a Wait-for-input program can Connect once in the beginning and Disconnect once
at the end (but remember previous foil)
It can Open queues once in the beginning and Close them once at the end
It can issue MQGETs and MQPUTs during IMS transactions
It will have to issue MQCMIT calls for any work done “In Syncpoint” from an MQ
perspective
The first MQCONN in an address space will determine which interface will be used so
CSQQSTUB and CSQBSTUB transactions must run in different IMS Message Regions
This MPR must also have an SSM member excluding MQ
CSQBDEFV can be used to define a default Queue Manager

There have been reports of IMS application programs ABENDing
with 0C1 when issuing MQ API calls

• The main program is an IMS program (ENTRY DLITCBL)

• It dynamically calls a sub-program which ONLY issues MQ API
calls

• There were no IMS calls
• The sub-program was NOT linked with the IMS language interface

DFSLI000

• This resulted the ABEND0C1

• The sub-program must also be linked with DFSLI000 because the
MQ API calls are going through the IMS ESS interface

KC110 unit 9_1 page 11

Using the WebSphere MQ API with IMS
Applications (6)

There are several ways the MQ API can be used to have
IMS programs interact with MQ queues

• WebSphere MQ IMS Trigger Monitor (classic)

• Customer MQ IMS Trigger Monitor

• Customer MQ IMS Queue Monitor

• Customer MQ IMS Queue Processor

KC110 unit 9_1 page 12

Using the WebSphere MQ API with IMS
Applications (7)

WebSphere MQ IMS Trigger Monitor (1)

The W/MQ IMS Trigger Monitor is an IBM supplied non-
message Driven BMP job which reads “trigger” messages from
an MQ Initiation Queue and inserts them to the IMS Message
Queue

• The IMS application retrieves the trigger message with a GU to the
IOPCB

• The trigger message contains the Queue Manager and Queue Name
where the real message resides

• The IMS application then uses the MQAPI to retrieve the real message

• The reply message would be done via MQPUT or ISRT to an ALTPCB

 The reply can not be made to the IOPCB because the message
came from a non-message driven BMP

KC110 unit 9_1 page 13

WebSphere MQ IMS Trigger Monitor (2)

These are the steps for the MQ IMS Trigger Monitor
– The MQ IMS Trigger Monitor BMP (CSQQTRMN) is started

– MQCONN to the MQ Queue Manager

– MQOPEN the Initiation Queue

– MQGET with Wait on the Initiation Queue

– An MQ application MQPUT’s a message to the triggered queue

– MQ generates a trigger message and puts it on the initiation
queue

– MQ IMS Trigger Monitor BMP receives the trigger message

KC110 unit 9_1 page 14

WebSphere MQ IMS Trigger Monitor (3)

… (continued)
– The MQ IMS Trigger Monitor BMP does CHNG/ISRT/PURG of the

trigger message to the IMS Queue

– The MQ IMS Trigger Monitor BMP issues a SYNC call

– IMS logs the trigger message

– IMS enqueues the trigger message to the IMS transaction

– The IMS transaction is scheduled in an MPR

– The IMS transaction kicks off the application doing GU to the
IOPCB and retrieves the trigger message

– The IMS Transaction does MQCONN for the Queue Manager

– The IMS Transaction does MQOPEN for the Input Queue

KC110 unit 9_1 page 15

The MQ IMS Trigger Monitor reads the MQ Trigger Message with NO_SYNCPOINT
The Trigger Message is deleted immediately
If the BMP ABENDs before its SYNC call or IMS ABENDs before the message gets to the
IMS message queue the Trigger Message is gone but the real message is still on the MQ
queue
If the triggering option was FIRST and this was the last message on the queue there will
be no more Trigger Messages and the real message will not be retrieved until the
TriggerInterval is reached
If the triggering option is EVERY there will not be another trigger message until the
next message arrives on the real queue
The real message will not be processed until a new trigger message wakes up the MQ
IMS Trigger Monitor

WebSphere MQ IMS Trigger Monitor (4)

… (continued)
– The IMS Transaction does MQGET for the real MQ message

– The IMS Transaction processes the message including IMS and
ESS calls (f.i. DB2)

– The IMS Transaction does MQPUT1 for the MQ Reply message

– The IMS Transaction does MQCLOSE for the MQ Input Queue

– The IMS Transaction does MQDISC to the Queue Manager

– The IMS Transaction does GU to the IOPCB to create an IMS
syncpoint

KC110 unit 9_1 page 16

• Advantages
 It is provided by IBM

 Only the small trigger message is logged in IMS

 One customer reported that 90% of their 2.8 millions
transactions per day come in through their 4 MQ IMS
Trigger Monitors

• Disadvantages
 A Trigger Monitor BMP can only wait on one Initiation

Queue

 There are many steps for each message

 WebSphere MQ Triggering

 There are many, many considerations

KC110 unit 9_1 page 17

WebSphere MQ IMS Trigger Monitor (5)

Customer IMS Trigger Monitor

It is possible to write a Customer IMS Trigger Monitor

– This monitor could be written in assembler and wait on multiple
Initiation Queues at the same time

– The one advantage is that it can wait on multiple queues

– It has all the disadvantages of the IBM MQ IMS Trigger Monitor

– It also has the disadvantage of being very difficult to write

KC110 unit 9_1 page 18

Customer IMS Queue Monitor (1)

It is possible to write a Customer IMS Queue Monitor which
reads “real” messages from an MQ Queue and inserts them to
the IMS Message Queue

– The IMS application retrieves the real message with a GU to the
IOPCB

– The reply message would be done via MQPUT or ISRT to an ALTPCB
• The reply can not be made to the IOPCB because the message came from a

non-message driven BMP

KC110 unit 9_1 page 19

Customer IMS Queue Monitor (2)

These are the steps for the Customer IMS Queue Monitor
– The Customer IMS Queue Monitor BMP is started

– MQCONN to the MQ Queue Manager

– MQOPEN the Real Queue

– MQGET with Wait on the Real Queue

– An MQ application MQPUT’s a message to the Real Queue

– Customer IMS Queue Monitor BMP receives the Real message

KC110 unit 9_1 page 20

Customer IMS Queue Monitor (3)

These are the steps for the Customer IMS Queue Monitor
(continued)

– The Customer IMS Queue Monitor BMP does CHNG/ISRT/PURG of
the Real message to the IMS Queue

– The Customer IMS Queue Monitor BMP issues a SYNC call

– IMS logs the Real message

– IMS enqueues the Real message to the IMS transaction

– The IMS transaction is scheduled in an MPR

– The IMS transaction does GU to the IOPCB and retrieves the Real
message

KC110 unit 9_1 page 21

Customer IMS Queue Monitor (4)

These are the steps for the Customer IMS Queue Monitor
(continued)

– The IMS Transaction processes the message including IMS and ESAF
calls

– The IMS Transaction does MQCONN for the reply message Queue
Manager

– The IMS Transaction does MQPUT1 for the MQ Reply message

– The IMS Transaction does MQDISC

– The IMS Transaction does GU to the IOPCB to create an IMS
syncpoint

KC110 unit 9_1 page 22

Customer IMS Queue Monitor (5)

The Customer IMS Queue Monitor can read the MQ Real
Message In SYNCPOINT

– The Real Message is not deleted until the IMS SYNC call

– If the BMP ABENDs before its SYNC call or IMS ABENDs before the
message gets to the IMS message queue the MQ message is re-
queued
• The number of times this happens will be shown in MQMD_BackOutCount

KC110 unit 9_1 page 23

Customer IMS Queue Monitor (6)

The Customer IMS Queue Monitor may have to pass the Reply-
to Queue and Reply-to Queue Manager information to the IMS
transaction

– This can be done by inserting an extra IMS message segment
• Could pass just the Reply-to information
• Could pass the entire MQMD

KC110 unit 9_1 page 24

Advantages
Less overhead in the IMS MPR

No MQ Triggering complications and overhead

Disadvantages
The Customer IMS Queue Monitor can only wait on one Real

Queue
• But there can be multiple BMP’s reading the same queue

The Real MQ message is logged in IMS
• This could be VERY large

The Real MQ message goes on the IMS message queue
• This could be VERY large

KC110 unit 9_1 page 25

Customer IMS Queue Monitor (7)

Customer IMS Queue Processor (1)

It is possible to write a Customer IMS Queue Processor
which reads “real” messages from an MQ Queue and does
all of the processing within the BMP itself

– There is no message switching to an IMS transaction

– The reply message would be done via MQPUT or ISRT to an
ALTPCB

– This is the most efficient way for IMS applications to process MQ
messages using the MQ API

KC110 unit 9_1 page 26

These are the steps for the Customer IMS Queue Processor
– The Customer IMS Queue Processor BMP is started

– MQCONN to the MQ Queue Manager

– MQOPEN the Real Queue

– MQGET with Wait on the Real Queue

– An MQ application MQPUT’s a message to the Real Queue

– Customer IMS Queue Processor BMP receives the Real message

KC110 unit 9_1 page 27

Customer IMS Queue Processor (2)

These are the steps for the Customer IMS Queue Processor
(continued)

– The Customer IMS Queue Processor processes the message
including IMS and ESAF calls

– The Customer IMS Queue Processor does MQPUT1 for the MQ
Reply message

– The Customer IMS Queue Processor does an IMS SYNC call

– The Customer IMS Queue Processor loops to do another MQGET
with Wait

KC110 unit 9_1 page 28

Customer IMS Queue Processor (3)

The Customer IMS Queue Processor does not have to pass the Reply-to Queue and
Reply-to Queue Manager information to the IMS transaction

• The input MQMD is available

The Customer IMS Queue Processor can read the MQ Real
Message In SYNCPOINT

– The Real Message is not deleted until the IMS SYNC call

– If the BMP ABENDs before its SYNC call or IMS ABENDs before the
message gets to the IMS message queue the MQ message is re-
queued
• The number of times this happens will be shown in MQMD_BackOutCount

KC110 unit 9_1 page 29

Customer IMS Queue Processor (4)

Advantages
No IMS MPR overhead

No IMS logging of the MQ messages

No IMS message on the IMS Queue

No MQ Triggering complications and overhead

Disadvantages

The Customer IMS Queue Processor can only wait on one Real
Queue
• But there can be multiple BMP’s reading the same queue

KC110 unit 9_1 page 30

Customer IMS Queue Processor (5)

WebSphere MQ IMS Bridge (OTMA only)
(the easiest way)

This is code in the MQ Queue Manager
– The IMS Bridge is an OTMA client

• For specially defined queues it will MQGET the messages from the queue
and send them to IMS using the IMS OTMA interface

– The IMS bridge also gets output messages from IMS via the
OTMA interface
• IOPCB output

– The output message is MQPUT to the Reply-to Queue and Reply-to Queue Manager
in the original MQ input message MQMD passed and returned in the OTMA Prefix
User Data

• ALTPCB output
– The output message is MQPUT to the Reply-to Queue and Reply-to Queue Manager in

the MQMD created by the OTMA DRU exit and returned in the OTMA Prefix User Data

KC110 unit 9_1 page 31

SERVER
z/OS,WIN,

AIX, SUN, …

SNA

z/OS

TCP/IP

ICON

OTMA

IMS

VTAM

IMS BRIDGE

MQ QM

LU1
LU2

LU 6.1
LU 6.2

XCF

Any
TCP/IP

App

RYO
Client

TN3270

Websphe
re

ITRA

PC

ICON

IMS BRIDGE

MQ QM

z/OS

XCF

XCF

ITRA

Websphe
re

PC

MQ QM

TCP/IP

Websphe
re

ITRA

End User

TCP/IP
Applicati

on

SCI

OM

IMS Control
Center

WebSphere MQ IMS Bridge (OTMA only) - 2

KC110 unit 9_1 page 32

WebSphere MQ IMS Bridge
– One MQ queue manager can connect to multiple IMS control

regions

– One IMS control region can connect to multiple MQ queue
managers

– MQ and all of the IMS Control Regions it connects to must be in
the same XCF group

– MQ and IMS can be on different LPARs in the same Sysplex (XCF)
• WebSphere MQ IMS Bridge start and stop events are sent to the

SYSTEM.ADMIN.CHANNEL.EVENT.QUEUE

KC110 unit 9_1 page 33

WebSphere MQ IMS Bridge (OTMA only) - 3

– When the message arrives in MQ it will be sent via XCF to the IMS
OTMA interface

– Message may be:
• an IMS transaction
• an IMS command (only a subset of commands are allowed)
• NOT a message to an IMS LTERM

– IMS will put it on the IMS message queue

– The application will do a GU to the IOPCB to retrieve the message
• This is very similar to the implicit LU6.2 process
• There are no changes to existing IMS programs

– ALTPCB output may have to be routed by OTMA exits or OTMA Descriptors

– A remote queue manager can send a message to a local queue
destined for IMS via OTMA

KC110 unit 9_1 page 34

WebSphere MQ IMS Bridge (OTMA only) - 4

1. Message arrives
on local queue

4. MQGET from local queue
- or -

transmission to remote queue

3b. IMS output returned to
reply-to-queue-manager
and reply-to-queue via

OTMA

IMS
Transactions

2. Message sent via OTMA to IMS
message queue and IMS

transaction started

MQSeries
Application

(local or remote)

IBM Mainframe Queue

Manager

Inbound local
queue

(stgclass=IMS)

Local or
Transmit

queue

IMS LTERM

3c. IMS output routed to
other LTERM via OTMA

exit

XCF

3a. Message retrieved by
transaction via GU IOPCB

IMS Bridge

KC110 unit 9_1 page 35

WebSphere MQ IMS Bridge (OTMA only) - 5

It is possible to build a “synchronous” MQ application
accessing an IMS transaction

– Issue MQPUT to the IMS Bridge Queue
– Issue MQCMIT to commit the message

 Or MQPUT not in syncpoint
– Issue MQGET with wait on the reply-to queue
– The IMS Bridge sends the message to IMS via OTMA
– The transaction is processed and responds
– IMS sends the reply to the IMS Bridge via OTMA
– The IMS Bridge puts the response on the reply-to

queue
– The MQGET is now completed
– Issue MQCMIT to commit the reply message

KC110 unit 9_1 page 36

WebSphere MQ IMS Bridge (OTMA only) - 6

Define MQ to OTMA in CSQZPARM
– OTMACON keyword on CSQ6SYSP macro

• OTMACON(Group,Member,Druexit,Age,TPIPEPrefix)
– Group = XCF group
– Member = MQ XCF member (OTMA TMEMBER)
– Druexit = IMS exit to format OTMA User Data (overrides DFSYDTx)

> Consider a name of DRU0xxxx (xxxx = MQ Queue Manager name)
– Age = how long a Userid (ACEE) from MQ is valid in the OTMA cache before it

expires
– TPIPEPrefix = three character prefix for TPIPE name

> To avoid collision with IMS transaction code names
> Two characters for MQ shared queues

– Member CSQ4ZPRM in data set hlq.SCSQPROC has default
CSQZPARM members you can use to build your members

– My strong requirement is that all of these should be able to be
specified (and used!!!) on the STGCLASS definition

KC110 unit 9_1 page 37

WebSphere MQ IMS Bridge (OTMA only) - 7

Define MQ to OTMA in CSQZPARM
– Druexit

• If null is specified then MQ will pass the name “DFSYDRU0”
– OTMACON(GROUP1,MQTMBR,,5000,PFX) (*)

• If MQ does not need this exit there is a way to avoid the error
message
– Code the Druexit as one blank in single quotes

> OTMACON(GROUP1,MQTMBR,’ ‘,5000,PFX)

(*)
After IMS APAR PK25454 (UK17882) IMS will issue message DFS1269E SEVERE IMS
INTERNAL FAILURE, REASON CODE=3432 if it can not load a DRU exit specified during a
client bid. Before this if the load failed no message was issued. This was changed to a
more user friendly message via PK53291/PK61265.

KC110 unit 9_1 page 38

WebSphere MQ IMS Bridge (OTMA only) - 8

Define one or more storage classes with the XCFGNAME and
XCFMNAME parameters of the IMS systems to which you
will connect

– DEFINE STGCLASS(IMSA) -

– PSID(02) –

– XCFGNAME(XCFGROUP) -

– XCFNAME(XCFIMSA) –

– PASSTKTA(applname) (6.0)

– The XCFGNAME will not be used
• The one in the ZPARM will be used

– When a STGCLASS is defined for a new IMS MQ will attempt to
establish the connection

KC110 unit 9_1 page 39

WebSphere MQ IMS Bridge (OTMA only) - 9

Changing the Storage Class of an IMS Bridge Queue must be
done carefully

– If there are CM0 messages on the IMS Bridge Queue in MQ
• Do not ALTER the Queue to a different Storage Class pointing to a

different IMS copy
– It will cause sequence number errors (in both IMS copies)

• Have two different IMS Bridge Queues each with a different Storage Class
for the different IMS Copies
– You can define an Alias Queue which you can point to one IMS Bridge Queue or the

other so that the MQ application only has to MQPUT to one queue name

– If there are no CM0 messages on the IMS Bridge Queue you can
ALTER it to point to a different IMS Storage Class

KC110 unit 9_1 page 40

WebSphere MQ IMS Bridge (OTMA only) - 10

Define queues
– Define local queue(s) referencing the storage classes

• DEFINE QLOCAL(MQID_TO_IMSA) –

– STGCLASS(IMSA)

– Define reply-to queue(s)
• DEFINE QLOCAL(MQID_FROM_IMSA)
• These could also be remote queues

KC110 unit 9_1 page 41

WebSphere MQ IMS Bridge (OTMA only) - 11

Operating the WebSphere MQ IMS Bridge
– After startup MQ will join the XCF group defined in the

OTMACON parameter

– The IMS Bridge will initiate a client bid resync to each active IMS
defined in the STGCLASS macros

– When the bid is successful the IMS Bridge will open the Bridge
Queues and messages will flow

– If a new STGCLASS for IMS is added MQ will attempt to connect
to the IMS

KC110 unit 9_1 page 42

WebSphere MQ IMS Bridge (OTMA only) - 12

Operating the WebSphere MQ IMS Bridge
– If you GET DISABLE an IMS Bridge Queue it will stop messages

from MQ to IMS for just that queue

– New commands were added with MQSeries V6.0
• SUSPEND QMGR BRIDGE(IMS)

– Stops MQGETs by the IMS Bridge from all IMS Bridge Queues
– Allows MQPUTs to the reply-to queue by the IMS Bridge of replies from IMS

• RESUME QMGR BRIDGE(IMS)
– Starts MQGETs by the IMS Bridge from IMS Bridge Queues

KC110 unit 9_1 page 43

WebSphere MQ IMS Bridge (OTMA only) - 13

Operating the WebSphere MQ IMS Bridge …cont.
– There are IMS commands that affect the WebSphere MQ IMS

Bridge
• /STOP OTMA

– Closes the connection to all OTMA clients

• /START OTMA
– Opens the connection to all OTMA clients
– Any clients already in the XCF group (e.g. MQ) are notified

• /STOP TMEMBER xxxx TPIPE yyyy
– OTMA sends a message to the OTMA client to stop input for the TPIPE
– OTMA suspends sending output to the TPIPE

• /START TMEMBER xxxx TPIPE yyyy
– OTMA sends a message to the OTMA client to start input for the TPIPE
– OTMA resumes sending output to the TPIPE

• There are no /STOP TMEMBER or /START TMEMBER commands

KC110 unit 9_1 page 44

WebSphere MQ IMS Bridge (OTMA only) - 14

MQ creates two TPIPEs per local queue defined as using the
IMS Bridge

– One is for “asynchronous” messages
• Commit mode 0 - commit-then-send
• Output is “asynchronous” to transaction completion
• This is a SYNChronized TPIPE

– Messages sent with valid sequence numbers are recoverable after
subsystem failures

• The TPIPE name for non-shared MQ queues is xxx0nnnn
– xxx = User defined prefix

• The TPIPE name if using MQ shared queues is xx0nnnnn
– xx = User defined prefix

KC110 unit 9_1 page 45

WebSphere MQ IMS Bridge (OTMA only) - 15

MQ creates two TPIPEs per local queue defined as using the
IMS Bridge

– One is for “synchronous” messages
• Commit mode 1 - send-then-commit
• Output is “synchronous” with transaction completion
• This is a non-SYNChronized TPIPE
• The TPIPE name for non-shared queues is xxx8nnnn

– xxx = User defined prefix

• The TPIPE name for shared queues is xx8nnnnn
– xx = User defined prefix

• Required for EMH, Conversational, and IMS commands

– The TPIPEs are created when the first message for the type (sync,
async) arrives on the IMS Bridge queue

KC110 unit 9_1 page 46

WebSphere MQ IMS Bridge (OTMA only) - 16

DISPLAY QL(name) TPIPE
– MQ has a TPIPE keyword to the DISPLAY QL command

• Display the TPIPE names for local queues
• ALL local queues have TPIPE names assigned – not just IMS Bridge Queues

– their Storage Class may be altered later to IMS

!MQ37DIS QL(SYSTEM.DEFAULT.LO*) TPIPE
CSQM293I !MQ37 CSQMDRTC 1 QLOCAL FOUND MATCHING REQUEST
CSQM201I !MQ37 CSQMDRTC DIS QLOCAL DETAILS
QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE)
TYPE(QLOCAL)
QSGDISP(QMGR)
TPIPE(
CSQ00000
CSQ80000
)
END QLOCAL DETAILS
CSQ9022I !MQ37 CSQMDRTC ' DIS QLOCAL' NORMAL COMPLETION

KC110 unit 9_1 page 47

WebSphere MQ IMS Bridge (OTMA only) - 17

There is a limit to the capacity of an IMS TPIPE
– There are several factors involved

• SYNChronized versus non-SYNChronized (CM0 versus CM1)
• MQ Persistent versus non-Persistent
• IMS RECOVER versus NONRECOVER
• Message size

– More capacity will require more TPIPEs which will require more
MQ queues
• There are only 2 TPIPES per queue
• The application has to round-robin the messages to the queues

KC110 unit 9_1 page 48

WebSphere MQ IMS Bridge (OTMA only) - 18

The data stream passed to MQ by the application MQPUT
is in LLZZTrancodeDataLLZZData... Format
(typical IMS input msg layout)

– This allows for multi-segment input messages via OTMA to IMS

– The IMS Bridge will create IMS segments for each LLZZdata

– The MQMD.Format of MQFMT_IMS_VAR_STRING
(“MQIMSVS”) or MQFMT_IMS (“MQIMS”) tells MQ that the
data contains LLZZ’s

WebSphere MQ IMS Bridge - Input MSGs

KC110 unit 9_1 page 49

The sending application can optionally provide an IMS
sub-header (MQIIH)

– Specify the presence of the MQIIH sub-header by using the
MQMD.Format=MQFMT_IMS (“MQIMS”)
• WARNING: MQIIH must be fullword aligned

– An output MQIIH will be returned with the output message

– This header specifies IMS and MQ parameters
• See the next two foils

– The format of this input message is:
• MQIIHLLZZTrancodeDataLLZZData...

KC110 unit 9_1 page 50

WebSphere MQ IMS Bridge - Input MSGs (2)

MQIIH parameters are:

• Several reserved fields...
• IMS LTERM name to put in the IOPCB
• MFS Format name to put in the IOPCB

 No MFS formatting is actually done

 Reply-To Format (MQ format name)
 Authenticator (RACF password or PassTicket)
 Transaction Instance ID (if IMS conversational)
 Transaction State (conversational or not, architected command)
 Commit Mode (CM0 or CM1)
 Security Scope (Check or Full) -> Only honored if /SEC OTMA PROFILE used

 Flags
• Pass Expiration

• Reply Format None

KC110 unit 9_1 page 51

WebSphere MQ IMS Bridge - Input MSGs (3)

If no MQIIH is presented to the IMS Bridge
(MQMD.Format=MQFMT_IMS_VAR_STRING) then
default values are assumed:

– LTERM=TPIPEName

– MODNAME=MQMD.Format

• Default is “MQIMSVS”
– MQMD.Format is used as the MFSMapName

– Non-conversational

– Commit-then-send (commit mode 0)

– Security mode is MQISS_CHECK

– All flags are off

KC110 unit 9_1 page 52

WebSphere MQ IMS Bridge - Input MSGs (4)

MQ allows the addition of one or more standard MQ User
Headers to be passed with messages going to an IMS Bridge
Queue

– The user header(s) will be passed to IMS in the OTMA User Data

– IMS will log this data and pass it back in the OTMA User Data for
the reply from the IOPCB
• ALTPCB output will probably NOT have this data

– Only if the ALTPCB output was from a transaction initiated from MQ or was built
by the DRU exit

– The user header(s) will be passed back to the MQ application in
the message on the Reply-to queue

– The format of this input message is:
• HDR1…HDRnMQIIHLLZZTrancodeDataLLZZData...

KC110 unit 9_1 page 53

WebSphere MQ IMS Bridge - Input MSGs (5)

Message Delivery Options
• Confirm On Arrival (COA) is provided when the message reaches the

IMS queue
 IMS ACKs the input message to MQ

• Confirm On Delivery (COD) is not available
 MQ does not know when the IMS application retrieves the message from the

IMS Message Queue
 The message is rejected if this option is specified
 There are user requirements to change this

• Expiry
 A message can expire in MQ on the IMS Bridge Queue before being sent to IMS
 The MQ application that MQPUT the message is notified if one of the

following MQMD_REPORT options is set
 MQRO_EXCEPTION (Just the Expiration report)
 MQRO_EXCEPTION_WITH_DATA (First 100 bytes of the message)
 MQRO_EXCEPTION_WITH_FULL_DATA (All of the message)

KC110 unit 9_1 page 54

WebSphere MQ IMS Bridge - Input MSGs (6)

KC110 unit 9_1 page 55

Message Delivery Options … cont.
• Expiry

 MQ 7.0.1 and up supports IMS Transaction Expiration
 MQ passes the remaining Expiry time to IMS as an

IMS Transaction Expiration time
 This is rounded up to whole seconds
 This requires OR’ing the MQ Service Parameter with x’00000000000001’ to

activate this feature
 ZPARM CSQ6SYSP SERVICE=0000000001 + any other bits being used
 COMMAND SYSTEM SERVICE(0000000001) + any other bits being used

 If the transaction expires in OTMA before being placed on the IMS message
queue it is NAK’ed by IMS (NACK_FOR TRANS_EXPIRED, x’0034’)
 MQ treats this as if the message had expired before being sent to IMS
 MQMD_REPORT options are honored

 If the transaction expires at the GU to the IOPCB
 IMS returns message DFS3688I to MQSeries
 The DFS3688I message is returned to the Reply_To Queue
 The MQMD_REPORT options are NOT honored

WebSphere MQ IMS Bridge - Input MSGs (7)

KC110 unit 9_1 page 56

Message Delivery Options … cont.
• Expiry … cont.
 If the transaction expires at the GU to the IOPCB

&
 Since WMQ enhanced the support for IMS Transaction Expiration:

 IMS/OTMA returns the original input message to MQ instead of the DFS3688I
message

 The MQMD_REPORT options are honored
 The Reply message can also Expire
 MQIIH_FLAGS has value MQIIH_PASS_EXPIRATION
 MQ will pass the REMAINING expiry time in the OTMA header
 The reply on the reply-to queue will start the Expiry process with that

remaining time
(Any time in IMS is NOT counted)

WebSphere MQ IMS Bridge - Input MSGs (8)

OTMA Flood Conditions
– MQ supports (rather than tolerates) OTMA flood conditions

• If a flood warning condition is detected the IMS Bridge will slow down
sending messages to OTMA

• The messages remain in MQ rather than flooding IMS and causing a
virtual storage shortage

• If this is an MQ Shared Queues environment another Queue Manager
may be able to send the message to a different IMS

KC110 unit 9_1 page 57

WebSphere MQ IMS Bridge - Input MSGs (9)

Messages sizes
– The maximum OTMA input segment size is 32,767

• LLZZ + 32,763 bytes of data
• IMS will create multiple records in the Large Message Queue

if necessary
– The maximum OTMA total message length which can be put to

the IMS Bridge Queue is the MQ maximum message length for
that queue

• This is usually 4MB
• MQ long message support increases this to 100MB

KC110 unit 9_1 page 58

WebSphere MQ IMS Bridge - Input MSGs (10)

There are special requirements for
Commit Mode 0 input messages to IMS

– If the IMS transaction is defined as RECOVER then the MQ message
can be persistent or non-persistent

– If the IMS transaction is NORECOV then the MQ message must be
non-persistent
• If it is persistent IMS will reject the message with sense code 00230000

KC110 unit 9_1 page 59

WebSphere MQ IMS Bridge - Input MSGs (11)

There are special requirements for
Commit Mode 0 input messages to IMS … cont.

– How does IMS know whether a message is persistent or non-
persistent?
• All CM0 messages arrive on SYNChronized TPIPES
• There are no flags in the OTMA headers for this

– The answer is that IMS and MQ use a little known but
documented OTMA interface
• If the message is persistent it is sent on the SYNChronized TPIPE with a

valid sequence number
• If the message is non-persistent it is sent on the SYNChronized TPIPE with

the sequence number set to zero

KC110 unit 9_1 page 60

WebSphere MQ IMS Bridge - Input MSGs (12)

If the input message cannot be put to the IMS queue
because:

– Invalid message - input message goes on DLQ and warning sent to
system console

– IMS rejected message (sense 001A e.g.Transaction Stopped) - DFS
message from IMS is put into MQ reply message and put on reply-
to queue
• If reply message cannot be PUT, it is placed on the DLQ
• Input message goes to DLQ

– IMS rejected message (message error) - input message goes on
DLQ and warning sent to system console

– IMS rejected message (other) - messages go back to their original
queue, the IMS Bridge is stopped, and warning sent to system
console

KC110 unit 9_1 page 61

WebSphere MQ IMS Bridge - Input MSGs (13)

If any return messages cannot be PUT to the DLQ, messages
go back to their original queue

– If it was a queue problem the queue is stopped

– If it was an IMS Bridge problem the IMS Bridge is stopped

KC110 unit 9_1 page 62

WebSphere MQ IMS Bridge - Input MSGs (14)

