Unit 5
IMS Locking,
IMS Logger,

Syncpoint Processing
& IMS System Services

@ KIESSLICH CONSULTING
| KC110 unit5 page 1

After completing this unit, you should be able to:

List two different lock managers that are available for use by IMS
Recognize the different data sets used by the IMS Logger and some of the
key characteristics of these data sets

Describe how to specify Logger-related options and what Log Archive
options are available

Understand how the contents of log records can be used for system,
database, and application recovery

Describe the processing that occurs as part of application syncpoint
processing and facilities available within IMS that assist with application
restart processing

Program Isolation (1 of 2) “°c« Meme

* Program Isolation (Pl) facility is IMS's original Lock Manager

— key function of any lock manager: preventing other units
of work from accessing updated data prior to the changes
being committed

— Pl allows multiple units of work (UOW) the ability to
concurrently access the same database (but not the
same segment occurrence!) for update while preserving
integrity

* Dynamic Backout facility:

— Works with the IMS Lock Managers to automatically remove the
effects of any program that abnormally ends (ABEND) before
committing its updates

* Eliminates partial updates - uncommitted updates are backed-
out prior to lock release

— One of the more common reasons for Dynamic Backout being

invoked is to manage ABENDs triggered due to lock failures

(@ KIESSLICH CONSULTING

KC110 unit5 page 2

Notes:

Program Isolation is the a very commonly used IMS lock manager. The purpose of
any lock manager is to prevent data from being accessed by a UOW while
another is in the process of making updates. From a high-level view, Pl works
very similarly to IMS’s other lock manager, IRLM. We will discuss IRLM later.

- Pl is implemented through control blocks in the IMS DLISAS
+ Each instance of these blocks represents either a resource or requestor of a
resource

Program Isolation (2 of 2) “u,,

* Deadlocks are a variety of lock failure that is possible with

any lock manager
— Pl handles deadlocks through Identification and avoidance:

PROG-A PROG-B
'GHU' DBR 'GHU' DBR
SEGM-A SEGM-B
REPL-A REPL-B
'GHU' DBR 'GHU' DBR
SEGM-B SEGM-A

* Pl analyzes for the possibility of a deadlock as part of granting lock
requests
— If Pl determines that granting a lock would produce a deadlock, it selects

loser UOW for pseudo-ABEND and dynamic back-out

* Loser UOW is re-scheduled for later (with IMS TM) if possible

* The ability to automatically reschedule the UOW is one of the factors Pl uses
to select the loser — that is, the UOW easier to reschedule if it is more likely
to be ABENDed if involved in a deadlock

* A lengthy wait for a lock is not necessarily a deadlock
— PI will wait indefinitely for locks as long as they are not deadlocks]

I NLL1lV Uit o padge o

Notes:

One of the possible results of locking is that a deadlock situation could develop.
Pl identifies impending deadlocks, and works with IMS to identify which UOW
should be backed out to avoid the deadlock. For IMS TM transactions, the input
message associated with the failed (loser) UOW is requeued and reprocessed
later.

One significant difference between Pl and IRLM is that there is no time-out
value associated with Pl; when using PI, a wait for a lock could last seconds,
minutes, or even hours.

Program Isolation ENQ/DEQ Pool

Specified in IMS startup procedure Mgfnt
PIMAX = (max. bytes)
PIINCR = (increment)

Obtained at
incr IMS

] initialization
incr time

GETMAIN
needed

incr never freed

incr

incr

- =16Mb = ==

(@ KIESSLICH CONSULTING

KC110 unit5 page 4

ENQ/DEQ pool resides in DLISAS EPA storage along with database buffers and
other DL/I storage pools. Storage acquired dynamically in specific increments to
specific maximum:

Available for reuse at SYNCPOINT/CHECKPOINT.

If no more space available the PSB abends with U775.
Isolate problem applications using LOCKMAX= (PSB or DLI/DBB/BMP/MPP
procedure) which forces a PSB pseudo abend U3301.

Estimated Size = (peak number of calls per unit of work/recovery) * (average
number of enqgs/deqs per call [use 3]) * (locksize [48 bytes]) * (max # of active
PSTs)

In estimating size of the PI ENQ/DEQ pool, you should focus on BMPs as they
are likely to hold many more locks than transactions. Even if IRLM is used,
specify a max space of at least 40K for HD space management purposes. IRLM
lock storage in IRLM EPA.

IRLM 'O g

* |IRLM was introduced to enable IMS Data Sharing
— This lock manager was later adopted by DB2

» Data Sharing use is not a requirement for the use of IRLM
instead of PI:

— Lock granularity is different between Pl and IRLM
* Pl locks at the Segment and Database record level and IRLM locks
at the Block Level for updates
— In most cases, Pl uses less CPU than IRLM

« We will discuss IRLM further in the Data Sharing topic

* There is a very good doc about IMS Locking

(@ KIESSLICH CONSULTING

KC110 unit5 page 5

IMS Ressource Lock Manager — first called that way

Notes:

IRLM must be used if you need to perform IMS Data Sharing. Data Sharing is
the function that permits multiple IMS systems to share IMS databases with
integrity — even when the IMS systems are running on different processors.

Common Logging Facility overview Mg,

I z/0S |
IMS DBRC DLISAS
Control DB Recovery DL/l Subordinate

Control

Region

Address Space

4>
WADS
WRITE
AHEAD
DATA
SETS
LOG ARCHIVE UTILITY
¥ ¥ 13 ¥
SYSTEM RECOVERY
LOG LOG
DATA SLDS1 DATA
SETS SETS

SLDS2

(@@ KIESSLICH CONSULTING

KC110 unit5 page 6

,Write ahead” — explained next foils ; DBRC — will be taught in separate class
SLDS / RLDS (optional) - a topic for DB recovery, CA a.s.o.

Notes: An active IMS System writes to two types of log data sets from *common* Log
Buffers in Control Region storage (or in ECSA Storage allocated by the control Region):

1. WADS (Write Ahead DataSets) that are used to externalize log records that IMS
considers critical. The contents of these datasets is constantly being overwritten as their
content is rewritten to the OLDS. Because WADS data is copied to OLDS datasets,
there is no additional need to archive the contents of the WADS.

2. OLDS (Online Log DataSets) are IMS's primary active log and are used in pairs. As
these logs are filled, they are used in a round-robin order.

An IMS system will periodically submit an Archive Job. As noted above, OLDS pairs
eventually fill up. In order to maintain system and database recoverability, their contents
must be preserved before they can be reused. The IMS Archive Utility is a batch job
generated by DBRC that can create the following data set types from the filled OLDS; they
are:

1. System Log DataSet (SLDS): Might contain data from one or more OLDS; used primarily for
database recovery or Emergency Restart. At least one SLDS must always be created by the
Archive Utility/Job. A second SLDS dataset can be optionally created by an execution of the
Archive utility, depending on how the JCL for the Archive utility is tailored.

2. Recovery Log DataSet (RLDS): Contains only log records needed for database recovery.

The creation of the RLDSs is optional, depending on how the JCL for the
Archive utility is tailored, one or two RLDS datasets can be created at the same
time that the one or two SLDS datasets are created.

Common Logging Facility (1 of 3)
LOGMgmt

* Recording of IMS/DB and IMS/TM system activity:
— Before and After images of changed DL/l segments
— System status via periodic checkpoints
— Input and Output messages are also logged

* Provides integrity and recoverability of DB/TM systems:
— Used for Dynamic Backout of failing transactions
— Used for system Warm and Emergency restarts
— Used for database recovery
— Used for performance and accounting statistics

(@ KIESSLICH CONSULTING
KC110 unit5 page 7

Common Logging Facility (2 of 3)
LOGMgmt

e IMS internally has two log processes:

— Logical Logger moves data to log buffer
* WRITE - requests
— For example, database before and after records

— Physical Logger writes/reads data between log buffer and disk
* A CHECK WRITE is a synchronous process to verify certain records are on Disk
— If not, a request to initiate 1/0 is issued and requesting ITASK will wait for
completion
— Check Write requests can result in partial buffers being written to the WADS
— Check Write example: Purge changed DB buffers for buffer steal
* A WAIT WRITE is also a synchronous request to externalize log records
— Similar to Check Write except Wait Write does not initiate I/O request
— Requesting ITASK will be notified when its log records have been written by :
> Piggybacking on Check Writes (or the log buffer filling) of other ITASKS
> A timer pop that periodically writes log records during periods of low activity
* Wait Write example: Commit related records at application syncpoint
* READ requests read data from disk to buffer
— Used mainly for dynamic backout processing

(@ KIESSLICH CONSULTING
KC110 unit5 page 8

Notes:

These are the types of operations that can be requested of the “IMS
Logger®

These requests are not explicitly requested by applications that use IMS;
these requests are invoked by various components of IMS as required.

Logical Logger code will get called from EVERYWHERE !

Implicit checkpointing: next GU, end (GoBack)

- EXPRESS PCB : writing to queue / updating immediately
- It's similar to DB2 option IMMEDWRI
- setting via DSNZPARM (the ,,parm block” of DB2 — similar to DFSPBxxx)

Common Logging Facility (3 of 3)
LOGMgmt

e Log Write-Ahead (LWA) - WADS:

— To guarantee database integrity, log records are physically written
before database Cl's/Blocks are physically written
— Only selected events qualify for this technique

e The DCLWA= parm (on TRANSACT macro) also controls when log
records associated with messages must be written for the transaction

— Implemented through the use of Check Writes and Wait Writes

(@ KIESSLICH CONSULTING
KC110 unit5 page 9

Principle of IMS DASD IogginéOGMgmt

WADS I '

___IMS - Control Region

!

!

!

|

available available available available
The status for each .) . .
OLDS is recorded in the In use In use In use In use
RECON arc needed arc needed arc needed arc needed
also possible status: arc scheduled arc scheduled arc scheduled arc scheduled
STOPPED arc started arc started arc started arc started
BACKOUT available available available available

... can be determined
by IMS / DBRC CMDs .
See here

‘ RECON l:

|OLDS3pﬁ I 0LDS4pﬁ

| M S - Archive Utility

|must

loptional 1optional

(@ KIESSLICH CONSULTING

el
d

KC110 unit5 page 10

Dual logging :
DD via DFSMDA : OLP0OO / OLS00 — prealloc. to different DASD (control units) — well, old
fashioned © !

Status tracked in RECON !!!

- RECON access for any change , for SLDS /RLDS LOGALL / SUBSYS, ... !!!
- And in parallel to DB activity ! (PRA?)

- Status: backout / WRITE ERROR ... see link:

https://www.ibm.com/docs/en/ims/15.5.0?topic=commands-display-olds-command

Or

https://www.ibm.com/docs/en/ims/15.1.0?topic=requests-olds-query-request-typeolds

Option SLDSREAD ON/OFF
Explanation see , Response ET“

| , LO
and Q] Mo

e OLDS and WADS are written from common IMS buffers
— Contains log records needed for:
* IMS System Restart
* Database Recovery
e Application Dynamic Backout

e Online Log Data Set (OLDS):
— Are only written when the IMS log buffer is filled
— Consists of multiple data sets - usually in pairs

e Allows IMS to continue logging when an OLDS switch occurs

because of the following events:
— 1/0 error — especially OLDS is full
— Operator commands /DBR or /DBD

— Written in a wrap-around manner
— Contents archived by Archive Job to the System Log Data Set (SLDS)
e Write Ahead Data Set (WADS):
— Written in response to a Check Write or timer pop
— Contains committed log records not yet written to OLDS
* Only short (2048 or 4096 bytes of data), full blocks are written
— Can be used to close the OLDS in an emergency restart
@ KIESSLICH CONSULTING

KC110 unit5 page 11

° e, ® L
Definition of IMS log datasets (f)GMgfht

e OLDS: Online Log Data Set
— Contains all log records required for IMS restart, dynamic backout
and recovery
e BLKSIZE min 6K and max 30K

— 26K was previous recommended blocksize because it was half-track blocking

> Currently, if OLDS Blocksize is divisible by 4K, Log Buffers will be stored above
2 GB bar and WADS blocksize will be 4K instead of 2K
— For 3390 BLKSIZE=24K is recommended

— Dual OLDS recommended

 WADS: Write Ahead Data Set
— Might contain committed log records not yet written to OLDS
* Guarantees log records available for restart/recovery after system failure
— Can be formatted at startup
— Dual WADS usually recommended
— Spare WADS always recommended
— BLKSIZE=2080 (2048 + 32 Prefix) or 4128
* Min TRKs = [(OLDS-BLKSIZE / 4096) + 1] * 2
* WADS size of 4-5 cylinders is usually recommended
* Max TRKs = ((OLDS-BLKSIZE / 2048) + 1) * OLDS-BUFNO

- KC110 unit 5 page 12

WADS write concept is new ! See following foil 15
OLDS also ready for striping onto the large vols

Definition of IMS log datasets (i?G’ngt

* SLDS: System Log Data Set
— Contains archived log records
— Dual SLDS recommended

* RLDS: Recovery Log Data Set
— Contains log records needed to recover databases (DB change and |/O-
error records, and records that record the start and end of

UOWs)
— Dual RLDS recommended

* Note that all of these log data set types provide the option of

IMS software-implemented mirroring
— If you *do* select to have a dual copy of a data set, make sure that it is
not allocated on the same VOL=SER as the primary copy
* The major purpose of a second copy is to reduce or eliminate the
impact of a hardware failure

(@ KIESSLICH CONSULTING

KC110 unit5 page 13

e - : . Llog
Specifying IMS logging options ’ Vem;
Some OLDS/WADS attributes extracted from DFSVSMnn member of PROCLIB

OLDSDEF OLDS = (00,01,....... ,99),
MODE = DUAL / SINGLE,

BUFNO = 3 = 9999,

DEGRADE=YES / NO

WADSDEF = (0,1,....,9)
ARCHDEF ALL MAXOLDS (1)

If no DD statements in IMS JCL, then DFSMDA members required for:
— DFSOLPnNNn, DFSOLSnn, DFSWADSnN
— The use of DFSMDA (Dynamic allocation) for OLDS and WADS data sets is

strongly recommended

WADS duplexing via WADS = S/D parameter in IMS startup procedure ONLY — pot in
DFSVSMnn

* Minimum of 3 OLDS subparameter required
BUFNO, MODE extracted from DFSVSMnn (OLDSDEF)

* Minimum of 1 WADS subparameter

OLDS and WADS data sets must be preallocated and cataloged
— Be careful of multiple data set extents - especially with SMS, only first extent will be
used

KC110 unit5 page 14

“ Be careful of multiple data set extents - especially with SMS, only first
extent is used “

Well, pre alloc with “Contig” / continuous avoids that splitting of your
requested primary space

Note:

Most of the characteristics associated with IMS Logs, and IMS log buffers
are specified in the DFSVSMnn member of IMS.PROCLIB; this is the same
member that is also used for database buffer specifications.

- OLDS DASD Logging

- SLDS /RLDS ... TAPE / DASD Logging

L
WADS Writes and Definition OG’ngt

= The concept of WADS track groups is not used any longer since
IMS V12
— WADS should be sized to provide enough space for any
OLDS buffers not yet written at any time plus one track
— WADS writes are changed from previous IMS versions
e IMS 12 writes to WADS from previously written log
record in the buffer to the last log record in the buffer
* WADS written in wrap-around fashion
= Performance tipp : WADS could be kept in cache in storage

subsystem

Maximum WADS size before IMS V12 with 200 24K buffers:
(OLDS block size/WADS segment size) + 1) x (no. of OLDS Buffers)
((24K/4K) + 1)) x 200 = 1400 tracks

Maximum WADS size with IMS 12 with 200 24K buffers:

3390 Model 9 allows 56664 bytes per track

56664/24K =2 blocks per track

200 buffers/2 + 1 =101 tracks

@ KESSLICH CONSULTING
| KC110 unit5 page 15 |

IMS 12 changes the way that WADS writes are done. The concept of track groups is not
used with IMS 12. This changes the calculation for the space required for the WADS and
changes the data written by log ahead requests.

In IMS 12 the WADS should be sized to provide enough space for the data in the OLDS
buffers which have not yet been written to disk at any time plus one track. This may
dramatically reduce the space requirement for the WADS. In previous versions the
WADS was sized by using the WADS track group concept. A track group was the OLDS
block size/WADS segment size plus 1. A WADS segment size was 2K for OLDS buffers
below the bar in real storage and 4K for OLDS buffers above the bar in real storage. The
maximum WADS size was (OLDS block size/WADS segment size) + 1) x (number of OLDS
buffers) tracks. For example, an installation with 200 24K OLDS buffers above the bar
could use a WADS with 1400 tracks. With IMS 12, a system with 200 24K buffers would
require no more than enough tracks to hold 200 x 24K plus one track. That would be
approximately 101 tracks.

In previous versions of IMS the WADS was written in segments from the OLDS buffers.
Successive writes were to different tracks. The scheme is much simpler in IMS 12. Each
WADS write is to the next block in the data set. The data written to the WADS includes
the data that was not previously written up to the last record in the buffer.

In order to provide the best response times for WADS writes the WADS data should be
kept in the cache of the storage subsystem. Since the WADS is written in a wrap-around
fashion, this means that the entire WADS should be in the cache for optimum

performance.

Latest news are :

WADS as linear VSAM

Then ZHYPERWRITE= parameter in the new LOGGER section of the DFSDFxxx

PROCLIB member can be used .

DBRC functions (1 of Z)RECOVMg,,,t

* Two types of DBRC used

* Log-Control, is mandatory and its primary function is to track IMS
log data set usage:

— Maintains information about OLDS status, for example, INUSE
ARCHIVE-NEEDED AVAILABLE, and so on

— Maintains information on data set names, creation times, and
contents of the various RLDS and SLDS data sets

* Optionally, on a case-by-case basis, databases can be
registered to DBRC

— Once registered, DBRC provides the same functions for databases that
were called Share-Control prior to IMS 6.1
— These functions include:
* Assistance in database integrity and recovery
* Preventing access to databases in a way that could impact
recoverability

— An example is when a job is prevented from updating a database not yet
Image Copied

KC110 unit5 page 16

The use of Database Recovery Control (DBRC) is mandatory in order to allow
IMS at initialization to determine which logs were in use when it was last active. -
“‘LOG CONTROL” (in coordination with RDS)

DBRC functions (2 of 2) RECOVMg,,,t

— The functions provided for Registered Databases (continued)...:

* Records the occurrence of key events that impact DB usability such
as:

— Database Image Copy (ICs), Change Accumulation (CA),
Reorganization (Reorg) and Recovery (DBR) Job executions

» Automatic JCL generation of needed job-streams
« Database Sharing, with integrity, between IMS systems

* Intra-processor (same z/OS) or inter-processor (different z/OS)
block-level sharing with integrity

— Changes (in addition to DBRC changes) are required when
implementing Data Sharing

(@ KIESSLICH CONSULTING

KC110 unit5 page 17

RECON maintained Information (1)

REC
Oy
* Recovery Control Data Sets (RECONSs)

» Automatic recording of information about:
— Online Log Data Set (OLDS)
— System Log Data Set (SLDS)
— Recovery Log Data Set (RLDS)

» Generation of utility JCL via DBRC command for:
— Log Archive
— Log Recovery

(@ KIESSLICH CONSULTING

KC110 unit5 page 18

RECON maintained Information (2)

/IDFSOLPOO

/IDFSOLPO1

/IDFSOLPO2

STATUS: ARCHIVE

SCHEDULED ARCHIVE
> JOB: .
ARCO001

STATUS: IN

USE
PRIOLD
SECOLD
PRISLD
SECSLD

STATUS:

AVAILABLE PRILOG
SECLOG

@ KESSLICH CONSULTING -+

/
PRILOG (incﬁes SECLOG)
compression may be
done automatically (after IC)
during archiving depending
on LOGRET parameter in
RECON Header record

KC110 unit5 page 19

The minimum information recorded about logs includes:

1. Subsystem ID

DDNAME

Status

© N o 0 bk~ WD

Data Set name
Start timestamp

Stop timestamp

Archive timestamp

Archive JOB Name

Therefore the PRILOG compresson will be triggered by some CMDs / activity

DBRC Database Registratioﬁc"'//wg,,,t

» Advantages of Registering Databases:
— Records recovery-related information in RECON
* Example: Provides information on which RLDS has log data for each
database data set (DBDS) registered with DBRC
— Provides databases with enhanced integrity by identifying valid
recovery points for databases
— DBRC GENIJCL feature Generates JCL for recovery-related utilities:
* Used to select correct data sets to be used by Recovery and
Image-Copy
* Consolidates changes of log records by creating the correct input for
Change Accumulation Utility Jobs
* Reduces or Eliminates errors
— Verifies that JCL used with IMS Utilities has valid input specified

* Registration of databases is performed through DBRC

commands
— DBRC is covered in detail in the 32 hrs DBRC class CM20xx

(@ KIESSLICH CONSULTING

KC110 unit5 page 20

DBRC was originally designed to record recovery related information for IMS
databases and to automate the recovery of the databases when required.

DBRC still permits these functions and is specified on a database-by-database
basis through the process of Registering databases.

This registration process involves running a DBRC utility with control
statements that specify information about the database (for example, DBD
Name, Dataset Name, retention period for recovery information, and so on)
being registered.

,recovery related” :
recover to a point back in time (IC + maybe LOGs or Cas)
forward recov to time of abend (IC + Cas / LOGs)

CA: cumulated “after image® info

GENJCL.USER for your own JCL ©

Checkpoint ID Table — RDS (1 of Z)gzstart

Coy
Assume System Failure at 12:45 — restart must examine logs starting M }
from 9:00 in support of PST 2 backout gfnt
Checkpoint ID Table
PST | prev Sys-CHKPT Appl - Commitpoint VOL=SER

1 9:00 9:05 end =

2 — 9:00 9:10 begin

3 —» 10:00 10:05 begin

4 11:00 11:05 end

5 ™ 12:00 12:05 begin

_ Most recent System (simple)
Checkpoint prior to PST UOW start

where: o d = End UOR (Synchpoint)

begin = Begin UOR
@ KIESSLICH CONSULTING

| KC110 unit5 page 21

Restart Data Set (RDS):

Contains the Checkpoint ID Table to determine restart checkpoint

Keeps track of all PSTs (up to 999) plus additional entries for other terminating (/CHE
FREEZE) and non-terminating (/CHE SNAPQ) checkpoints

Can be formatted at startup

Restart Algorithm:

Locate and read the most recent system checkpoint prior to the oldest application
program Commit Point for all active PSTs at the time of failure

Read log forward and restore system to status at the time of failure for all
Uncommitted DB change records collected in virtual storage

OLDS in use at the time of failure closed and new OLDS opened

Uncommitted DB changes backed out, Uncommitted Output-Messages backed out, TX
MSGs (if specified) requeued for scheduling

Checkpoint ID Table — RDS (2 of 2)

OStars

IPCS OUTPUT STREAM -==----- - e e e e m e m e e e m e o mm - - f R—E————

CHECKPOINT ID TABLE (:()lc’

18F4A000 0OOOCOGE0 00001000 1A010040 OCOOOEOGO LT e T SRR IDZ§777t

18F4A010 00OODOOED OEOOOEO0 DOOOOOOE OOEOOBOL i e R e S X

18F4A020 00000000 OOOOOEO0 COOOOEOO C2C3DTE3 . BCPTx*

18F4A030 00000000 OOEEEEOO CABC11DE S5E31BOCB X IR

18F4A040 D9YESCSE3 02040200 05660000 000OEOGO RN ET st st et homiai x

18F4A050 C2C3D7E3 18F4AC00 00000001 O0OOOO366 ¥BEPT .45 s vt e i *

18F4A060 E2C9C4E7T 18F49000 00000002 0OOOEOEO *STDM edy i i add X

Command === SCROLL ===> CSR

F1=HELP F2=SPLIT F3=END F4=RETURN F5E=RFIND F6=MORE F7=UP

F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=CURSOR

Menu Utilities Compilers Help

BROWSE IMS12A.RDS Line 00000000 Col 001 080
EEAEEEXEEEXEEEXEXEEEELEEEXEE LK XXX R XK Top of Data AEEEEAEEEEXEEEEEEXEEEELXEEEEXEE X KRR RER
... BERT . i i vin® o105 EERUMET. s o B s b
........... BHisnsiapis g sue R Gn e oo Bas vinge Ss S SCTIN e s ars vpogese i S e el v STNS
........... U o s i s o ol s o s s s tRERE s 5o vmees Rl s s momisms on s i G
Command ===> Scroll ===> PAGE

@ KIESSLICH CONSULTING
KC110 unit5 page 22

Syncpoint processing (1 of 2)

IMS - CONTROL REGION
DLISAS
CHECKPOINT RESTART TASK / LOGGER TASK
DL/I OLDS-Buffer | RDS - Buffer | WKAP
DMB Pool COMMON SERVICE [SCHEDULING
COMMUNICATION | P P P
MSGQ S S S
RECA MFS T T | - T
POOL POOL 1 2 n
PSB Pool SAS | f T~ TTTTTTTTTTTTTT
__RDS
ENQ/DEQ Table
Resident DMBs/PSBs
DB -Buffer Pool
B
'ﬁ\ \
AN SYstep,
Ces

DATABASE

(@ KIESSLICH CONSULTING

KC110 unit5 page 23

Notes:

At UOW syncpoint, all logging is completed and all database updates are completed before
response messages are sent, before scheduler related and locking related resources can be

freed

Resources (scheduler / Lock mgr) - PSB in Work pool, DMBs in WP, Locks held, ...

Syncpoint processing (2 of 2)

* Syncpoint processing common to IMS/TM, CICS and BMP:

— Changed data committed:

* Full function changes written to database
* DEDB changes become eligible to be written (asynchronously)
* Locks released - changed data available for other users

— Pool space is retained until program termination (except for CICS,
see below)
* Commit point processing specific to IMS/TM:
— MSDBs updates and SPA changes made permanent

— Output messages enqueued to final destination P
 Commit point processing specific to CICS: sysfem Sery;
Ces

— Pool space becomes eligible for other use

* PSB and DMBs marked inactive and PSBW space freed
* Done even if the next PSB scheduled is the one we are terminating here

— CICS thread released at PSB termination
— CICS thread - PST assignment will not be released
— Dependent on workload, additional threads (above MINTHRD) and

their associated PSTs are freed
@ KIESSLICH CONSULTING

KC110 unit5 page 24

Here are some of the key events that occur as part of an application committing of
a UOW.

Implicitely next GU IOPCB
Explicitely end, CHKPT calls, other (ROLB, ...) calls
Multi UOR in one UOW

IMS Storage Management
POOLS (1 of 2)

* IMS has different storage manager modules, they are:

— The old Pool Storage Manager - DFSISMNO

* Also called CBT (Control Block Table) Storage manager
— The new Pool Storage Manager - DFSPOOL -

e Also called the Dynamic Storage Manager S.Vste,n?

erinGS
* The old Pool Storage Manager manages pools that are fixed in size at IMS
Initialization:
— Space reassignment and reclamation are not sophisticated
— IMS can run out of space for pools managed by this method

* Unfortunately, all Scheduler-related pools (PSB, DMB, PSBW, others as DLMP,
DPSB, DBWP, EPCB, MAIN and so on) use this old Manager

(@ KIESSLICH CONSULTING

KC110 unit5 page 25

PSBW, DLMP, DPSB, DBWP, EPCB, MAIN a.o. will still be managed with the old
pool manager DFSISMNO.

Some IMS storage pools are managed by a so called pool manager, DFSPOOL.
Those pools are CIOP, HIOP, SPAP, CESS, EMHB, FPWP, LUMC und LUMP.

Pools as QBUF, QBFL, MFBP und EPCB will be allocated from the new Pool
Manager but not controlled.

IMS Storage Management
POOLS (2 of 2)

* The New Pool Storage Manager is better than the old one, at responding
to varying demands for storage:

— A user-specified amount of space is allocated at IMS initialization

— Fixed length buffers / space chunks are assigned in a best fit manner for variable
length requests

— Pools managed by this Storage Manager can dynamically grow in size, if

necessary
* The CIOP and the HIOP are two pools managed this way (and SPAP, CESS,
EMHB, FPWP, LUMC und LUMP) -
ervil'_‘n..

* Third (newest) type of storage management is done by
DYNAMIC CONTROL BLOCK STRUCTURE (CBS)
— Allocating blocks on page boundaries (4k) — minimizes paging

— Canrelease unused IPAGEs : If no blocks are allocated out of the IPAGE , it is
freed (timing interval scans)

— CBS has header and entry portion (see DFSCBTS and CBTE)
(@ KIESSLICH CONSULTING

KC110 unit5 page 26

The new pool manager DFSPOOL is a dynamic storage manager using fixed length
buffers for variable length requests. The best fitting fixed buffer is taken for a request.
The total size of the pool will vary when IMS is running.

Instead of FAQE's, the new storage manager makes it with bitmaps. The Diagnosis Guide
and Reference has a nice description about the new and old storage manager.

Most control blocks (except the very old and first ones) are in that way built, the
DYNAMIC CONTROL BLOCK STRUCTURE (CBS) . It also attempts to keep the CSA storage
usage to a minimum, releases blocks when not in use and minimizes paging by allocating
blocks on page boundaries.

The CBS is built on an IPAGE basis. That is, a page is allocated and the control blocks are
carved out of the page. The reason in using the term 1IPAGE1 is that the page size may
not neccessarily be 4k. but a size determined by the user of the block. When a request
for a particular block is issued and the block is not available, another IPAGE is allocated
and the block is returned to the caller. During time intervals, the IPAGEs are scanned. If
no blocks are allocated out of the IPAGE , it is freed.

Old Pool Storage Manager

SC

ZIBLFREE =) § ZIBLUSED

\ ZIB (represents pool)
FAQE | FAQE

Free |Alloc.

Chain | Chain

FAQE = Free or Allocated
Queue Element

|FAQE |

FAQE

Allocated

Free
Allocated

Free

Allocated
Allocated

@ KIESSLICH CONSULTING

KC110 unit5 page 27

New Pool Storage Manager

. . . |Buff.Inon- [comp]|, . . | Buff.[non- lcomp|, . . | Buff.|non-|comp]| , . . [over
block size complblock size [compjblock sized -
chain 3 plock|chain 32 plockichain chain =

Header Header Header
Buffer Buffer Buffer
Buffer Buffer Buffer
Buffer

(@@ KIESSLICH CONSULTING

KC110 unit5 page 28

POOLHDRs, pointed from hashtable which is pointed from the SCD (SCDSMHT).

Some pools, DB and LOG bfrs are now “above the bar” exploring the 64bit addressable
areas

IRLM Locks
(really in IRLM EPA)

RACF profiles
HIOP

LSO=Y:
LOG buffers and

ENQ/DEQ Pool

u rs
PSIL PSBW and
DBFCONO EPCB ENQ/DEQ Pool
DBWP
SMU (V9) and
BTAM (V9)
IESSLICH CONSULTING

VSAM buffers
VSAM ctbl
ENQ/DEQ
DLIPSB

DLIPSB (resident)
DMBP
DMBP (resident)

DL/l Code and Ctlb
(most)

Sy,

WKAP

SMB
DDIRs and PDIRs

16Mb —— —_— —_— —_— — — — — —_— —_— —_— —_— — — — — —_— —_— —_— -

Ctlb (some)

z/0OS: IMS CSA and Priv. Storage use

X

bt
em Se’ViCes

KC110 unit5 page 29

Note recent changes : pools above the bar (64bit)
VSAM ctl blks NOT in DLISAS , they reside in z/OS (VSAM) , only BFSP are in DLISAS

Notes:

This is a summary of where various storage areas that we have discussed are
stored. A slight misrepresentation is that IRLM locks are stored in Extended

Private storage of the IRLM address space, not extended private of Control region
storage as is depicted here for simplicity.

z/0OS Cross-Memory Services with IMS

Previous Environment

Cross-Memory Environment

* SRB = Service Request Block
- Indirect Address Space Communication

- Increases use of CSA

- CSA usage avoided
- Improved data isolation

- Direct Address Space Communication

(@ KIESSLICH CONSULTING

KC110 unit5 page 30

Without cross-memory services, when a program in one address space (Program

A) has to call a program in a second address space (Program B),

Program A first obtains supervisor state and then schedules a system routine,
which is subsequently given control. The system routine can then permit
Program B to begin. With the cross-memory facility, Program A invokes a cross-
memory service linkage mechanism directly and begins execution.

As another example, let's say we want to move data from address space 2 (AS
2) to address space 1 (AS 1). Without cross-memory services, B first obtains
supervisor state, then writes data into Common Service Area (CSA) and
schedules a supervisor program. When the supervisor program executes, it
writes data from the CSA to AS 1. However, using the cross-memory service
facility, Program B simply moves the data between the user address spaces.

Neither Program A nor Program B has to be in supervisor state. Keeping the data
and code in each address space's private area improves isolation and reduces
the demand on system virtual storage (shared CSA). This isolation of data

enhances the system's integrity.

