
Unit 3 –
Transaction Scheduling /

Execution
&

IMS DB Processing

KC110 unit 3 page 1

What this unit is about
After IMS has completed the processes related to classifying and queuing input
messages, instances of IMS transactions will remain in the message queues waiting to be
scheduled. In this unit, we will examine what processing the IMS Scheduler must
perform as part of selecting, and preparing, a message for processing by a Message
Processing region.
What you should be able to do
After completing this unit, you should be able to:

• Describe the Transaction attributes of Class and Priority and how the IMS
Scheduler uses these attributes to select transactions for processing

• Understand other Transaction attributes, and programming techniques, that
can be used to improve the effectiveness of IMS Scheduling

• List the major Scheduler-related storage pools and the process of loading the
required scheduler-related control blocks into these pools

• Understand the options available and how to specify IMS database-related
buffers

User
Terminal

z/OS

VTAM

MSG

IMS/
MPR

IMS/
MPR

IMS/
BMP

IMS/
IFP

Control Region

Receive
Task

Scheduler
Task

Queue
Manager
Expedited
Message
Handler

APPL

........................

APPL

........................

APPL

........................

APPL

........................

Message
Queue

IMS
DB(s)

IMS/TM Tran/MSG Execution flow

KC110 unit 3 page 2

Notes:

An MPR (Message Processing Region) is the execution/working
environment for application program.

There are (usually) multiple Message Processing regions active at any given time.

Although we are showing an IFP region and the Expedited Message Handler, we will
not be discussing these.

Transactions are ordered by priority within class...

• Class and priority can be changed via /ASSIGN command

• TRANSACTIONS are assigned two (2) key attributes:
1. Class, and
2. Priority:

CLASSES

001 SKILLINQ (8)
SKILLUPD (5)

PAYROLL (4)

INVENT (10)
STOKSTAT (8)

TRANSACTIONS (PRTY)

002

003 ORDER (6)
RECEIVE (4)

Message Classes and Priorities

KC110 unit 3 page 3

 Scheduling is the process in which IMS matches up messages to be processed with
available Message Processing Regions (MPRs)

 Application programs are automatically scheduled into MPRs to process messages

Driven primarily by the enqueuing of messages ...

IMS MESSAGE-QUEUE IMS/
MPR1

IMS/
MPR2

IMS/
MPR3

Classes
2,3,4,1

Classes
3,4,5,6

Classes
4,5,6,7

IM
S

S
C

H
E

D
U

L
E

R
TA

S
K

IMS Message Scheduling

SKILLINQ
CLASS=1, PRTY=8

MESSAGE 1

MESSAGE N

SKILLUPD
CLASS=1, PRTY=5

MESSAGE 1

MESSAGE M

KC110 unit 3 page 4

Notes:

The importance of a class number (1-999) is solely dependent on the current
configuration of executing MPRs.

• In this example, Class 1 seems unimportant since it can only be executed in a
single MPR (MPR1)

• Also, in this example, Class 4 seems to be the most important since it can be run in
any of the three MPRs

• APPL PGMs are not “scheduled” , they are loaded (SMB points to PGM) , so the
region gets control (after prime) and the very first GU IOPCB is already done  -
and then region controller BAKR to program controller ! With parm according
defined / assigned PGMNAME (load / fetch)

• Additional factors affecting scheduling

IMS MESSAGE-QUEUE

NORMAL PRIORITY
LIMIT PRIORITY

LIMIT COUNT
CURRENT QUEUE #
PROCESSING LIMIT

NORMAL PRIORITY
LIMIT PRIORITY
LIMIT COUNT
CURRENT QUEUE #
PROCESSING LIMIT

TIME 1 TIME 2 TIME 3

9

12
4
2
5

9

12
4
1
5

9

12
4
3
5

10
30
11
20

10
30

8
20

10
30
31
20

88 8

Message Queue Limit Priority

SKILLINQ
CLASS=1,
PRTY=(8,10,30)
PROCLIM =20

MESSAGE 1

MESSAGE N

SKILLUPD
CLASS=1,
PRTY=(9,12,4)
PROCLIM=5

MESSAGE 1

MESSAGE 2

MESSAGE M

KC110 unit 3 page 5

Normal
Prio

Notes:

The purpose of Limit Priority is to encourage the Scheduler to select transactions that
are queuing instead of others that have a higher Normal Priority.

In this example, at Time 2, the Priority of SKILLINQ is set to 10 instead of the normal 8
in response to queuing.

The Scheduling decision (what transaction to process) for an MPR is made when
it is available (not processing):

• After scheduling has completed and processing begins, the MPR will
continue to process the selected transaction even if more important
transactions are queued.

• The PROCLIM parameter permits the IMS Scheduler the opportunity to
periodically re-validate that MPRs are processing the right work

SCHEDULING , PRTY and PROCLIM

KC110 unit 3 page 6

Please review by reading the IMS docs !!

 Here (MPP Scheduling)

 Here (PRTY)

 And here : (PROCLIM) or HERE

 Related reading: For information on scheduling options,
see : Choosing IMS options for performance

 … also here: Dave Viguers “Scheduling” summary

Program scheduling:

If the response-time breakdown data indicates large and variable input queue times,
check the Region Occupancy figures.
If all message regions have high occupancy, then another message region might be
required. Alternatively, it might be possible to reduce occupancy by reducing program
load or program execution times. If some or all of the IMS message regions are not busy,
analysis of IMS PA Transaction Transit reports by transaction and class probably shows
that one transaction or class is more critically hit than others. In this case, you should
review the designation of classes and the allocation of classes to regions. PROCLIM and
PARLIM should be reviewed also.

Related reading: For information on scheduling options, see ...
https://www.ibm.com/docs/en/ims/15.5.0?topic=tuning-choosing-ims-options-performance
Programs executing as wait-for-input never show 100% occupancy even when they are
in the region 100% of the time. Zero occupancy might be cause to review operator
procedures, with instructions to manage the number of message regions based upon
display of the queues.

The IMS PA Transaction Transit reports Graphic Summary is useful to analyze
input queuing time by time of input across the entire measurement period.
This can be used to discover if high input queue times result from a transient
peak in transaction volumes or from a more sustained phenomenon.
DFSILTA0 can be used for the same purpose, although its output is numeric
rather than graphic.
Dave’s Scheduling is at the same folder here.

PARLIM:
In local env. It’s the value compared against TRAN queue depth (see also
MAXRGN parm at TRAN stmt),
In shared env. it’s different.
The problem: IMS doesn’t know the actual message queue count due to
messages being queued out on the coupling facility / Shared Queue.
See new field SMBGUCNT which represents the successful consecutive
message GU count - now compared with PARLIM.
(Instead of local IMS behavior : comparing the number of queued messages
with the PARLIM threshold value)
PARLIM=0 is triggering always another region start and schedule (limited
maybe by MAXRGN only) , but could cause a lot false schedules.
See the NOTE box here:
https://www.ibm.com/docs/en/ims/15.5.0?topic=environments-transact-
macro

More scheduling options
• Wait-For-Input (WFI) transactions:

– Allows a program to remain scheduled to wait for the next transaction,
subject to PROCLIM=

• The idea here is to allow an already scheduled MPR to wait for message
from an important transaction instead of permitting the MPR to be
scheduled for another transaction

• Parallel scheduling:
– Allows the same program to be scheduled in parallel

address-spaces at the same time
• Subject to queue-count of each transaction code Upper limit maximum
• This is not the default and may not always be desirable

– A consequence of parallel scheduling is that transactions can not
always process in FIFO sequence

• After scheduling completes, the application program load modules must be loaded
before execution begins:

– This might take a relatively long time
– IMS Preload options results in loading the application programs into certain

regions as the regions initialize instead of after scheduling

KC110 unit 3 page 7

Notes:

There are many more IMS transaction attributes than are shown here. Almost all can
be dynamically modified without requiring an IMS system restart.

SKILLINQ XXX

INVENTUP XXX

RESULTS

IMS TM
Control Region

1. MESSAGE QUEUED

2. IMSMPR2 AVAILABLE
IMSMPR1 AVAILABLE

3. CONTROL BLOCKS LOADED
HERE...

IMS/MPR1
(Class 2,3,4,1)

IMS/MPR2
(Class 4,5,6,7)

z/OS

4. INQPGM LOADED,
EXECUTION BEGINS
HERE...

5. GET MESSAGE FROM
QUEUE...

6. GET DB SEGMENTS
FOR INQUIRY...

7. INSERT MESSAGE
REPLY BACK TO THE
QUEUE

8. TERMINATE

THIS REGION
WAITING FOR

WORK

9. SEND MESSAGE FROM
QUEUE TO TERMINAL

PGMLIB

INQPGM
UPDPGM

INVPGM
VENPGM

PGMLIB

LTERM
CHI101

SKILLNQ
123456

SKILLINQ
RESULTS
SCREEN

Message Processing Programs

KC110 unit 3 page 8

INPUT MESSAGE

DATABASE(S)

OUTPUT MESSAGE

// EXEC PGM=DFSRRC00,

Control Region

PARM='MSG,002003004001,...'

Message Region 1

Application Program:

. . .

GET MESSAGE

. . .

. . .

. . .

ACCESS DB

. . .

. . .

. . .

INSERT REPLY
GET NEXT MSG
TERMINATE

Scheduled Transaction flow

KC110 unit 3 page 9

Notes:

The EXEC statement at the top of this page shows the first few parameters associated
with the JCL of a Message Processing Region.

• Note the '002003004001' portion of the PARM field. This indicates that *THIS*
MPR will primarily try to process class 002 transactions; if none available, process
class 3 transactions; and so on.

• „The sequence of specifying the classes determines relative class priority within
the message region. In the example, all class 1 messages are selected for
scheduling before any class 2 messages are considered. Class numbers cannot be
greater than the maximum number of classes that are specified during system
definition.”

READ THE INCOMING MESSAGE:
CALL 'CBLTDLI' USING GU, IOPCB, IO-AREA

CHECK THE STATUS CODE:

IF STATUS-CODE = 'QC'
END THE PROGRAM - OUT OF MESSAGES

HANDLE THE REQUEST:
BLAH, BLAH, BLAH.

LOOP TO THE TOP TO GET THE NEXT MESSAGE.

COBOL coding example

THE REPLYSEND

IOPCB, IO-AREA.ISRT,'CBLTDLI' USINGCALL

KC110 unit 3 page 10

Notes:

Note that the IMS TM calls are very similar to IMS DB calls and that unit of data
transfer between IMS and the program is a segment.

KC110 unit 3 page 11

MSG 1 (complete)

MSG 3 (3rd Seg)

MSG 2 (1st Seg) MSG 2 (1st Seg)

Short Message Data Set
First Message

Queue Block Data Set

First Message

Last Message

CNT
LTERMA

MSG 4 (1st,2nd& 3rd Segment)

MSG 3 (2nd Segment)

MSG 3 (1st Segment)

Long Message Data Set

Queue Pointer
Pointer to Next Message
Pointer to Next Segment

Output messages queued to final destination

SystemExclusiveResponse
BackupOther

LOCAL Queue : Queue DATASETs !!!

Notes:

Here is a depiction of how multiple messages, potentially each composed of multiple
message segments, are chained from the appropriate LTERM/QBLKS destination following
commit.

SharedQueues : totally different !! See SharedQueues Setup Class !!!

KC110 unit 3 page 12

Communications overview: Output message
(1 of 2)

KC110 unit 3 page 13

• HIOP (High I/O Pool) resides in IMS CTRL EPA:
– Fixed Pool storage management so additional storage can be allocated

upon demand.
• Alternate primary and secondary storage quantities can be defined in

DFSSPMxx member.
– HIOP contains primarily for buffers used for VTAM output message

• Also used for RECANY pool, VTAM MSC Link Buffers, and MFS workarea
– Defined in:

OUTBUF=size parameter of TYPE/TERMINAL macro

– The size must be equal or lower than PRIMARY UNIT Size defined in the Request
Unit Size of MODETAB

• See topic z/OS-VTAM INTERFACE

• CIOP (Communication I/O Pool) resides in IMS CTRL PVA
– Fixed Pool storage management so additional storage can be allocated

upon demand, but is generally <100K in size
• CIOP contains MFSTEST Buffers (/TEST MFS) which, if requested,

will never be freed; also contains IMS System restart work areas

Communications overview: Output message
(2 of 2)

 All INPUT and OUTPUT messages are queued... But not

necessarily stored in queue data setsMESSAGE
QUEUE

DATA SET(S)

IMS/TM IMS/MPR1 IMS/MPR2

QUEUE
BUFFERS

QUEUE
MANAGER

GET FROM

QUEUE
.

INSERT

TO QUEUE

A P P L

GET FROM
QUEUE

.
INSERT TO
QUEUE

A P P L

z/OS

LOGICAL
TERMINAL

(LTERM)

Message Queue: Output messages (1 of 2)

KC110 unit 3 page 14

2. OUTPUT MESSAGES are QUEUEd by LTERM
or if program switch, SMB (not shown)

LTERMA LTERMB

RPL1 (TRANX)
RPL3 (TRANX)

RPL2 (TRANY)

MESSAGE
QUEUE

DATA SETS

TRANX

1. INPUT TRANSACTION Messages are QUEUEd by SMB

MSG1 (LTERMA) TRANX

MSG3 (LTERMX) TRANX

MSG4 (LTERMQ) TRANX

MSG7 (LTERMX) TRANX

MESSAGE-QUEUE BUFFERS (Control Region)

MSG2 (LTERMB) TRANY

MSG5 (LTERMZ) TRANY

MSG6 (LTERMA) TRANY

TRANY

Message queue: Output messages (2 of 2)

MSG7MSG5RPL2RPL3MSG1

MSG6RPL1

MSG3MSG4MSG2

KC110 unit 3 page 15

Event associated with

Input and Output Msgs

Wait for poll

Data Transfer

Input Msg Processing

Input Queuing

Msg Queue GU

Event associated with

Appl. Pgm Processing

Scheduling

Program Load

Program Initialization

Msg Queue GU

<1>

<2>

<3>

<5>

<6>

<7>

<8>

<9>

Transaction Flow summary (1 of 2)

KC110 unit 3 page 16

Notes:

On this page and the next, we review the steps in the life of an IMS transaction. The
important point to note here is that processing of transactions occurs autonomously in
MPRs after they have been scheduled; the Control Region is responsible for receiving
and delivering the input and output.
Missing <4> : in case of SharedQ is CQS put / get

Event associated with Event associated with

Input and Output Msgs Appl. Pgm Processing

<10> Program Execution

Output Msg Insert

Wait for Synch Point

Wait for selection

Output Msg Processing

Data Transfer

Output Queue Processing

Output Msg Insert

Synch Point
GU for new msg

or
Program Termination

<11>

<13>

<14>

<15>

<16>

<17>

<18>

Transaction Flow summary (2 of 2)

KC110 unit 3 page 17

Missing <12> : in case of SharedQ is CQS put / get

Either a new GU Call to the IOPCB

or
Normal Program End

Trigger IMS Syncpoint Processing

READ THE INCOMING MESSAGE:
'CBLTDLI' USING GU, IOPCB, IO-
AREA

CALL

CHECK THE STATUS CODE:

IF STATUS-CODE = 'QC'
END THE PROGRAM - OUT OF MESSAGES

HANDLE THE
REQUEST: BLAH,
BLAH, BLAH.

SEND THE REPLY

CALL 'CBLTDLI' USING ISRT, IOPCB, IO-AREA.
LOOP TO THE TOP TO GET THE
NEXT

(ISSUE GU Call).
OR

GOBACK (terminate)

MESSAGE

IMS/TM TX : COBOL coding example

KC110 unit 3 page 18

Notes:

The GU call to the IOPCB is one of the ways that an application can “explicitly” commit
a UOW. In most cases, program end serves as an implicit commit point; several examples
in which this is not true are when using FastPath and Java being two examples where an
explicit commit is expected.

I M S C T R L

Queue Blocks

Q4
Other messages

Q1
Response Msg Queue

Q2
Exclusive Msg Queue

Q3
System Msg Queue

Q5
Backup Msg Queue

Message 1 on Q3

Message 2 on Q3

Message 3 on Q3

S2 (Msg1) on Q1

S1 (Msg1) on Q1Logical
Terminal X

C N T

Next
C N T

Last
C N T

Message 1 on Q5

MSGQ Pool: Output message queuing (1 of 2)

KC110 unit 3 page 19

Notes:

Messages destined for a given logical terminal are queued in one of a set of 5 chains for
that terminal’s QBLKS. The queuing of output messages to a QBLKS destination occurs as
part of application commit processing.

On which particular output subqueue a message is queued, depends on the type of
the message.

The QBLK of each logical terminal is pointed to by the LTERM’s CNT control

block. CNT = Communication Name Table

Q1 RESPONSE QUEUE

This queue is used for response type messages, when a terminal is in response mode or
conversational mode. This queue can contain only a single message.

Q2 EXCLUSIVE MODE QUEUE

This queue is used for replies to a transaction from a terminal in exclusive mode (/EXC command).

Q3 SYSTEM MESSAGE QUEUE

This queue is used for system messages, which includes /BRO messages, output from the /DIS
command and all system generated messages DFS.... .

Q4 OTHER MESSAGES

This queue is used for application program output, message switches and alternate PCB output.

Q5 BACKUP MESSAGE QUEUE
This queue is used to resend messages from terminals with the resend feature. It is also used for
conversational replies, which are kept for the purposes of /HOLD and /RELEASE and for resending on
restart. In these cases IMS has to keep the last conversational response, even though they were
successfully received.

Q0 INCORE QUEUE
Note that the documentation also refers to an incore queue called Q0. All messages in this queue are
sent immediately and do not use QPOOL or queue data sets.

MSGQ Pool: Output message queuing (2 of 2)

KC110 unit 3 page 20

Local Queues  !

KC110 unit 3 page 21

Message Processing Calls
CODEPCBFUNCTION

GUbb
GNbb

IO-PCB
IO-PCB

RETRIEVING MESSAGES:
GET UNIQUE
GET NEXT

ISRTIO-PCBSENDING MESSAGES to
ORIGINATING TERMINAL:

INSERT

CHNG
ISRT

PURG

ALT-PCB
ALT-PCB
ATL-PCB

SENDING MESSAGES to
ALTERNATE TERMINALS:
- CHANGE
- INSERT
- PURGE
- By EXPRESS PCB

CHKP
SYNC

IO-PCB
IO-PCB

CHECKPOINTING of the
BATCH APPLICATION:

CHECKPOINT
SYNC-POINT

Acrord32.exe /A “page=124”
C:\Users\T450p\Desktop\WundW_final\Material\dfsapgl0_notes.pdf

KC110 unit 3 page 22

PST1

1/Region

PDIR
CLASS

001 002

003 004

TCT2

1/Class

14

13

12

.

.

.

4

3
SMB

1

0

SMB
TRANX

1/Transaction

SCHD

PRTY

PARLIM

NXT

PDIR

MSG

SSQ 3 SSQ 4 SSQ 6

No Messages

Idle for Intent
Procopt=EX

PSB busy
Pool Space Failure

W FI

Scheduling a Transaction:
The Internal Perspective

T
A
B

TAB – Transaction Anchor Block

IMS Transaction Schedule: Algorithm (1 of 2)
• Scheduler gets control:

– At MPR initialization
– When a new message is enqueued on an SMB
– At application program termination
– If a CICS thread is released

• Schedule transaction to process in dependent regions on their
request

• Select Transactions to schedule by priority within class
– By class:

• Assign a class to each TX code (1-999)
• Assign 1-4 classes to each MPR

– By priority within class:
• Assign a priority to each TX code (0-14)
• Optional automatic priority change (Limit Priority) when there is

a large queue build-up
• Allocate and reserve resources for dependent regions/threads

KC110 unit 3 page 23

IMS Transaction Schedule: Algorithm (2 of 2)
• Maintain priority control when resource not available (via SSQs)
• Once all resources are available Message Priming takes place

which means:
– Copy TX (SPA) MESSAGE into PSBW Pool in preparation for 'GU I/O-

PCB'
• Therefore, first application call should be 'GU I/O-PCB'

• As Scheduling completes, the MPR is activated to load then execute
the application program

• Free resources when application program terminates:
– Free scheduler-related resources after Commit or ABEND

processing has finished
• Database changes are either finalized or rolled-back and

locks are released
– The completion of application processing will cause this entire

process to repeat and allow another transaction to process in the
dependent region

KC110 unit 3 page 24

IMS TRAN Scheduling Steps
DLISAS

DL/I

DMB Pool

MASTER

SECONDARY

COMMON SERVICE SCHEDULING

DBT - CONTROL REGION

& CHECKPOINT RESTART

MSGQ
POOL

RECA
Pool

Receive
Any Buffer

P
S
T
1

P
S
T
2

......

P
S
T
n

P D I R

FORMATA
QBLKS
SHMSG ACBLIBA

COMMUNICATION

MFS
POOL

TX
Message

PSIL 1

PSIL 2

PSIL 3

PSIL 4

PSIL n

DDIR
1

Update
pointer

3

Update pointer

2

Load if not
in storage

DFSRESL
“RESLIB”

MODBLKS
MATRIX

USER

PROCLIB

OR

RDDS

MODBLKSA
MODBLKSB

IMSACB
FORMAT

FORMATB ACBLIBBMATRIXA
MATRIXB

LGMSG

KC110 unit 3 page 25

Block loader – or block mover

PSIL (PSB Segment Intent List created by ACBGEN) already in storage:

• If not:

BLR (Block Loader) gets control [1].

DMBs (Data Management Block) already in storage (information in DDIR)

• If not:

BLR (Block Loader) gets control [2] and [3].

IMS TRAN Scheduling Steps…

P
S
T
1

P
S
T
2

......

P
S
T
n

P D I R

SCHEDULING

DLISAS

DL/I

DMB Pool

PSB Pool
SAS

MASTER

SECONDARY

COMMON SERVICE

MSGQ
POOL

RECA
Pool

Receive
Any Buffer

PSB Pool
ECSA

COMMUNICATION

MFS
POOL

TX
Message

PSIL 1

PSIL 2

PSIL 3

PSIL 4

PSIL n

DDIR
PSB Work
Pool

4

Update pointer5

6

DBT - CONTROL REGION

& CHECKPOINT RESTART

DFSRESL
“RESLIB”

MODBLKS
MATRIX

USER

PROCLIB

OR

RDDS

MODBLKSA
MODBLKSB

IMSACB
FORMAT

MATRIXA
MATRIXB

KC110 unit 3 page 26

FORMATA
QBLKS
SHMSG ACBLIBA

Load if not
in storage

make space

FORMATB ACBLIBB
LGMSG

PSB (Program Specification Block) already in storage (information in PDIR).

If not:

• BLR (Block Loader) gets control [4] and [5].

To get space in the PSB Work pool:

• BLR (Block Loader) gets control [6].

• If not: POOL SPACE FAILURE.

Program code is loaded into MPR. Databases allocated if available and currently
unallocated. Databases authorized if registered with DBRC. UOR (Unit Of Recovery)
started if update intent.

P ST Q
PST

S C D
PSTQ

P D I R
PSB

PSIL

PGMBUSY

TTR

SIZE

P S I L
DDIR

Segment Intent

ACBLIBA/B D D I R
DMB

TTR

SIZE

IMS/TM Control Block Relationship

P S T
PDIR

SMB

DMBPOOL
DMB

PSBPOOL

PSB

KC110 unit 3 page 27

Functions of Block Loader (or Block Mover)

Get space in PSB Pool for block required

[1] Read and load PSIL (if not in pool)
– Check for database conflicts
– Get space in DMB pool for blocks required

[2] Read and load DMB (if not in pool) [4]
Read and load PSB (if not in pool) [6] Get
space in PSB Work pool

• The Block Loader (runs under a dependent TCB) can acquire resources for
different PSTs in parallel but only for different pools.

• Scheduling waits when resource not available and might eventually
fail if space can not be allocated

IMS does n o t require all databases
to be available to allow successful scheduling

(see topic "Enhanced Scheduling")

KC110 unit 3 page 28

• PST
– Partition Specification Table resides in ECSA:

• PST is used to control each thread and region
• Size 10K,..,15K (if IRLM and FP)
• MAXREGN= or PST= parameter defines the minimum of PSTs
• MAXPST= parameter defines the maximum of PSTs

• PSIL
– PSB Segment Intent List resides in ECSA:

• Created by ACBGEN
• Used to check for DB conflicts (for example, PROCOPT=EX)
• Size = PSBSIZE - (SASSIZE + CSASIZE) from ACBGEN **

IMS Scheduling
Related Pools and CBs (1 of 4)

KC110 unit 3 page 29

**
See foil 38

• PSB:
– PSB pool location in storage depends on LSO= value:

• If LSO not= S, complete PSB is in ECSA
• If LSO=S (there is a DLISAS address space), PSB is split

– PSBP (JCL Parameter CSAPSB=) is in ECSA
– DPSB (JCL Parameter DLIPSB=) is DLISAS EP

– Space is required during application program execution and marked inactive as
part of termination processing

– If not enough free space available, the PSB cannot be scheduled
(Pool Space Failure)

• IMS will delete inactive PSBs in pool until sufficient contiguous space
is created

– Space requirements listed in ACBGEN

• PDIR
– PSB Directory resides in ECSA:

• Contains information of PSB (that is, location of PSB)
• 56 bytes per APPLCTN macro
• Built at IMS Initialization

– Might be updated at schedule time

IMS Scheduling
Related Pools and CBs (2 of 4)

KC110 unit 3 page 30

• DMB:
– DMB (Database) Pool resides in EP of DLISAS or Control Region
– Execution time version of DBD
– DMB= parameter defined in execution JCL
– If not enough free space available, the PSB cannot be scheduled

(Pool Space Failure)
• IMS will delete inactive DMBs in pool and close the associated database

data sets until sufficient contiguous space is created
– This can cause a disastrous impact to system performance

– Space requirements listed in ACBGEN

• DDIR:
– DMB Directory resides in ECSA

• Contains information of DBD (that is, location of DBD)
• 76 bytes per DATABASE macro
• Built at IMS Initialization

– Might be updated at schedule time

IMS Scheduling
Related Pools and CBs (3 of 4)

KC110 unit 3 page 31

• PSBW:
– PSB Work pool resides in ECSA
– Inter address space work area to process DL/I requests

• I/O area (DB segment data)
• SSAs
• PCB key feedback area
• Space is required during application program execution and freed as

part of termination processing. If insufficient, contiguous space
available, the PSB cannot be scheduled (Pool Space Failure)

– Space listed in ACBGEN
– PSBW= parameter defined in BUFPOOLS macro or execution JCL

• DBWP:
– DBWP resides in CSA
– Work area for DL/I:

• Call analyzer
• Delete processing
• Retrieve module
• Segment compression routines

– A DBWP space failure pseudo abends the transaction
• Not really a Scheduler-related pool

– DBWP= parameter defined in execution JCL

IMS Scheduling
Related Pools and CBs (4 of 4)

KC110 unit 3 page 32

D M B - P o o l

DMB 1 F2F1

F3 F4

F5

DMB 2

DMB DDMB A

DMB C DMB B DMB 3

N e w D M B

F3 = remembered
free space

1,...,3 = DMB busy

A,...,D = DMB inactive
A is the oldest

If DMB pool space needed, IMS must
close

the database (all data sets) before
its DMB can be stolen

DMB Pool Space Handling: Non-resident pool

KC110 unit 3 page 33

Notes:

• Database Management Block resides in Ext Private DLI space ;

• DMB sizes (pool recommendation) is listed in ACBGEN.

• Space is managed on a variation of a LRU (Least-Recently-Used) algorithm: Oldest
DMB is analyzed and its space stolen only if the steal will produce sufficient space; If
not, next oldest will be examined; this will continue until a large enough unused
DMB can be identified and freed; If this still does not work, IMS frees all unused from
oldest to newest; if this still does not produce enough space (maybe all/most DMBs
are busy), a Pool Space failure occurs.

• No pool compression but adjacent free space is consolidated and largest free space
is remembered. Each block requires contiguous space so fragmentation is possible;
stealing a DMB can have a serious performance impact since this requires that the
associated DB gets closed!

• With Online Change a new/changed DMB will be loaded into the non-resident pool
(even if RESIDENT is specified) until next IMS start (makes it resident again).

Notes:
Program Specification Block resides in ECSA / EDLI.
PSB sizes are listed in ACBGEN.
PSB is required only during application program execution

If parallel scheduling, each dependent region requires its own copy of the PSB:
Additional I/O to ACBLIB might not be needed as a PSB can be cloned by copying from a
busy copy elsewhere in storage.
Space is managed in the same way as was described for DMBs, but a steal will not cause
as severe an impact as no data sets are closed as part of a PSB steal.
With Online Change, a new/changed PSB (as DMB) will be loaded into the non-resident
PSB (as DMB) pool -even if RESIDENT is specified - until next IMS start.

KC110 unit 3 page 34

P S B - P o o l

PSB 1 F2F1

F3 F4

F5

PSB 2

PSB DPSB A

PSB C PSB B PSB 3

N e w P S B

F3 = Remembered
free space

1,...,3 = PSB busy

A,...,D = PSB inactive
A is the oldest

ACBLIB

PSB

PSB

schedulingPSB

copy if parallel

P S B - P o o l

START I / O PSB

PSB Cloning

PSB Pool Space Handling: Non-resident pool

PSB/DMB Pool: RESIDENT Pool (1 of 2)

• Each resident pool resides in EDLI or ECSA and is a different pool that
is separate from the PSB/DMB non-resident pool

– Size will be evaluated during IMS initialization
• Based on size of resident PSB/DMBs; NOT on SysProg specification

– Resident PSBs/DMBs are never deleted
– The IMS startup parameter RES=Y creates resident pools and loads:

• PSIL
• PSBs defined as RESIDENT (defined in IMS Gen APPLCTN macro with the

RESIDENT parameter or through a DRD PROGRAM definition with the
RESIDENT(Y) attribute)

• DMBs defined as RESIDENT (defined in IMS Gen DATABASE macro with the
RESIDENT parameter or through a DRD DATABASE definition with the
RESIDENT(Y) attribute)

• If parallel scheduling and the PSB is busy, it is copied from the Resident
PSB pool into the NON-resident PSB pool

KC110 unit 3 page 35

Notes:

The size for Resident pools is not directly specified in IMS parameter. As part of
startup. IMS allocates sufficient space to store control blocks with this attribute

PSB/DMB Pool: RESIDENT Pool (2 of 2)

• With online change, a new/changed PSB will be loaded into
the non-resident pool

• PSB pool until next IMS start
– Even if RESIDENT is specified:

• Old version remains in resident pool but is not used
• This should be considered if frequent use of Online Change and

RESIDENT

KC110 unit 3 page 36

„Considered“ only if private storage use grows and grows … potentially paging then (all
what‘s not fixed)

PSB Cast Out Algorithm Redesign (V12+)

• PSB cast out (making room for a new PSB being scheduled by “casting out” an
old not-in-use PSB) can be inefficient:

 Current algorithm is fine if a single PSB can be found which, if freed, will
make the requisite space in the pool for the new PSB, but…

 If more than one PSB needs to be freed, then algorithm starts “randomly”
throwing out PSBs from the pool, hoping that a big enough hole will be
made for the new PSB.

 Several latches (internal fencing) prevent scheduling of any other work
during this cast out processing (since PSB pool is necessary in scheduling)

 PSBs are chained in physical order within the pool, so:
• For each PSB checked, also check its neighboring PSBs, neighbor’s

neighbors, etc. Free a group known to make the space vs. random
“Swiss cheese” freeing.

• Also better / clever latching now (only once)

KC110 unit 3 page 37

P
e
r
f
o
r
m
a
n
c
e
T
o
p
i
c

There are several inefficiencies in the way that PSB cast out processing works today
(module DFSDLMP0).
There is lots of latching and unlatching around the unchaining of various database
blocks that is unnecessary, because the latch header is often the same for these blocks.
Rather than pay the overhead of latching and unlatching for each block unchained, the
code could be changed to get the latch once, unchain all blocks that need to be under
that latch, and then release the latch.
The cast out algorithm itself has a mode into which it can fall that has caused
performance problems at some customers.

• “Pass 1” of the cast out algorithm scans the PSB pool looking for the oldest
not-currently-in-use PSB in the pool that is large enough such that casting it
out of the pool will make enough room to contain the new PSB trying to come
into the pool. If such a PSB can be found, then the algorithm is done, and the
space is found reasonably fast.

• “Pass 2” of the cast out algorithm is the problematic part. If there is no one
single PSB that can make the space, the code picks the least recently used
PSB, removes it from the pool, and then retries the get for space. If the
search fails again, it picks the second least recently used PSB and removes it,
and retries. It keeps doing this until a big enough hole is made in the pool for
the new PSB to fit. All of this is done while holding several scheduling-related
latches, and thus, scheduling is delayed for other PSTs while the current PST
works on finding space in the pool. For a large pool, this is sort of like trying
to make a door in a wall by shooting it at random spots with a BB gun. It

might make a hole eventually, but it will take a while.

It turns out that the PSBs are chained together in physical order within the
pool. So it is possible to locate the PSB on the right and the left of a
candidate PSB. If those PSBs are also not in use, then their space could be
added to the current candidate’s space to make a more intelligent choice
about what PSBs to free, rather than waiting for the needed space to be
formed by random “Swiss cheese” freeing.
Note: This changed cast out algorithm is incorporated in IMS V13.

KC110 unit 3 page 38

DFSUACB0 MESSAGES AND CONTROL STATEMENTS

BUILD PSB=ALL

DFS0940I DBD ADFASIGN HAS BEEN ADDED
DFS0940I DBD ADFAAUDT HAS BEEN ADDED
DFS0940I DBD ADFAMSGS HAS BEEN ADDED

IN LIBRARY.
IN LIBRARY.

DMB SIZE = 000640
DMB SIZE = 000904
DMB SIZE = 000696

BYTES
BYTES
BYTES

SB SIZE = 008816 BY
E, CSA SIZE = 000608

DFS0589I PROCESSING COMPLETED FOR PSB----ADFABCTP.
WORKAREA = 002848,

TOTAL SIZE = 011664

PCB = 000960, PSB = 008816,

DFS0593I PSB--ADFABCTP WORKAREA BREAKOUT. NDX = 000256, XIO = 000008,
IOA = 001728, SEG = 00008,

.

.

.

IN LPISBRBARY.
DFS0940I PSB ADFABCTL HAS BEEN ADDED IN LIBRARY. PSB SIZE = 008544 BYTES
DFS0941I PSB ADFABCTL IF USING DL/I SEPARPAToEoAlDDRESS SPACE, CSA SIZE = 000608,
SAS SIZE = 007888.

DFS0589I PROCESSING COMPLETED FOR PSB----ADFABCTL. PCB = 000960, PSB = 008544,

WORKAREA = 002848,

TOTAL SIZE = 011392

DFS0593I PSB--ADFABCTL WORKAREA BREAKOUT. NDX = 000256, XIO = 000008,
IOA = 001728, SEG = 00008,SSA = 00840

DFS0940I PSB ADFABCTP HAS BEEN ADDED IN LIBRARY. P
DFS0941I PSB ADFABCTP IF USING DL/I SEPARATE ADDRESS SPAC
AS SIZE = 008160.

TES

, S

Going into PSBP
going into DPSB

Needed from
PSBW

PSB/DMB/PSBW
sizes from ACBGEN output (1 of 2)

KC110 unit 3 page 39

.

.

.

.

DFS0589I PROCESSING COMPLETED FOR PSB----Z
WORKAREA = 001744,

TOTAL SIZE = 002880

. PCB = 000608, PSB = 001136,

DFS0593I PSB--Z WORKAREA BREAKOUT. NDX = 000056, XIO = 000688, IOA = 000420,
SEG = 00008,SSA = 00560

DFS0591I MAX PCB SIZE = 001544,MAX PSB SIZE = 009104, MAX WORKAREA SIZE = 012240
MAX TOTAL SIZE = 021200

DFS0942I IF USING DL/I SAS,MAX CSA = 000704 MAX SAS = 008448 AVERAGE CSA = 000348
AVERAGE SAS = 002922.

DFS0590I END OF ACBLIB MAINTENANCE. HIGHEST CONDITION CODE WAS 00000008

PSB/DMB/PSBW
sizes from ACBGEN output (2 of 2)

SB SIZE = 008816 BY
E, CSA SIZE = 000608

POOL Sizing

Notes:
For messages:

• DFS0940I
• DFS0941I
• DFS0589I
• DFS0593I

See IMS Messages and Codes Reference manual.

This is a starting point for a new IMS system for which you have no historical pool usage
information:
- Online change Size of resources activated via Online Change or DRD.
- * 2.5 Factor to avoid/minimize fragmentation for PSBs,

since larger are more prone to fragmentation than DMBs.
- MAXPST Sum of MAXTHRDs plus max number of regions (MPPs, BMPs).

All sizes are reported (or can be calculated) from ACBGEN output.
Only online PSBs/DMBs should be considered and of course not those PSBs and DMBs
(DBDs) used only for Batch processing.

DBWP
PSBWP

Size = 12k + 4k * MAXPST
Size = max PSBW size * MAXPST

Non - resident and non-parallel scheduling:

PSBP(CSA)
PSBP(DLI)
DMBP

Size = Sum of PSB(CSA) sizes + Online Change Size
= Sum of PSB(DLI) sizes + Online Change Size =
Sum of DMB sizes + Online Change

Non - resident and parallel scheduling:

PSBP(CSA) Size = Sum of PSB(CSA) sizes +
max PSB size (CSA) * (MAXPST -1) * 2.5 + Online Change

PSBP(DLI) Size = Sum of PSB(DLI) sizes +
max PSB size (DLI) * (MAXPST -1) * 2.5 + Online Change

DMBP Size = Sum of DMB sizes + Online Change

Pool Space estimation for IMS System (1 of 2)

KC110 unit 3 page 40

Resident and non-parallel scheduling:

PSBP(CSA)
PSBP(DLI)
DMBP

Size = Online Change
Size = Online Change
Size = Online Change

Resident and parallel scheduling:

PSBP(CSA) Size = max PSB(CSA) size * (MAXPST - 1) * 2.5 + Online Change

PSBP(DLI) Size = max PSB(DLI) size * (MAXPST - 1) * 2.5 + Online Change

DMBP Size = Online Change

Pool Space estimation for IMS System (2 of 2)

KC110 unit 3 page 41

Consider ACBIN64 (DFSDFxxx Mbr) … more a few foils later !

https://www.ibm.com/docs/en/ims/15.5.0?topic=pools-creating-sizing-64-bit-storage-
pool

DB Pools Backed by 64-bit Real Storage

 DB storage pools moved to 64-bit real storage (still in 31-bit
virtual). When page fixed, these pools will now use 64-bit
real storage:
 DBWP: DB work pool
 DLDP: DMB pool
 DLMP: PSB CSA pool
 DPSB: DLI PSB pool
 PSBW: PSB work pool

 Target customers:
 Customers with large pools (typically, PSB), who

• Want to page fix them to avoid delays referencing old PSBs that have
been paged out, but

• Who cannot page fix them due to 31-bit real storage constraints.

KC110 unit 3 page 42

Prior to IMS V12, the pools listed here were all obtained in 31-bit virtual storage, backed
by 31-bit real storage when page fixed. In IMS V12, they will continue to be in 31-bit
virtual, but will be allowed to be backed by 64-bit real. The target customers for this are
those who have large pools, and who want to page fix them for performance, but who
cannot because doing so causes a 31-bit real storage shortage.

DB Pools Backed by 64-bit Real Storage…

 The DB pools had been allocated LOC=(31,31)
 1st 31 = allocate in 31-bit virtual storage
 2nd 31 = allocate in 31-bit real storage when page fixed

 When not page fixed, storage can be anywhere in real storage.

 When page fixed, storage is forced to the real range specified by the
second value of the LOC= parameter

 For large fixed pools, this can cause a real storage shortage, because
when fixed, LOC=(31,31) constrains real storage to 31-bit.

 In IMS V12, the DB pools are allocated with LOC=(31,64)
 Virtual storage remains 31-bit, but…
 Real storage can be 64-bit, even when fixed – no longer constrained!

KC110 unit 3 page 43

DLI pools had been allocated with LOC=(31,31). The first parameter indicates where the
virtual storage should be located… 31-bit in this case. The second parameter indicates
where the real storage backing the virtual storage should be located when fixed. Also
31-bit in this case.
When storage is allocated and is not page fixed, it can reside anywhere in real storage.
This is because non-fixed storage pages can be stolen and paged out, moved, etc. at any
time. No one can (or should) be concerned with a real address of a non-fixed page of
storage, because as soon as you know the address, it can change.
However, when pages are page fixed, then the second LOC= parameter comes into play
as a constraint. Pages that are allocated LOC=(31,31) are forced to be backed by 31-bit
real storage. 31-bit real is, today, a scarce resource. If a customer has large DB pools
and wants to page fix them, they can run into 31-bit real storage problems, because
there is not enough to hold the DB pools plus other users of 31-bit real storage.
In IMS V12, DB pools are now allocated with LOC=(31,64). Virtual storage is still located
in 31-bit, but now the pages themselves can be in 64-bit real, even when they are page
fixed.

DB Pool

DB Pools Backed by 64-bit Real Storage…

16 MB line

16 MB line

2 GB bar

2 GB bar

Virtual Storage (31-bit) Real Storage (64-bit)

DB Pool

16 MB line

16 MB line

2 GB bar

2 GB bar

Virtual Storage (31-bit) Real Storage (64-bit)

IMS V11 and earlier (page fixed pools) IMS V12 (page fixed pools)

KC110 unit 3 page 44

This chart shows this pictorially. The left half of the chart shows the pre-V12 situation.
The DB pools live in 31-bit virtual storage, which means they must be allocated with a
virtual address less than X’80000000’. If these pools are page fixed, their real storage
also must be in storage < X’80000000’. In the 64-bit real space, 31-bit storage is quite a
small part of the total storage available, and it is easy to run out.
The right half of the chart shows the IMS V12 situation. Here, the pools are still in 31-bit
virtual. However, when they are page fixed, they can now live in 64-bit real storage, and
have a much wider range of allocation possibilities.
Also note: Although the pictures on this chart show the pool’s real storage as one
contiguous piece, be aware that this is not true. The real storage frames can be
scattered throughout the real storage – there is no requirement for them to be
contiguous.

64-bit ACB storage pool (1 of 2)
 Prior to IMS 11

• At control region initialization :
 Resident DMBs and PSBs are loaded into 31-bit extended

storage of DLISAS or CTL (w/o DLISAS)
 DEDBs are loaded into ECSA

• During execution
 non-resident DMBs and PSBs are loaded on demand into

31-bit non-resident pools (DMB and PSB pools)
 V11

 An optional 64-bit storage pool to cache ACB members can be
created in IMS 11 for non-resident PSBs and DMBs

 The goal is to improve storage utilization and performance
• Reduces I/Os to the ACBLIB and
• Improves ACBLIB performance for shops with large ACBLIBs

KC110 unit 3 page 45

The 64-bit ACB storage pool enhancement provides a separate pool for non-resident
ACBs as an option to improve storage utilization and performance for those customers
who have heavy I/O activity to the ACBLIB or have large ACBLIBs with many members.

 With IMS 11 and 64-bit ACB storage pool
 At control region initialization : Same as pre-IMS 11
 During execution :

• non-resident DMBs and PSBs are loaded into 64-bit ACB
storage pool after being loaded on demand into 31-bit
non-resident pools

• Resident DMBs and PSBs will not go into 64-bit ACB
storage pool

• DEDBs will not go into 64–bit ACB storage pool
 Supported in all online configurations (IMS/TM, DBCTL, DCCTL,

SAS and non–SAS, XRF, FDBR)
• DCCTL only has PSBs
• No batch support
• DOPT PSBs not supported

64-bit ACB storage pool (2 of 2)

KC110 unit 3 page 46

At execution time, as non–resident PSBs and DMBs are loaded from ACBLIB into the 31–
bit non–resident pools, these non–resident PSBs and DMBs are also loaded into the 64–
bit ACB storage pool, so they will be more easily accessible later.

All online configurations of IMS have support for a 64–bit ACB storage pool.
There is no support for this capability in batch (well, why it should there ??)
DOPT PSBs are not supported.

Specifying the 64–bit ACB storage pool
• Specification of the 64–bit ACB storage pool is in the new DATABASE

section of the DFSDFxxx PROCLIB member

• Parameter is ACBIN64=nnn where nnn is the number of gigabytes for the
64–bit ACB storage pool (1–999)

• 64–bit ACB pool needs to be large enough to contain both non–resident
PSBs and non–resident DMBs

• Minimum would be sum of sizes of 31–bit non–resident PSB and
DMB pools

• Maximum would be a total size of all non resident
ACB members

• Recommendation is to start with 1 or 2 gigabytes

<SECTION=DATABASE>

ACBIN64=1

Remember
to specify
ACBIN64= in
DFSDFxxx
member for
FDBR if using

KC110 unit 3 page 47

The 64–bit ACB storage pool is defined in a new section of the DFSDFxxx PROCLIB
member called DATABASE. The parameter that must be specified is ACBIN64=nnn
where nnn is the number of gigabytes of storage for this new pool. If the ACBIN64
parameter is not present, the 64–bit ACB storage pool will not be created and used.

ACBIN64 considerations (1 of 3)

 Scheduling considerations with non–resident ACB resources

 At first scheduling of a program , a PSB and any related DMBs
are loaded into the 31–bit non–resident pools and are also
loaded into the 64–bit ACB storage pool.

 At subsequent schedulings of this program , ACB members not
found in the 31–bit non–resident pools are copied from the
64bit ACB storage pool (above the bar) back to the 31–bit non-
resident pools (which avoids I/O to ACBLIB).

 If the 64-bit ACB storage pool is full , the LRU algorithm will be
used to remove old members to make room for new members

KC110 unit 3 page 48

 Online change considerations for affected ACB members
 will be removed from the 31-bit non-resident pools
 will be Deleted from the 64-bit ACB storage pool

 Type-2 DELETE command considerations :
DELETE DB and DELETE PGM will
 Remove ACB members from the 31-bit non-resident pools
 Delete ACB members from the 64-bit ACB storage pool

 (Minimal) Impact on managing DMBs
 DMBs today are either defined as resident or are always in

the non-resident DMB pool
 Most likely new 64-bit ACB storage pool will have minimal

impact

ACBIN64 considerations (2 of 3)

KC110 unit 3 page 49

ACBIN64 considerations (3 of 3)
 Impact of managing PSBs will depend on scheduling patterns (WFIs

have no scheduling)
 PSBs defined as resident today :

• If large number of PSBs to be scheduled, investigate reducing /
eliminating resident PSBs, increasing the size of the non-resident PSB
pool, and using the 64-bit ACB storage pool

• No noticeable performance impact of retrieving the PSB from 64-bit
ACB pool versus from the resident PSB pool

 PSBs using the non-resident PSB pool today
• If non-resident PSB pool is sized larger to reduce/eliminate ACBLIB

I/Os, investigate using a smaller non-resident PSB pool with the 64-
bit ACB storage pool

• 64-bit ACB pool removes potential I/O for PSBs
 Benefits to summarize

 Improved technique for better management of non-resident ACBs
 Goal is to improve storage utilization and performance for ACBs

• Reduces I/Os to the ACBLIB
• Improves ACBLIB performance for customers with large ACBLIBs

 Improves ACB usability for customers where ACBLIB access impacts
performance and growth

KC110 unit 3 page 50

The actual impact will be based on the scheduling patterns of each IMS system !

For PSBs that are defined as resident today, if many of these are scheduled, it may be
more efficient to make some or all of them non-resident, increase the size of the non-
resident PSB pool, and use the 64-bit ACB storage pool to access them when needed.
You can using the saving from reducing/eliminating resident PSBs to increase the size of
the non-resident PSB pool. For PSBs that are non-resident today, if the non-resident
PSB pool has been sized larger to reduce/eliminate ACBLIB I/Os, then using the 64-bit
ACB storage pool would make it possible to reduce the size of the non-resident PSB pool.
This would be helpful for customers with large numbers of PSBs that cannot always be
found in the non-resident PSB pool today.

Querying the ACBIN64 storage pool

A new QUERY POOL TYPE(ACBIN64) can be used to monitor the
usage of the 64-bit pool

KC110 unit 3 page 51

Here is an example of the new formats for QUERY POOL TYPE(ACBIN64) command.

KC110 unit 3 page 52

Statistics for ACBIN64 storage pool
PoolNm Pool name (ACBIN64)
Type CACHE64
Size Pool size in megabytes
Mbrs Total number of buffers stored in the pool, whether in use or not
Used Number of buffers currently in use (number of ACBLIB members in pool)
Free The percentage of the pool that has not been reserved for buffers or control

data
Overflow Total number of overflow buffers in use
Gets Number of FIND calls, whether successful or not
Hit Number of successful FIND calls
Miss Number of unsuccessful FIND calls
Isrt Number of buffers added to the pool
Del Number of buffers deleted from the pool, including castouts
Lmbr Name of largest member in the 64-bit pool
Ltype The resource type of the largest member in the 64-bit storage pool
Lsize Size in kilobytes (K) of the largest member
Smbr Name of smallest member in the 64-bit pool
Stype The resource type of the smallest member in the 64-bit storage pool
Ssize Size in kilobytes (K) of the smallest member.

The same type of information that is provided by a type-2 QUERY POOL TYPE(ACBIN64)
command will be logged in a new type ‘4515’ checkpoint log record.

Monitoring the ACBIN64 storage pool

 New log record – type X’4515’
 Contains statistics from new QUERY POOL TYPE(ACBIN64)

command

 New monitor record types
 Type 74 - Issued when a get request for a PSB in the 64-bit pool is started
 Type 75 - Issued when a get request for a PSB in the 64-bit pool ends
 Type 76 - Issued when a get request for a DMB in the 64-bit pool is started
 Type 77 - Issued when a get request for a DMB in the 64-bit pool ends

 Supported by IMS Monitor in the Region IWAIT Scheduling +
Termination report

 Supported by IMS PA tool

KC110 unit 3 page 53

The IMS Monitor will record four new record types for usage of the 64-bit ACB storage
pool: type 74 indicates that a get request for a PSB in the 64-bit pool has started, type
75 indicates that a get request for a PSB in the 64-bit pool has ended, type 76 indicates
that a get request for a DMB in the 64-bit pool has started, and type 77 indicates that a
get request for a DMB in the 64-bit pool has ended.

These new monitor record types are supported by the IMS Monitor and the IMS PA tool.

KC110 unit 3 page 54

ACBIN64 storage pool – IMS Monitor REGION IWAIT
report

IMS MONITOR *** REGION IWAIT *** TRACE START 2008 123, 08:01:32 TRACE STOP 2008
123, 08:11:48 PAGE 0018

.........IWAIT TIME..........

**REGION 2 OCCURRENCES TOTAL MEAN MAXIMUM FUNCTION MODULE

______ ___________ _____ ____ _______ ________ ______

SCHEDULING + TERMINATION___ ___________

2 32975611 16487805 23293621 NO MESSAGES MSC

...SUB-TOTAL...

_________ 2 32975611 16487805

1 5807 5807 5807 PSB=DDLTRN24 BLR-64BIT

1 1985 1985 1985 INT=DDLTRN24 BLR-64BIT

3 5115 1705 1965 PSB=BMPFPE07 BLR

1 1154 1154 1154 INT=BMPFPE07 BLR

3 3040 1013 1199 PSB=BMPFPE05 BLR

1 1028 1028 1028 INT=BMPFPE05 BLR

1 1739 1739 1739 PSB=BMPFPE02 BLR-64BIT

1 1628 1628 1628 INT=BMPFPE02 BLR-64BIT

1 3100 3100 3100 PSB=BMP255 BLR-64BIT

..TOTAL...

_____ 15 33056434 972248

DL/I CALLS

____ _____

This is an example of the IMS Monitor REGION IWAIT report that shows activity in the
64-bit ACB storage pool.

Notes:
After scheduling completes, most interaction between the application and IMS
databases involve the DLISAS Address Space
Databases opened when first accessed
Read I/O (if segment not in DB buffers)
Data updated in buffer after locks have been granted

• Updates logged
• Write I/O usually deferred until commit point Updates locked until commit

point.

DLISAS

D L / I

D M B P o o l

ENQ / DEQ Table

R e s i d e n t D M B s / P S B s

DB - Buffer P o o l

P S B P o o l S A S

DATABASE

IMS DB processing (Full Function)

KC110 unit 3 page 55

IMS Database Buffers

VSAMOSAM

D L I S A S Extended Private Area

16 MB

SB-Buffer

OSAM –
Sequential Buffer

PI
ENQ / DEQ

DL/I OSAM
Buffer Pool

DL/I VSAM Local
Shared Resource

(LSR) Pool

3 - 32,767 Buffers
with a variety of sizes

.5K through 32KS/B Defaults:

- 4 Buffer Sets
- 10 Buffers per Set

Up to 25 Sets possible

IMS has three buffer handlers:
• VSAM Buffer Handler
• OSAM Buffer Handler
• OSAM Sequential Buffer Handler

- All have buffers in DLISAS EPA

3 - 32,767 Buffers
with a variety of sizes

.5K through 32K

KC110 unit 3 page 56

Notes:

In addition to storage for the Pools we have discussed earlier, the DLISAS also is used for
IMS Database Buffers and Lock Tokens (“PI ENQ/DEQ Pool”) if Program Isolation is used
as the lock manager.

OSAM SB ? Anticipating … “in advance buffering” assuming more sequential processing

Only OSAM possible – “we” own it – IMS core code !

IOBF Defines each OSAM subpool
• bufsize and #buffers is used to specify size and number of buffers in this

subpool
• no subpool specified: there is only one global … number 001 / or the first as

global one … 001 , for all those which are not assigned to a specific other pool
id

• The following parameters (values are Y / N) request long-term-page-fix for:
 fix1 – for Buffers and Buffers Prefixes (Header) - You might like to

specify "Y"
 fix2 – for Buffer Prefixes and Subpool Header (control blocks) - You

always should specify “Y”
 id (optional) is 1 - 4 alphameric characters to name the subpool

DBD is used to assign the database data set to that certain OSAM buffer subpool with a
matching ID of OSAM pool

• DATA SET NUMBER is determined by the order of the DATASET macros in the
specified DBD.

Please note changes here when in HALDB !

CONTROL STATEMENTS (DFSVSM**) specifications:

IOBF=(bufsize,# buffers,fix1,fix2,id)
DBD=dbdname(data set number,id)

Sample:

Always try to
fix Buffer
Prefix !


OSAM Buffer Pool Definition

KC110 unit 3 page 57

IOBF=(512,12,Y,Y)
IOBF=(2048,5,Y)
IOBF=(4080,6,Y,Y,PROD)
IOBF=(4096,6,N,Y)
IOBF=(12288,4,Y,Y,CUST)
DBD=DBD3(1,PROD)
DBD=DBD4(2,CUST)

VSAM Buffer Handler Pool

VSAM Shared Resource Pool

512 512 512 512 512 512 512 512

1024 1024 1024 1024

1024 1024 1024 1024

2048 2048

20482048

4096

4096

4096

4096

Structure of VSAM Shared Resource Pool

Buffer Pool Prefix

Sub - Pool 1 Prefix

Sub - Pool 2 Prefix

Sub - Pool 3 Prefix

Sub - Pool 4 Prefix

KC110 unit 3 page 58

Buffer Pool Prefixes are used by the buffer handler to identify the content of individual
buffers.

VSAM Subpool Definition is specified in Proclib member DFSVSAMP (BATCH) or
DFSVSMxx (Online).

IMS sample VSAM buffer pool for a control region:
VSRBF=512,8 VSRBF=1024,8 VSRBF=2048,4 VSRBF=4096,4
OLDSDEF OLDS=(00,01,02),BUFNO=005,MODE=DUAL, WADSDEF WADS=(0,1)
BGWRT=YES,INSERT=SEQ,VSAMPLS=LOCL

VSAM Buffer Pool Definition example
OPTIONS VSAMPL=LOCL (default) no HIPERSPACE is considered

POOLID = IDG General Pool:

VSRBF =.......... For all DBs not assigned to a

........... =.......... specific POOLID and

must be the first subpool

POOLID = ID1

VSRBF = 1024,8

VSRBF = 2048,16

VSRBF = 4096,30

POOLID = ID2,FIXINDEX=YES

VSRBF = 2048,24,I

VSRBF = 4096,10

POOLID = ID3,FIXDATA=YES

VSRBF = 1024,12

DBD = DBD1I,(1,ID1)

DBD = DBD1D,(1,ID1)

DBD = DBD3I,(1,ID2)

DBD = DBD4I,(1,ID2)

DBD = DBD4D,(1,ID3)

: Pool Id used to assign data set to poolPOOLIDWHERE:

: TYPE: I = Index Subpool, D = Data Subpoolnn,nn,type
: Page fix buffersFIXDATA =, FIXINDEX=
: Page fix control blocksFIXBLOCK =
: Assign data set to matching Pool IDDBD =

KC110 unit 3 page 59

Definition in:

IMS.PROCLIB(DFSVSMxx) or in:
//DFSVSAMP DD

Virtual Storage Constraint Relief (VSCR) was provided long ago for IMS buffers.

• Buffers and VSAM control blocks are allocated in DLISAS EPA so a large number of
buffers might be used.

Multiple VSAM LSR Pools (multiple POOLID statements) permit:

• Multiple subpools with same buffer size
• DB might be assigned to a specific LSR pool
• Subpool might be designated as a KSDS INDEX ONLY subpool
• Subpool could/should be large enough to enable most of the KSDS INDEX CIs for

important databases to remain in storage
• Number of buffers 3, ..., 32 767

VSAM Buffer Pool Definition example
OPTIONS VSAMPL=LOCL (default) no HIPERSPACE is considered

POOLID = IDG General Pool:

VSRBF =.......... For all DBs not assigned to a

........... =.......... specific POOLID and

must be the first subpool

POOLID = ID1

VSRBF = 1024,8

VSRBF = 2048,16

VSRBF = 4096,30

POOLID = ID2,FIXINDEX=YES

VSRBF = 2048,24,I

VSRBF = 4096,10

POOLID = ID3,FIXDATA=YES

VSRBF = 1024,12

DBD = DBD1I,(1,ID1)

DBD = DBD1D,(1,ID1)

DBD = DBD3I,(1,ID2)

DBD = DBD4I,(1,ID2)

DBD = DBD4D,(1,ID3)

: Pool Id used to assign data set to poolPOOLIDWHERE:

: TYPE: I = Index Subpool, D = Data Subpoolnn,nn,type
: Page fix buffersFIXDATA =, FIXINDEX=
: Page fix control blocksFIXBLOCK =
: Assign data set to matching Pool IDDBD =

KC110 unit 3 page 60

For HALDB is different !

KC110 unit 3 page 61

KSDS

ESDS

ESDS

I=2048
D=4096

D=1024

D=4096

VSAM LSR POOL ID = ID3

12 B u f f e r s x 2048 B y t e s

ESDS

D=2048

DBD-1I

DBD-2D

DBD-1D

DBD-4D

DBD-3I

DBD-4I

KSDS

KSDS

I=2048
D=4096

I=2048
D=4096

Using Multiple VSAM Buffer Pools

ID1LSR POOL ID =VSAM
B u f f e r s x 1 0 2 4 B y t e s8

B u f f e r s x 2 0 4 8 B y t e s16

B u f f e r s x 4 0 9 6 B y t e s30

ID2=LSR POOL IDVSAM
B y t e sB u f f e r s x 2 0 4 824

B y t e sB u f f e r s x 4 0 9 610

Notes:

In this example, we have multiple database data sets that have a common CI Size:

• Note that the KSDS Index components for DBD-I1 and DBD-3I and ESDS
Data component for DBD-4D have a common CI size of 2048.

• By being able isolate these three VSAM components into separate buffer
pools, we prevent buffers stealing between these databases.

Allocation of a data set to a subpool occurs at OPEN time only.

Notes:
HiperSpace was implemented to improve Buffer Hits and reduce Read I/O operations
when the amount of LSR buffers was limited by hardware constraints.
Although no longer recommended, if HiperSpace is used the following points apply:
LSR subpools using HiperSpace should be multiples of 4 K.
Each subpool has one set of BUFCs (buffer control blocks) and two sets of buffers:

• Each BUFC points to a buffer, either in the address space or in HiperSpace
• Both sets of buffers are managed on a least-recently-used basis

When a buffer is stolen from the address space buffer pool, it is moved to the
HiperSpace buffer pool. If the buffer was altered, it is written to DASD prior to being
moved.
When a buffer is stolen from the HiperSpace pool, its contents will be discarded.
When a VSAM request requires a CI, VSAM will look for the CI in buffer to avoid I/O.
If requested CI found in HiperSpace, VSAM will move HiperSpace buffer contents to an
address space buffer. This will usually force an address space buffer to HiperSpace.
I/O always performed with address space buffers.
Application programs (IMS) cannot reference buffers in HiperSpace.
HiperSpace is no longer recommended as a performance option.

VSAM Hiperspace

HiperSpace Buffering was appropriate when IBM
Processors had two types of Storage: Central and
Expanded

 Current z-Series Processors only have Central storage
– Use of HiperSpace, while still supported,

involves moving data from one area of memory
to another

 The movement of IMS HiperSpace Buffers from one
portion of memory to another is
wasted overhead

 Convert your existing IMS VSAM HiperSpace to real
IMS VSAM Buffers

Addressability : Page

Real Storage > 2 GB

D

Move 4K

A

D
C

B
E

VSAM LSR SUBPOOL

Database

Addressability: Byte

D
I/O

I/O

KC110 unit 3 page 62

Notes:
Hiperspace parameters added to VSRBF=
HSnn number of Hiperspace buffers needed:
- n = 0 to 16,777,215
HSOPTIONAL Hiperspace buffers optional (default):

• Initialization will *proceed* even if not enough HiperSpace is available to
meet requested amount

HSREQUIRED HiperSpace buffers required:
• Initialization will fail if not enough HiperSpace is available.

Buffers for smaller buffer sizes (that is, <4K) should be in 4K increments since 4K is the
management size.

Example:

Options VSAMPLS=LOCL

VSRBF = 2048,12
VSRBF = 4096,10,D,HS30
VSRBF = 8192,4,I,HS20,HSO
VSRBF = 12288,6,,HS20,HSR

HiperSpace Activation

KC110 unit 3 page 63

Notes:
The Interface between IMS and VSAM requires a String in order to perform I/O
operations.
In general, the parameter used to specify the number of strings should not be specified.
STRINGNM and STRINGMX parameters can be used to allow independent control of
VSAM number of strings allocated for DB I/O.
STRINGMX allows PSTs and VSAM strings to be tuned independently (consider
MAXPST=).

DFSVSMx

POOLID = ID1,STRINGMN = # of VSAM Strings
x

Max # of concurrent VSAM requests
for FF DBs using POOLID = ID1

OPTIONS VSAMPLS = LOCL,STRINGMX = # of VSAM Strings

Max # of concurrent VSAM requests
for all pools

VSAM Number of Strings

KC110 unit 3 page 64

BMP processing: Non-message-driven (1 of 2)

• BMP started by JCL or z/OS console

// EXEC IMSBATCH,MBR=pgmname, PSB=psbname,...

• Security verification

• PSB and DMBs loaded (if currently not in pools)
– Databases authorized if registered with DBRC

• Region (PST) assigned or created (up to MAXPST=)

• UOR started (if UPDATE intent)

• Multiple (hopefully! *) UORs

• PSB remains scheduled until PGM termination

KC110 unit 3 page 65

Notes:

Most of the BMP processing performed by customers is through the so called non-
message-driven BMPs. These jobs use the services of the Control Region, the DLISAS and
DBRC, but do not access IMS Message queues.

* Hopefully – because overhead of region start / stop and work inbetween (
checkpoints !!!)

BMP Program

Restart (X RST)
.
.

Read Input File
.

.
DL/I Processing

.

.
Write Output File

.

.

.
Commit Point (CHKPT)

.

.

.

.

ABEND
..
.

End of Program (implicit commit)

reposition

backout

U
O
R

U
O
R

BMP processing: Non-message-driven (2 of 2)

KC110 unit 3 page 66

Notes:

An option available to any type of BMP (non-message-driven shown here) is the use of
the CHKPT and XRST calls. When used together, these calls permit application to
periodically commit work that can be restarted from the point of failure without the
need to redo all earlier processing.

CHKPT file - GSAM

KC110 unit 3 page 67

Database buffers – Control block overview

Deep dive digging here: IMS Debugging class !

